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Abstract

Dust particles are effective ice nuclei and are known to affect precipitation. Here, the possible impacts of mineral dusts on

summertime cloud and precipitation over the Taiwan region are investigated through analysis of 25 years (1989 – 2013) of

multiple observational and modeling datasets. Due to the unique mechanism, typhoon precipitations are excluded in this study.

Statistical methods are used to untangle the influences of dust from the co-varying water vapor conditions. The results suggest

a statistically significant positive correlation between non-typhoon precipitation and number concentration of dust particles

larger than 0.5 μm () in July and August in the regions with heavy precipitation. From clean (0.008 cm) to dusty days (0.2

cm), averaged ice (liquid) water paths and precipitation increase by ˜25% (˜20%) and ˜70% over the orographic region, and

vertically, ˜30% more cloud ice content is generated at ˜ 350 hPa (T = ˜-20), enhancing the development of the mixed-phase

cloud and precipitation. The results also indicate critical role of the atmospheric water vapor in the responses of precipitation

to , with precipitation increasing more significantly with in higher water vapor circumstances.
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Key Points: 9 

 Long-term multiple observational and modeling datasets are used to study the 10 

correlation between mineral dust and summertime precipitation 11 

 The analysis suggests a positive correlation between dust number concentration and 12 

precipitation in the orographic region 13 

 The impact of mineral dust on precipitation is more significant in environments with 14 

higher water vapor concentrations 15 
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Abstract 17 

Dust particles are effective ice nuclei and are known to affect precipitation. Here, the possible 18 

impacts of mineral dusts on summertime cloud and precipitation over the Taiwan region are 19 

investigated through analysis of 25 years (1989 – 2013) of multiple observational and 20 

modeling datasets. Due to the unique mechanism, typhoon precipitations are excluded in this 21 

study. Statistical methods are used to untangle the influences of dust from the co-varying 22 

water vapor conditions. The results suggest a statistically significant positive correlation 23 

between non-typhoon precipitation and number concentration of dust particles larger than 0.5 24 

µm (Nd) in July and August in the regions with heavy precipitation. From clean (Nd = ~0.008 25 

cm
-3

) to dusty days (Nd =~0.2 cm
-3

), averaged ice (liquid) water paths and precipitation 26 

increase by ~25% (~20%) and ~70% over the orographic region, and vertically, ~30% more 27 

cloud ice content is generated at ~ 350 hPa (T = ~−20℃), enhancing the development of the 28 

mixed-phase cloud and precipitation. The results also indicate critical role of the atmospheric 29 

water vapor in the responses of precipitation to Nd, with precipitation increasing more 30 

significantly with Nd in higher water vapor circumstances. 31 

1 Introduction 32 

Ice particles play significant roles in the formation and development of cloud and 33 

precipitation by altering atmospheric water vapor (Lindzen, 1990), latent heat release (Fan et 34 

al., 2018) and cloud radiation properties (Yang et al., 2015). In the mixed-phase clouds (T > 35 

−37℃), ice nucleating particles (INPs) are indicated to influence cloud ice formation by 36 

catalyzing heterogeneous freezing (Hoose & Möhler, 2012; Murray et al. 2012). At higher 37 

temperatures, the number concentration of ice particles can rapidly increase by orders of 38 

magnitudes through the rime-splintering process (secondary ice production) (Mossop & 39 

Hallett, 1974; Hallett & Mossop, 1974; Field et al., 2017). Among various aerosols, mineral 40 

dusts are considered as one of the most important sources of INPs owing to their large 41 

emission rate (up to 5000 Tg yr
−1

), long-range transport ability and high ice nucleating 42 

efficiency (Husar et al., 2004; Engelstaedter et al., 2006; Uno et al., 2009; Heymsfield et al. 43 

2007). Previous laboratory studies establish the close association of the ice nucleating process 44 

with mineral dust in the air (Roberts & Hallett, 1968; Hoose & Möhler 2012; DeMott et al., 45 

2010, 2015). The indirect influences of dust aerosols on clouds have also been demonstrated by 46 

a series of observation and numerical studies (Tao et al., 2012; Liu et al., 2012; Fan et al., 2016; 47 

Zamin et al., 2017). Mineral dust aerosols were observed to contribute to ice nuclei populations 48 

over areas at great distance from dust sources (DeMott et al., 2003; Richardson et al., 2007). 49 

