Probing fault frictional properties during afterslip up- and downdip of the 2017 Mw 7.3 Sarpol-e Zahab earthquake with space geodesy

Kang Wang^{1,1} and Roland Burgmann^{2,2}

¹University of California, Berkeley ²University of California, Berkeley

November 30, 2022

Abstract

We use Interferometric Synthetic Aperture Radar (InSAR) data collected by the Sentinel-1 mission to study the co- and postseismic deformation due to the 2017 Mw 7.3 Sarpol-e Zahab earthquake that occurred near the Iran-Iraq border in Northwest Zagros. We find that most of the coseismic moment release is between 15 and 21 km depth, well beneath the boundary between the sedimentary cover and underlying basement. Data from four satellite tracks reveal robust postseismic deformation during $^{-}$ 12 months after the mainshock (from November 2017 to December 2018). Kinematic inversions show that the observed postseismic InSAR LOS displacements are well explained by oblique (thrust + dextral) afterslip both updip and downdip of the coseismic rupture, corresponding to a shallowly dipping detachment located near the base of the sediments or within the basement, depending on the thickness of the sedimentary cover, which is not well constrained over the epicentral area. Aftershocks during the same time period exhibit a similar temporal evolution as the InSAR time series, with most of aftershocks being located within and around the area of maximum surface deformation. The postseismic deformation data are consistent with stress-driven afterslip models, assuming that the afterslip evolution is governed by rate-strengthening friction. The inferred frictional properties updip and downdip of the coseismic rupture are significantly different, which likely reflect differences in fault zone material at different depths along the Zagros.

Probing fault frictional properties during afterslip up- and downdip of the 2017 Mw 7.3 Sarpol-e Zahab earthquake with space geodesy

4

¹Kang Wang and ¹Roland Bürgmann

6 ¹ University of California, Berkeley, Department of Earth and Planetary Sciences, Berkeley, CA 94720, USA

7 Abstract

8 We use Interferometric Synthetic Aperture Radar (InSAR) data collected by the Sentinel-1 mission 9 to study the co- and postseismic deformation due to the 2017 Mw 7.3 Sarpol-e Zahab earthquake 10 that occurred near the Iran-Iraq border in Northwest Zagros. We find that most of the coseismic 11 moment release is between 15 and 21 km depth, well beneath the boundary between the 12 sedimentary cover and underlying basement. Data from four satellite tracks reveal robust 13 postseismic deformation during ~ 12 months after the mainshock (from November 2017 to 14 December 2018). Kinematic inversions show that the observed postseismic InSAR LOS 15 displacements are well explained by oblique (thrust + dextral) afterslip both updip and downdip 16 of the coseismic peak slip area. The dip angle of the shallow afterslip fault plane is found to be 17 significantly smaller than that of the coseismic rupture, corresponding to a shallowly dipping 18 detachment located near the base of the sediments or within the basement, depending on the 19 thickness of the sedimentary cover, which is not well constrained over the epicentral area. 20 Aftershocks during the same time period exhibit a similar temporal evolution as the InSAR time 21 series, with most of aftershocks being located within and around the area of maximum surface 22 deformation. The postseismic deformation data are consistent with stress-driven afterslip models,

assuming that the afterslip evolution is governed by rate-strengthening friction. The inferred
frictional properties updip and downdip of the coseismic rupture are significantly different, which
likely reflect differences in fault zone material at different depths along the Zagros.

26 Introduction

27 With a total length of more than 1000 km, the Zagros Mountains in southwestern Iran are one of 28 the major seismically active orogens in the world. The active deformation is a consequence of the 29 ongoing continental collision between the Arabian and Eurasian plates, which initiated 10~35 Ma 30 years ago (e.g. Hessami et al., 2001; McOuarrie et al., 2003; Pirouz et al, 2017). The current plate 31 convergence rate is ~20-30 mm/yr, of which approximately one third is accommodated by a series 32 of folds and thrusts within the mountain range, with the remainder being mainly accommodated 33 by the Alborz, Greater Caucasus and Kopet Dag mountain ranges to the north (Masson et al., 2005; 34 Vernant et al, 2004), and subduction of the South Caspian Basin further to the north (Hollingsworth 35 et al., 2008). Shallow folding and thrusting in the Zagros involve an 8-14 km thick sedimentary 36 cover that spans the entire Phanerozoic, overlying crystalline basement hosting seismically active 37 thrust faults (e.g., Berberian et al., 1995). A weak detachment horizon may lie at the base of the 38 sedimentary sequence, possibly rooted in thick evaporite deposits that outcrop in diapirs in the SE 39 Zagros (McQuarrie, 2004; Jahani et al., 2007). Based on distinct characteristics of topography, 40 geomorphology, stratigraphy, and seismicity, the Zagros range can be divided into two zones: the 41 \sim 200 km wide High Zagros to the northeast that averages 1.5-2 km in elevation, and the Simply 42 Folded Belt (SFB) that lies along the frontal part of the mountain range. The SFB is further 43 subdivided along strike into the mountainous Lurestan and Fars arcs and the low-lying Kirkuk and 44 Dezful embayments. Despite the relatively rapid shortening across the Zagros, there is no evidence

of historical surface-rupturing earthquakes in the SFB. The largest instrumentally recorded
earthquakes along the Zagros were the 1972 Ghir and the 1977 Khurgu earthquakes in the Fars arc
in southeastern Zagros, both of which were estimated to be ~ Mw 6.7 (Nissen et al., 2011).

48

49 On November 12, 2017 at 18:18 UTC (local time 19:18), a Mw 7.3 earthquake struck the north-50 western portion of the SFB in the Lurestan arc, causing a total of more than 600 fatalities in Iran 51 and Iraq. The epicenter of this event determined by the U.S. Geological Survey (USGS) is located 52 \sim 50 km north of Sarpol-e Zahab city in Kermanshah province, and only a few kilometers east of 53 the Iran-Iraq border. Because of the sparse and uneven data reporting in Iran and Iraq, the USGS epicenter has a large uncertainty. Using data from local Iranian and Iraqi networks, Nissen et al. 54 55 (2019) determined the epicenter of this event at 34.911°N, 45.800°E, a few kilometers north of 56 Ezgeleh on the Iran-Iraq border, with a hypocentral depth of ~ 19 km. We refer to this event as the 57 Sarpol-e Zahab (Iran) earthquake, given that Sarpol-e Zahab is the closest community with a 58 sizeable population (over 30,000), and that most of the damage and fatalities were in this city. 59 Focal mechanism solutions of this event indicate that this earthquake ruptured either a nearly 60 north-south trending fault (i.e. NNW trending) that dips gently to the east, or a NW striking sub-61 vertical fault.Geological features around the 2017 Sarpol-e Zahab earthquake include an en 62 echelon set of right-stepping ~NW striking reverse faults and anticlines that are associated with 63 shortening across a series of basement-involved blind faults, namely the Mountain Frontal Fault 64 (MFF) and the Zagros Foreland Fault (Berberian, 1995). Although the NW trending nodal plane roughly aligns with these features (Figure 1), its near-vertical dip angle makes this fault geometry 65 66 unfavorably oriented in the overall compressional stress field and inconsistent with the wide 67 distribution of aftershocks. Therefore, the more plausible east-dipping rupture plane of the 2017

68 Sarpol-e Zahab earthquake does not closely align with the geologically mapped thrust faults in this69 region.

70

71 There have been several studies focused on the source characteristics of this earthquake with both 72 geodetic and seismic data (e.g. Barnhart et al., 2018; Chen et al., 2018; Feng et al., 2018; Gombert 73 et al., 2019; Nissen et al., 2019). Although there are some variations among these published 74 rupture models, they all show that the 2017 Sarpol-e Zahab earthquake ruptured a nearly N-S 75 trending fault with oblique thrust and dextral motion over a depth range of 12-20 km. In this study, 76 we focus on the postseismic deformation during ~1 year after the mainshock. To ensure 77 consistency, we first derive our own coseismic slip model for the mainshock using Sentinel-1 78 interferograms spanning the time of the mainshock. The results regarding the fault geometry and 79 slip distribution are overall consistent with previously published studies. We next derive the 80 postseismic deformation time series during the first year after the mainshock. Turbulent 81 atmospheric delay in radar propagation is a significant error source in InSAR time series analysis, 82 which makes the measurement of low-amplitude ground motion, such as postseismic deformation, 83 quite challenging. Previous studies using Sentinel-1 data of a similar time period concluded that 84 the postseismic deformation months after the 2017 Sarpol-e Zahab earthquake was dominated by 85 afterslip mainly updip of the coseismic rupture (Barnhart et al., 2018; Feng et al., 2018; Liu and 86 Xu, 2019). In this study, we use the Common-Scene-Stacking (CSS) method (Tymofyeyeva and 87 Fialko, 2015; Wang and Fialko, 2018) to mitigate the atmospheric noise. We show that after the 88 atmospheric noise correction, postseismic line-of-sight (LOS) displacements derived from two 89 Sentinel-1 ascending tracks show clear deformation both west and east of the coseismic slip 90 contours. Both kinematic inversions and stress-driven afterslip simulations show that the observed

91 postseismic deformation is well explained by aseismic afterslip both updip and downdip of the 92 mainshock rupture. With the time series of postseismic InSAR measurements, we invert for the 93 frictional properties of the fault updip and downdip of the 2017 Sarpol-e Zahab coseismic rupture, 94 assuming that the afterslip is governed by a rate-strengthening friction law. We show that distinct 95 frictional properties of updip and downdip of the coseismic rupture are required to explain the 96 postseismic deformation after the 2017 Sarpol-e Zahab earthquake.

97 Data and Methods

98 InSAR Processing

99 Data used in this study include LOS displacements derived from synthetic aperture radar (SAR) 100 data from four Sentinel-1 tracks (two ascending track ASC072 and ASC174 and two descending 101 tracks DES6 and DES79, see Figure 1 for the respective scene coverages) of the Sentinel-1 A/B 102 satellites. The SAR data are processed with GMTSAR (Sandwell et al., 2011). All images of the 103 respective tracks are geometrically aligned to a master image using the orbital information and a 104 Digital Elevation Model (DEM). To remove the occasionally appearing burst discontinuities that 105 may be attributed to satellite clock errors and/or ionospheric effects, we further refine the image 106 alignment with the Bivariate Enhanced Spectral Diversity (BESD) method (Wang et al., 2017). 107 The topographic phase is removed using the 1 arcsec (i.e. 30 meters) DEM derived from the Shuttle 108 Radar Topography Mission (SRTM). The interferometric phase is unwrapped with SNAPHU 109 (Chen and Zebker, 2001).

110

For the coseismic deformation, we form interferograms with image acquisitions that are closest in time to the mainshock, which include 5 to 7 days of postseismic deformation. The coseismic LOS displacements from four different view geometries are shown in Figure 2. Because of the arid sparsely vegetated environment, the epicentral area exhibits high correlation of radar phase. LOS displacements from the two ascending tracks (ASC72 and ASC174) are characterized by mainly significant range decrease southwest of the USGS epicenter, while data from the descending tracks (DES6 and DES79) show range increase near the epicenter and range decrease further to the southwest. The difference in LOS deformation patterns of ascending and descending satellite tracks is indicative of significant horizontal motion.

