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Abstract

Fresh Submarine Groundwater Discharge (FSGD) is an important pathway for the transport of water and materials from land

to ocean, but changes in the transport may occur as snowfall decreases. This study was conducted on Japan’s mid-latitude

western coast where FSDG is a quarter of the total riverine discharge and snowfall has decreased by ˜50% since the 1990s. The

altitude of the FSGD recharge area in 2018 has shifted 100–150 m higher than that in 2000, and the water residence time has

decreased from 4-15 to 3-11 years. The pH of the groundwater dropped by 0.5, its CO (aq) concentration doubled, and nitrogen

and phosphorus decreased by 30–40% and 70–80%, respectively. These changes in nutrients reduced primary productivity in

coastal waters and doubled the excess dissolved inorganic carbon flux. Our evidence highlights the sensitivity of FSGD carbon

flux to climate change and of the urgency of carbon-related FSGD research worldwide.
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Key Points: 10 

 FSGD increased due to snowfall being reduced, leading to its diluted chemical composition 11 

and residence time being reduced by one-third; 12 

 Material supply via FSGD and river runoff increased by 65% in carbon flux but decreased 13 

by up to 80% in nutrients; 14 

 Increased direct carbon flux and decreased primary productivity via reduced nutrients into 15 

the coasts resulted in twice as much excess-DIC; 16 

  17 
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Abstract 18 

Fresh Submarine Groundwater Discharge (FSGD) is an important pathway for the transport of 19 

water and materials from land to ocean, but changes in the transport may occur as snowfall 20 

decreases. This study was conducted on Japan’s mid-latitude western coast where FSDG is a 21 

quarter of the total riverine discharge and snowfall has decreased by ~50% since the 1990s. The 22 

altitude of the FSGD recharge area in 2018 has shifted 100–150 m higher than that in 2000, and 23 

the water residence time has decreased from 4-15 to 3-11 years. The pH of the groundwater 24 

dropped by 0.5, its CO2 (aq) concentration doubled, and nitrogen and phosphorus decreased by 25 

30–40% and 70–80%, respectively. These changes in nutrients reduced primary productivity in 26 

coastal waters and doubled the excess dissolved inorganic carbon flux. Our evidence highlights 27 

the sensitivity of FSGD carbon flux to climate change and of the urgency of carbon-related 28 

FSGD research worldwide. 29 

 30 

Plain Language Summary 31 

Submarine Groundwater Discharge (SGD) is an important pathway of water and materials from 32 

land to ocean, and it is a common phenomenon found globally in coastal oceans. However, 33 

recent climate change is causing continuing impact on freshwater systems, including Fresh 34 

Submarine Groundwater Discharge (FSGD). Many coastal areas of mid-latitude Japan are 35 

influenced by the Asian monsoon and have experienced remarkable decreases in snowfall (about 36 

50% since the 1980s). In the study area, our long-term research on the terrestrial waters suggests 37 

that FSGD discharge has increased by 30% since 1985 due to the decrease in snowfall and the 38 

increase in rainfall in winter. This study found that the decreased ratio of snowfall to total 39 

precipitation in mountain areas has increased the direct carbon discharge and reduced primary 40 

productivity in the coastal ocean as a result of decreased nutrient flux. This in turn has doubled 41 

the dissolved inorganic carbon flux form land into the coastal waters. Our findings present direct 42 

evidence of the sensitivity of carbon flux via FSGD to the decreased snowfall in the mid-latitude 43 

coasts, and encourages better estimation of global carbon budget in consideration of climate 44 

change, especially global snow cover melting. 45 

1 Introduction 46 

Submarine groundwater discharge (SGD) is recognized as an important pathway of water 47 

and materials into the global ocean. However, its volume and chemical composition can be 48 

vulnerable to ongoing global warming. Fresh Submarine Groundwater Discharge (FSGD), which 49 

accounts for as much as 10% of all SGD flux (Kwon et al., 2014), is especially sensitive to 50 

changes in the terrestrial freshwater system (Moosdorf, 2017; Luijendijk et al., 2020). In a recent 51 

modeling study, Betts et al. (2018) simulated the future global increase in river runoff into the 52 

ocean, and they predicted riverine discharge would increase by up to 50% by 2030. Zhou et al. 53 

(2019) warned that FSGD runoff would increase at high latitudes due to thawing permafrost. 54 

These studies show that the changes in freshwater runoff through FSGD and rivers cannot be 55 

ignored under the effects of global warming. On the western Japanese coasts influenced by the 56 