The intermittent long-term transport of dust from Asia was shown to impact the cloud and 50 

precipitation, enhancing the accumulated precipitation by ~20% and snowfall by ~40% in 51 

California when there are adequate water vapor inputs (Ault et al., 2011; Creamean et al., 52 

2013). Modeling studies indicate that the presence of mineral dust leads to the initiation of 53 

mixed-phase cloud and increases precipitation efficiency (Muhlbauer & Lohmann, 2009; Fan 54 

et al., 2014).  55 

Located in the East Asia, Taiwan is influenced by the long-range transport of mineral 56 

dust from mainland China, Middle East, and Sahara (Chen et al., 2003; Hsu et al. 2012; Lin et 57 

al., 2012; Chou et al., 2017). The long-range transport of dust into East Asia during late winter 58 
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and spring has been investigated by numerous observation and modeling studies (Duce et al., 59 

1980; Chen et al., 2004; Lin et al., 2012), and has been shown to influence public health, 60 

environment, biogeochemical cycles, and the atmospheric radiation budget (Uematsu et al., 61 

1983; Li et al., 1996; Cheng et al., 2005; Liu et al., 2006; Chiu et al., 2008). Recent research 62 

also indicates the winter-time river-dust event as a local source of dust aerosols (Lin et al., 63 

2018). However, there are very few studies on summertime dust aerosols in Taiwan, likely as a 64 

result of generally very low concentrations of dust particles.  65 

During the summer season, the Taiwan region is highly influenced by episodes of 66 

extreme precipitation caused by various meteorological factors. Previous studies suggest that 67 

the extreme precipitations are generally associated with the east Asian monsoon system (Tao, 68 

1987; Chen et al. 2010), Meiyu front (Xu et al., 2009; Yim et al., 2015), typhoon systems 69 

(Shieh et al. 1998), and afternoon thunderstorms and local severe convection (Jou 1994; Chen 70 

& Chen 2003; Lin et al., 2011). To our knowledge, no previous studies have examined the 71 

possible impacts of dust on precipitation in Taiwan. The main objective of the present work is 72 

to study the potential influence of mineral dust on the summertime orographic precipitation 73 

over the Taiwan region, through analysis of 25-year (1989–2013) of model, observation, and 74 

reanalysis data.  75 

2 Data 76 

In this work, multiple datasets are used to study the potential influence of dust particles 77 

on cloud and precipitation in summer over Taiwan area.  78 

(1) Precipitation: The 1×1 km gridded daily precipitation dataset collected by the 79 

Taiwan Climate Change Projection and Information Platform (TCCIP, 80 

http://tccip.ncdr.nat.gov.tw/NCDR/main/index.aspx) project (1989–2013) and the hourly site 81 

precipitation observation from Taiwan Central Weather Bureau (CWB) (1998–2013). This 82 

dataset has been widely used to study the Taiwan region precipitation (Chen & Chen, 2002; 83 

Chen et al., 2007; Su et al., 2012; Lin et al., 2015; Kuo et al., 2016). Due to the unique 84 

mechanism, typhoon precipitation days 85 

(http://photino.cwb.gov.tw/tyweb/tyfnweb/table/completetable.htm) are excluded in this 86 

study. 87 

(2) Dust Number Concentrations: Previous measurements indicate the dependence of 88 

ice particle formation rate on the dust number concentration with diameter larger than 500 nm 89 

(Nd) (DeMott et al., 2010; Creamean et al., 2013). Because of the lack of long-term 90 

quantitative observations, Nd simulated by a global chemical transport model (GEOS-Chem) 91 

with size-resolved advanced particle microphysics (APM) (Yu & Luo, 2009) is used in this 92 

study. The model is driven by Global Modeling and Assimilation Office (GMAO) Modern‐Era 93 

Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) meteorology 94 

fields. The GEOS-Chem-APM model was run globally at 2
o
×2.5

o
 horizontal resolution with 47 95 

vertical layers for the preiod from 1989 to 2018. Nd values at a grid box representing the 96 

long-range transported regional dust concentration in Taiwan area (23°N–25°N, 118.75°E–97 

121.25°E) were output at every chemistry time step (30 minutes). The maximum daily mean Nd 98 

in the vertical is used to represent the strength of daily dust aerosol loading in the region.  99 
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(3) Dust Ratios: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 100 