120

121 To reduce the noise due to atmospheric perturbations and orbital inaccuracies, we flatten the LOS 122 displacements of each track by removing a linear trend that depends on both local topography and 123 coordinates

124

$$\phi = a * x + b * y + c * h + d \tag{1}$$

125 where x and y are pixel coordinates along range and azimuth direction, respectively, and h is the 126 elevation. We use pixels outside the expected earthquake deformation zone to estimate this trend. 127 The resulting LOS displacements are then downsampled with a quad-tree curvature-based 128 algorithm (e.g. Jónsson et al., 2002). To avoid oversampling in areas with large phase gradient due 129 to noise (e.g. residual atmospheric noise, unwrapping errors), we perform the downsampling 130 iteratively, using the current best-fitting model to generate the bounding coordinates of each quad-131 tree cell for the next iteration (Wang and Fialko, 2015). For coseismic displacement, we estimate 132 the data covariance by examining the spatial correlation of LOS displacements in the far-field, 133 where the range change variability is expected to be mostly from atmospheric noise. We assume 134 that the atmospheric noise is spatially stationary and radially symmetric, so its spatial correlation 135 depends only on the distances between observations. The resulting noise distribution function is then used to build the covariance matrix of the downsampled data points, assuming that the
correlation between data points decays exponentially with distance (Sudhaus and Jónsson, 2011).

139 In response to the earthquake, the European Space Agency (ESA) amended the observation 140 schedule to allow for data acquisitions along each track of Sentinel-1A and -1B, leading to repeat 141 intervals of 6-days for each satellite path over the epicentral area. By the end of January of 2019, 142 there have been more than 70 postseismic acquisitions for all four tracks shown in Figure 1. To 143 maintain a relatively high radar coherence, we limit the temporal baselines to be less than 50 days 144 and the geometrical orbit baseline to be shorter than 200 meters. We construct the time series of 145 the postseismic deformation using the Small Baseline Subset (SBAS) method (e.g. Berardino et 146 al, 2002; Schmidt and Bürgmann, 2003).

147

148 Noise due to atmospheric perturbations between image acquisitions is one of the major limitations 149 in InSAR measurements of low-amplitude deformation, such as the postseismic transients. To 150 reduce the atmospheric noise, in the analysis of postseismic deformation due to the 2017 Sarpol-e 151 Zahab earthquake, we apply the method of Common-Scene-Stacking (CSS) (Tymofyeyeva and 152 Fialko, 2015). This method exploits the fact that interferograms sharing a common scene 153 necessarily contain the same contribution of atmospheric delays from that acquisition. Therefore 154 by stacking many interferograms that share a common scene, one can estimate the atmospheric 155 phase screen (APS) of that scene, assuming that the atmospheric noise is random in time and that 156 the tectonic deformation cancels out or can be roughly corrected for. Details of the method can be 157 found in Tymofyeyeva and Fialko (2015) and Wang and Fialko (2018). In order to maintain the 158 temporal resolution in the final deformation time series, we limit the stacking stencil to be no

159 greater than 18 days on each side of the target scene, resulting in a maximum of six interferograms 160 per stack in the case of 6-days repeat intervals. We note that the CSS method is intrinsically similar 161 to low-pass filtering that is often adopted to suppress atmospheric noise for InSAR time series 162 analysis (e.g., Ferretti et al., 2000; Hooper et al, 2007), however, it has a few advantages. First, the 163 stacking is carried out in an order determined by the noise level of all images. APS of images with 164 higher noise levels are estimated first, which are then used to correct the pertinent interferograms 165 before proceeding to the next scene. This reduces the possible leakage of noise from very 'bad' 166 scenes to more quiet ones. Second, the stacking is performed on the entire image, so it is 167 computationally quite efficient. Lastly, this method can easily deal with cases of irregular 168 acquisition intervals, e.g. missing data in the stack.

169

170 Postseismic LOS displacement time series derived from data along the ascending track ASC72, 171 with and without correction of atmospheric noise with CSS, are shown in Figure S3 and Figure 172 S2, respectively. While both time series exhibit significant range decrease (i.e., movement toward 173 the satellite) over much of the image, the results with atmospheric correction are much more 174 coherent in time. In particular, in addition to the major zone of range decrease southwest of the 175 coseismic rupture (i.e. updip of the coseismic rupture), a narrow band of temporally coherent range 176 decrease is also evident south of the mainshock epicenter, with partial overlapping with the surface 177 projection of the coseismic rupture (Figure S3). This feature, however, is not clear in the results 178 without atmospheric correction (Figure S2). The cumulative LOS displacements for the ascending 179 track ASC72 one year after the 2017 Mw 7.3 Sarpol-e Zahab mainshock and the corresponding 180 time series at two selected points are shown in Figure 3 (a) and (b), respectively.

182 The cumulative postseismic LOS displacements along all four satellite tracks are shown in Figure 183 4. LOS displacements of the two ascending tracks (ASC72 and ASC72) are characterized by two 184 separate zones of significant range decrease southwest and northeast of the coseismic rupture 185 (black contours in Figure 4). In particular, the range decrease west of the coseismic rupture is 186 distributed across a wide area, with a maximum value exceeding 10 cm during one year after the 187 mainshock. LOS displacements of the two descending tracks (DES6 and DES79), on the other 188 side, are characterized by an elongated zone of range increase primarily right above the coseismic 189 rupture, plus some relatively localized range decrease southwest of the coseismic rupture. Similar 190 to the coseismic deformation field, the different patterns of LOS displacements between ascending 191 and descending satellite tracks indicate that postseismic relaxation of the 2017 Sarpol-e Zahab 192 contains significant horizontal motion.

193 Modeling of coseismic deformation

194 In this section, we invert the coseismic surface deformation data for the geometry and distribution 195 of slip of the rupture. In our modeling, we calculate the Green's function relating a unit slip to 196 surface displacement using the solution of a rectangular dislocation in a homogeneous elastic half-197 space with a Poisson's ratio (Okada, 1985). Fault geometry, including the fault position, strike, dip 198 and rake angles are nonlinear parameters in the coseismic slip inversion. Thus they are often not 199 well constrained when the data quality and/or quantity are limited, leading to a potential bias in 200 the resulting slip distribution. To mitigate this limitation, here we first invert for the fault geometry 201 of the 2017 Sarpol-e Zahab earthquake assuming a single rectangular fault patch. Model 202 parameters in this inversion include: the location of the fault centroid (eastward and northward 203 shift (x,y) with respect to to the epicenter of the earthquake), and depth, length, width, strike, dip 204 and rake, and slip magnitude of the dislocation. To quantify the uncertainty of the model parameters, we implement the inversion in a Bayesian inversion framework. We assume a uniform
prior distribution within a wide range for each model parameter, and a Gaussian distribution for
the observation errors. We sample the model space with a *slice* sampling algorithm in Matlab
(Neal 2003).

209

210 The distribution of the model parameters that yield a comparatively high posterior probability 211 density function (PDF) is shown in Figure 5a. Thanks to the nice coverage of InSAR observations 212 from different look directions, most of the model parameters are tightly constrained. However, we 213 note that the acceptable range of model parameters depends on the error functions of the input 214 data, which we estimate using data outside the deformation area with simplified assumptions that 215 the atmospheric noise is spatially homogeneous, isotropic, and exponentially decays with distance. 216 The results show that the 2017 Sarpol-e Zahab earthquake rupture can be approximated by an 217 almost north-south trending (strike = 356°) fault plane that is 40 km long and 15 km wide and 218 gently dips to the east (dip angle = 17°), with an average slip of ~467 cm and rake angle of 144°. 219 The slip centroid is found to be at a depth of ~17 km located ~20 km southwest of the USGS 220 epicenter. As expected, there is some trade-off between the slip magnitude and fault dimension, 221 particularly with the fault width, and depth. A moderate trade-off also exists between the strike 222 and rake angles. Nevertheless, all models yielding a high posterior PDF have a northerly strike 223 angle. In particular, models with a strike angle that aligns with the overall structural trend in this 224 area (~330 degrees) fail to correctly predict the range increase (corresponding to subsidence if 225 there is no horizontal motion) north of the major lobe of range decrease (uplift) observed in the 226 two ascending tracks (ASC72 and ASC174), regardless of the other parameters. The preferred 227 strike angle of 356 degrees is 20-30 degrees from the average strike of surface expressions (i.e.

228 folding and previously mapped faults) of this area (Figure 1). The preferred strike of the 2017 229 Sarpol-e Zahab rupture, however, is similar to the overall orientation of the Mountain Frontal 230 Flexure (Figure 1), a structural and topographic front that separates the high Lurestan arc to the 231 east from the low Kirkuk embayment to the west near the epicentral area (Berberian, 1995). The 232 preferred fault geometry and slip direction are in good agreement with the W-phase focal 233 mechanism determined by USGS and the moment tensor solution by gCMT (Figure 5b). Overall, 234 surface displacements predicted by the preferred model of a single dislocation patch match the 235 observations well (Figure S3).

236

237 We next examine the detailed slip distribution of the 2017 Mw 7.3 Sarpol-e Zahab earthquake 238 based on the fault geometry that is determined from the single dislocation inversion above. The 239 \sim 70-km-long by 55-km-wide fault plane is divided into patches whose size gradually increases 240 along the downdip direction to ensure a relatively uniform model resolution. Each individual patch 241 is allowed to have a thrust and right-lateral slip component of up to 10 meters. Laplacian smoothing 242 is applied between adjacent fault patches to avoid abrupt variations in slip. We further regularize 243 the inversion problem by requiring no slip at the fault edges, except at the updip edge of the fault. 244 The optimal value of the smoothness is chosen by visual inspection, such that the resulting slip 245 model appears smooth enough without significantly deteriorating the data fitting.

246

Our preferred coseismic slip model of the mainshock is shown in Figure 5b. Similar to the model of a single dislocation patch, the model allowing for spatial variation in slip is also characterized by oblique slip, with nearly equal amounts of dextral and thrust components. The distributed slip model, however, has somewhat larger slip in the southern half of the rupture. The area of prominent

251 slip (>1 m) is \sim 40 km long by \sim 17 km wide, similar to the dimension of the preferred model of the 252 single dislocation patch. The majority of the moment release is confined in a depth range between 253 15 and 20 km, with a maximum slip of ~6.5 m at a depth of ~17 km, well beneath the estimated 6-254 10 km thickness of sedimentary cover in the Lurestan arc (Emami et al., 2010; McQuarrie, 2004; 255 Vergés et al., 2011). The bottom of the coseismic slip model closely aligns with the base of the 256 seismogenic zone in this region (Karasozen et al. 2019). Assuming a shear modulus of 30 GPa, the total moment release is estimated to be $\sim 8.9 \times 10^{20}$ Nm, corresponding to a moment 257 258 magnitude of 7.26, which is in good agreement with the seismic moment. The preferred slip model 259 predicts surface displacements that fit the observations well (Figure S3). Compared to the result 260 with a single patch, the model with variable slip distribution yields overall better fitting to the 261 observations, particularly in the area south of the moment centroid, where the estimated slip is 262 larger than average. The preferred coseismic slip model shown in Figure 5b is overall consistent 263 with previous studies (e.g. Barnhart et al., 2018; Feng et al., 2018; Vajedian et al., 2018; Nissen et 264 al., 2019).

