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Abstract

Recently, recurrent deep networks have shown promise to harness newly available satellite-sensed data for long-term soil mois-

ture projections. However, to be useful in forecasting, deep networks must also provide uncertainty estimates. Here we evaluated

Monte Carlo dropout with an input-dependent data noise term (MCD+N), an efficient uncertainty estimation framework origi-

nally developed in computer vision, for hydrologic time series predictions. MCD+N simultaneously estimates a heteroscedastic

input-dependent data noise term (a trained error model attributable to observational noise) and a network weight uncertainty

term (attributable to insufficiently-constrained model parameters). Although MCD+N has appealing features, many heuristic

approximations were employed during its derivation, and rigorous evaluations and evidence of its asserted capability to detect

dissimilarity were lacking. To address this, we provided an in-depth evaluation of the scheme’s potential and limitations. We

showed that for reproducing soil moisture dynamics recorded by the Soil Moisture Active Passive (SMAP) mission, MCD+N

indeed gave a good estimate of predictive error, provided that we tuned a hyperparameter and used a representative training

dataset. The input-dependent term responded strongly to observational noise, while the model term clearly acted as a detector

for physiographic dissimilarity from the training data, behaving as intended. However, when the training and test data were

characteristically different, the input-dependent term could be misled, undermining its reliability. Additionally, due to the

data-driven nature of the model, the two uncertainty terms are correlated. This approach has promise, but care is needed to

interpret the results.
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Abstract17

Recently, recurrent deep networks have shown promise to harness newly available satellite-18

sensed data for long-term soil moisture projections. However, to be useful in forecast-19

ing, deep networks must also provide uncertainty estimates. Here we evaluated Monte20

Carlo dropout with an input-dependent data noise term (MCD+N), an efficient uncer-21

tainty estimation framework originally developed in computer vision, for hydrologic time22

series predictions. MCD+N simultaneously estimates a heteroscedastic input-dependent23

data noise term (a trained error model attributable to observational noise) and a net-24

work weight uncertainty term (attributable to insufficiently-constrained model param-25

eters). Although MCD+N has appealing features, many heuristic approximations were26

employed during its derivation, and rigorous evaluations and evidence of its asserted ca-27

pability to detect dissimilarity were lacking. To address this, we provided an in-depth28

evaluation of the scheme’s potential and limitations. We showed that for reproducing29

soil moisture dynamics recorded by the Soil Moisture Active Passive (SMAP) mission,30

MCD+N indeed gave a good estimate of predictive error, provided that we tuned a hy-31

perparameter and used a representative training dataset. The input-dependent term re-32

sponded strongly to observational noise, while the model term clearly acted as a detec-33

tor for physiographic dissimilarity from the training data, behaving as intended. How-34

ever, when the training and test data were characteristically different, the input-dependent35

term could be misled, undermining its reliability. Additionally, due to the data-driven36

nature of the model, the two uncertainty terms are correlated. This approach has promise,37

but care is needed to interpret the results.38

1 Introduction39

1.1 Time series deep learning for hydrologic predictions40

Recently, we have witnessed the rise of data-driven models, including those based41

on deep learning (DL), across various scientific disciplines (Shen et al., 2018; Schmid-42

huber, 2015; LeCun et al., 2015; Goodfellow et al., 2016). In hydrology, time series DL43

has been employed in predictions of soil moisture (Fang et al., 2017, 2018; Fang & Shen,44

2020), water level in urban water networks (D. Zhang et al., 2018), streamflow (Kratzert45

et al., 2018; Feng et al., 2019), water table depth (J. Zhang et al., 2018), and weather46

(Wilson et al., 2018), among other applications. A defining characteristic of DL is the47

depth of the neural network which enables intermediate layers to perform representa-48
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tion learning – automatically deriving problem-relevant features which are then used to49

predict the outputs (Bengio, 2009). Provided that there is enough training data, this char-50

acteristic implies that few pre-processing steps and human-defined features are needed.51

In some tasks, the networks can engineer better features than human experts (Schmidhuber,52

2015).53

In our previous work, we showed that a recurrent DL approach, called long short-54

term memory (LSTM), could learn from the soil moisture dynamics measured by the Soil55

Moisture Active Passive (SMAP) mission (Fang et al., 2017). A model trained on only56

one year of data can make strong predictions for another year. Despite the large num-57

ber of parameters, the DL model did not overfit and was more robust than regularized58

linear regression and autoregressive models. With 3 years of training data, LSTM could59

successfully predict multi-year trends in soil moisture for years not included in the train-60

ing data (Fang et al., 2018). Despite SMAP’s own limitations, this flexible model can61

be beneficial in a data fusion setting for long-term projections. There remains a substan-62

tial potential to utilize DL to improve accuracies for various hydrologic modeling appli-63

cations with other variables of interest.64

1.2 Uncertainties for data-driven models65

Despite significant progress with DL models for hydrology, none of the above-mentioned66

studies addressed model uncertainties, here referring to the estimation of prediction er-67

rors. For many practical and scientific purposes, e.g. ensemble data assimilation (De Lan-68

noy et al., 2007) and decision support (Lamontagne et al., 2018), it is as important to69

obtain the confidence of a prediction as to obtain the prediction itself (Beven, 1989; Pap-70

penberger & Beven, 2006; Ajami et al., 2008). This is even more critical for hydrologic71

DL models, considering the alien nature of DL models to most hydrologic users. How-72

ever, no big-data work so far in hydrology has reported uncertainty estimation methods73

for time series DL models.74

Multiple classes of methods have arisen from Bayesian probability theory to esti-75

mate uncertainties, with different advantages and disadvantages. For example, the Markov76

Chain Monte Carlo (MCMC) method adaptively generates new samples that gradually77

approach the posterior distribution of model parameters (Vrugt et al., 2008). In the con-78

text of hydrologic modeling, these models are typically process-based ones with a low-79
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dimensional (¡10) parameter set. The uncertainty estimate is obtained from sampling80

parameter sets from this posterior distribution which is incrementally improved. Unfor-81

tunately, MCMC is intractable for DL models that have orders-of-magnitude more pa-82

rameters. Aside from the computational cost, another difficulty of this approach is struc-83

tural errors from the forward model, as such an approach assumes that the error comes84

from uncertainty in the model parameters only (and not from the structure of the model),85

but model structure is known to strongly control the errors (Butts et al., 2004).86

Uncertainty for data-driven models is not a monolithic quantity. It consists of sev-87

eral distinct components that can be mathematically modeled as follows. Consistent with88

the machine learning literature, the target variable Y (e.g. soil moisture) is a function89

of the input X and some random noise whose distribution has dependence on X. In other90

words, Y = f(X)+εX . This function f is unknown and furthermore, due to measure-91

ment error, we may have a noisy version X̃ of the inputs (instead of the true X) (Kavetski92

et al., 2006). There exists some unknown function f∗ that serves as the best predictor93

of Y given noisy input X̃, i.e. f∗(X̃) ≈ Y . Now, since f∗ is unknown, the goal of ma-94

chine learning is to approximate it using a function g with parameters W (hence we write95

gW ). Neural networks are known as universal approximators (Hornik, 1991) which means96

that, under mild regularity conditions that depend on a chosen error metric, any func-97

tion can be approximated to any desired level of accuracy by a sufficiently large neural98

network with the right choice of weight parameters W ∗. However, since W ∗ is also un-99

known, it must be estimated from the data, leading to network weight uncertainty. The100

network gW learned from the data has weights W that are different from W ∗ (network101

weight uncertainty). To summarize, we have 3 sources of error/uncertainty: data noise102

(predicting Y using f∗), model mis-specification error (approximating f∗ with gW∗), and103

network weight uncertainty (approximating gW∗ with gW ).104

Of the three uncertainty terms mentioned above, without improvement in data qual-105

ity, only the data noise cannot be reduced by collecting more data. However, data noise106

is often related to certain attributes that are known and is thus also input-dependent.107

For example, in our case of learning SMAP observations (Fang et al., 2017), SMAP ob-108

servations are highly uncertain in regions with large vegetation water content (VWC).109