Observations (CALIPSO) Lidar Level 2 Vertical Feature Mask Data 101 

(https://www-calipso.larc.nasa.gov) from 2006 to 2018 with satellite track passing through 102 

Taiwan region (21.7°–25.5° N, 119.8°–122.2° E). CALIPSO level 2 classified aerosol data 103 

provides information on the vertical properties of dust, polluted dust, biomass burning, 104 

polluted continental, clean continental, and clean marine aerosols, which are widely used in the 105 

previous studies of atmospheric dust aerosols (Omar et al., 2006; Omar et al., 2009; Huang et 106 

al., 2007, 2008; Schuster et al., 2012). In this study, the classified “dust” and “polluted dust” 107 

pixels are treated as observed dust signals. The dust ratios, defined as the ratios of dust pixels to 108 

all pixel within 23°–25°N under 6 km, are used to represent atmospheric dust loading in the 109 

region for comparison with the GEOS-Chem Nd simulations. The observations with more than 110 

15% missing data in this region are excluded. 111 

(4) Cloud properties and Meteorology: 25-year (1989–2013) ERA-Interim reanalysis 112 

from European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al. 2011) are 113 

used in the present analysis.  114 

(5) PM10 Aerosol Speciation: In-situ measurements (2006–2017) of aerosol 115 

speciation for particular matter smaller than 10 µm (PM10) at the Cape Fuguei Research 116 

Station (25.30°N, 121.54°E, 10 m) at the northern tip of Taiwan Island (Chou et al., 2017). 117 

Calcium ion concentration is used as a proxy for dust. We follow the method of Song and 118 

Carmichael (2001) and assume a calcium/dust ratio of 6.8% to estimate the mass loading of 119 

dust particles (Song & Carmichael, 2001). The derived dust mass concentrations are 120 

compared with the surface dust concentrations simulated by GEOS-Chem model in the same 121 

region. 122 

In this study, the GEOS-Chem simulation and ECMWF data have been processed into 123 

local time (LT), same as the precipitation observation. A 24-hour (0000 to 2400 LT) period is 124 

defined as one event day. 125 

3 Analysis and Results 126 

The intermittent long-range transport is a major source of mineral dusts over the 127 

Taiwan area (Chen et al., 2003; Hsu et al. 2012; Lin et al., 2012; Chou et al., 2017). During dust 128 

transport events, dust aerosols can reach high concentrations as can be observed by the 129 

CALIPSO satellite lidars, even in the summer season (Fig. 1). In July and August from 2006 to 130 

2018, the CALIPSO satellite passed over Taiwan region (21.7°–25.5° N, 119.8°–122.2° E) on 131 

forty-six days.  132 

 133 
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 134 

Figure 1. (a) Satellite tracks (red line) and the terrain height of the Taiwan region; Examples 135 

of (b) dusty and (c) clean days observed by the CALIPSO satellite (ND = “not determined”, 136 

CM = “clean marine”, D = “Dust”, PC = “Polluted continental”, CC = “clean continental”, 137 

PD = “Polluted dust”, S = “smoke” O = “other”); and (d) 46 days in July and August (2006–138 

2018) when the CALIPSO satellite track passed Taiwan region: the red spots are the 139 

CALIPSO observed dust pixel ratios, blue columns are model predicted Nd at the 140 

corresponding date, and grey shades are those days CALIPSO has over 15% missing data 141 

(not used in the comparison). 142 

Fig. 1 a, b and c show the tracks and vertical profiles of the CALIPSO observations 143 

passing the Taiwan region. Both dust (D) and polluted dust (PD) in the CALIPSO observations 144 

are considered as dust signals. Examples of one strong dust event (dust ratio = 16%) on July 18, 145 

2009 (Fig. 1b) and one case of clean atmosphere (dust ratio = 0.18%) on July 21, 2016 (Fig. 146 

1c). show that, in the Taiwan region, although the summertime atmospheric dust loading is 147 

substantially lower than in spring, strong dust signals can still be detected by the satellite, 148 

indicating that CALISPO observations can be used to identify the occurrence of dust events in 149 

summer. The comparisons between CALIPSO observations and GEOS-Chem simulations for 150 

all 46 days (given in Table S1 and Fig. 1d) suggest that Nd simulations are generally consistent 151 

with the CALIPSO observations and that the GEOS-Chem model can simulate the strong dust 152 

events in July over the Taiwan area.  153 
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Dust concentration simulations are also compared with the long-term site 154 

measurements (shown in Fig. S1). The PM10 dust mass concentration observed at the 155 

northernmost tip of Taiwan Island (Chou et al., 2017) is compared with the simulated 156 

surface-level PM10 dust mass (2003–2017) at the nearby Taipei site (25°–27°N, 121.25E°–157 