265 Modeling of postseismic deformation

Commonly considered models of postseismic deformation include afterslip, poroelastic rebound, and viscoelastic relaxation. Viscoelastic relaxation takes place mainly in the lower crust and/or upper mantle, where the temperature and pressure are high enough to allow for ductile flow of rocks (Bürgmann and Dresen, 2008). The observed large surface deformation updip of the coseismic rupture indicates that the deformation source is relatively shallow, and thus unlikely to be due to viscoelastic relaxation. Published models also suggest that postseismic deformation due to deeper seated viscoelastic relaxation one year after 2017 Sarpol-e Zahab earthquake is small (<

273 \sim 3mm), even when choosing rather low viscosities in the lower crust and upper mantle (Barnhart 274 et al., 2018). We show in the supplementary material that the contribution from poroelastic 275 rebound is also negligible (< 5 mm), although the magnitude and spatial pattern of surface 276 deformation depend on the hydraulic properties of the host rocks (i.e., porosity and hydraulic 277 diffusivity) (Figure S5 and S6). In the next section we show that the observed postseismic 278 deformation ~12 months after the 2017 Sarpol-e Zahab is well explained by afterslip both updip 279 and downdip of the coseismic rupture. In addition to dominantly aseismic afterslip, large 280 aftershocks contribute to the observed cumulative postseismic deformation. On August 25th, 2018, 281 Mw 6.0 aftershock ~30 of occurred km southeast the mainshock а 282 (https://earthquake.usgs.gov/earthquakes/eventpage/us1000ghda/executive). Three months later 283 on 11/25/2018, another strong aftershock of Mw 6.3 occurred near the southern edge of the updip 284 deformation but ~20 km depth zone at 285 (https://earthquake.usgs.gov/earthquakes/eventpage/us1000hwdw/executive). Both events 286 produced ~2-3 cm range changes around the respective epicenters in the cumulative postseismic 287 deformation field (Figure 4). Focal mechanism solutions of these two aftershocks are both 288 characterized by strike slip along nearly vertical nodal planes. The contrasting depths, rupture 289 orientations and dip angles show that these two large aftershocks occurred on structures different 290 from the mainshock and afterslip fault planes. To avoid a potential bias in the study of postseismic 291 deformation processes, we mask out pixels around the epicenters of these two largest aftershocks.

292 Kinematic inversion of afterslip

Assuming that the observed postseismic deformation is purely due to afterslip, we optimize the geometry of the fault up dip of the coseismic slip and invert for the spatial distribution of afterslip. The cumulative LOS displacements on all four tracks shown in Figure 4 are used in the inversion. 296 Our inversion of the afterslip distribution is based on the fault geometry that was derived from the 297 modeling of coseismic deformation, with extensions in both strike and dip directions. To account 298 for a possible variation in fault geometry associated with a ramp-and-flat system at the mountain 299 front, the dip angle is allowed to vary above a certain depth (hereafter called the 'transition' depth). 300 The dip angle beneath this transition depth is held fixed at 17 degrees found in the coseismic 301 modeling, while the dip angle above the transition depth is a free parameter in the inversion. We 302 varied the transition depth from 10 to 16 km at 2 km intervals. For each configuration of fault 303 geometry, we then invert for the afterslip distribution and examine the corresponding data fitting 304 by computing the root mean square (RMS) of the residual between model and observation, which is defined as: RMS = $\sqrt{\frac{(d-d')^2}{N}}$, where *d* represents the vector of downsampled InSAR LOS 305 306 displacements, the vector of d' model predictions and N the number of observations.

307

308 Figure 6a shows the RMS of the model misfit as a function of dip angle for the shallow afterslip 309 fault plane. One clear feature is that for all the explored transition depths, the data fitting 310 deteriorates with an increasing dip angle of the shallow part of the fault. This suggests that the dip 311 angle of the shallow afterslip is smaller than that of the mainshock rupture plane of 17 degrees. 312 However, models with dip angle smaller than 10 degrees updip of the transition depth yield similar 313 data misfit, suggesting that the data have little resolution for the dip angle smaller than 10 degrees. 314 We therefore take a value of 5 degrees as the dip angle for the updip afterslip fault plane. We did 315 a similar test for the dip angle downdip of the coseismic rupture, and found that a wide range of 316 dip angles (0-25 degrees) can fit the data equally well, indicating that the data do not have sufficient 317 sensitivity to resolve the downdip fault geometry. We therefore propose a kinked fault geometry 318 as shown in Figure 6c, which has a dip angle of 5 degrees above ~10-14 km and 17 degrees

beneath. We note that the transition depth determined in this study may have large uncertainties due to the limited data resolution. The preferred fault geometry is overall consistent with geological cross sections across the Zagros, which feature a sub-horizontal detachment at a depth of ~6-10 km that separates the Phanerozoic sediments from the underlying crystalline basement (e.g. Emami et al., 2010; McQuarrie, 2004; Vergés et al., 2011).

324

325 We then invert for the distribution of cumulative afterslip using postseismic InSAR observations 326 from all four satellite tracks observed from 7 days after the mainshock to November, 2018 (Figure 327 4). The preferred distribution of afterslip based on this geometry is shown in Figure 7a. Similar to 328 the coseismic slip model, the afterslip model is characterized by oblique slip containing nearly 329 equal components of thrust and dextral motion, with distinct slip zones located both updip and 330 downdip of the coseismic rupture. Little or no afterslip is found in the area of high coseismic slip, 331 despite the spatial smoothing. The maximum slip updip of the coseismic rupture exceeds 0.8 m 332 during the observation period (from a few days after the mainshock to the end of November, 2018). 333 The inferred peak slip in the downdip afterslip zone is ~ 0.3 m. The cumulative moment due to afterslip is 2.3×10^{19} Nm, which amounts to ~20% of the coseismic moment release and is 334 335 equivalent to the moment of a Mw 6.84 earthquake. 74.6% of the moment release occurred on the 336 updip section of the coseismic rupture. The moment release calculated from the inferred afterslip 337 model is significantly higher than the aftershocks during this time period, which add up to 338 3.03×10^{17} Nm and 3.08×10^{16} Nm for the updip and downdip regions (delineated by pink and 339 purple polygons in Figure 3a), respectively. This indicates that the postseismic deformation of the 340 2017 Sarpol-e Zahab earthquake is dominated by aseismic afterslip, which has also been observed 341 for many other events (e.g. Hsu et al. 2006; Bürgmann et al., 2002; Perfettini et al. 2010).

Nonetheless, aftershocks may locally contribute more to accommodate the postseismic fault slip, compared to aseismic afterslip, which is often poorly resolved in geodetic afterslip models because of the spatial smoothing and/or other numerical regularizations involved in the inversions (Lange et al., 2014). Surface deformation predicted by the afterslip model shown in Figure 7a matches the observations well, except in the area close to the Mw 6.0 aftershock on 08/25/2018 (marked as green stars in Figures 3 and 4), where the relatively large residuals likely result from the deformation associated with this event, which is not considered in our modeling (Figure 8).

349

350 Stress-driven afterslip simulation

351 The kinematic inversions indicate that the observed postseismic deformation one year after the 352 2017 Sarpol-e Zahab earthquake is well explained by afterslip both updip and downdip of the 353 coseismic rupture. To verify whether such an afterslip model is consistent with stress changes 354 induced by the coseismic rupture, and to explore the frictional properties of the fault, we model 355 the afterslip assuming that the evolution of afterslip is governed by rate-and-state friction (e.g., 356 Marone, 1998). Rather than using the full rate-and-state equations, we assume a steady-state rate-357 strengthening friction without healing and slip-weakening effects. The simulation of afterslip with 358 rate-strengthening and full rate-and-state constitutive laws only differ in the very early stage of the 359 postseismic phase, when the cumulative afterslip is less than the critical slip distance over which 360 the state variable evolves (Marone, 1998; Perfettini and Avaouc, 2007; Barbot et al., 2009). The 361 postseismic InSAR observations in this study started 3-5 days after the mainshock, during which 362 the cumulative afterslip is expected to already have greatly exceeded the critical slip distance D_c 363 in the full rate-and-state frictional law. The rate-strengthening simplification is also supported by 364 the high-sampling-rate GPS observations shortly after the 2016 Kumamoto earthquake (Milliner et al., 2020). Under the rate-strengthening simplification, the fault slip rate at the onset of the
afterslip can be expressed as (e.g., Barbot et al., 2009):

367
$$V = 2V_0 \sinh \frac{\Delta \tau}{\sigma \sigma}$$
(2)

where V_0 is a reference slip rate before the coseismic shear stress change $\Delta \tau$ is applied; σ is the 368 369 effective normal stress on the fault; and a is a constitutive parameter representing the 370 dependence of friction on the slip rate change. We that $a\sigma$ in eq. (2) should be interpreted as 371 $(a - b)\sigma$ in the case of full rate-and-state friction. Here we have assumed that the normal stress 372 change on the fault during an earthquake is small and negligible, compared to the shear stress change (Figure 7 c,d). We note that V_0 does not correspond to the interseismic loading rate 373 374 (Barbot et al., 2009; Perfettini and Avouac, 2007), as the nucleation process and propagation of 375 dynamic waves during the rupture process may accelerate the creep rate in the afterslip zone, 376 leading to a significantly larger V_0 compared to the long-term interseismic loading rate 377 V_{pl} (Perfettini and Avouac, 2007).

378

379 A fault of the same geometry as in the kinematic afterslip inversion is discretized into rectangular 380 patches of uniform size of ~ 4 by 3 km. The coseismic slip model shown in Figure 5b is used to 381 generate the coseismic stress change in a uniform elastic half-space. In the depth range between 382 15 and 20 km, where most of the coseismic slip occurs, the shear stress change is negative (i.e., 383 represents the stress drop). To avoid back slip, the afterslip on fault patches of coseismic slip > 0.5384 m is prescribed to be zero and afterslip is only allowed to occur on patches whose centroid depths 385 are smaller than 15 km (updip region) or larger than 20 km (downdip region). This is also 386 consistent with the kinematic afterslip inversion results, which suggest that most afterslip occurs 387 either updip or downdip of the coseismic rupture, with little, if any slip in the depth range of the 388 coseismic rupture. This parameterization also implies that the fault segments laterally adjacent to 389 the coseismic rupture are 'locked' and are not allowed to participate in the afterslip. The rake of 390 slip on each fault patch is determined by the direction of shear traction on the corresponding patch 391 in each step.

392

Informed by the observation that the surface deformation and seismicity downdip of the coseismic rupture seem to decay faster than the updip region (Figure 3b), we allow for different frictional properties updip and downdip of the coseismic rupture. The model thus includes four free parameters: V_0 and $a\tau$ for both the updip and downdip regions. We perform the numerical simulations with Unicyle (Barbot et al., 2017; Barbot et al., 2018). We treat the simulation as an inverse problem, that is, given the surface deformation data, we solve for the parameters that can best explain the data.