Asian monsoon, the annual snowfall has dropped by 50–60% since the 1980s (Japan 57 

Meteorological Agency, 2018) and the winter precipitation in this area has doubled since 1990 58 

(Yasunaga and Tomochika, 2017). This means that the ratio of snowfall to total precipitation 59 

decreased, whereas the ratio of rainfall increased. Zhang et al. (2017) estimated the change in 60 

FSGD volume flowing into Toyama Bay, one of the three largest and deepest bays in the 61 

Japanese islands, located in central western Japan. Their evaluation indicates that FSGD has 62 
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increased up to 30% since the 1980s, resulting from the decline in snowfall. This suggests that a 63 

notable shift in FSGD due to climate change is already progressing on a regional scale, and it is 64 

suspected that the water and materials via freshwater pathways may be transforming worldwide 65 

as a consequence of global warming. 66 

SGD is considered an important carbon source in the global ocean carbon budget (Cai et al., 67 

2003; Cole et al., 2007; Moore, 2010; Zhang and Mandal. 2012; Porubskya et al., 2014; 68 

Taniguchi et al., 2019). Szymczycha et al. (2014) found that SGD carries as much carbon load as 69 

river runoff globally. The existence of excess dissolved inorganic carbon (excess-DIC) that is not 70 

consumed in primary productivity has been reported in some coastal zones in the world (Atkins 71 

et al., 2013; Liu et al., 2014; Wang et al., 2018). Their research highlights a remarkable increase 72 

in the amount of carbon supplied by FSGD and rivers to the ocean. However, research on the 73 

changes in fresh SGD-derived carbon load is quite scant. In a sophisticated case study, Wang et 74 

al. (2014) showed that the effect of climate change on SGD will have a negative impact on 75 

coastal coral reefs in the future. Therefore, a better understanding of the increase in carbon 76 

supply via FSGD due to global warming will provide new insights for interpreting the effects of 77 

climate change on global ocean carbon budget and coastal marine ecosystems. 78 

In this study, the selected research area is the well-watered Katakai River Alluvial Fan and 79 

its coast located in western central Japan, a region seasonally influenced by the Asian monsoon. 80 

In this area, FSGD is linked to the terrestrial freshwater system, having exactly the same 81 

hydrological and geochemical characteristics as those of the shallow groundwater (Zhang and 82 

Satake, 2003). A series of observation/monitoring studies on FSGD and groundwater have been 83 

conducted since 2000, including (1) technique development of SGD-discharge survey and 84 

detection (Tokunaga et al., 2001; Zhang et al., 2005), (2) observation of FSGD discharge 85 

(Koyama et al., 2005), (3) origin identification and chemical characterization using geochemical 86 

proxies (Nakaguchi et al., 2005; Kameyama et al., 2005), and (4) estimation of water and 87 

material supply via terrestrial freshwater systems using a box model (Hatta et al., 2005; Hatta 88 

and Zhang, 2013). These studies showed that the amount of FSGD in the study area was 89 

substantially higher than the global average of FSGD flux (Taniguchi et al., 2002; Burnnet et al., 90 

2003; Moore, 2010). To reveal the temporal changes in material fluxes supplied from the land, 91 

five-year (2000–2003 and 2017–2018) geochemical observational results combined with a 92 

decadal groundwater monitoring data (2005–2015) are discussed in this study. We evaluate an 93 

impact of the decreased snowfall in the mid-latitude on the material flux via FSGD and river 94 

runoff, paying special attention to the carbon flux. 95 

2 Materials and Methods 96 

2.1 Study area setting and water sampling 97 

The study area and the water sampling sites are shown in Figure 1. The main geological 98 

characteristics are gravel and sand sediments on the Katakai River Alluvial Fan (see Text S1). 99 

Water samples were collected from shallow groundwater, river water, and FSGD in two periods 100 

(2000–2003 and 2017–2018). All shallow groundwater samples were collected from the same 101 

sandy aquifer in 2001-2002 and 2017-2018. FSGD samples were collected by scuba divers in 102 

2000-2003 and 2018. Water from the six major rivers (Figure 1b) accounts for up to 95% of total 103 

riverine discharge into the Toyama Bay (see Text S4). The groundwater monitoring data at D1 104 

station (in February and March in during the years 2005–2015) were obtained from The Water 105 

Information Database, Uozu City, Toyama Prefecture (2018, Table S5). 106 
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2.2 Analysis methods  107 

Water temperature, pH (Shindengen, KS-701), and EC (Horiba, B-173) were measured at the 108 

sites. Alkalinity was measured and calculated using the standard titration with HCl. The major 109 

cations and anions in the filtered samples were measured using a chromatograph (Metrohm 761 110 