123.75°E). It should be noted that observed dust mass concentrations shown in Fig. S1 are 158 

dominated by those from spring months. Nevertheless, the comparison shows a high 159 

correlation coefficient between surface dust site observation and GEOS-Chem simulations of 160 

mass concentrations in the region (r = 0.7), indicating that although the GEOS-Chem dust mass 161 

simulation is higher than the observation, the model is able to simulate the dust events and the 162 

variations of dust concentration.  163 

The comparisons of model simulations of dust concentrations in Taiwan region with 164 

site (Fig. S1) and satellite (Fig. 1d) data show that the dust simulations by GEOS-Chem can 165 

reasonably capture the strong dust events. As pointed out earlier, although the summertime 166 

atmospheric dust loading over Taiwan region is lower than that in spring and winter, dust 167 

aerosols can still reach high enough concentrations to be detected by CALIPSO during strong 168 

dust event days. In summer (JA), the mean Nd simulation during dusty days (top 50% dust 169 

days) is ~0.2 cm
−3

. According to previous laboratory experiments which suggest mineral dust 170 

activation ratio of about 0.5–3% at ~−20 ℃ (Zimmermann et al., 2008; Niemand et al., 2012), 171 

the dust-contributed INP number concentration in Taiwan summer season can reach about 1–6 172 

L
−1

, high enough to substantially influence the development of cloud and precipitation 173 

(Creamean et al., 2013; Fan et al., 2014). 174 

 175 
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Figure 2. Mean precipitation amount (a) and frequency (b) of non-typhoon precipitation days 176 

(> 0.5 mm day
−1

) in July (1989–2013); d, e same as a, b but in August. (c) Partial correlation 177 

(Rdp) between Nd and precipitation and the area at significance level of 0.05 (p < 0.05, the 178 

shaded area) in July; f same but in August. The red box in each panel marks the region (A) 179 

with heavy summer precipitation. 180 

To investigate the possible impacts of dust particles on precipitation in Taiwan summer 181 

months, we have analyzed the 25-year (1989–2013) dataset of precipitation from TCCIP and 182 

Nd from GEOS-Chem-APM simulations. Because of the unique mechanisms of typhoon cases, 183 

recorded typhoon cases are not considered in our analysis. Figs. 2 a, b, d, and e show the mean 184 

rainfall amounts and the frequencies of non-typhoon precipitations for all days with daily mean 185 

precipitation >0.5 mm day
−1

. Figs. 2 a & d show that the heavy summer rainfall mainly occurs 186 

over the southern part of Taiwan, on the western slope of the mountain range (region A, 187 

22.25°N-23.75°N, 120°E-121°E). In July and August, the daily mean precipitation averaged in 188 

region A are over ~24 mm day
−1

 and can reach ~40 mm day
−1

. With consideration of terrain 189 

effect, our study focuses on the dust-cloud-precipitation correlation on west-wind days. 190 

Directly related to the model dust transport, the GEOS-Chem (MERRA‐2) daily u and v wind 191 

speed under 4 km are vertically averaged to represent the regional scale wind direction in the 192 

lower troposphere in the region. Our analysis indicates that the wind simulation is consistent 193 

with wind from ERA-Interim reanalysis in this region (23°N–25°N, 118.75°E–121.25°E). 194 

Model simulations and CALIPSO observations show that, in July and August, the dust 195 

aerosols over this region are generally long-range transported at low altitude over the ocean; 196 

dust events may be entangled with water vapor, which is one of the controlling factors of cloud 197 

and precipitation. To analyze the relationship of precipitation and dust, the Pearson’s partial 198 

correlation between Nd and precipitation (Rdp) is used to eliminate the influences of vapor, 199 

which was used by previous studies (Engström & Ekman, 2010; Zhao et. al., 2019). Rdp is 200 