400

401 Different from the kinematic afterslip inversion, in which only the cumulative surface deformation 402 is used (Figure 4), here we use the time series of postseismic LOS displacements from the two 403 ascending tracks ASC72 and ASC174, which have an overall better signal-to-noise ratio, and 404 exhibit clear separation of surface deformation updip and downdip of the coseismic rupture. Figure 405 8 and Figures S9-11 show that the preferred model is able to predict surface deformation of all 406 four satellite tracks reasonably well. We uniformly downsample the InSAR LOS displacements 407 at each postseismic epoch, and discard the data with total cumulative displacements of less than 3 408 cm. Since the InSAR time series are referenced to the first image acquisitions 5-6 days after the 409 mainshock, the model predicted displacement at the starting epoch is subtracted from the time 410 series of each track. The observed time series are compared with the model predictions to draw

inferences about the frictional properties of the fault that minimize the misfit. We solve the
problem in a Bayesian inversion framework, assuming that data are uncorrelated in space with a
uniform standard deviation of 2 cm, and that all four model parameters have uniform a priori
distributions. Similar to the coseismic slip inversion, we sample the model space using a slice
sampling algorithm (Neal, 2003).

416

The evolution of model parameters during the Bayesian inversion is shown in Figure 9. We note that all four parameters converge after ~200 samples, and the converged values do not depend on the initial values. We note that the 'samples' shown here are only results with posterior likelihood improvement in the slice sampling.

421

The models yielding low data misfit have distinct values of V_0 and $a\sigma$ for updip and downdip 422 portions of the fault, however, there is a strong trade-off between V_0 and $a\sigma$ (Figure 9c and f). For 423 424 updip region, mean values of $a\sigma$ and V_0 favored by the data are 2.7 MPa and 1.42 m/yr, 425 respectively, in significant contrast to 0.073 MPa and 0.06 m/yr for the downdip region. As the 426 value of $a\sigma$ is the product of the dependence of friction on sliding velocity a, which is a 427 constitutive property of the fault zone, and the effective normal stress σ , the large contrast in 428 updip and downdip of the coseismic rupture indicates that either the rock properties or effective 429 normal stress, or both in these regions are different. In the Discussion section below, we briefly 430 discuss the possible cause of such distinct frictional properties at those depth ranges.

431

432 To test if such a large difference in frictional properties is resolvable by our dataset and the 433 inversion procedures, we run a sensitivity test. We first generate the synthetic InSAR time series

434 using the same rate-strengthening model with $V_0 = 1.5$ m/yr and $a\sigma = 1.5$ MPa for the updip part 435 of the fault, and $V_0 = 0.01$ m/yr and $a\sigma = 0.15$ MPa for the downdip part of the fault. These 436 values produce distinct magnitudes and temporal evolutions of surface displacements updip and 437 downdip of the coseismic rupture, similar to the observations. Gaussian noise with a standard 438 deviation of 2 cm is added to the synthetic time series. We then invert for the model parameters: and V_0 for fault sections updip and downdip of the coseismic rupture. The results are shown in 439 440 Figure S7. Similar to the inversion with real data, all four parameters converge to their respective 441 values after ~200 iterations. The preferred values of parameters updip of the coseismic rupture, 442 however, are slightly higher than the input ones. This is likely due to the fact that for each point 443 we have shifted the synthetic time series (with noise) by the displacement of its first epoch, to 444 mimic the real InSAR time series. The high degree of recovery revealed by this test indicates that 445 with current data distribution, noise characteristics and inversion procedures, it is possible to 446 differentiate the frictional parameters updip and downdip of the coseismic rupture.

447

448 The model with the preferred values for $a\sigma$ and V_0 shown in Figure 9 produces surface 449 deformation matching the observations well, both in time and space (Figure 8). The comparison 450 of cumulative and time series of surface deformation between observations and model predictions 451 for the ascending track ASC72 is shown in Figure 10. The residuals between observations and 452 model predictions are generally less than 3 cm, comparable to the InSAR noise. Besides the major 453 deformation zones of range decrease, the model also predicts a modest range increase in an area 454 close to the northern tip of the coseismic rupture. This feature, however, is not clear in the data. In 455 fact, range increase or surface subsidence at the northern tip of the fault is somewhat expected, 456 because similar to the coseismic rupture, afterslip of the 2017 Sarpol-e Zahab earthquake is also

457 characterized by a strong component of right-lateral strike slip, which exerts 'pull' to the material 458 north of the slip area to produce subsidence at the northern end of the coseismic rupture. 459 Alternatively, the difference between model and observations in this area could be attributed to the 460 simplified model assumption in our simulation. Our model does not allow for along-strike 461 variation in the frictional properties, and assumes a rate-weakening rheology over the depth range 462 of major coseismic slip (15-20 km) to prevent any slip on fault patches on and adjacent to the 463 rupture. In reality, some degree of afterslip may take place at the two along-strike ends of the 464 coseismic asperity, as suggested by the kinematic afterslip inversion (Figure 7a). The model also 465 predicts surface deformation that matches the observations of the other three InSAR tracks 466 reasonably well (Figure 9 and Figures S8-S10).

467

468 The cumulative afterslip predicted by the best-fitting rate-strengthening afterslip model during the 469 InSAR observation period (from 11/17/2017 to the end of November, 2018) is shown in Figure 470 7b. Both the slip distribution and magnitude of the stress-driven afterslip model is very similar to 471 that based on kinematic afterslip inversion. On the other hand, both the kinematic inversion and 472 rate-strengthening afterslip models show significantly higher afterslip updip of the coseismic 473 rupture, compared to the afterslip downdip of the coseismic rupture, although coseismic stress 474 changes updip and downdip of the coseismic rupture are very similar (Figure 7 c and d). This 475 suggests that postseismic deformation during ~ 1 year following the 2017 Sarpol-e Zahab 476 earthquake is indeed dominantly controlled by afterslip driven by the coseismic stress change; 477 however, the frictional properties updip and downdip of the coseismic rupture are quite distinct. 478 Our rate-strengthening afterslip model suggests that until the end of the InSAR observation period 479 of this study, afterslip has released 76% and 93% of its total potential moment for regions updip

480 and downdip of the coseismic rupture, respectively, assuming that the coseismic stress change will 481 eventually be fully relaxed via afterslip. The model also suggests that during the period between 482 the mainshock on 11/12/2017 and the first SAR image acquisition on 11/17/2017, moment release 483 from early afterslip updip of the coseismic rupture is ~ 3% of its total moment after full relaxation, 484 whereas this value is up to 53% for the downdip region. Specifically, the model predicts a LOS 485 displacement of up to \sim 3 cm for the region downdip of coseismic rupture during the time period 486 before the first SAR image acquisition, which is comparable to the total amount of surface 487 deformation observed in this study starting on 11/17/2017 (Figure S11). Similar to the 488 observations, the model also shows that the surface deformation downdip of the coseismic rupture 489 decays faster than the updip region.

490

491 **Discussion**

492 Our inversions of coseismic displacements due to the 2017 Mw 7.3 Sarpol-e Zahab earthquake are 493 generally consistent with earlier studies (e.g. Barnhart et al., 2018; Feng et al., 2018; Nissen et al., 494 2019; Vajedian et al., 2018; Liu and Xu, 2019), despite the unavoidable epistemic uncertainties 495 related to fault parameterization, inversion regulation, data selection, etc. (e.g. Wang et al., 2020). 496 Particularly, all the models show that the 2017 Sarpol-e Zahab rupture was along a nearly north-497 south trending low-angle thrust fault, although the surface expressions of fault and fold in this area 498 trend in a more northwesterly direction. All these slip models also show that the major moment 499 release during the 2017 Sarpol-e Zahab earthquake was concentrated in a depth range between 10-500 20 km, which is well beneath the sediment-basement boundary at 6-10 km in this region. In 501 addition, all these slip models are characterized by nearly equal amounts of thrust and dextral slip, 502 despite the relatively low dip angle (~15-18 degree). Nonetheless, there are some small-scale 503 differences in the slip distribution among these models. For instance, the models by Barnhart et al. 504 (2018), and Feng et al. (2018) exhibit two distinct slip asperities, while the slip patterns of the 505 models by Vajedian et al., (2018), Nissen et al., (2019) and Liu and Xu (2019) appear simpler. Our 506 model reveals a relatively simple and compact rupture area, while we admit that the detailed slip 507 distribution could depend on the degree of smoothing and regularization in the inversion. The rake 508 of major slip in the model of Barnhart et al. (2018), however, is noticeably smaller than that in all 509 other models. Overall, the 2017 Mw 7.3 Sarpol-e Zahab earthquake represents one of the rare cases 510 for which published source models closely agree with each other, likely because of the relatively 511 simple rupture geometry and good coverage of surface deformation measurements.

512

513 Historically, there have been no earthquakes of magnitude greater than 7 along the Zagros. Seismic 514 moment release in the past 100 years along the Zagros only accounts for a small fraction of the 515 total strain accumulation determined by geodesy (Masson et al., 2005), leading to the question of 516 how the remaining shortening across the Zagros is accommodated, particularly in the basement. 517 Modeling of coseismic deformation of several moderate-sized earthquakes along the Zagros 518 suggests that most moderate-to-large earthquake ruptures are confined to the middle-to-lower 519 sedimentary cover, while background microseismicity and aftershocks of those events are possibly 520 mostly in the basement (Nissen et al, 2011, 2014). These observations led to the suggestion that 521 crystalline basement across the Zagros shortens mostly aseismically either through aseismic fault 522 creep accompanied by microseismicity or lower-crustal ductile deformation further to the north 523 (e.g. Nissen et al., 2011). The basement-involved rupture manifested by the 2017 Sarpol-e Zahab 524 earthquake indicates that at least part of the elastic strain accumulation and release along the 525 Zagros resides in the basement, highlighting the potential of seismic hazard from basement faults

along the Zagros, particularly when considering that the MFF has a total length of over 1000 km(Berberian, 1995).

528

529 The inversion of coseismic deformation clearly shows that the 2017 Sarpol-e Zahab earthquake 530 did not reach to the surface. Close examination of coseismic interferograms, however, reveals 531 some localized surface deformation in the southwestern corner of the zone of high coseismic 532 surface deformation (near the city of Qasr-e Shirin). The interferograms reveal linear features that 533 are roughly parallel to the surface fold expressions. The largest coseismic offset in LOS direction 534 of the ascending track A72 reaches over 6 cm (Figure 11a). Postseismic InSAR time series along 535 profiles normal to these linear features show continued surface creep. During the one year after 536 the mainshock, cumulative surface creep (along the LOS direction of the ascending satellite track 537 A72) across these secondary faults exceeds 3 cm at some locations. We also note that the most 538 prominent postseismic creep occurs on a segment that did not produce clear coseismic deformation 539 offset (Figure 11b). There are two mechanisms that can produce localized surface deformation 540 during coseismic strains. One is simply due to triggered slip along the secondary faults. Another 541 mechanism involves localized strain due to the reduction of elastic modulus in a fault zone with 542 finite width (e.g. Fialko et al., 2004). Typical widths of the compliant zone inferred from geodesy, 543 seismic guided waves and tomography range from ~ 100 meters to a few kilometers (Fialko et al., 544 2004; Li et al., 2009; Allam et al., 2014; Materna and Bürgmann, 2016). The sharp discontinuities 545 in the coseismic deformation field, as well as the continued postseismic creep across these features, 546 are diagnostic that the observed strain localization represents triggered slip along secondary faults, 547 rather than the response of a compliant fault zone. The observed postseismic range changes are 548 overall consistent with the coseismic offsets across these features. The lack of a clear signal in the

data from the descending tracks across these features, however, makes the interpretation of slip sense not straightforward. Given that the area is in an overall compressional regime, it is possible that the observed range changes distributed over a few kilometers correspond to triggered shallow fault slip on a series of minor reverse faults or flexural slip along bedding planes associated with fold structures. Similar processes have been observed during and after other earthquakes along the Zagros, e.g., the 2005 Mw 6.0 Qeshm (Nissen et al., 2007) and the 2013 Mw 6.2 Khaki-Shonbe earthquakes (Elliott et al., 2013).