Compact IC). SiO2 and PO4 were analyzed with a UV-VIS spectrophotometer (SHIMADZU 111 

UVmini-1240). Analytical uncertainty for dissolved concentrations was ± 5% in all 112 

measurements. δD and δ
18

O values for H2O were measured using a wavelength‐scanned cavity 113 

ring‐down spectrometer (L2130‐i, Picarro) and a mass spectrometer (PRISM; Micromass). The 114 

values were determined based on V-SMOW. The analytical precisions were ±0.07‰ for δD and 115 

±0.05‰ for δ
18

O. Tritium counting was estimated using a low background liquid scintillation 116 

counter. Total analytical precision for tritium concentration is ±0.1 TU. 117 
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Figure 1. Sampling locations. Groundwater (dots) and river water (diamonds) samples were 118 

collected in 2001-2002 (black color), 2017-2018 (blue color), or both periods (red color). Green 119 

triangle indicates the observation well monitored in 2005–2015. White square shows the FSGD 120 

site. 121 

3 Results and Discussion  122 

3.1 Rise in recharge altitudes of FSGD and groundwater 123 

All FSGD samples were freshwater, having EC values of 13.9 ± 5.4 mS/m in 2000–2003 124 

and 11.7 ± 0.6 mS/m in 2018 (Table S3). Figure 2(a) shows the distribution of the average δ
18

O 125 

value of groundwater and FSGD in the two periods (2000–2003 and 2017–2018). In both 126 

datasets, the δ
18

O values of groundwater tend to be low at the stations in the center of the alluvial 127 

fan, which reflects the ancient river systems (Figure 2a). The δ
18

O values of FSGD are also low 128 

and within the fluctuation range of the Katakai River (Tables S2 and S3). According to a well-129 

known altitude effect, the δ
18

O and δD values in precipitation and groundwater decrease toward 130 

higher altitudes of a water recharge area (e.g. Craig, 1961; Aravena et al., 1988). In this study 131 

area, Mizutani and Satake (1997) proposed the following empirical formulas between isotope 132 

compositions and elevation of the water recharge area (h, meters): 133 

𝛿𝐷 = −(0.0193 ± 0.017)ℎ − (4.84 ± 2.3)#(1)  

𝛿 𝑂18 = −(0.00236 ± 0.00016)ℎ − (8.68 ± 0.22)#(2)  

Using these equations, it is revealed that the altitudes of FSGD recharge areas were about 134 

800±50 m in 2000 (Zhang and Satake, 2003) and 850±50 m in 2018, and these altitudes were 135 

equivalent to the average catchment height of the Katakai River. This result shows that FSGD 136 

was recharged from high mountains and directly connected to the shallow groundwater system 137 

on the alluvial fan. In comparing the isotope compositions of the two periods (Figure 2b), most 138 

of our samples in 2017–2018 were lower than those of the early 2000s (Zhang and Satake, 2003; 139 

Suzuki and Zhang, 2003), and the altitudes of water recharge areas were higher by 100–150 m as 140 

well. This shift suggests that the water recharge altitudes throughout the entire shallow 141 

groundwater system have risen compared to 20 years ago. 142 
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 143 

Figure 2. Average δ
18

O and δD values in study area 144 

(a) Distribution of δ
18

O values in groundwater and FSGD. Dots show sampled stations in 2001–145 

2002. The dashed contours indicate the distribution of average δ
18

O values in 2001–2002. 146 

Squares show sampled stations in 2017–2018. The δ
18

O values of FSGD are shown with a 147 

triangle in 2000–2003 and 2017–2018. The color bar represents the δ
18

O value. 148 

(b) Relationship between δ
18

O and δD in all samples. Each plot shows an average value. Solid 149 

lines show standard deviation of each sample. A triangle shows the groundwater value recharged 150 

from 100% precipitation (Mizutani et al., 2001). Most of the water samples can be plotted along 151 

two meteoric water lines defined by Satake et al. (1983), where the Y-intercepts are 10 in 152 

summer and 30 in winter for this area’s precipitation. 153 

 154 
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3.2 Diluted FSGD and its younger age 155 

The decline in δ
18

O and δD in 2018 described in section 3.1 can be explained by either (1) 156 

a change in the isotopic composition of precipitation or (2) a rise in the altitude of water recharge. 157 