calculated by equation 1: 201 

𝑅𝑑𝑝 =  
𝑅𝑑𝑝0−𝑅𝑣𝑝𝑅𝑣𝑑

√1−𝑅𝑣𝑝
2√1−𝑅𝑣𝑑

2
                                     (1) 202 

where 𝑅𝑑𝑝0 is the Pearson’s total correlation between daily Nd (simulations by GEOS-Chem) 203 

and precipitation (gridded precipitation observation), 𝑅𝑣𝑝 is the Pearson’s total correlation 204 

between daily total column water vapor (TCWV) (ERA-Interim reanalysis) and precipitation, 205 

and 𝑅𝑣𝑑 is the linear correlation between Nd and TCWV.  206 

Rdp in July and August are given in Fig. 2 c, f. The results suggest that, in both months, 207 

the orographic precipitation is positively correlated with Nd in region A (at significance level of 208 

0.05, p < 0.05), and the correlations are significant at the precipitation centers, with highest Rdp 209 

= 0.5 in July and 0.6 in August, respectively. The result suggests that the summer precipitation 210 

increases with mineral dusts, indicating dust aerosols may play important roles in the formation 211 

and development of orographic precipitation, especially in heavy rainfall regions. It should be 212 

noted that, in June, the non-typhoon precipitation (Fig. S2 a) is stronger than in July and 213 

August, while the long-term analysis shows no correlation between precipitation and Nd (Fig. 214 

S2 c). The possible reason is that, in June, Taiwan region is high influenced by heavy 215 
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Meiyu-front precipitations with different controlling mechanisms. Based on this statistical 216 

result, our study focuses on the dust-precipitation interactions in July and August in region A. 217 

 218 

 219 

Figure 3. (a) Daily precipitation averaged in dust-vapor bins; (b) Precipitation versus Nd: the 220 

solid red line represents the precipitation averaged over all vapor conditions (44–58 kg m
−2

) 221 

in each dust-bin, the pink shade represents the range of precipitation change between low 222 

(44–50 kg m
−2

) and high (52–58 kg m
−2

) vapor conditions; (c) Hourly precipitation averaged 223 

in clean (1–22 ×
 
10

-3
 cm

-3, dust-bin 1–4) (red line) and dusty (52–555 ×
 
10

-3
 cm

-3 
, dust-bin 5–8) 224 

(blue line) bins. 225 

To untangle the influences of mineral dust from the co-varying water vapor 226 

concentrations, non-typhoon precipitation averaged in the southwest Taiwan region marked 227 

as A in Fig. 2 (averaged rainfall larger than 0.5 mm day
−1

) in 507 selected days (JA) are 228 

stratified into 8 vapor bins by the mean TCWV. The daily precipitations are stratified into 8 229 

dust bins, according to Nd at intervals of 12.5% of total case number. The precipitation matrix 230 

is summarized in Fig. 3a. The value in each Nd -TCWV bin in Fig. 3a represents the averaged 231 

rainfall intensity under the corresponding dust-vapor conditions. To better understand the 232 

relationship between precipitation and Nd under different vapor conditions, the precipitation 233 

bins are defined as “clean” (with lower 50% Nd, dust-bins 1–4) and “dusty” (top 50% Nd, 234 

dust-bins 5–8). The mean Nd increases by a factor of ~25 (from 0.008 to 0.2 cm
−3

) from clean 235 

to dusty conditions and by ~2 orders of magnitude from the lower 25% (dust bins 1–2) to the 236 

top 25% (dust bins 7–8) conditions. With the precipitations divided into high vapor (HV) and 237 

low vapor (LV) conditions according to TCWV, Fig. 3a shows that, with similar water vapor 238 

condition (in each vapor-bin), the precipitations generally increase with Nd. High values of 239 

rainfall (> 30 mm day
−1

) are mainly distributed in the dusty-HV quadrant, indicating that strong 240 

precipitations are related to the appearances of both high Nd and vapor. In Fig. 3b, the 241 

precipitations in each dust-bin are averaged in HV (upper edge), LV (lower edge) and all 242 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

vapor conditions (solid line). Fig. 3b shows that from clean to dusty cases, the mean 243 

precipitation shows a significant increasing trend with Nd, increasing from 11 to 19 mm day
−1

 244 

by ~72%. Fig. 3a shows that the precipitation increases with Nd more significantly in HV than 245 

in LV conditions. The different variation trends of precipitation responding to Nd in HV and 246 