556

557 Postseismic deformation following the 2017 Sarpol-e Zahab earthquake has been well documented 558 in several earlier InSAR studies (e.g., Barnhart et al., 2018; Feng et al., 2018; Liu and Xu, 2019; 559 Lv et al. 2020). Yet, as shown in Figure S1, the LOS displacement time series without proper 560 correction for the atmospheric noise can be significantly biased. For this reason, previous studies 561 (e.g. Barnhart et al., 2018; Feng et al, 2018; Liu and Xu, 2019; Lv et al., 2020) using Sentinel-1 562 data over a similar time period only identified postseismic surface deformation and the 563 corresponding afterslip updip of the coseismic rupture. In this study, we applied the Common-564 Scene-Stacking method before the SBAS step to suppress the atmospheric noise that is supposedly 565 random in time. We show that after the CSS, the postseismic LOS displacements from the 566 ascending tracks are clearly characterized by range decrease both updip and downdip of the 567 coseismic rupture, and the LOS displacement time series exhibit temporally coherent decay that is 568 expected from a postseismic relaxation process, even without any temporal smoothing or 569 functional fitting during the SBAS step. Our InSAR time series also suggest that the surface 570 deformation due to afterslip downdip of the coseismic rupture reaches its plateau after ~100 days, 571 while the deformation updip of the coseismic rupture continued to increase until the end of the 572 observation period (Figure 3b). This implies that the downdip afterslip decays faster than the updip 573 region. We find that postseismic deformation one year after the 2017 Sarpol-e Zahab earthquake 574 is consistent with an afterslip model with slip concentrated in both updip and downdip fault 575 sections adjoining the coseismic rupture. Little afterslip is resolved in the area of high coseismic 576 slip. The 2017 Sarpol-e Zahab earthquake is therefore a rare case, for which the distribution of 577 afterslip largely follows the predictions from the classical model of a velocity-weakening rupture 578 asperity clearly separated from velocity-strengthening fault sections with distinct geometries. This 579 may be partially attributed to the high-quality InSAR data derived in this study, which significantly 580 improves the model resolution. The 2017 Sarpol-e Zahab earthquake is therefore a rare case, for 581 which the distribution of afterslip largely follows the predictions from the classical model of a 582 velocity-weakening rupture asperity clearly separated from velocity-strengthening fault sections 583 with distinct geometries.

584

585 Afterslip has been observed following many moderate to large earthquakes in different 586 seismotectonic settings. It represents the response of faults to the stress changes induced by the 587 coseismic rupture (e.g., Bürgmann, 2018). In the framework of rate-and-state friction, earthquakes 588 nucleate in regions of velocity weakening frictional properties, whereas afterslip occurs on fault 589 sections of velocity strengthening behavior away from the rupture (Marone, 1998; Avouac, 2015). 590 In this framework, afterslip is expected to mainly occur at the periphery of the coseismic rupture, 591 where the rock friction is velocity strengthening and arrests the seismic rupture. A transition to 592 velocity-strengthening behavior is expected at the down-dip portion of seismogenic faults due to 593 increased temperature and pressure (e.g., Marone, 1998). In the upper crust, however, velocity-594 strengthening fault properties appear limited to specific mineralogies (e.g., clays, serpentinite,

595 talc), macro- and microstructures (e.g., compositional heterogeneity, foliated gouge, veins), 596 deformation mechanisms (e.g., pressure-solution creep, granular flow), and/or conditions (e.g., 597 near-lithostatic fluid pressure) (e.g., Bürgmann, 2018 and references cited therein). A sharp 598 separation between coseismic slip and afterslip, however, is rarely observed, and afterslip is often 599 inferred to substantially overlap with coseismic ruptures (e.g., Avouac, 2015 and references cited 600 therein)- In addition to the limits of resolution of geodetic inversions, another likely explanation 601 involves the role of small-scale spatial (Johnson et al., 2006) or temporal (Hearn et al., 2012) 602 variations in frictional parameters across the fault surface. Numerical simulations have suggested 603 that seismic ruptures could indeed propagate into velocity-strengthening fault areas, when the fault 604 is dynamically weakened by rapid shear heating of pore fluids (Noda and Lapusta, 2013). In such 605 a scenario, one would expect some degree of overlap between afterslip and coseismic rupture.

606

607 While afterslip downdip of large earthquake ruptures appears common, what is the cause of 608 velocity-strengthening fault properties updip of the 2017 Sarpol-e Zahab earthquake? Our 609 modeling demonstrates that postseismic deformation in the updip region of the coseismic rupture 610 likely originates from aseismic slip on a sub-horizontal plane. Our tests with respect to the fault 611 geometry of the updip afterslip show that the models with relatively deeper transition depths and 612 shallower dips (i.e., >10 km and $< 10^{\circ}$) fit the data better. In addition, as shown in Figure 5b, the 613 coseismic slip is mostly confined in the depth range between 15-20 km; little slip is found at 614 shallower depths above 10 km. The postseismic InSAR LOS displacements derived from the two 615 ascending Sentinel-1 tracks, on the other hand, show that areas of major range decrease closely 616 abut the coseismic slip contours, suggesting a close relationship between coseismic rupture and 617 afterslip. If the afterslip had occurred on a shallower fault plane, the concentration of afterslip

618 would need to be further to the west, leaving a gap between the coseismic rupture and afterslip. 619 Therefore, afterslip updip of the coseismic rupture of the 2017 Sarpol-e Zahab earthquake appears 620 to have occurred on a subhorizontal detachment at a depth of ~10-14 km, which might correspond 621 to the Hormuz salt layer, a basal evaporite unit deposited in late Proterozoic to early Cambrian 622 through much of the Zagros. Although there is no firm evidence for basal Hormuz salt deposits in 623 the northwestern SFB, mechanical considerations point to an equivalent decoupling horizon in the 624 Lurestan arc either in the sedimentary cover or in the basement that allows for the deformation 625 front to advance southwestward over the Arabian plate via aseismic creep (e.g., McQuarrie, 2004; 626 Vergés et al., 2011; Teknik and Ghods, 2017; Motaghi et al., 2017). Such a mechanically weak 627 layer may act as a barrier to prevent seismic events that nucleated in the sedimentary cover from 628 propagating into the basement, and vice versa (e.g. Nissen et al., 2011). In our modeling, we 629 assume that postseismic deformation following the 2017 Sarpol-e Zahab earthquake is dominantly 630 controlled by afterslip following a rate-strengthening friction; however, ductile shearing of the 631 evaporite layer may have been involved.

632

Although mechanically afterslip and ductile shearing are different behaviors, it has been shown 633 634 that crystal-plastic flow within a finite-width shear zone following a power-law dependence of 635 strain rate on stress is mathematically equivalent to afterslip following a rate-and-state frictional law (e.g. Perfettini and Avouac, 2004; Barbot et al., 2009). This scenario is consistent with the 636 637 previous inference that any slip taking place between the metamorphic basement and the overlying 638 sedimentary cover above the Hormuz salt is aseismic (Berberian, 1995). The unique lithological 639 structure of the Zagros could also explain why the afterslip distribution following the 2017 Sarpol-640 e Zahab earthquake significantly differs from other thrust events of similar magnitudes and

tectonic settings; e.g., the 1999 Chi-Chi, the 2003 Chengkung, the 2005 Kashmir, and the 2015
Gorkha earthquakes, where afterslip years after the mainshock was all found predominantly
downdip of the coseismic rupture (e.g. Hsu et al, 2002, 2009; Wang and Fialko, 2014, 2018; Zhao
et al., 2017).

645

646 Accompanying the afterslip, the 2017 Sarpol-e Zahab earthquake also produced a large number of 647 aftershocks during the InSAR observation period. Despite the relatively poor automated locations 648 of earthquakes in the Zagros, the earthquake catalog used in this study (from the Iranian Seismic 649 Center) shows that most of the aftershocks in the first year after the 2017 Sarpol-e Zahab 650 mainshock surround the area of high coseismic slip (Figure 5b and 7). This is somewhat expected, 651 because of the stress increase at the periphery of the coseismic rupture (Figure 7c-d). The 652 mechanisms of aftershocks, particularly their relationship with postseismic deformation processes, 653 however, remains unclear. One popular model suggests that aftershocks result from the direct 654 effect of coseismic stress change on a population of nucleating faults with a rate-weakening 655 rheology (Dieterich 1994). In this model, aftershocks and afterslip are not expected to follow the 656 same temporal evolution, as they represent different physical responses to the coseismic stress 657 change. On the other hand, it has been suggested that aftershocks represent velocity-weakening 658 asperities embedded in a dominantly velocity-strengthening fault and are directly triggered by 659 afterslip, thus they share similar spatial and temporal evolution patterns (Perfettini & Avouac, 660 2004; Perfettini et al., 2018). In this study, we show that the aftershocks and surface displacements 661 both updip and downdip of the coseismic rupture follow similar temporal patterns, suggesting that 662 afterslip may indeed have played a direct role in driving the occurrence of aftershocks.

663

664 In this study, we estimate the frictional properties of the velocity-strengthening fault sections that 665 experience afterslip in the rate-and-state framework using the surface deformation data. As shown 666 in equation (2), under the rate-strengthening simplification, the slip rate at the onset of afterslip 667 depends on initial slip rate V_0 , the value of a in the rate-and-state friction law, the effective normal 668 stress $a\sigma$, and the coseismic stress change $\Delta\tau$. There are different explanations about the physical meaning of V_0 . Some authors suggest that V_0 should be thought of as a rock property that controls 669 670 the timescale of afterslip, so it has nothing to do with the actual pre-earthquake fault slip history 671 (e.g. Bartbot et al., 2009). In contrast, others suggest that V_0 should be the pre-earthquake slip rate (e.g. Johnson et al., 2006; Perfettini and Avouac 2007). Since equation (2) is a general expression 672 673 of fault slip rate based on the rate-and-state frictional law, which relates the coefficient of friction 674 to the sliding velocity of the slider in a spring-slider system, the 'initial' velocity on the right-hand 675 side of the equation should be the fault slip rate right before the coseismic shear stress change is 676 applied, i.e., the pre-earthquake slip rate. However, due to the earthquake nucleation, dynamic 677 stress perturbation and weakening, and external loading from viscoelastic relaxation shortly after the earthquake, the slip rate right before the occurrence of afterslip shown in equation (2) could 678 679 exceed the interseismic loading rate V_{pl} over a long period (Perfettini and Avouac 2007). Therefore, instead of assuming V_0 to be the same as the interseismic loading rate V_{pl} (e.g. Johnson 680 681 et al., 2006), we leave it as a free parameter.