Hence, the magnitude of SMAP data noise could potentially be estimated based on pre-110

cipitation and land cover types. The network weight uncertainty, on the other hand, re-111

sults from insufficient training data and can be reduced by more data collection (and more112
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effort). As the amount of training data increases, the parameters are better constrained113

and the prediction uncertainty decreases. The mis-specification error is more pronounced114

with process-based models, which impose strong constraints on the function space. If these115

constraints differ from the actual physics, they could be inadequate or inappropriate for116

the modeling task, under which condition it could be said the model is mis-specified. For117

DL models, as long as the appropriate basic architecture is selected, the effect of mis-118

specified structure is minor as the constraints are universal approximators. The basic119

architecture of deep networks such as LSTM is so versatile that these networks can ap-120

proximate a large range of problems, from speech recognition (Graves et al., 2013), to121

handwriting synthesis (Graves, 2013), to brain wave interpretation (Kumar et al., 2019),122

to improving health care (Miotto et al., 2017). Hence in practice the approximation er-123

ror is dominated by data noise and network weight uncertainty.124

Some may recognize that the data noise and network weight uncertainty terms are125

sometimes referred to as the aleatoric and epistemic uncertainties in the literature of ma-126

chine learning and some other domains. For example, Kiureghian and Ditlevsen (2009)127

asserted that “Uncertainties are characterized as epistemic, if the modeler sees a pos-128

sibility to reduce them by gathering more data or by refining models. Uncertainties are129

categorized as aleatory if the modeler does not foresee the possibility of reducing them”.130

This categorization is simple to grasp and is in general agreement with the machine learn-131

ing literature (Kendall & Gal, 2017; Senge et al., 2014; Depeweg et al., 2017), as well as132

some hydrology papers (Nearing, Mocko, et al., 2016; Gong et al., 2013; Behrouz & Al-133

imohammadi, 2018). Data-driven modelers have become accustomed to highly noisy data134

and have regarded such noise (after due effort in data curation) as irreducible. On the135

other hand, their knowledge comes from the training data and hence they regard the pa-136

rameter uncertainty (of a data-driven model) as epistemic. However, these definitions137

clash with some other definitions known to hydrology. On a philosophical level, it is quite138

difficult to clearly define the limit of what is knowable and what is unknowable, which139

can be witnessed by a series of historical debates (Beven, 2016; Nearing, Tian, et al., 2016).140

For example, some would regard noise with data (e.g. precipitation), and observations141

(e.g. soil moisture readings from SMAP), as epistemic (Beven, 2016), while to a machine142

learning scientist they would most likely be considered aleatoric. Because the purpose143

of this paper is largely to evaluate the methods that estimate errors with LSTM mod-144

els, we avoided the controversial terms.145
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1.3 Background on Monte-Carlo dropout146

Here we examine Monte Carlo dropout with a data noise term (MCD+N). The first147

part of MCD+N, proposed by Gal and Ghahramani (2016) (hereafter called GG16), can148

be interpreted as measuring the disagreement among ensemble members generated by149

applying dropout. The second part of MCD+N is a heteroscedastic input-dependent model150

for observational noise, proposed by Kendall and Gal (2017) (hereafter called KG17).151

The foundational ideas are:152

• Dropout (Srivastava et al., 2014) is a training technique that is used to prevent153

overfitting in deep networks - during each iteration of back-propagation, randomly154

selected units are ignored. It was originally interpreted as an efficient way of sim-155

ulating an ensemble of deep networks. GG16 provided another interpretation, that156

dropout training of deep networks was an approximation of training Gaussian pro-157

cess (GP) models (Rasmussen & Williams, 2005). GG16 proposed the use of dropout158

during prediction to create random predictions and postulated that the variabil-159

ity of these predictions was a good measure of network weight uncertainty. This160

use of dropout is called Monte Carlo Dropout (MCD). It is worth noting that this161

term does not seek to approximate the bias of the network.162

• An second output unit can be added to the deep network to be implicitly super-163

vised. With a proper scoring function during training, this unit can be interpreted164

as an estimate of the variance of the network’s prediction from its original out-165

put unit. The goal of the secondary unit is to measure data noise and model it166

as a function of the inputs.167

GG16 revealed a new and surprisingly convenient path toward estimating uncer-168

tainty for DL models. A GP models data as multi-variate Gaussian distributions with169

covariance functions. Without the need for sampling, a GP model could directly prescribe170

the predictive distribution at a new point. Earlier work showed that with the right ac-171

tivation functions, a neural network with one or more hidden layers and a Gaussian prior172

on the weights would converge in distribution to a GP as the size of the hidden layers173

grows to infinity (Neal, 1996; Lee et al., 2018; Matthews et al., 2018). Extending along174

this avenue, GG16 developed a theoretical framework casting dropout (Srivastava et al.,175
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2014) as an approximate GP, where the sampling of the distribution could be achieved176

by applying dropout during model testing.177

GG16’s GP interpretation of dropout training is heuristic in the sense that it in-178

volves approximations whose accuracies were not quantified (and is a subject for debate179

(Osband et al., 2016)). Moreover, with respect to the GP argument, it has never been180

systematically shown in previous studies (Gal & Ghahramani, 2016; Kendall & Gal, 2017;181

Vandal et al., 2018) that the MCD estimate would predict a smaller error for an instance182

more similar to the training dataset, and a larger error for instances that are unlike the183

training data. One barrier was that for the tasks examined in many DL applications, it184

was difficult to define and visualize proximity. Hence, the effectiveness of the MCD en-185

semble to quantify similarity has yet to be evidenced.186

The MCD+N method is appealing due to its simplicity and its support for arbi-187

trary network architectures. The resulting uncertainty estimates also proved useful in188

an image segmentation task (Kendall & Gal, 2017). Consequently, the scheme has gar-189

nered an enormous amount of popularity, which can be witnessed by the high citation190

count of GG16 (cited 1620 times at the time of writing this article) and KG17. However,191

the limitations and properties of this method have not been adequately examined. Since192

the input-dependent uncertainty is estimated by the trained network, it is natural to ques-193

tion its accuracy in the event that the test data comes from a fundamentally different194

distribution than the training data the network is based on, i.e., the test data is out of195

distribution. Another question is whether the combined uncertainty estimate is of high196

quality given representative or unrepresentative training data. This work constitutes the197

first report on MCD+N in hydrology and perhaps also one of the most thorough eval-198

uations of this scheme in DL, revealing both its potential and limitations.199

1.4 Research questions200

The goal of this paper is not to promote the MCD+N scheme but to use experi-201

ments to evaluate the quality and limitations of the scheme for the case of soil moisture202

predictions, which is the first hydrologic dataset encountered by this method. While satel-203

lites provide global-scale coverage of surface soil moisture, many other hydrologic data,204

e.g. streamflow and groundwater levels, are available only locally. Even with satellites,205

there are regions beyond the scope of satellite, e.g. high latitudes and areas covered with206
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dense vegetation canopy. Therefore, we are concerned with the quality of MCD+N es-207

timates when the training data is biased in only part of the domain. We ask the follow-208

ing questions:209

(1) When the training data is representative of the spatial domain, can the MCD+N210

uncertainty terms help us anticipate predictive error as measured by unbiased RMSE?211

(2) Do the two uncertainty estimates behave as asserted, i.e., does the data noise212

term respond to stochasticity in the data and does the network weight uncertainty term213

respond to dissimilar cases?214

(3) When a network directly predicts input-dependent uncertainty via a secondary215

output unit, is this estimate reliable for time series that are out of the training data dis-216

tribution?217

(4) How are these results affected by hyperparameters such as the dropout rate and218

priors on the input-dependent uncertainty output units?219

It is worth mentioning that the goal of this paper is not to promote the MCD+N220

scheme but to use carefully-designed experiments to evaluate its quality.221

2 Methods and datasets222

As an overview, we trained a probabilistic time series DL model to learn the level-223