LV conditions suggest the atmospheric moisture appears to influence the dust–precipitation 247 

interactions.  248 

The hourly observations at 27 sites in region A (site information is given in Table S2) 249 

are selected to further study the responses of rainfall to the variation of Nd. According to the 250 

selection of precipitation days in Fig. 3a, hourly precipitation data are also stratified into 251 

dust-vapor bins. Fig. 3c gives the rain rate averaged in clean and dusty conditions. The hourly 252 

precipitation rates show that, from clean to dusty days, the summertime precipitation rate on 253 

average increases by ~100% in the morning and early afternoon (before 1400 LT), and the 254 

late afternoon precipitation (after 1400 LT) does not show clear differences. The different 255 

responses of precipitation to the dust changes before and after 1400 LT may be caused by the 256 

diverse precipitation types and mechanisms in the two periods. Previous studies indicate that 257 

the diurnal precipitations are influenced by the interaction between land–sea breeze and 258 

orography (Kishtawal & Krishnamurti, 2000; Huang & Wang, 2014), additionally, afternoon 259 

precipitations are highly impacted by afternoon thunderstorms and local severe convections 260 

(Chen et al., 2003; Lin et al., 2010). 261 

 262 

Figure 4. Same dust-vapor matrix as Fig. 3a, for IWP (a) and LWP (b); Same as Fig. 3b, for 263 

IWP (c) and LWP (d) 264 
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ERA-Interim reanalysis of cloud properties are analyzed to provide insights on the 265 

physical mechanism of possible impacts of dust on the summertime precipitations over the 266 

southern Taiwan region. In Figs. 4 a & b, the ice water path (IWP) and liquid (LWP) averaged 267 

in region A on the corresponding days of selected precipitations are stratified into dust-vapor 268 

bins as in Fig. 3a. The results indicate that, under similar vapor conditions, the IWP (Fig. 4a) 269 

and LWP (Fig. 4b) increase with Nd: consistent with the orographic precipitations. In Figs. 4c 270 

& d, IWP and LWP in the matrixes are averaged in HV (upper edge), LV (lower edge) and all 271 

vapor conditions (solid line). Figs. 4 c & d show that, the IWC and LWC have increasing 272 

trends with increasing Nd. From clean to dusty cases, the averaged IWP increases by ~25% 273 

(0.033 to 0.041 kg m
−2

) and the LWP increases by ~21% (0.08 to 0.10 kg m
−2

), suggesting a 274 

positive impact of mineral dust on the cloud development possibly through an enhanced 275 

glaciation and release of latent heat, which is similar to the convective invigoration effect 276 

(Andreae et al., 2004). Figs. 4 c & d also show different responses of LWP and IWP to the 277 

increasing Nd under HV and LV conditions; with adequate water vapor, IWP and LWP increase 278 

more significantly in HV than in LV conditions. This suggests that the atmospheric water vapor 279 

plays an important role in the dust-cloud-precipitation interactions, likely because for dust to 280 

be effective IN, the convection must reach about the −15 ~ −20 °C levels and rich columnar 281 

water vapor is an important condition for such strong convections. Taiwan's orography may 282 

also play a role in invigorating the convection. 283 

 284 

Figure 5. Daily vertical profile averaged over region A of (a) specific humidity (line), LWC 285 
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(triangles), IWC (dots) and (b) atmospheric temperature in clean (red) and dusty (blue) 286 

conditions, according to the case selection in Fig. 4.  287 

To gain further insight into the dust-cloud-precipitation interactions and to provide 288 

more detailed physical explanations, we examine the vertical structures of cloud properties 289 

averaged in region A. Fig. 5 shows the vertical profiles of ERA-Interim reanalysis of specific 290 

humidity, ice (IWC) and liquid water content (LWC), and temperature averaged in clean and 291 

dusty conditions, according to the case selection of the upper matrixes. After controlling for 292 

the co-varying conditions, the vertical structures of atmospheric vapor and temperature are 293 

similar in different Nd cases. From clean to dusty conditions, with Nd increasing by a factor of 294 