682

The results show a strong tradeoff between V_0 and $a\sigma$. For a wide range of tested values that yield relatively good fitting to the observations, the distribution of V_0 seems to be linearly correlated with $a\sigma$. This is somewhat expected, as sinh x ~ x for small value of x. Despite the strong tradeoff between V_0 and $a\sigma$, all the models yielding acceptable data fitting prefer a relatively high value 687 of V₀ (on the order of m/yr). Specifically, the model that yields the best-fitting LOS displacement time series for the ascending track ASC72 has $V_0 = 1.42$ m/yr for the updip section of the fault. 688 689 This is substantially higher than the overall convergence rate of ~4 mm/yr across the Zagros 690 (Hessami et al., 2006; Vernant et al., 2004), which is further partitioned between multiple faults 691 and folds in the mountain range. To test if such a large value of is required by the data, we run 692 another test by setting $V_0 = 5$ mm/yr, a velocity comparable to the interseismic loading rate across the faults in the SFB. We find that the model with such a small value of initial velocity V_0 would 693 significantly underpredict the surface deformation updip of the coseismic rupture, regardless of 694 695 other parameters.

696

697 High values of V_0 have also been documented in the modeling of the postseismic GPS data 698 following the 1992 Landers earthquake (Perfettini and Avouac 20007), in which the preferred 699 initial velocity is as large as 100 mm/yr. What causes such large pre-earthquake slip rates before 700 the Landers and the 2017 Sarpol-e Zahab earthquakes remains unclear. In addition to the 701 possibilities (e.g. earthquake nucleation, dynamic stress perturbation, loading from underneath 702 viscoelastic relaxation shortly after the earthquake) discussed in Perfettini and Avouac (2007), 703 foreshock excitation might be another effective way to enhance the fault slip rate leading to the 704 mainshock. For the 2017 Sarpol-e Zahab earthquake, a series of M4-5 earthquakes had occurred 705 within a few hours before the Mw 7.3 mainshock, with the closest one being only \sim 43 mins before 706 mainshock (Nissen et al., 2019). It is possible that the stress change from these aftershocks 707 enhanced the creep rate on the fault portions with velocity-strengthening friction, leading to a higher value V_0 of compared to the long-term interseismic creep rate. 708

710 In the above postseismic deformation models, we have assumed that the postseismic deformation 711 one year after the 2017 Sarpol-e Zahab earthquake is purely due to afterslip. This is in contrast to 712 Lv et al. (2020), who suggest that the postseismic surface deformation from 6 months to 2.5 years 713 after the 2017 Sarpol-e Zahab earthquake contained significant contributions from viscoelastic 714 relaxation of the lower crust and upper mantle. Using a rheological structure similar to Lv et al. (2020), which consists of a Maxwell fluid with an effective viscosity of 1×10^{19} Pas in the lower 715 716 crust between 25 km and 45 km underlain by a Maxwell-fluid upper mantle with an effective viscosity of 3×10^{19} Pas, we show that LOS displacements during the InSAR observation period 717 718 in this study (i.e. 0-1 year after the mainshock) for all four satellite tracks are less than 1 cm, and 719 the spatial pattern of LOS deformation is in significant contrast to the observations (Fig. S12). The 720 surface deformation resulting from the viscoelastic relaxation during the time period considered 721 as viscoelastic relaxation in Lv et al. (2020), i.e. 6 months to 2.5 years after the mainshock, is even 722 smaller. Our modeling shows that with a lower-crustal viscosity of 1e20 Pas, a more typical value 723 for the lower crust in relatively young deformation zones (e.g. Wright et al., 2013; Bürgmann and 724 Dresen, 2008; Thatcher and Pollitz, 2008), the surface LOS displacements predicted by the 725 viscoelastic relaxation models are less than 5 mm for all four satellite tracks (Fig. S13). This is 726 consistent with Barnhart et al. (2018), who also found that the viscoelastic relaxation due to the 727 2017 Sarpol-e Zahab earthquake during the InSAR observation period was negligible. 728 Furthermore, we have shown that the observed surface deformation can be well explained by 729 afterslip models based on both kinematic afterslip inversion, and numerical simulation of stress-730 driven afterslip without invoking viscoelastic relaxation.

731 Conclusions

732 With more than 600 fatalities in Iran and Iraq, the 2017 Mw 7.3 Sarpol-e Zahab earthquake was 733 the largest instrumentally recorded seismic event along the Zagros mountain range. Similar to most 734 previous large earthquakes along the Zagros, the 2017 Sarpol-e Zahab earthquake did not break to 735 the surface, making the interpretation of its seismogenic structure elusive. In this study, we use 736 Sentinel-1 InSAR to study the co- and postseismic deformation due to this event. Thanks to the 737 arid environment and sparse vegetation in the epicentral area, both the coseismic and postseismic 738 deformation of the 2017 Sarpol-e Zahab earthquake are well imaged by Sentinel-1 InSAR 739 observations from four different look directions, which allowed us to tightly constrain the fault 740 geometry and slip distribution of the 2017 Sarpol-e Zahab earthquake. We find that even though 741 most surface expressions (i.e., faults and folds) in this area trend in a northwest-southeast direction, 742 the 2017 Sarpol-e Zahab event ruptured a nearly north-south trending plane (strike = 356 degrees) 743 that gently dips to the east (dip angle = 17 degrees). The coseismic rupture is characterized by 744 nearly equal amounts of thrust and dextral motion distributed on a ~40-km-long and 15-km-wide 745 fault plane, with most of the seismic moment release concentrated in a depth range between 15 746 and 21 km, which is beneath the boundary between the Phanerozoic sedimentary cover and 747 underlying Proterozoic basement. The 2017 Sarpol-e Zahab earthquake therefore highlights the 748 importance of basement faults in accommodating crustal shortening across the Zagros.

749

750 Data from all four Sentinel-1 tracks also reveal robust postseismic deformation during the ~12 751 month after the mainshock. We have shown that with appropriate corrections for atmospheric 752 noise, the Sentinel-1 InSAR data clearly reveal postseismic deformation both to the west and east 753 of the coseismic rupture, whereas previous studies with similar data only identified the western 754 zone. Kinematic inversions show that the observed postseismic InSAR LOS displacements are 755 well explained by oblique (thrust + dextral) afterslip both updip and downdip of the coseismic slip 756 area. The dip angle of the shallow afterslip fault plane is found to be significantly smaller than that 757 of the coseismic rupture, corresponding to a shallowly dipping detachment located near the base 758 of the sediments. The postseismic deformation data are consistent with stress-driven afterslip 759 models, assuming that the afterslip evolution is governed by rate-and-state friction. Assuming a 760 rate-strengthening friction, the preferred value of for the updip afterslip zone is ~30-40 times 761 higher than that of the downdip afterslip zone. The contrast in the frictional properties updip and 762 downdip of the coseismic rupture is likely attributed to the difference in fault zone materials and 763 physical conditions at different depths along the Zagros. In particular, the up-dip afterslip occurs 764 along a sub-horizontal plane at a depth of >10 km, which could be related to the Cambrian Hormoz 765 evaporite deposit layer that behaves as a mechanically weak layer to decouple the deformation of 766 underlying crystalline basement from above. In contrast, afterslip downdip of the coseismic 767 rupture may be mostly controlled by the increased temperature and pressure, which favor stable 768 sliding, as has been found in other continental earthquakes of similar tectonic settings.

769

770 Acknowledgement

771 Sentinel-1 data are copyright of European Space Agency (ESA) and archived and distributed by

- Alaska Satellite Facility (ASF). Postseismic InSAR time series derived from this study are
- archived at Zenodo (<u>https://zenodo.org/record/4025068#.X1vxH5NKgyq</u>) The Common-Scene-
- 774 Stacking code (Matlab Code for Atmospheric Noise Depression: MCANDIS) used to mitigate
- the InSAR atmospheric noise can be downloaded from
- 776 <u>https://zenodo.org/record/4025100#.X1vGMC2z1yo</u>. Aftershock catalog used in this study are

- from Iranian Seismic Center (ISC) (<u>http://irsc.ut.ac.ir</u>). We thank Sylvain Barbot for sharing and
- assisting on the software package Unicycle. This work benefited from discussions and email
- exchanges with Sylvain Barbot, Jean-Philippe Avouac and Hugo Perfettini. The authors
- acknowledge Edwin Nissen and Mahdi Motagh for their constructive comments and suggestions
- that greatly helped improve the manuscript. This work is supported by supported by the NASA
- 782 Earth Surface and Interior award NNX16AL17G.

- 783 **References**
- Allam, A. A., Y. Ben-Zion, I. Kurzon, and F. Vernon (2014), Seismic velocity structure in the Hot
 Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference
 tomography, *Geophysical Journal International*, *198*(2), 978–999, doi:10.1093/gji/ggu176.
- 787
- Allen, M. B., Saville, C., Blanc, E. J.-P., Talebian, M., & Nissen, E. (2013). Orogenic plateau
 growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt. *Tectonics*, *32*(2), 171–190, doi:10.1002/tect.20025.
- 791
- Barbot, S., Fialko, Y., & Bock, Y. (2009). Postseismic deformation due to the Mw6.0 2004
 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction
 parameters. *Journal of Geophysical Research*, *114*(B7), 1279, doi:10.1029/2008JB005748.
- 795
- Barnhart, W. D., & Lohman, R. B. (2013). Phantom earthquakes and triggered aseismic creep:
 Vertical partitioning of strain during earthquake sequences in Iran. *Geophysical Research Letters*,
 40(5), 819–823, doi:10.1002/grl.50201.
- 799

Barnhart, W. D., Brengman, C. M. J., Li, S., & Peterson, K. E. (2018). Ramp-flat basement
structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 M w 7.3
Darbandikhan, Iran/Iraq earthquake. *Earth and Planetary Science Letters*, 496, 96-107,
doi:10.1016/j.epsl.2018.05.036.

- Barbot, S., Moore, J. D. P., & Lambert, V. (2017). Displacement and Stress Associated with
 Distributed Anelastic Deformation in a Half-Space. *Bulletin of the Seismological Society of America*, 107(2), 821–855, doi:10.1785/0120160237.
- 808
- 809 Barbot, S. (2018). Asthenosphere Flow Modulated by Megathrust Earthquake Cycles. *Geophysical*
- 810 Research Letters, 118(1), 3059-14. http://doi.org/10.1029/2018GL078197
- 811 Berberian, M. (1995). Master "blind" thrust faults hidden under the Zagros folds: active basement
- 812 tectonics and surface morphotectonics. Tectonophysics, 241(3-4), 193-224, doi:10.1016/0040-
- 813 1951(94)00185-C.
- 814
- Berardino, P., & Fornaro, G. (2002). A new algorithm for surface deformation monitoring based
 on small baseline differential SAR interferograms, *IEEE Transactions on Geoscience and Remote Sensing*, 40(11), 2375-2383, doi:10.1109/TGRS.2002.803792.
- 818
- Berberian, M. (1995). Master "blind" thrust faults hidden under the Zagros folds: active basement
 tectonics and surface morphotectonics. *Tectonophysics*, 241(3-4), 193–224, doi:10.1016/00401951(94)00185-C.
- 822
- Bürgmann, R., Ergintav, S., Segall, P., Hearn, E. H., McClusky, S., Reilinger, R., et al. (2002).
 Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture. *Bulletin of the Seismological Society of America*, *92*(1), 126–137, doi:10.1785/0120000833.
- 826

- 827 Bürgmann, R., and G. Dresen (2008), Rheology of the Lower Crust and Upper Mantle: Evidence
- 828 from Rock Mechanics, Geodesy, and Field Observations, *Annual Review of Earth and Planetary*

829 *Sciences*, 36(1), 531–567, doi:10.1146/annurev.earth.36.031207.124326.