Okakita et al. (2019) have analyzed the fluctuations in the δD and δ
18

O values of precipitation, 158 

including those in our study area, since 1980, and they found that these isotopic values neither 159 

increased nor decreased significantly. Therefore, the decline in δD and δ
18

O values possibly 160 

results from a rise in the water recharge altitude. If this is the case, the concentrations of 161 

dissolved components in 2018 should be lower than those in 2000–2003, since waters originating 162 

from the higher elevations of this area have lower concentrations of dissolved components 163 

(Yasuda et al., 1991).  164 

Compared with the data of FSGD collected in summer 2000–2003 (Nakaguchi et al., 2005) 165 

(Figure S1), SiO2 and NO3 concentrations in 2018 decreased by 20±5% and 33±4%, respectively. 166 

These fluctuation ranges are nearly equivalent to the increase in FSGD and groundwater 167 

discharge (Zhang et al., 2017). In addition, NO3 of the freshwater in this area is not affected by 168 

denitrification (Ohyama et al., 2012). These facts suggest that FSGD in this area is diluted as a 169 

result of the increase in water recharge from higher elevations.  170 

Furthermore, in typical terrestrial water systems, the increase in water volume may lead to 171 

a shortened age of the average shallow groundwater (residence time) and reduce the efficiency of 172 

weathering, which would result in the dilution of dissolved components (Maher, 2011). SiO2 173 

concentration in groundwater can be used as a tracer for silicate weathering with time (Haines 174 

and Lloyd, 1985). Accordingly, the decline in SiO2 concentration of FSGD in 2018 suggests that 175 

the time required for chemical weathering of FSGD has decreased and that the residence time of 176 

FSGD in this area might have become shorter. To verify our assumption, we compared the 177 

tritium concentrations and the age of FSGD in 2000 and 2018 (Table S4). The residence time of 178 

groundwater is determined by the following equation (cf. Zhang and Satake, 2003): 179 

𝑁 = 𝑁0𝑒𝑥𝑝(−𝜆𝑡)#(3)  

where λ is decay constant, N is tritium concentration in the groundwater, N0 is the sum of tritium 180 

and helium-3 concentrations in the groundwater, and t is residence time. To estimate the 181 

residence time based on a piston flow model, we compared the tritium concentrations of our 182 

FSGD samples with those of the total precipitation of Japan (Saito et al., 2013; Environmental 183 

Radiation Database). The residence time in 2000, re-calculated by equation (3), was 4–15 years. 184 

However, the tritium concentration was 2.6 TU in the 2018 FSGD sample, and the residence 185 

time was estimated to be 3–11 years. This suggests that the water age of FSGD in Toyama Bay 186 

has become younger. 187 

3.3 Decadal trend in compositions of the shallow groundwater connected to FSGD 188 

To determine whether groundwater quality changed continuously during the period 2005–189 

2015, the monitoring data at D1 station (Figure 1c) were used. The groundwater at D1 station, 190 

located at the top of the Katakai River Alluvial Fan, is connected to FSGD in the same terrestrial 191 

water system (Zhang and Satake, 2003). It is obvious that the values of Cl (Figure 3a), NO3 192 

(Figure 3b), and pH (Figure 3c) decreased at D1.  193 
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Figure 3. Ten year monitoring data of (a) Cl, (b) NO3, (c) pH, (d) HCO3
-
 and CO2 (aq), and (e) 194 

pCO2 at D1. The values of CO2 (aq) and pCO2 were calculated from the observation data. The 195 

measurement errors of Cl, NO3, CO2 (aq), and pCO2 fall in each plot. Dashed lines indicate the 196 

linear regressions for each parameter (p<0.05). Details are listed given in Table S5. 197 

 198 

Generally, a decrease in the pH value of groundwater is caused by influences such as (1) 199 

recharge of rainfall (Lång and Swedberg, 1990), (2) agricultural fertilizer usage (Beek et al., 200 

1989), and (3) a dissolution of sediments (Preda and Cox, 2000). Factor (3) is neglected here due 201 

to the geological conditions in this area (see Text S1). It is well known that the nitrate 202 

concentration in groundwater increases due to the use of (2) agricultural fertilizer (Singh et al., 203 