3 SMAP surface soil moisture product. The input to this DL model included climatic224

forcing data and constant geophysical attributes. In addition to the SMAP product, the225

network also estimates the input-dependent data noise. The network weight uncertainty226

is then estimated via the MCD procedure, which runs many forward realizations of the227

stochastic dropout masks during inference (making soil moisture predictions about a new228

instance).229

2.1 SMAP and input data230

The SMAP level 3 radiometer product (L3 SM P, version 4) measures the global231

surface soil moisture since April 2015, with a moisture-dependent sensing depth that is232

less than 5 cm. The spatial resolution of L3 SM P is 36 km, with a revisit time of 2 to233

3 days. The DL model was trained with seven climatic forcing inputs: precipitation, tem-234

perature, radiation, humidity, pressure, and wind speed (two directions). We obtained235
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the forcing data from North American Land Data Assimilation System phase II (NL-236

DAS2) (Xia et al., 2015). In addition, the DL model also used static geographic attributes,237

e.g. soil texture and attributes, from the World Soil Information (ISRICWISE) database238

(Batjes, 1995), and land surface characteristics from SMAP flags.239

2.2 Time series deep learning240

The LSTM model used the atmospheric forcing time series and static land surface241

characteristics described above as inputs. Each valid SMAP pixel over the continental242

United States (CONUS) was treated as a training instance. Spatial autocorrelation was243

not explicitly modeled but could be implicitly considered due to the spatial autocorre-244

lation in the inputs. During training, we used a mini-batch size of 100. A mini-batch bun-245

dles a small number of training instances together to perform weight updates via vari-246

ations of stochastic gradient descent (typical deep learning training algorithms cycle over247

mini-batches while performing updates). The loss function is summed over the mini-batch.248

This procedure allows for more effective use of the memory of the Graphical Processor249

Units (GPUs).250

Because surface soil moisture has short memory, each instance in the mini-batch251

is 30 days of data randomly taken from the available training data of a randomly selected252

SMAP pixel. 500 epochs were performed for a training job for our CONUS-scale exper-253

iment. An epoch has approximately the same number of forward runs as the number of254

instances. In our case, each epoch contains around 888 mini-batches.255

Recurrent Neural Networks make use of sequential information by updating hid-256

den states based on both inputs of the current time step and network states of previous257

time steps. By implementing a memory cell and gates, LSTM addressed the vanishing258

gradient issue that has prevented effective training for vanilla recurrent networks (Hochreiter259

& Schmidhuber, 1997). While there are several versions of LSTM units, we use the one260

specified by the following equations:261
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(input transformation) x(t) = ReLU(Wxxx
(t)
0 + bxx) (1)

(input node) g(t) = tanh(D(Wgx)x(t) +D(Wgh)h(t−1)) + bg (2)

(input gate) i(t) = σ(D(Wix)x(t) +D(Wih)h(t−1)) + bi (3)

(forget gate) f (t) = σ(D(Wfx)x(t) +D(Wfh)h(t−1)) + bf (4)

(output gate) o(t) = σ(D(Wox)x(t) +D(Woh)h(t−1)) + bo (5)

(cell state) s(t) = D(g(t))� i(t) + s(t−1) � f (t) (6)

(hidden gate) h(t) = tanh(s(t))� o(t) (7)

(output layer) f (t) = Whyh
(t) + by (8)

The superscript t refers to the time step. For a time step t, the vector of raw in-262

puts is x
(t)
0 , the state of the hidden cells is denoted by h(t), the state of memory cells is263

denoted by s(t), and the output of the network by f (t). ReLU refers to Rectified Lin-264

ear units (Glorot et al., 2011). In this equation, σ and tanh refer to sigmoid and hyper-265

bolic tangent functions, respectively, and they are used as the activation function in the266

network. � represents point-wise multiplication. The W ’s and b’s are the trainable con-267

nection weights and constant bias parameters in the network, which are shared by all268

time steps. D is the Dropout operator (Srivastava et al., 2014), which randomly sets some269

of the network connections to zero in order to reduce overfitting. During each iteration,270

the dropout mask is randomly initialized and remains the same for all time steps. More271

details of dropout are provided in Section 2.3.2.272

2.3 Probabilistic LSTM Model273

Overall, the uncertainty of the model is comprised of an input-dependent data noise274

term (Section 2.3.1) and a network weight uncertainty term (Section 2.3.2), following Kendall275

and Gal (2017). We let the DL network learn and predict the variance of the input-dependent276

uncertainty based on inputs to LSTM. Network weight uncertainty results from insuf-277

ficient training data, and according to GG16, is estimated by Monte Carlo Dropout.278

2.3.1 Input-dependent data noise279

It is well known that SMAP observations are highly uncertain in regions with high280

vegetation water content (VWC) due to instrumental limitations. This kind of uncer-281
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tainty can be captured based on many input variables such as vegetation cover and tem-282

perature. However, instead of manually prescribing a model for the error, we let the net-283

work estimate it and provide it as an output, following KG17. For a model prediction284

f , the corresponding observation and error vectors are y and ε = y − f , respectively.285

We assume the errors come from a Gaussian distribution, with a variance σ2
x that is de-286

pendent on the input data x: ε ∼ N (0, σ2
x) and y ∼ N (f, σ2

x). Given n data points287

(regardless of space or time) y = {y1, ..., yn} and corresponding model predictions f =288

{f1, ..., fn} and standard deviations σx = {σx,1, ..., σx,n}, the likelihood function is289

p(y|f) =

n∏
i=1

1√
2πσ2

x,i

exp[− (yi − fi)2

2σ2
x,i

] (9)

We ask the LSTM model to output an estimate variance, σ̂2
x, for σ2

x. For numer-290

ical stability, the network will predict s = log(σ̂2
x). Hence, the LSTM model will have291

two nodes at the output layer: (f , s) = FW (x), where FW is the trained LSTM model292

and W is the weight in the network. There is no directly supervising data for s. Rather,293

it is implicitly supervised by the regression task. As the network cannot reduce random294

errors that cannot be predicted based on the inputs, it is forced to learn the error mag-295

nitude. For N SMAP pixels (N is the mini-batch size during training), each with T time296

steps, the loss function L to be minimized is the negative logarithm of Equation 9 across297

the data points:298

L =
1

2

N∑
i=1

T∑
t=1

1i,t[(yi,t − fi,t)2 exp(−si,t) + si,t] (10)

where i and t are the spatial and temporal indices, respectively, and 1i,t is 1 when there299

is a valid SMAP observation and 0 when there is not. Naturally, the si,t term also serves300

as a regularization term to prevent the training from unreservedly decreasing the exp(−si,t)301

term to minimize the loss function.302

2.3.2 MCD for network weight uncertainty303

Each weight update step consists of a forward pass (in which the prediction of the304

network is computed) and a back-propagation pass (in which this information is used305

to compute an approximate gradient for updating the weights). In the dropout method,306

a randomly chosen set of nodes is ignored for each weight update step (the ignored nodes307

do not affect the prediction in the forward pass). The choice of which nodes to keep and308

which to (temporarily) drop is implemented via the dropout mask.309
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GG16 proposed the use of dropout during the test step (inference) to generate ran-310

dom predictions. MCD runs M forward realizations, fŴj , j ∈ 1, ...,M , with each set311

of weights Ŵj obtained by randomly sampling dropout masks at the same locations where312

dropout is applied during training. In contrast, the normal use of dropout during infer-313

ence would turn the dropout operators into a multiplication operation with constant scalars314

related to the dropout rate, with all connections enabled. The average of the MCD re-315

alizations becomes the overall prediction, and their variance is interpreted as a measure316

of uncertainty. GG16 recommended that MCD only be used for networks that are also317

trained using dropout. The mean and variance of the MCD ensemble for a prediction318

f are:319

E[f ] ≈ 1

M

M∑
m=1

fŴm(x) (11)

σ2
mc[f ] ≈

1

M

M∑
m=1

fŴm(x)2 − E[f ]2 (12)