- 830
- Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. *Earth and Planetary Science Letters*, 495, 112–134, doi:10.1016/j.epsl.2018.04.062.
- 833
- 834 Chang, S.-H., Avouac, J.-P., Barbot, S., & Lee, J.-C. (2013). Spatially variable fault friction
- 835 derived from dynamic modeling of aseismic afterslip due to the 2004 Parkfield earthquake.
- 836 Journal of Geophysical Research: Solid Earth, 118(7), 3431–3447, doi:10.1002/jgrb.50231.
- 837
- 838 Elliott, J. R., Bergman, E. A., Copley, A. C., Ghods, A. R., Nissen, E., Oveisi, B., et al. (2015).
- 839 The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Insights into seismic and aseismic shortening 840 of the Zagros sedimentary cover. Earth and Space Science, 2, 435-471, 841 doi:10.1002/2015EA000098.
- 842
- Emami, H., Vergés, J., Nalpas, T., Gillespie, P., Sharp, I., Karpuz, R., et al. (2010). Structure of
 the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran):
 insights from sand box models. *Geological Society, London, Special Publications, 330*(1), 155–
 178, doi:10.1144/SP330.9.
- 847
- 848

849	Feng, W., Samsonov, S., Almeida, R., Yassaghi, A., & Zheng, W. (2018). Geodetic Constraints of
850	the 2017 Mw7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and
851	Fielding, E. J., Wright, T. J., Muller, J., Parsons, B. E., & Walker, R. (2004). Aseismic deformation
852	of a fold-and-thrust belt imaged by synthetic aperture radar interferometry near Shahdad, southeast
853	Iran. Geology, 32(7), 577, doi:10.1130/G20452.1.
854	

. . .

0 71

1. . .

•

• •

4.1

D 17

Ferretti, A., Prati, C., & Racca, F. (2000). Nonlinear subsidence rate estimation using permanent
scatterers in differential SAR interferometry. *IEEE Transactions on Geoscience and Remote Sensing*, 38(5), 2202–2212.

858

0 4 0

-

TTT C

Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., & Minster, B. (2002). Deformation
on Nearby Faults Induced by the 1999 Hector Mine Earthquake. *Science*, 297(5588), 1858–1862,
doi:10.1126/science.1074671.

862

863

Hearn, E. H., Bürgmann, R., & Reilinger, R. E. (2002). Dynamics of Izmit earthquake postseismic
deformation and loading of the Duzce earthquake hypocenter. *Bulletin of the Seismological Society of America*, *92*(1), 172–193, doi:10.1785/0120000832.

- Hollingsworth, J., Jackson, J., Walker, R., & Nazari, H. (2008). Extrusion tectonics and subduction
 in the eastern South Caspian region since 10 Ma. *Geology*, 36(10), 763–4,
 doi:10.1130/G25008A.1.
- 871

- 872 Hooper, A., Bechor, N., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture
- 873 radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of
- 874 *Geophysical Research*, *112*(B7), B07407–21, doi:10.1029/2006JB004763.
- 875
- 876
- Hsu, Y.-J., Bechor, N., Segall, P., Yu, S.-B., Kuo, L.-C., & Ma, K.-F. (2002). Temporal and spatial
 variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake. *Geophysical Research Letters*, 29(16), doi:10.1029/2002GL014967
- 880
- Hsu, Y.-J., M. Simons, J.-P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L.
 Prawirodirdjo, and Y. Bock (2006), Frictional afterslip following the 2005 Nias-Simeulue
 earthquake, Sumatra, Science, 312(5782), 1921–1926, doi:10.1126/science.1126960.
- 885 Hsu, Y.-J., S. B. Yu, and H.-Y. Chen (2009), Coseismic and postseismic deformation associated
- 886 with the 2003 Chengkung, Taiwan, earthquake, Geophysical Journal International, 176(2), 420-
- 430, doi:10.1111/j.1365-246X.2008.04009.x.
- Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H., & Shabanian, E. (2001). Progressive
 unconformities within an evolving foreland fold-thrust belt, Zagros Mountains. *Journal of the Geological Society*, *158*(8), 969–981, doi:10.1144/0016-764901-007.
- 891
- Jahani, Salman, Jean-Paul Callot, Dominique Frizon de Lamotte, Jean Letouzey, and Pascale
 Leturmy (2007). The salt diapirs of the eastern Fars Province (Zagros, Iran): A brief outline of
- their past and present, In *Thrust Belts and Foreland Basins*, 289-308, Springer, Berlin, Heidelberg.
 - 40

- Jónsson, S., H. Zebker, P. Segall, and F. Amelung (2002). Fault slip distribution of the 1999 Mw
 7.1 Hector Mine, California, earth- quake, estimated from satellite radar and GPS measurements, *Bull. Seismol. Soc. Am.* 92, no. 4, 1377–1389, doi: 10.1785/0120000922.
- 899
- Karasözen, E., Nissen, E., Bergman, E., Ghods, A. (2019). Seismotectonics of the Zagros (Iran)
 From Orogen-Wide, Calibrated Earthquake Relocations, *Journal of Geophysical Research: Solid Earth*,124(8), 9109-9129, doi:10.1029/2019jb017336.
- 903
- Lange, D., J. R. Bedford, M. Moreno, F. Tilmann, J. C. Baez, M. Bevis, and F. Krüger (2014),
 Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone
 earthquakes: Nias 2005, Maule 2010 and Tohoku 2011, *Geophysical Journal International*,
 199(2), 784–799, doi:10.1093/gji/ggu292.
- 908 Leturmy, P., Molinaro, M., & de Lamotte, D. F. (2010). Structure, timing and morphological
- 909 signature of hidden reverse basement faults in the Fars Arc of the Zagros (Iran). *Geological Society*
- 910 Special Publication, 330, 121–138, doi:10.1144/SP330.7.
- 911 Li, Y. G., P. Leary, K. Aki, and P. Malin (1990), Seismic Trapped Modes in the Oroville and San
- 912 Andreas Fault Zones, *Science*, 249(4970), 763–766, doi:10.1126/science.249.4970.763.
- 913 Liu, X., and W. Xu (2019), Logarithmic Model Joint Inversion Method for Coseismic and
- 914 Postseismic Slip: Application to the 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran, Journal of
- 915 *Geophysical Research: Solid Earth*, 2019JB017953, doi:10.1029/2019JB017953.
- 916

- McQuarrie, N., Stock, J. M., Verdel, C., & Wernicke, B. P. (2003). Cenozoic evolution of
 Neotethys and implications for the causes of plate motions. *Geophysical Research Letters*, *30*(20),
 doi:10.1029/2003GL017992.
- 920
- 921 Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., & Ashtiani, M. G.
- 922 (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data.
- 923 Geophysical Journal International, 160(1), 217–226, doi:10.1111/j.1365-246X.2004.02465.x.
- 924
- 925 McQuarrie, N. (2004). Crustal scale geometry of the Zagros fold-thrust belt, Iran
- 926 . Journal of Structural Geology, 26, 519–535.
- 927
- Milliner, C., Bürgmann, R., Inbal, A., Wang, T., & Liang, C. (2020). Resolving the Kinematics
 and Moment Release of Early Afterslip within the First Hours following the 2016 M_w 7.1
 Kumamoto Earthquake: Implications for the Shallow Slip Deficit and Frictional Behavior of
 Aseismic Creep. *Journal of Geophysical Research: Solid Earth*, doi: 10.1029/2019JB018928.
- 932
- Motaghi, K., Shabanian, E., & Kalvandi, F. (2017). Underplating along the northern portion of the
 Zagros suture zone, Iran. *Geophysical Journal International*, 210(1), 375–389,
 doi:10.1093/gji/ggx168.
- 936
- 937 Neal, R. M. (2003). Slice sampling. *Annals of Statistics*, doi:10.1214/aos/1056562461.
- Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result
- 939 of dynamic weakening. *Nature*, *493*(7433), 518–521, doi:10.1038/nature11703.

Nissen, E., Ghorashi, M., Jackson, J., Parsons, B., Talebian, M. (2007). The 2005 Qeshm Island
earthquake (Iran)—a link between buried reverse faulting and surface folding in the Zagros Simply
Folded Belt? *Geophysical Journal International*, 171(1), 326-338, doi:10.1111/j.1365246x.2007.03514.x

944

Nissen, E., Yamini-Fard, F., Tatar, M., Gholamzadeh, A., Bergman, E., Elliott, J. R., et al. (2010).
The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros
fold-and-thrust belt, Iran. *Earth and Planetary Science Letters*, 296(3), 181–194,
doi:10.1016/j.epsl.2010.04.049.

949

- Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in
 the Zagros fold-and-thrust belt of Iran. *Geophysical Journal International*, 186(3), 928-944,
 doi:10.1111/j.1365-246X.2011.5119.x.
- 953
- Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. *Bulletin of the Seismological Society of America*, 75(4), 1135-1154.

- Perfettini, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible
 mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to
 the Chi-Chi earthquake, Taiwan. *Journal of Geophysical Research: Solid Earth (1978–2012)*, *109*(B2), 4005, doi:10.1029/2003JB002488.
- 961

Perfettini, H., & Avouac, J. P. (2007). Modeling afterslip and aftershocks following the 1992
Landers earthquake. *Journal of Geophysical Research: Solid Earth*, *112*(B07409), 2433,
doi:10.1029/2006JB004399.

965

966 Perfettini, H. et al. (2010), Seismic and aseismic slip on the Central Peru megathrust, *Nature*,
967 465(7294), 78–81, doi:10.1038/nature09062.

968

- 969 Perfettini, H., Frank, W. B., Marsan, D., & Bouchon, M. (2018). A model of aftershock migration
- driven by afterslip. *Geophysical Research Letters*, 45, 2283–2293, doi:10.1002/2017GL076287.

971

Pirouz, M., Avouac, J.-P., Hassanzadeh, J., Kirschvink, J. L., & Bahroudi, A. (2017). Early
Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and
kinematics of crustal shortening. *Earth and Planetary Science Letters*, 477, 168-182,
doi:10.1016/j.epsl.2017.07.046.

976

- Ruina, A. (2012). Slip instability and state variable friction laws. *Journal of Geophysical Research*,
 88(B12), 10359-10370, doi:10.1029/JB088iB12p10359.
- 979
- Scholz, C. H. (1998). Earthquakes and friction laws. *Nature Publishing Group*, *391*(6662), 37–42,
 doi:10.1038/34097.

982

Sudhaus, H., & Jónsson, S. (2009). Improved source modelling through combined use of InSAR
and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn

985 earthquake, Iceland. *Geophysical Journal International*, *176*(2), 389-404, doi:10.1111/j.1365986 246X.2008.03989.x.