1995; Almasri and Kaluarachchi, 2004); however, NO3 concentration at D1 (Figure 3b) declined 204 

for 10 consecutive years. Accordingly, the main reason for the decrease in pH can be attributed 205 

to the increase in (1) the recharge of rainfall. The decrease in groundwater pH with the increase 206 

in rainfall infiltration has also been reported in a different area that has the same geological 207 

conditions of this study’s area (Zhou et al., 2015). In addition, nitrate and chloride concentrations 208 

decreased by about 40% from 2005 to 2015. These percentages are similar to the rate of decline 209 

in dissolved components of FSGD. Summarizing the discussion above, monitoring data at D1 210 

indicate that the terrestrial water system connected to FSGD was diluted by the increase in 211 

rainfall infiltration from high mountains, resulting in the decreased pH. 212 

The decrease in pH is also related to the carbonates in groundwater. In this area, bicarbonate 213 

(HCO3
-
) accounts for the majority of dissolved inorganic carbon (DIC) (Suzuki and Zhang, 214 

2003), with very little dissolved organic carbon (DOC) (Nakaguchi et al., 2005). The lower pH 215 

value of groundwater can cause increased CO2 (aq) in groundwater, resulting in higher carbon 216 

dioxide partial pressure (pCO2). The concentrations of CO3
2-

, CO2 (aq), and pCO2 at D1 were 217 

calculated using the methods proposed by Lueker et al. (2000) and Weiss (1974) (see Text S2 218 

and Text S3). Figure 3(d) and Figure 3e show the values of HCO3
-
, CO2 (aq), and pCO2 at D1. It 219 

reveals that CO2 (aq) concentrations in groundwater doubled from 2005 to 2015 and that pCO2 220 

also increased during the same period. 221 
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3.4 Estimating carbon and nutrient fluxes from the land and its impact on the 222 

coastal ocean 223 

We calculated carbon and nutrient fluxes from the land to Toyama Bay via FSGD and rivers. 224 

Two characteristics of the fluxes are defined: V (volume) and C (concentration):  225 

𝐹𝑙𝑢𝑥𝐹𝑆𝐺𝐷  =  𝑉𝐹𝑆𝐺𝐷 × 𝐶𝐹𝑆𝐺𝐷#(4)  

𝐹𝑙𝑢𝑥𝑅𝑖𝑣𝑒𝑟  =  𝑉𝑅𝑖𝑣𝑒𝑟 × 𝐶𝑅𝑖𝑣𝑒𝑟#(5)  

where values for FSGD flux (VFSGD) are taken from the water balance model (Zhang et al., 2017) 226 

with modification using the previous data of Hatta and Zhang (2013). The average nutrient and 227 

carbon concentrations in SGD and river water (CFSGD and CRiver), are based on the results of 228 

Suzuki and Zhang (2003), Nakaguchi et al. (2005), Tsujimoto (2009), Yanagi et al. (2019), and 229 

this study. Total riverine input (VRiver) is taken from data of the Ministry of Land, Infrastructure 230 

and Transport, Government of Japan (http://www1.river.go.jp/). These details are provided from 231 

Table S6 to Table S9.  232 

3.4.1 Increase in direct discharge of carbon into the coastal ocean over 20 years 233 

Figure 4 shows the fluxes of DIC (the sum of CO3
2-

, HCO3
-
, and CO2 (aq) concentrations) 234 

and nutrients (N and P) from the land in 2003 and 2018. Direct discharge of DIC via FSGD and 235 

river runoff increased by 65% in 15 years. It is known that the carbon input via groundwater 236 

increased in the wet season due to the increased rainfall infiltration and higher velocity of 237 

groundwater flow (Sadat-Noori et al., 2016). In this area, an increase in FSGD discharge and 238 

river flow (Zhang et al., 2017) and a shorter residence time in FSGD (this study) were observed 239 

due to the increase in the ratio of rainfall to total precipitation. Therefore, our data suggest that 240 

FSGD-derived DIC load increased due to climate change, especially the decline in snowfall. 241 

Furthermore, our calculations show that direct discharge of DIC via river runoff increased 242 

together with FSGD even if the error range were included. 243 

3.4.2 Decrease in nutrient flux from land over 20 years 244 

The nutrient supply via FSGD and river runoff has dropped dramatically since 2003: the 245 

nitrogen flux decreased by 30–40% and phosphorus flux decreased by 70–80% (Figure 4). The 246 

percentage of reduction in nitrogen corresponded with the increase in FSGD and river runoff 247 

volume reported by Zhang et al. (2017), but the phosphorus reduction was much higher. This is 248 

considered to have been caused by human activities on the land (e.g., enactment of new laws, 249 

land-use practices, and water treatment). As in many other regions of Japan, two trends have 250 

accelerated since the 1990s: the reduction of farmland (Ministry of Agriculture, Forestry and 251 