MCD can be interpreted intuitively from an ensemble simulation perspective, just320

like dropout training (Srivastava et al., 2014). Each realization of the dropout mask forms321

a sub-network. The random predictions arising from multiple randomly chosen masks322

can then be viewed as predictions coming from an ensemble of related sub-networks. These323

sub-networks would be in stronger agreement (hence smaller variance) in regions where324

the input space is well conditioned by known data points. Further away from the train-325

ing data, the sub-networks may diverge more significantly. Nevertheless, it is very chal-326

lenging to formally prove this intuition.327

The primary contribution of GG16 was that they noted connections between dropout328

training and variational Bayesian inference of GP (an overview of their arguments and329

a discussion of issues can be found in Appendix A). Their main argument was that if330

variational inference was conducted with respect to network weights, with a special set331

of variational distributions, it would approximately lead to the same loss function as dropout332

training with mini-batching, as described in Equation 10. In this way, each realization333

with a set of randomly sampled dropout masks is equivalent to sampling from the pos-334

terior variational distribution. Although the approximation error was generally not quan-335

tified, this connection inspired their proposal of using MCD as an estimate of model un-336

certainty (since this is what the posterior distribution of a GP corresponds to). In com-337

puter vision tasks, GG16 and KG17 found that MCD was useful as an uncertainty mea-338
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sure – the estimated uncertainty tended to be large when the prediction of the network339

was inaccurate.340

2.3.3 Combining uncertainties341

In their analysis of the connections between GP and MCD in deep networks, GG16

noted that the variance of the posterior distribution depends on the variance of the prior

as well as the dropout retention rate β. These factors suggest that the network weight

uncertainty term needs to be calibrated. GG16 suggested linearly scaling the model un-

certainty term to match the predictive error magnitude, i.e.,

σ2
mc(fi,t) ≈ α

 1

M

M∑
m=1

fŴm
i,t (x)2 −

[
1

M

M∑
m=1

fŴm
i,t (x)

]2
 (13)

Another option is to find β∗, the optimum β value, to best capture the correct un-

certainty magnitude, i.e.,

σ2
mc(fi,t) ≈

1

M

M∑
m=1

f
Ŵm(β∗)
i,t (x)2 −

[
1

M

M∑
m=1

f
Ŵm(β∗)
i,t (x)

]2

(14)

Here f
Ŵm(β∗)
i,t (x) is the prediction for input x when the network uses the weight param-342

eters Ŵm obtained by applying dropout with rate β to the trained network.343

Given y ∼ N (f, σ2
x) and the model uncertainty as calculated in Equation 12, the344

total uncertainty variance is σ2
comb:345

σ2
comb = σ2

mc + σ2
x (15)

where (i, t) are dropped for brevity.346

The hyperparameter β∗ or α, depending on which calibration method was chosen,347

needs to be tuned. For the scope of this work, we chose to tune β∗ as it is a simpler pro-348

cedure, and we found a constant β∗ to be sufficient for improving the quality of the un-349

certainty. We used the first year of the SMAP data as training data, and the second year350

as the validation data for hyperparameter tuning. Hyperparameters were adjusted so that351

the estimated combined error σ2
comb matched the predictive error in the spatial regions352

where the model was trained. To avoid over-tuning, we did a lazy search (meaning with-353

out sophisticated searching) for a uniform β∗ value in all layers and locations, although354

we recognize that β∗ could, in theory, be different from location to location. The third355

year of SMAP data was used as a test dataset entirely for the purpose of evaluation.356
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2.4 Evaluation of the uncertainty quality357

In all of our experiments, we used the level-3 SMAP surface soil moisture product358

over the CONUS as the training target. As mentioned earlier, we used the first year of359

data (2015/04 - 2016/03) as the training data, the second (2016/04 - 2017/03) for val-360

idation and hyperparameter tuning, and the third (2017/04 - 2018/03) as the test data361

for the evaluation of metrics. The quality of uncertainty was evaluated by both the pre-362

dictive errors and the cumulative distribution of the likelihood function. For the predic-363

tive errors, we compared the magnitude of σcomb, the standard deviation of the combined364

errors, to that of the unbiased root-mean-square error (ubRMSE) when predicting SMAP365

surface soil moisture in the test period. We also calculated the Pearson’s correlation co-366

efficient (R) between ubRMSE and σcomb.367

Similar to KG17 and Vandal et al. (2018), we calculated an error exceedance like-368

lihood, pee(|e| > |y − f |;σ2) = 1− erf(−|y−f |)
2σ , e ∼ N (0, σ2), which is the self-assessed369

chance that an error of this magnitude (|y − f |) or worse could happen, given an un-370

certainty estimate σ2. By this definition, if the uncertainty estimate is perfect, for a large371

error marked with a 0.01 exceedance likelihood, we expect to see that it is exceeded roughly372

1% of the time. Similarly, for an error estimate exceeded 40% of the time, we expect to373

see a calculated error exceedance likelihood of 0.4. As a result, when the cumulative dis-374

tribution function (CDF) of pee is plotted (called the calibration plot in KG17), we would375

like to see it being close to a one-to-one line. We further calculated d, the maximum dis-376

tance of the CDF from the 1:1 line, also called the Kolmogorov-Smirnov distance between377

two empirical CDFs. d thus serves as a succinct measure of the quality of the uncertainty378

estimate. A d value of 0 would mean a perfect uncertainty quality, while a d value close379

to 0.5 would suggest very poor quality. The error exceedance likelihoods calculated us-380

ing σx, σmc, and σcomb as σ2 are referred to as px, pmc, and pcomb, respectively. Eval-381

uating pee separately with these variances helps us to understand how each component382

of the uncertainty estimate works.383

2.5 Training experiments and evaluations384

2.5.1 CONUS-scale generalization test385

We trained a LSTM model over the entire CONUS from 2015/04 to 2016/03, with386

spatial downsampling done by picking 1 pixel from every patch of 2 x 2 pixels. To eval-387
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uate the overall quality of the uncertainty estimation, we ran both a temporal test and388

a regular spatial test. In the temporal generalization test, the model was tested on the389

same pixels as the training set but with the third year of data (2017/04 to 2018/03). In390

the regular spatial generalization test, the model was tested on the same period as the391

training set, but with the neighboring pixel in the diagonal direction, which was not part392

of the model’s training data.393

2.5.2 Noise perturbation experiments394

According to the theory discussed by KG17, the input-dependent data noise term395

could directly detect observation error, while the model parameter uncertainty could not.396

To test this theory, we examined how the input-dependent data noise (σx) and network397

weight uncertainty (σmc) each responded to noise introduced to the learning target. Here398

we prescribed an independent zero-mean Gaussian relative noise value with variance σ2
noise,399

which was added to the observation data as400

ynoise = y +N (0, σ2
noise) (16)

Ten independent models were trained by adding different levels of noise as σnoise ∈ {0.1, 0.2, ..., 1.0}.401

The results of the noise perturbation experiments are presented in Section 3.2.402

2.5.3 Spatial extrapolation experiments403

As discussed earlier, a primary objective of uncertainty analysis is to measure the404

model confidence when making predictions for new and potentially unfamiliar instances.405

For example, a GP assigns high posterior uncertainty to instances that are dissimilar from406

the training data and low posterior variance to instances that are similar. Ideally, a neu-407

ral network trained with dropout would exhibit similar behavior.408

Thus we tested how the proposed uncertainty estimates respond to instances sim-409

ilar to (or dissimilar from) the training dataset with two sets of experiments. Similar-410

ity, defined as the proximity between instances in a space spanned by inputs that are rel-411

evant to the prediction target, can be difficult to judge, so here we use geographic prox-412

imity and ecoregion hierarchy as proxies. Based on US Environmental Protection Agency413

(EPA) Ecoregions, which are areas where ecosystems are generally similar (McMahon414

et al., 2001), we divided the entire CONUS into 17 sub-regions of relative similar sizes.415

To achieve this, we broke the largest ecoregion into several smaller ones and merged the416
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smallest ecoregions into bigger ones. The ecoregions are hierarchical, i.e., ecoregions un-417

der the same level-1 or level-2 codes will be more similar to each other than the ones with418

different level-1 or level-2 codes. These ecoregions represent a wide diversity of landscapes,419

land covers, soils, and climates over the CONUS.420

In the first set of experiments, we trained a LSTM model on each of the ecoregions421

using year one data, adjusted hyperparameters on these training ecoregions using year422

two data, and examined standard deviations for data noise (σx), networkweightuncertainty(σmc),423

and combined uncertainty σcomb when the model was tested in other regions with year424

three data. Our hypothesis was that if MCD indeed captures the network weight uncer-425

tainty, then σmc should be small in regions similar to the training region and large in426

dissimilar regions. For comparison, we also attempted a different division strategy, 18427

level-2 hydrologic cataloging units (HUC2), and show the results in the Appendix.428