987

- 988 Tavani, S., M. Parente, F. Puzone, A. Corradetti, G. Gharabeigli, M. Valinejad, D. Morsalnejad,
- and S. Mazzoli (2018), The seismogenic fault system of the 2017 Mw 7.3 Iran-Iraq earthquake:
- 990 constraints from surface and subsurface data, cross-section balancing, and restoration, *Solid Earth*,
- 991 9(3), 821–831, doi:10.5194/se-9-821-2018.

992

- 993 Thatcher, W., & Pollitz, F. F. (2008). Temporal evolution of continental lithospheric strength in
- actively deforming regions. GSA Today, 18(4), 4, doi:10.1130/gsat01804-5a.1.

995

Tymofyeyeva, E., & Fialko, Y. (2015). Mitigation of atmospheric phase delays in InSAR data,
with application to the eastern California shear zone. *Journal of Geophysical Research: Solid Earth*, 120(8), 5952-5963, doi:10.1002/2015jb011886.

999

Wang, K., & Fialko, Y. (2014). Space geodetic observations and models of postseismic
deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. *Journal of Geophysical Research: Solid Earth*, *119*(9), 7306–7318, doi:10.1002/2014JB011122.

- Wang, K., & Fialko, Y. (2015). Slip model of the 2015 M-w 7.8 Gorkha (Nepal) earthquake from
 inversions of ALOS-2 and GPS data. *Geophysical Research Letters*, 42(18), 7452-7458,
 doi:10.1002/2015GL065201.
- 1007

- 1008 Wang, K., Xu, X., & Fialko, Y. (2017). Improving Burst Alignment in TOPS Interferometry With
- 1009 Bivariate Enhanced Spectral Diversity. IEEE Geoscience and Remote Sensing Letters, 14(12),
- 1010 2423-2427, doi:10.1109/LGRS.2017.2767575.
- 1011
- Wang, K., & Fialko, Y. (2018). Observations and Modeling of Coseismic and Postseismic
 Deformation Due To the 2015 Mw 7.8 Gorkha (Nepal) Earthquake. *Journal of Geophysical*
- 1014 Research: Solid Earth, 123(1), 761-779, doi:10.1002/2017JB014620.
- 1015
- 1016 Wang, K., Dreger, D. S., Tinti, E., Bürgmann, R., & Taira, T. (2020). Rupture Process of the 2019
- 1017 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and
- 1018 Geodetic Data. Bulletin of the Seismological Society of America, doi:10.1785/0120200108.
- 1019
- Wright, T. J., Elliott, J. R., Wang, H., & Ryder, I. (2013). Earthquake cycle deformation and the
 Moho: Implications for the rheology of continental lithosphere. *Tectonophysics*, 609, 504–523,
 doi:10.1016/j.tecto.2013.07.029.
- 1023
- Vajedian, S., Motagh, M., Mousavi, Z., Motaghi, K., Fielding, E., Akbari, B., et al. (2018).
 Coseismic Deformation Field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) Earthquake:
 A Decoupling Horizon in the Northern Zagros Mountains Inferred from InSAR Observations. *Remote Sensing*, 10(10), 1589, doi:10.3390/rs10101589.
- 1028
- 1029 Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., et al. (2004).
- 1030 Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS

- 1031 measurements in Iran and northern Oman. *Geophysical Journal International*, 157(1), 381–398,
 1032 doi:10.1111/j.1365-246X.2004.02222.x.
- 1033
- 1034 Vergés, J., Saura, E., Casciello, E., Fernàndez, M., Villaseñor, A., Jiménez-munt, I., & García-
- 1035 castellanos, D. (2011). Crustal-scale cross-sections across the NW Zagros belt: implications for
- 1036 the Arabian margin reconstruction. *Geological Magazine*, 148(5-6), 739–761,
 1037 doi:10.1017/S0016756811000331.
- 1038

- 1047 (only two sub-swaths covering the epicenter areas are shown for each track). The red dashed line
 1048 represents the approximate location of the Mountain Frontal Flexure, a topographic and structural
 1049 relief step that divides the Zagros mountain range from its foreland to the southwest (Berberian,
 1050 1995; Emami et al., 2010). AR=Arabian plate; IN=Indian plate; EU=Eurasian plate; AF=Africa
- 1051 plate.
- 1052

Figure 2. LOS coseismic displacements due to the November 12, 2017 Sarpol-e Zahab earthquake.
Positive values correspond to surface motion toward the satellite. Red and white stars represent
the epicenter of the Mw 7.3 mainshock determined by the U.S. Geological Survey, and Nissen et
al. (2019), respectively. Black lines denote the faults with dominantly thrust motion in this area.
Arrows in each panel represents the line-of-sight (LOS) of each satellite track, and the numbers

around the arrow denote the range of radar incident angle across the region shown on the map.
Black contours denote the coseismic slip model derived in this study at 1-m intervals, starting at 1
m. Labels on top of each panel show the acquisition dates of the SAR images used to form the
interferograms.

1068 1069 Figure 3. (a) Cumulative postseismic LOS displacement one year after the 2017 Iran-Iraq 1070 earthquake, derived from the Sentinel-1 data of the ascending track ASC72. Black circles represent 1071 the aftershocks of M>2.5 during the same time period from Iranian Seismological Center 1072 (http://irsc.ut.ac.ir/). Green and magenta stars denote the epicenters of the two largest aftershocks 1073 on 08/25/2018 and 11/25/2018, respectively. Polygons in pink and purple represent the areas for 1074 which the aftershock temporal evolutions are shown in (b). Dashed purple circles outline the areas 1075 within which the LOS displacements are not used in the afterslip modeling. (b) temporal evolution 1076 of postseismic deformation and cumulative number of aftershocks updip and downdip of the 1077 mainshock rupture. Blue and green curves represent the postseismic LOS displacements at point 1078 A (updip) and B (downdip), respectively. Magenta and yellow curves represent the cumulative 1079 numbers of aftershocks within the updip and downdip polygons in (a). We correct for the 1080 atmospheric noise with Common-Scene-Stacking (Tymofyeyeva and Fialko, 2015). No temporal 1081 evolution function or smoothing is applied when solving for the postseismic deformation time 1082 series.

1084 1085

Figure 4. Cumulative postseismic LOS displacements from four Sentinel-1 tracks. Dates of first and last image acquisitions used are shown on top of each panel. Since CSS has poorer performance in correcting for atmospheric noise of images at the two ends of the catalog, we discarded the last few scenes to determine the postseismic deformation, although the processed data extend until the end of January, 2019. Red, green and magenta stars represent USGS epicenters of the Sarpol-e Zahab Mw 7.2 mainshock on 11/12/2017, the Mw 6.0 aftershock on

1092 08/25/2018 and the Mw 6.3 aftershock on 11/25/2018, respectively. Blue boxes in (a) show the
1093 profile locations for which the LOS displacement time series are shown in Figure 10. Note that the
1094 first postseismic image of all four satellite tracks was acquired about 5 days after the mainshock
1095 and within less than 2 days of one another.

1100 Figure 5. Inversion of fault geometry and slip distribution of the 2017 Sarpol-e Zahab earthquake. 1101 (a) Distribution of model parameters in the inversion for fault geometry assuming a single 1102 rectangular slip patch. Locations (eastward X, northward Y and Depth) represent the center of the 1103 rectangular dislocation with respect to the epicenter at 34.911N, 45.959E. (b) Coseismic slip model 1104 of the 2017 Sarpol-e Zahab earthquake. Gray circles denote the aftershocks of M>3 till 12/03/2018 1105 from the Iranian Seismic Center (ISC) (http://irsc.ut.ac.ir/). Numbers above beach balls represent 1106 the strike, dip and rake angles of the rupture. Dashed blue lines represent depth contours of the 1107 fault plane in km and the red dashed line is the approximate location of the Mountain Frontal 1108 Flexure (see Figure 1).

1111 Figure 6. Optimization of updip fault geometry and comparison of surface displacements 1112 due to coseismic rupture and afterslip. (a) Root-mean-square (RMS) of data misfit as a function of 1113 dip angle of the shallow afterslip fault plane in the inversion of afterslip. Colors represent different 1114 'transition' depths above which the dip angle is allowed to vary from that of the coseismic rupture. 1115 The dip angle below the 'transition' depth is fixed at 17 degrees (dashed line). (b) LOS 1116 displacements of the ascending track ASC72 (lightblue: coseismic/10, green: postseismic) and 1117 percentage of moment release due to coseismic slip (red) and afterslip (blue) along a profile 1118 perpendicular to the coseismic rupture. (c) cross-section of fault geometry for coseismic rupture 1119 and afterslip. Red and blue lines delineate the coseismic and afterslip segments, respectively.

1121 1122 Figure 7. Afterslip models from (a) kinematic inversion of postseismic deformation, and (b) 1123 stress-driven afterslip simulation assuming a rate-strengthening fault friction. Note that because 1124 the first postseismic SAR image was acquired on 11/17/2017, both models shown here do not 1125 include afterslip during the first 5 days after the mainshock. Panels (c) and (d) show the shear 1126 (along the coseismic slip direction) and normal stress changes (positive for unclamping) produced 1127 by the coseismic rupture, respectively. Yellow circles represent m>2.5 aftershocks (from ISC 1128 catalog) during the InSAR observation period. Red, green and magenta stars denote the USGS 1129 epicenters of the Mw 7.3 mainshock on 11/12/2017, the Mw 6.0 aftershock on 08/25/2018, and 1130 the Mw 6.3 aftershock on 11/25/2018, respectively. Solid red line in (a) denotes the surface trace 1131 across which both coseismic and postseismic deformation exhibit sharp offsets (Figure 10).

1133 1134

Figure 8. Comparison of cumulative surface displacements between observations and the kinematic inversion (KI) and rate-strengthening (RS) model predictions. Observation periods for each track are the same as shown in Figure 4. Red, green and magenta stars in the last two columns denote the USGS epicenters of the Mw 7.3 mainshock, the Mw 6.0 aftershock on 08/25/2018, and the Mw 6.3 aftershock on 11/25/2018, respectively. Numbers in the last columns show the RMS of misfit at downsampled data points.

1141#Samples#Samplesaσ_{downdip} (MPa)1142Figure 9. Sampling histories and distributions of model parameters in the afterslip simulation for1143fault patches updip ((a) and (b)) and downdip ((d) and (e)) of the coseismic rupture. The correlation1144between and are shown in (c) and (f). Inserts in each panel shows the histogram of the1145corresponding parameter after 200 burn-in samples. Red curves represent the best-fitting normal1146distributions of samples after burn-in, and are labeled with their mean values.

Figure 10. Comparison of surface deformation between observations and model predictions for the ascending track ASC72. (a-c): cumulative LOS displacements larger than 3 cm after downsampling. Red star denotes the epicenter of the mainshock. (d): Observed (e) modeled, and (f) residual time series of LOS displacements at all downsampled points. Grey and and red curves represent the time series at locations updip and downdip of the coseismic rupture, respectively.

Figure 11. Surface creep across secondary faults southwest of the 2017 Sarpol-e Zahab earthquake along a profile (a) with coseismic offset and (b) without clear coseismic offset (see location profiles A and B in Figure 4). Pink dots represent coseismic LOS displacements (for ascending track ASC72) along the profile perpendicular to the surface creep. Colored dots are for the postseismic creep, with the color representing time since the mainshock. Black solid curve represents the surface elevation.