Fisheries, Japan) and the increased use of sewage treatment plants as technologies for removing 252 

phosphorus from wastewater (Kuba et al., 1996; Tsuneda et al., 2005). According to Nakaguchi 253 

et al. (2005), nitrogen and phosphorus in groundwater and river water in the area were mainly 254 

caused by the mineralization of organic matter in farmland soil. However, the decline in 255 

agricultural land in the area has been less than 5% since 1976 (Katazakai et al., 2019). Thus, the 256 

drop in phosphorus flux in our study was not mainly caused by decreased farmland. Regarding 257 

the dramatic reduction in phosphorus flux from land in Japan, there is related evidence in the 258 

Seto Inland Sea, one of the largest enclosed seas most seriously affected by oligotrophication in 259 

the world’s coasts. Here, the phosphorus input from land has been halved in 1972–1994, whereas 260 

nitrogen has not changed much since 1972; this has been explained as a problem of the series of 261 
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new Japanese laws aimed at limiting the nutrient discharge and improving water treatment 262 

technology (Yamamoto, 2003). Therefore, it is assumed that the drop in phosphorus (70–80%) in 263 

our study area is influenced by the changes in nutrient load due to human activities, in addition to 264 

the dilution of nutrients due to climate change (30%). 265 

266 
Figure 4. Carbon and nutrient fluxes from land to Toyama Bay via FSGD and river runoff in (a) 267 

2003 and (b) 2018. 268 

 269 

3.4. 3 Increase in carbon flux resulting from nutrients reduction and its impact on 270 

the coastal ocean 271 

A decrease in nutrient input reduces the primary productivity of the coastal surface ocean, 272 

causing a decrease in the amount of carbon fixed by photosynthesis. This leads to an increase in 273 

excess-DIC in coastal surface waters. The amount of excess-DIC depends on the balance 274 

between carbon fixation in the primary productivity and DIC input from land (Borges and Abril, 275 

2011; Maher et al., 2015). The primary productivity in the surface ocean is estimated using the 276 

Redfield ratio (C: N: P = 41.1: 7.2: 1, weight ratio; Redfield et al., 1963). Based on the Redfield 277 

ratio, the N/P ratios of our samples were 10 in 2003 and 22 in 2018. This suggests that Toyama 278 

Bay has had reductions in phosphorus over the past two decades, which is consistent with 279 

previous research (Hatta et al., 2005). Moreover, it is calculated that primary productivity with 280 

nutrient load from FSGD and river runoff in this area consumed 2,918±292 DIC ton/kg/month in 281 

2003 and 740±250 DIC ton/kg/month in 2018. These amounts are much lower than the direct 282 

DIC discharge through FSGD and river runoff in both years. The excess-DIC in coastal waters 283 

was 366×10
2
 ton/kg/month in 2003 (Figure 4a) and 646×10

2
 ton/kg/month in 2018 (Figure 4b). 284 

This means that the excess-DIC in the coastal waters has doubled in 15 years. More importantly, 285 

the increase in excess-DIC is much larger than the increase in direct DIC flux. We believe this 286 

remarkable increase in excess-DIC was caused by the increasing direct DIC flux from the land, 287 

along with the decreasing carbon consumption in primary productivity due to the reduced supply 288 

of nutrients through FSGD and rivers. The greatest cause of increase in the area’s excess-DIC is 289 

assumed to be related to the decrease in the ratio of snowfall to total precipitation, followed by 290 

the changes in human activities. 291 

DIC supply from land to oceans can be easily interpreted as having increased up to the 292 

present in many coastal zones globally. In the Northern Hemisphere (excluding the Arctic 293 
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region), snow cover has been decreasing in all recorded seasons during the past four decades 294 

(1978–2015), and the rate of snow cover melting in summer and autumn is particularly serious 295 

(Hori et al., 2017). The ratio of snowfall to total precipitation has gone down over half a century 296 

(1949–2005) in many areas of the United States facing coastal zones (Feng and Hu, 2007). These 297 

observations show that the terrestrial water system can change in terms of the water quality and 298 

the material transfer. Consequently, it is possible that DIC supply from the land to global oceans 299 

is increasing in all coastal zones, as our observations indicate. Our findings provide a direct 300 

evidence, especially from the perspective of FSGD, of how sensitively the carbon budget 301 

responds to global climate change, and they demonstrate the importance and even urgency of 302 

carbon-related FSGD research worldwide. 303 
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Text S1. Details on the study area’s hydrogeological environment 

In the Katakai River Alluvial fan, the main types of geological conditions are gravel and sand 
sediments. The hydrogeological setting of this study area has three layers: top layer is alluvium 
formed in the Holocene, consisting of gravel, sand, and clay layers. The thickness of the top layer 
from the top of the alluvial fan to the coastal line is from 20 to about 100 m, respectively. 
Middle layer is the deposit of the dissected fan formed in the late and middle Pleistocene. 
Bottom layer is the deposit of the dissected fan from the early Pleistocene. The bedrock is 
sandstone and mudstone (Koku-sai Kogyo Co., Ltd., 2002). In this study, all samples were 
collected from the top aquifer layer.  