In the second set of experiments, we trained the models on several combinations429

of ecoregions. Some of these ecoregion combinations are dispersed throughout different430

parts of the CONUS (hence were more likely to be representative of the background test-431

ing data), while three of the combinations were clustered towards only part of the CONUS432

(hence were more likely to be biased). These tests allowed us to examine whether use-433

ful uncertainty measures could be produced using a small subset of available data.434

3 Results and Discussion435

3.1 Uncertainty quality436

We first examined the impacts of the dropout retention rate β on uncertainty es-437

timates and predictive error. The network weight uncertainty was clearly a function of438

β, and we found β ≈ 0.4 to be an approximate value that enabled both accurate pre-439

dictions and high-quality uncertainty estimates during the validation period (Appendix440

B, Figure B.1). This was the case for either CONUS-scale models or regional-scale mod-441

els. To avoid fine tuning, we used β = 0.4 for all of our evaluations. This result also442

suggests that it is useful to calibrate the network weight uncertainty before using it to443

anticipate errors.444

The spatial patterns of both data noise (σx) and model uncertainty (σmc) agreed445

more or less with the predictive metric of unbiased root-mean-square error (ubRMSE),446

and were larger in the eastern CONUS than in the western CONUS (Figure 1 maps).447
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In particular, the northern central CONUS and northeast and northwest coastal regions448

had large ubRMSE along with large σx. The eastern half of the CONUS, in general, had449

larger annual precipitation than the western half. The magnitudes of soil moisture fluc-450

tuations, and consequently the magnitudes of measurement errors, were larger. In the451

northern CONUS, forest land cover is prominent and a larger fraction of precipitation452

falls as snow, so the SMAP signal is adversely impacted by large vegetation water con-453

tent (VWC) (O’Neill et al., 2016). Soil moisture cannot be accurately sensed below freez-454

ing conditions, which further reduces the amount of training data available (Fang et al.,455

2018). As a result, the northeastern and northwestern (along the Rocky mountains) forests456

had the highest ubRMSE. The lowest errors were found on the Great Plains and in the457

southeastern CONUS, due to arid conditions and reduced forest cover, with associated458

low VWC. The predicted σx automatically captured these spatial patterns. A belt-like459

region with large errors was found along the Mississippi River, which descends along curved460

state boundaries into the Gulf of Mexico in the south. This large noise may be associ-461

ated with (i) signal leakage from the Mississippi River; or (ii) extensive irrigation due462

to cultivated crops along the Mississippi, but, interestingly, σx captured it nonetheless.463

On scatter plots of these results, we note a high Pearson’s correlation coefficient464

value (R=0.84) between ubRMSE and σcomb with a small under-estimation bias (Fig-465

ure 1c). For the regular spatial generalization test, the correlation was still around 0.79466

(Figure 1i). The relationship between σcomb and ubRMSE was heteroscedastic, with more467

spread toward the wetter range. In addition, we found that σx was larger than σmc in468

both cases, but the two terms were correlated (Figure 1f, Figure 1l).469

These results suggest that for cases of temporal prolongation or mild spatial ex-470

trapolation, it is possible to anticipate model predictive errors using σcomb, while using471

either σx or σmc alone would result in under-estimation of the error. In particular, we472

can anticipate that if the predicted σcomb is below 0.03, the actual model error will be473

closely bounded to the range of 0−0.03. When σcomb is larger than 0.05, however, we474

should anticipate large errors, even though ubRMSE may be coincidentally small. The475

results suggest that we can use the σcomb map to identify regions where SMAP does not476

function properly. In addition, as observed by Pan, Cai, Chaney, Entekhabi, and Wood477

(2016), the low uncertainty in the southeast coastal plains is noteworthy. The small er-478

ror indicates that SMAP has a reasonable value in this region.479

–17–



manuscript submitted to Water Resources Research

The calibration plots of error exceedance likelihoods (Figure 2) show the quality480

of each uncertainty-estimating component. pmc in both panels lies above the 1:1 line to-481

ward the left end (e.g. for a pmc of 0.2, a cumulative frequency of 0̃.39 is obtained), which482

means that large predictive errors occurred more frequently than anticipated. Hence, the483

pattern means that σmc alone under-estimated the uncertainty toward the large-error484

range. On the other hand, if we had only considered σx, the uncertainty would be slightly485

under-estimated. In both validation and temporal tests, σcomb was closer to the one-to-486

one line than either individual component. Since the validation period was employed to487

identify the optimal β, pcomb was almost perfect. In the test period, there was a slightly488

bigger gap between pcomb and the 1:1 line, but the difference still remained small, with489

a KolmogorovSmirnov distance of 0.027.490
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Figure 1. Model error and uncertainty estimates of temporal and spatial generalization tests

over the CONUS. The top two rows (a-f) show temporal test results, and the bottom two rows

((g)-(l)) show spatial test results. For each of these tests, the left two columns show maps of

model test error (unbiased root-mean-square error, ubRMSE) and three uncertainty estimates:

data noise (σx), network weight uncertainty (σmc), and combined uncertainty (σcomb). Note

that the plots of σmc ((e), (k)) have a narrower numeric range for the same color range as the

other uncertainty estimates, as the range of σmc is smaller than those of the others. For the

two maps in each row, the one-to-one comparison is shown on the right column, with each point

corresponding to one pixel on the maps, red lines representing lines of best fit, and black lines

representing y = x.
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Figure 2. Calibration plots of error exceedance likelihoods computed using network weight

uncertainty (pmc), data noise (px), and combined error (pcomb) for the (a) validation set

(2016/04-2017/03) and (b) test set (2017/04-2018/03) of the CONUS-scale temporal gener-

alization test. x-axes are estimated error exceedance likelihoods (pee) based on the different

variances given, and y-axes are the cumulative frequencies, so these curves are the cumulative

distribution functions (CDFs) of pee, given an uncertainty estimate. The left end of the x-axis

represents large errors, and the right end represents smaller errors. An ideal uncertainty estimate

would produce a CDF that is identical to a 1:1 plot (black lines). The uncertainty qualities, d

values (maximum distance of the CDF from the 1:1 line, section 2.4), of px, pmc, and pcomb were

0.045, 0.230, and 0.015 for the validation set, and 0.072, 0.241, and 0.027 for the temporal test,

respectively.
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3.2 Responses of uncertainty estimates to noisy targets512

The observation that the two uncertainty estimates were correlated needed further513

investigation. Were they correlated because they partially measured the same type of514

uncertainty, or because the presence of different uncertainties themselves were correlated515

in the SMAP prediction task? In other words, were they correlated because regions with516

smaller amounts of training data (leading to larger network weight uncertainties) also517

tended to have higher data uncertainties? We thus added noise into the observations to518

increase the apparent data uncertainty. In the ideal case, this would cause σmc to remain519

unchanged and σx to increase by the same amount as the noise.520
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When the model was trained on the whole CONUS without added noise, the me-521

dian ubRMSE was around 0.03, smaller than the design accuracy of SMAP. When we522

added Gaussian random noise, test error and estimated uncertainties all increased. σcomb523

maintained roughly the same magnitude as ubRMSE, with a slight under-estimation524

(Figure 3a). σx responded much more strongly to noise than σmc, which shows that the525

proposed data noise scheme is effective at estimating random noise with the target. LSTM526

could not predict the random noise, and the part that was uncapturable was correctly527

attributed to the data noise term, especially toward the high noise levels. This result shows528

that this decomposition of uncertainty could be reasonable at least when the training529

data are representative.530

We note in Figure 3a that σmc also increased with noise, albeit gradually. This ob-531

servation is consistent with the spatial patterns shown in Figure 1 and the correlation532

between the two uncertainty terms, and is not in conflict with the meaning of the two533

terms. Unsurprisingly, significant observational noise led to reduced useful supervising534

data and thus more ambiguous network weights. Even though σmc can, in theory, be re-535

duced by the addition of more data, when noise is significant, the demand for data is am-536

plified. As a result, the resulting training data is not sufficient at high noise levels.537