~25, IWC increases by ~30% in the midlevel cloud (−5 > T > −30 °C). At lower and warmer 295 

level, both IWC and LWC are enhanced in the mixed-phase cloud, possibly through the 296 

rime-splintering and melting processes of ice particles. The generated larger cloud droplets 297 

and raindrops with higher accretion efficiency may ultimately lead to the enhancement of 298 

precipitation. Previous measurements have indicated a direct link between long-range 299 

transported dust aerosols and cloud ice formation (Creamean et al., 2013), suggesting that 300 

mineral dust can serve as effective INPs (DeMott et al., 2003; Eidhammer et al., 2010). In 301 

orographic clouds, the presence of mineral dust has been recognized to enhance ice and 302 

mixed-phase clouds because of the earlier initiation of the cloud ice (Muhlbauer & Lohmann, 303 

2009). Due to increased cloud ice number concentrations, the more intensive rime-splintering 304 

process and stronger deposition growth occur in the dust-enriched air (Fan et al., 2014), 305 

resulting in more water vapor converting into cloud hydrometeor particles. Larger cloud 306 

droplets could be generated through ice particle melting, leading to stronger coalescence 307 

growth and enhanced rain formation as the result (Freud & Rosenfeld, 2012; Gerber 1996). 308 

The convective invigoration by mineral dust could also be an important reason of the 309 

enhancement of the cloud water content and precipitation (Koren et al., 2005; Storer et al., 310 

2013; Storer et al., 2014). 311 

4 Conclusions and Discussion 312 

This study explores the possible influence of atmospheric mineral dusts on 313 

summertime (JA) mixed-phase cloud and precipitation over the southern Taiwan region, 314 

using 25-year GEOS-Chem Nd simulations, gridded daily precipitation (TCCIP) measurement, 315 

and ERA-Interim analysis data. The model-simulated dust events and concentrations in the 316 

region are generally consistent with CALIPSO satellite and in-situ surface measurements. 317 

The GEOS-Chem Nd simulations indicate that the long-range transport of dust has significant 318 

influences on the atmospheric dust loading over the Taiwan region. The mean Nd in dusty 319 

conditions is ~25 times higher than in clean cases, which could be high enough to impact 320 

cloud development and precipitation. 321 

Statistical analysis of the 25-year data of precipitation and Nd shows significant 322 

positive correlation between dust number concentrations and the non-typhoon precipitations 323 

over the windward side of the mountain ranges in summer (JA). As dust events may be 324 

entangled with events of enriched atmospheric water vapor, the regional averaged 325 

precipitations and cloud water paths are stratified into dust-vapor bins. The results indicate 326 

that the orographic cloud and precipitation are influenced by both Nd and vapor. Under 327 
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similar vapor conditions, precipitation and cloud water generally increase with Nd. From 328 

clean to dusty cases, the hourly precipitation rates almost doubled in the morning to the early 329 

afternoon (before 1400 LT) and no clear differences are found in the late afternoon or 330 

nighttime. The results also suggest that atmospheric vapor plays a critical role in the 331 

dust-cloud-precipitation interactions, that in high water vapor conditions, precipitation and 332 

cloud water paths show more significant increasing trend with Nd than with low total column 333 

water vapor. The vertical structure of cloud variables suggest that, under similar 334 

meteorological conditions (specific humidity and temperature), heterogeneous nucleation in 335 

the mid-level cloud is enhanced in the dust-rich atmosphere, resulting in stronger 336 

mixed-phase processes and cold rain processes. Besides the microphysical effect, the 337 

convective invigoration and indirect effects by mineral dust could also be important for the 338 

enhancement of the summertime precipitation. This study indicates that mineral dusts play a 339 

critical role in altering ice formation, cloud development, and precipitation efficiency in the 340 

orographic cloud in summer (JA) over the Taiwan region. We also found that some extreme 341 

non-typhoon precipitations and strong dust events occur concurrently over the mountain 342 

region. Thus, accounting for dust influences may improve the accuracy of numerical weather 343 

prediction models, most of which only consider the influences of temperature and 344 

supersaturation, but not of the actual number of ice nuclei on heterogeneous freezing. 345 

In this study, the mineral dust impact on cloud is isolated from the co-varying 346 

atmospheric water vapor by using partial correlation and water vapor stratification. However, 347 

other controlling factors such as dynamics and other species of aerosol are hard to identify. In 348 

addition, the statistical results cannot prove direct and detailed physical mechanisms and 349 

processes of the dust-cloud interactions. To solve these remaining problems, more detailed 350 

numerical simulations are needed to carry out sensitivity experiments to investigate the 351 

dust-cloud-precipitation interaction, which will be the subject of further study. 352 
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