Table S1. Sampling stations in this study  

Station Location 
Sampling Period Ref. 

Name Longitude Latitude 

S1 137.418 36.854 2001-2002 (n=5) R2 

S2 137.415 36.852 2001-2002 (n=5) R2 

S3 137.413 36.850 2001-2002 (n=5) R2 

S4 137.423 36.845 2001-2002 (n=5) R2 

S5 137.416 36.845 2001-2002 (n=5) R2 

S6 137.405 36.836 2001-2002 (n=8) R2 

S7 137.421 36.838 2001-2002 (n=5) R2 

S8 137.414 36.833 2001-2002 (n=5) R2 

S9 137.401 36.826 2001-2002 (n=5) R2 

S10 137.406 36.825 2001-2002 (n=8) R2 

S11 137.411 36.825 2001-2002 (n=5) R2 

S12 137.417 36.824 2001-2002 (n=5) R2 

S13 137.413 36.821 2001-2002 (n=5) R2 

S14 137.406 36.821 2001-2002 (n=5) R2 

S15 137.401 36.815 2001-2002 (n=5) R2 

S16 137.410 36.816 2001-2002 (n=5) R2 

S17 137.427 36.817 2001-2002 (n=8) R2 

S18 137.433 36.820 2001-2002 (n=8) R2 

S19 137.443 36.816 2001-2002 (n=8) R2 

S20 137.432 36.810 2001-2002 (n=8) R2 

S21 137.421 36.828 2001-2002 (n=8) R2 

S22 137.402 36.837 2001-2002 (n=8), 2017-2018 (n=8) R2 and this study 

S23 137.423 36.844 2001-2002 (n=8), 2017-2018 (n=8) R2 and this study 

S24 137.440 36.819 2017-2018 (n=8) This study 

S25 137.410 36.843 2017-2018 (n=8) This study 

S26 137.419 36.821 2017-2018 (n=8) This study 

River 137.498 36.763 2001-2002 (n=8), 2017-2018 (n=6) R2 and this study 
     

FSGD 137.399 36.839 2000-2003 (n=16), 2018 (n=1) 
R2, R3, R4, and 

this study 
     

D1 137.447 36.812 2005-2015 (n=10) R5 
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Table S2. The average values of δD and δ18O in groundwater and river water 

Station 

Name 

2001-2002  2017-2018 

δD δ18O  δD δ18O 

‰ ‰  ‰ ‰ 

S1 -54.4 ± 2.7 -9.39 ± 0.16  - - 

S2 -53.8 ± 1.7 -9.45 ± 0.11  - - 

S3 -61.8 ± 3.5 -10.36 ± 0.10  - - 
S4 -61.6 ± 2.2 -10.72 ± 0.09  - - 
S5 -60.4 ± 4.1 -10.69 ± 0.06  - - 
S6 -61.9 ± 3.0 -10.53 ± 0.38  - - 
S7 -62.4 ± 4.5 -10.25 ± 0.34  - - 
S8 -59.2 ± 3.0 -10.33 ± 0.11  - - 
S9 -57.2 ± 2.5 -9.57 ± 0.38  - - 
S10 -56.9 ± 2.7 -9.79 ± 0.06  - - 
S11 -58.7 ± 3.7 -10.14 ± 0.28  - - 
S12 -56.6 ± 3.3 -10.03 ± 0.43  - - 
S13 -56.0 ± 2.9 -9.46 ± 0.07  - - 
S14 -54.1 ± 2.4 -9.43 ± 0.05  - - 
S15 -53.6 ± 5.3 -9.50 ± 0.28  - - 
S16 -56.4 ± 3.9 -9.28 ± 0.10  - - 
S17 -55.6 ± 4.4 -9.34 ± 0.12  - - 
S18 -59.6 ± 2.9 -10.12 ± 0.28  - - 
S19 -57.9 ± 3.6 -9.87 ± 0.28  - - 
S20 -55.7 ± 3.6 -9.46 ± 0.14  - - 
S21 -61.9 ± 4.8 -10.45 ± 0.46  -68.0 ± 2.3 -11.17 ± 0.36 