We wanted to see how the quality of two uncertainty estimates changed with the538

noise in observational data. As Figure 3b and c show, the quality of σx increased with539

noise, as the data noise component could explain more of the total uncertainty. The net-540

work weight component, on the contrary, was less and less important with respect to the541

total error. This observation agrees with the naming of the data noise term.542

–21–



manuscript submitted to Water Resources Research

Figure 3. Performance of model trained by noise-added observations. (a) shows matrices of

uncertainty estimates for network weight uncertainty (σmc), input-dependent data noise (σx),

and combined uncertainty (σcomb), as well as test error (ubRMSE). (b) shows calibration plots

of error exceedance likelihoods for different noise levels (pmc, px). (c) shows the uncertainty

quality, d (the maximum distance between each CDF and the one-to-one line), varied with noise

added to observations. d(pmc) is plotted using the left y-axis while d(px) and d(pcomb) are plotted

using the right y-axis.
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3.3 Response of uncertainty estimates to dissimilarity550

The results in Sections 3.1- 3.2 were obtained from models trained on the entire551

CONUS. In the following sections we show results from models trained over parts of the552

CONUS, which explore how the uncertainty terms respond to out-of-training instances.553

We questioned whether the network parameter uncertainty adequately captured dissim-554

ilarity.555

Overall, we see a clear influence of geographic proximity on network weight uncer-556

tainty, σmc, as a result of spatial autocorrelation in the attributes. When we tested mod-557
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els that were only trained on a single level-2 ecoregion, σmc was smallest inside the train-558

ing region, somewhat larger in neighboring regions, and much larger further away (Fig-559

ure 4). We only show models trained on four of the level-2 ecoregions here, but other cases560

behaved similarly. We show several results in Figure C.1 in Appendix C with similar re-561

sults when using HUC2 as training regions. These results provided the clearest visual562

evidence so far that MCD does detect dissimilarity.563

However, spatial distance itself was not the causal factor for autocorrelation. There564

is a visible contrast along the eastern edge of the training ecoregion in Figure 4b. This565

gradient shows where the Great Plains descends to the central plains, and also the di-566

vide between the drier western half and the wetter eastern half. Some pixels immediately567

adjacent to the east of the training ecoregion had much larger σmc than the western neigh-568

boring pixels, which suggests the model used precipitation and temperature as impor-569

tant factors in deciding similarity in terms of soil moisture dynamics.570

It is important to remember that σmc also depends on the training data, so while571

it tends to be reciprocal, it may not always be. For example, when the model was trained572

on ecoregion 8.3 (Southeastern Plains, 4a), it regarded the the western coastal regions573

and some parts of the southwestern hot desert (parts of ecoregion 10.2, which is the red-574

highlighted training region selected in Figure 4d) as being similar, and regarded the north-575

ern high plains (including ecoregion 9.4 and 10.1, which are training regions highlighted576

in Figure 4c and d, respectively) as being dissimilar. As expected, models trained on ecore-577

gion 9.4 and 10.1 (results shown in Figure 4c and d) also identified ecoregion 8.3 (train-578

ing region in 4a) as being dissimilar. However, the model trained on ecoregion 10.2, most579

of which was found to be similar to ecoregion 8.3 by the model in Figure 4a, regarded580

the ecoregion 8.3 as dissimilar. This might be due to the more homogeneous environ-581

ment of ecoregion 10.2 (hot desert). When a model is trained here, it has limited knowl-582

edge of what soil moisture may do in a wetter environment. When the model was trained583

in ecoregion 8.3 (wetter and relatively more diverse), it was trained on data with larger584

gradients in rainfall and appeared to be more confident to predict in ecoregion 10.2.585

–23–



manuscript submitted to Water Resources Research

Figure 4. Maps of network weight uncertainty (σmc) when the LSTM model was trained

on single level-2 ecoregions. The training region for each model instance is highlighted by the

red polygon. The four selected ecoregions are a) 8.3 Southeastern Plains; b) 9.4 South-central

Semiarid Prairies; c) 10.1 Cold Deserts; d) 10.2 Warm Deserts
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The responses to similarity can become more clear via bar plots based on the ecore-590

gion hierarchy (Figure 5), where the model was trained on one level-2 ecoregion and tested591

on another one belonging to the same level-1 ecoregion (the close ecoregion), and another592

one belonging to a different level-1 (the far ecoregion). In all three cases, σmc was much593

larger for the far ecoregions as compared to the close ones. Similar to what was suggested594

in Figure 4, σmc correctly provided warnings for instances that were dissimilar to the train-595

ing region, and could discern that one region was more dissimilar than another.596

In contrast, σx was not controlled by ecoregion similarity, but represented a pre-597

diction of the error based on the inputs, especially precipitation. The predictions seemed598

to be largely correct when we qualitatively examined Figure 5, although they may not599

be quantitatively perfect. In case (a), σx was smaller for both close and far ecoregions600

than for the training ecoregion (Figure 5a). Here the model was trained in the north-601

eastern region, which has heavy forest cover and more months in a year with frozen soil,602

and thus large measurement error. It was tested in ecoregion 10.2, which has much drier603

conditions, and should therefore have smaller errors. This was reflected in the smaller604
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σx for ecoregion 10.2, but we would have expected the σx to be even smaller than the605

actual estimate. In case (b), σx was similar for the training and the close ecoregions, and606

larger for the coastal ecoregion of 11.1 (Figure 5b). Ecoregion 11.1 has larger rainfall than607

the inland regions and thus larger error, which was correctly captured by σx. In case (c),608

the model was trained in a drier region and tested in ecoregion 8.4, which is both dif-609

ferent (higher σmc expected) and much wetter (higher σx expected). Therefore, σx and610

σmc seemed to indeed reflect different parts of the uncertainty and agreed with our ex-611

pectation in terms of the general patterns, but quantitatively the quality could be lim-612

ited by the training data (Figure 5c). We show similar results from HUC2 training re-613

gions in Figure C.2 in Appendix C.614

Figure 5. Metrics of performance when we trained the model in one level-2 ecoregion, and

tested in two other level-2 ecoregions: one similar to the training region (from the same level-1

ecoregion), one farther away (from a different level-1 ecoregion). Performance metrics are network

weight uncertainty (σmc), input-dependent data noise (σx), and test error (ubRMSE).
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As σx is dependent on the training region, to further explore its limitations we in-619

vestigated the performance of models when they were trained on several ecoregion com-620

binations and tested on the rest of the CONUS. When the ecoregion combinations spanned621

across the CONUS, occupying a variety of landscapes in the CONUS domain (blue bars622

on Figure 6a), the estimated uncertainties were of higher quality. When the chosen ecore-623

gions were clustered in only part of the CONUS domain (grouped as AB, CD, or EF,624

shown in Figure 6b), the estimated uncertainties were of much lower quality (higher d625

values). The combination EF had the lowest uncertainty quality, as these two regions626

are clustered together in the western arid landscape. Due to this aridity, the model trained627

there predicts small soil moisture fluctuations and also small σx when tested on other628

regions, resulting in significant under-estimation of the data noise term. We also noticed629

that whenever region F (warm deserts) was included in a combination in place of region630

E (cold deserts), the quality tended to be lower. This is presumably because the arid-631

ity of E is less extreme than F. As a result, including F instead of E expands the cov-632

erage of the training data in terms of the aridity scenarios.633

This result can be explained by the fact that the data noise term was a trained out-644

put from the network, and was thus also conditioned by the training data. It provides645

direct evidence that σx could be misled by a strongly biased or unrepresentative train-646

ing set. It is worth noting that the more representative sets (first three combinations)647

only sampled a fraction of the domain and are still far from representing the wide di-648

versity of soil, land cover, and terrain combinations over the CONUS. However, they did649

provide more variety in the training data, and so it follows that σx reported by a model650

trained on one of these more varied datasets was more representative than σx reported651

by a model trained on a more biased training dataset.652
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Figure 6. Evaluation of uncertainty quality (smaller d for higher quality) when models were

trained on different combinations of ecoregions. The metrics were calculated in common regions

of the CONUS that were outside of the training set. (a) Quality metric for combined error ex-

ceedance likelihoods (d(pcomb), the lower the better) of 11 combinations of regions, where 3 red

bars show region combinations that are spatially clustered (AB, CD, EF) and 8 blue bars show

region combinations that are spatially dispersed. Letters denote which regions are combined (e.g.

ACE refers to a combination of regions A, C, and E). (b) Map of regions, some of which are com-

posed of multiple level-3 ecoregions. A: ecoregions 8.3.1, 8.3.2, 8.3.3, 8.3.4, and 8.4; B: ecoregions

8.3.4, 8.3.5, 8.3.6, 8.3.7, and 8.3.8; C: ecoregion 9.2; D: ecoregion 9.3; E: ecoregions 10.1.4, 10.1.5,

10.1.6, 10.1.7, and 10.1.8; F: ecoregion 10.2.
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3.4 Further discussion, limitations, and future work653

The data noise term σx, which is essentially a trained, network-predicted error model,654

is shown to be a powerful technique with important implications for hydrology to sim-655

plify our workflow. Its quality and clear response to data noise suggest the plausibility656

of training such error models with very loose specifications of data noise. In the past,657
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a wealth of research has been dedicated to modeling error, e.g., specify error structures658

and adjustments for heteroscedasticity and autocorrelation (Evin et al., 2013; Götzinger659

& Bárdossy, 2008; Smith et al., 2015). The proposed procedure greatly relaxes the as-660

sumptions we need to make to obtain error models. The complex, possibly nonlinear,661

and potentially time-varying dependencies of the error on input terms can hardly be pre-662

scribed by experts. We can conveniently delegate such estimation to the deep learning663

algorithm itself, with the requirement that the training data must be representative.664

The uncertainty with respect to climate or weather projections, a large and chal-665

lenging research topic, has not been quantified here. For short-term forecast problems,666

the impacts of weather prediction error could potentially be assessed using weather fore-667

casts from the past as atmospheric forcing data inputs to the model. As with other DL668

models, however, this work does not assume the forcings or the target observations to669

be perfect. The Artificial Intelligence community has worked extensively with data “in670

the wild”, i.e. large but low-quality datasets, and DL models appear to deliver good per-671

formance even if there is significant noise (Izadinia et al., 2015; Stadelmann et al., 2018;672

Huang et al., 2016). What will mislead models are systematic errors.673

The MCD+N method is simple to implement, but a lot remains to be understood.674

Although the two uncertainty terms were computed using very different methods and675

our experiments show they measure different uncertainty sources, their high level of cor-676

relation shows that they are not orthogonal, i.e. independent, quantities. Although per-677

haps unsatisfying, the correlation is consistent with their definitions and the proposed678

GP interpretation of network weight uncertainty (which was called the epistemic uncer-679

tainty in KG17). For data-driven models, knowledge comes from training data. When680

the training data has large amounts of noise, the knowledge of the model is negatively681

impacted, as reflected by the network weight uncertainty. In other words, noise in train-682

ing data makes the model less certain of its own predictions. To further complicate our683

understanding, the correlation between network weight and data noise uncertainties also684

reflects the overall pattern of moisture variation and SMAP accuracy as functions of an-685

nual precipitation over the CONUS. Regions with high annual precipitation and high per-686

centages of precipitation as snow also have high percentages of forest cover, and there-687

fore high vegetation water content, which is known to lead to large uncertainty in SMAP688

measurements. Other datasets without these associations could help to disentangle the689
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effects of these factors. Even entangled, however, these factors are good estimators of690

prediction error and are thus still useful.691

It could be hypothesized that the correlation between network weight and data noise692

uncertainties will be lower if we have a much larger dataset, as the data quantity could693

compensate for the quality, as shown in studies using noisy data “in the wild”. However,694

as this is merely the first paper in hydrology to examine the MCD+N scheme, we leave695

the testing of this hypothesis to future work with more data quantity and diversity.696

Due to its data-driven nature, the data noise uncertainty estimate is still conditioned697

by data, making it vulnerable to biased training data. This observation exposes an in-698

herent limitation with any purely data-driven method, which is that it is difficult to as-699

sess the quality of data based only on the data itself. Future integration of knowledge700

or process-based models could potentially reduce this barrier. For example, process-based701

models could be constructed to introduce physics relationships that were not adequately702

represented in the training data. How to properly combine two classes of models is an703

active area of research (Karpatne et al., 2017; Shen et al., 2018), and other methods such704

as Stein variational gradient descent training (Liu & Wang, 2016; Mo et al., 2018) could705

also be considered.706

MCD seemed to have automatically identified similarities in the inputs (atmospheric707

forcing data, soils, slope, land cover), which manifested as smaller network weight un-708

certainties for neighboring regions. These similarities are not entirely based on geographic709

proximity. Compared to geostatistical methods such as Kriging (a GP that parameter-710

izes covariance functions over geographic distance), input-parameterized similarity fa-711

cilitates physical interpretation and relieves us from the burden of identifying and tun-712

ing appropriate forms and parameters of covariance functions. An immediate next step713

could be to examine the most important physical input parameters that were employed714

by the MCD dissimilarity detector, to determine whether the network has made a physically-715

meaningful selection of attributes.716

The theory behind the success of MCD needs further development, but this is one717

intuitive explanation for how it works: A deep network is composed of neurons. Each718

neuronal unit has inputs x1, . . . , xk, corresponding weights w1, . . . , wk, a bias term b, and719

an activation function g. The output of the unit is g(b+
∑
i xiwi). During training with720

dropout, the neuron only uses a Bernoulli random sample of its inputs to create an out-721

–29–



manuscript submitted to Water Resources Research

put, such that a random subset of the terms in the summation are removed. Thus the722

unit is conditioned to produce approximately the same output from different subsets of723

its input; otherwise training would not be stable. In other words, the neuronal unit learns724

about redundancies in its inputs that occur during training, and takes advantage of them725

so that different subsets of its inputs can produce approximately the same output. When726

the testing data are not represented by the training data, the characteristics of the in-727

puts to the neuronal unit change. The same types of redundancies that held in the train-728

ing data would not be expected to hold in the testing data. Hence, the random summa-729

tions would no longer result in similar outputs, causing an observable increase in vari-730

ability. Future work could test this intuition and further improve the MCD formulation.731

As a side note, this redundancy requirement would be a very powerful constraint, which732

could ensure that a trained neural system produces robust outcomes.733

Uncertainty estimation has long been a focus in hydrology and other domains. How-734

ever, very often the quality of the uncertainty estimate has not been thoroughly eval-735

uated. Our results show that there could be many subtleties and limitations with state-736

of-the-art uncertainty estimates. For example, one could employ the MCD+N method737

for a model to produce an uncertainty estimate for a new instance, without realizing the738

limitations of the data noise term when this new instance is outside of the training data739

distribution. More importantly, an improper uncertainty estimate could provide a false740

sense of reliability. Therefore, we recommend carefully evaluating the uncertainty esti-741

mate before applying it in a production setting.742

4 Conclusions743

Uncertainty estimation is an essential task for hydrology, but it is new for hydro-744

logic time series deep learning. Our evaluation with soil moisture predictions shows that745

MCD+N can indeed help to estimate model error. MCD+N proposed an input-dependent746

data noise term and a network weight uncertainty term, which are new concepts for hy-747

drology. While the two terms were correlated for a CONUS-scale model, our experiments748

showed they indeed primarily targeted different uncertainty sources. The proposed data749

noise term is essentially a data-driven error model that greatly simplifies error quantifi-750

cation, without the need for explicit assumptions. Most observational noise was correctly751

attributed to the data noise term in our experiments. Additionally, our results provided752

the first strong supporting evidence that Monte Carlo dropout does act as a dissimilar-753
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ity detector, while the data noise term does not. These work-as-intended behaviors gives754

us some confidence that MCD+N is a useful tool. However, uncertainty estimation is755

not a replacement for data acquisition. We showed that both terms are dependent on756

the training data. If the training data are not representative, not only will the error in-757

crease noticeably, but the quality of the data noise estimate may also deteriorate. For-758

tunately, we only need a small set of data covering the input space to serve as a repre-759

sentative training set. To improve the uncertainty quality, we should strive to include760

extreme cases in the training set. The MCD+N scheme had promise, but should not be761

used with blind trust.762
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A The MCD theory and its potential issues1030

The derivations from GG16 (Gal & Ghahramani, 2016) are quite lengthy, so here1031

we only highlight a few main steps. The prototype network analyzed is a two-layer net-1032

work written as f = σ(xW(1) + b)W(2), where σ is a nonlinear activation function such1033

as TanH or ReLU and W(1) and W(2) are the weights for the first and second layers,1034

respectively. Adding in dropout operators, we obtain f = (σ(x(z(1)W(1)) + b)(z(2)W(2)),1035

where z(1) ∼ Bernoulli(β(1)) and z(2) ∼ Bernoulli(β(2)) are dropout masks of the same1036

sizes as W(1) and W(2), respectively. β(k) is the the probability that a connection on1037

the k-th layer is retained during dropout, or one minus the “dropout rate” in many DL1038

packages. Hence we refer to it as the dropout retention rate.1039

In a standard Bayesian inference framework, we (i) start with a prior distribution1040

of model parameters, e.g. p(W) = N (0, I); (ii) confront the model with the data (eval-1041

uating the likelihood function) and calculate the posterior distribution of the parame-1042

ter sets using Bayes law (i.e. given the training dataset (X,Y), p(W|X,Y) =1043
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p(Y|W,X)p(W)/p(Y|X)); and (iii) use the posterior distribution to make predictions1044

as well as estimate predictive uncertainty for new test instances X∗:1045

p(Y∗|X∗) =

∫
p(Y∗|X∗,W)p(W|X,Y)dW (A.1)

The posterior distribution p(W|X,Y) is the distribution that most likely gener-1046

ated the observed data. However, this distribution cannot be easily estimated as the marginal1047

distribution p(Y|X) cannot be evaluated analytically, and is intractable for very high-1048

dimensional deep networks. A viable approach is to replace this distribution with a vari-1049

ational distribution q(W ), whose structure is easier to work with in the integral. Vari-1050

ational inference turns the inference problem into an optimization problem, where we1051

minimize the Kullback-Leibler divergence between the variational distribution and the1052

posterior distribution, KL(q(W)||p(W|X,Y))), which measures the dissimilarity between1053

distributions. Typically, this task is further turned into the problem of maximizing the1054

log evidence lower bound (LELB)1055

L =

∫
q(W ) log p(Y|X,W)dω −KL(q(W)||p(W|X,Y)) (A.2)

This procedures optimizes both the weights of the neural network and the varia-1056

tional parameters. As a result, after we solve this minimization problem we will have ob-1057

tained both a functional neural network and a variational distribution that can be eas-1058

ily sampled from. In the case of GG16, the authors would like to prove that dropout train-1059

ing corresponds to some form of variational distribution. They defined their variational1060

distributions for the weights of layer 1, W(1), as a Gaussian mixture which can be fac-1061

torized over each row vector:1062

q(W(1)) =

Q∏
q=1

q(wq) (A.3)

q(wq) = β(1)N (mq, σ
2IK) + (1− β(1))N (0, σ2IK) (A.4)

where W(1) is of the size Q×K and wq is a row vector in W(1). Similar distri-1063

butions were put on W(2). This variational distribution can further be re-parameterized1064

as the following1065
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W(1) = z(1)(M (1) + σε(1)) + (1− z(1))σε(1) (A.5)

W(2) = z(2)(M (2) + σε(2)) + (1− z(2))σε(2) (A.6)

b = m + σε (A.7)

The parameterization allows the integral in Eq. A.2 to be estimated using Monte1066

Carlo integration, i.e.,1067

LGP−MC =

M∑
m=1

log p(ym|xm,Ŵ
(1)
m ,Ŵ(2)

m , b̂m)−KL(q(W(1),W(2),b)||p(W(1),W(2),b))

(A.8)

where Ŵ
(1)
n , Ŵ

(2)
n , and b̂n are the weights for the n-th realization. GG16 argued1068

that when σ is small, we simply have Ŵ(1) ≈ ẑ
(1)
n M(1), Ŵ(2) ≈ ẑ

(1)
n M(1), b̂n ≈m. In1069

other words, applying a stochastic dropout mask on the weights is approximately draw-1070

ing a sample from the variational distribution in Eq. A.7, and the summation term sim-1071

ply amounts to the sum of squared loss for training with dropout and mini-batching. Some1072

other approximations that take advantage of the large size of deep networks were fur-1073

ther employed to handle the KL term. Furthermore, by stacking more layers, the same1074

derivation was extended to multi-layer networks.1075

While it is fortunate that such an interpretation for dropout could exist, there were1076

many approximate steps in this derivation. In particular, we have the following concerns:1077

(i) the Bernoulli distribution and the Gaussian mixture that it approximates might not1078

be competent enough as a variational distribution. The Gaussian mixture itself, as shown1079

in the derivation, must have small variances, and it is uncertain if such strong limita-1080

tions are valid for Bayesian inference; (ii) the Gaussian prior over the parameters W ∼1081

N (1, I) is coincidental but not necessarily optimal; (iii) with many approximations stacked1082

up in the derivation, it is dubious if the conclusion still converges to the declared final1083

outcome; and (iv) the derivation was only demonstrated for simple multi-layer neural1084

networks. This derivation has yet to be shown to work for complex recurrent networks1085

like LSTM. It is not certain if LSTM with dropout training is a deep GP. While these1086

concerns are difficult to address analytically at the moment, we can experimentally ver-1087

ify the effectiveness of MCD and answer the research questions presented at the end of1088

the Introduction section.1089
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B Calibration of dropout rate1090

Here we examine the role that dropout retention rate (β) plays in the uncertainty1091

estimate terms and the predictive error. In the MCD theory, the variational distribu-1092

tion for the parameters are Gaussian mixtures with very small variances, and the weights1093

before them are from a Bernoulli distribution (Appendix A). The dropout rate (dr =1094

1−β) should be carefully calibrated. We trained the model from 2015/04 to 2016/031095

using β ∈ {0.1, 0.2, ..., 0.9}. The best β was chosen based on both the error and qual-1096

ity of the uncertainty estimate in the validation set (2016/04 - 2017/03). As figure B.11097

shows, both ubRMSE and σcomb are affected by the dropout rate. We chose the model1098

trained with dr = 0.6, or β = 0.4, as it simultaneously gave the smallest ubRMSE1099

and the best uncertainty quality, as measured by d, the Kolmogorov-Smirnov statistic1100

(maximum distance) between the CDF of the error exceedance likelihoods and the one-1101

to-one line.1102

Figure B.1. Performance of uncertainty models with different dropout rates (dr = 1 − β). (a)

ubRMSE as a function of dr. (b) The CDF curves of the error exceedance likelihoods. (c) The

Kolmogorov-Smirnov statistic as a function of dr. We found that dr = 0.6 offers a balance of

small d as well as small ubRMSE.

1103

1104

1105

1106

C Test on hydrologic basins instead of ecoregions.1107

In practice, hydrologic models are commonly developed based on basins instead of1108

ecoregions. Hence, to provide more insights, we trained models on each of the 18 2-digits1109

hydrologic cataloging unit (HUC02) basins dividing CONUS. Similar to the ecoregion1110

experiments, the models were trained over year 2015, validated over 2016 and tested over1111

2017. We reproduced the figure 4 and 5 as C.1 and C.2 correspondingly, and they re-1112

vealed similar pattern as we discussed in section 3.3.1113
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Figure C.1. Maps of σmc when the LSTM model is trained in one of the HUC2 basins. The

training region is highlighted by the red polygon.

1114

1115
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Figure C.2. Metrics of performance when we trained the model in a HUC2, and tested in two

other HUC2s: one similar to the training region, one farther away, in a different physiographic

region.

1116

1117

1118
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