S22 -59.0 ± 2.7 -9.92 ± 0.31  -66.3 ± 3.1 -10.81 ± 0.48 

S23 - -  -68.4 ± 3.1 -10.95 ± 0.52 

S24 - -  -65.5 ± 1.9 -10.77 ± 0.37 

S25 - -  -66.8 ± 4.5 -10.85 ± 0.53 

S26 - -  -60.5 ± 0.4 -10.13 ± 0.04 

River -62.7 ± 4.8 -10.61 ± 0.76  -68.0 ± 2.1 -10.96 ± 0.19 
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Table S3. Chemical and stable isotopic compositions in fresh submarine groundwater discharge (FSGD).  

Sample Date 
EC 

pH 
HCO3 NO3 PO4 SiO2  δ18O δD 

mS/m μM  ‰ 

2000/11/23 10.9 - - 39 - - 
 

-11.0 -62.6 

2002/05/28 11.3 7.38 863 41 <0.01 127 
 

-10.7 -65.0 

2002/06/26 11.3 7.19 804 41 0.04 131 
 

-10.8 -63.5 

2002/07/22 22.0 7.35 865 41 - 137 
 

-10.7 -64.3 

2003/05/28 - - - 43 0.09 150 
 

-10.7 - 

2003/06/03 - - - 44 0.08 149 
 

-10.6 - 

2003/07/09 - - - 46 0.05 149 
 

-10.6 - 

2003/07/29 - - - 44 0.03 141 
 

-9.8 - 

2003/08/07 - - - 44 0.04 144 
 

-10.2 - 

2003/08/21 - - - 44 0.03 - 
 

-10.2 - 

2003/09/07 - - - 43 0.02 - 
 

-9.9 - 

2003/10/07 - - - 37 0.09 136 
 

-10.8 - 

2003/11/04 - - - 47 0.06 - 
 

-10.0 - 

2003/12/10 - - - 46 0.04 159 
 

-10.0 - 
          

Average 

(2000-2003) 
13.9 ± 5.4 7.31 ± 0.10 844 ± 35 43 ± 3 0.05 ± 0.02 142 ± 10  -10.4 ± 0.4 -63.9 ± 1.0 

          

2018/09/17 11.7 7.32 961 29 0.03 114 
 

-10.9 -67.0  
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Figure S1. Relationship between δ18O and (a) NO3, (b) SiO2, and (c) PO4 in FSGD. The 
measurement errors are shown also. Detection limits for nutrient analysis are 0.1 μmol/L for 
NO3, 0.1 μmol/L for SiO2, and 0.01 μmol/L for PO4. Black diamonds indicate previous data 
collected by Suzuki and Zhang (2003) and Nakaguchi et al. (2005), and red symbols show the 
data collected in this study (2018). Details are shown in Table S3.  

 
 

Table S4. Tritium concentrations and FSGD residence time calculated from a piston flow model. 

Year 3H (TU) Tritium Age (years) 

2000 1.1 ± 0.2a 
4 - 15c 

(10 - 20b) 

2018 2.6 ± 0.1 3 - 11 
Note. aThis sample was collected by Zhang and Satake (2003). The value at the time of sampling 
was 2.6 ± 0.4 TU, which was corrected to the concentration in 2018 using the half-life (t1/2 = 
12.32). bReported Tritium age (Zhang and Satake, 2003). cRe-calculated Tritium age using the 
data (a) in this study. 
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Table S5. 10-year monitoring data at station D1 reported by The Water Information Database, Uozu, Toyama Prefecture, Japan. 

Sampling Date 2005/3/2 2006/3/2 2007/3/8 2009/3/4 2010/3/1 2011/2/22 2012/2/27 2013/2/27 2014/2/27 2015/2/25 Linear regressiona
 

Water Temp. (℃) 14.0 13.8 13.2 13.5 13.1 14.0 13.0 12.7 13.2 12.9 
y = -0.0002x + 23 

(p<0.05) 

EC (mS/m) 12.8 13.2 12.8 11.8 12.3 11.8 13.2 12.7 13.1 12.9 
y = 0.00002x + 12 

(p=0.88) 

pH  7.2 7.0 7.0 6.7 6.8 6.9 6.8 6.5 6.9 6.7 
y = -0.0001x + 11 

(p<0.05)b 

DO (mg/L) 9.5 9.8 9.5 8.0 8.9 9.0 12.5 9.2 11.7 9.8 
y = 0.0004x - 6 

(p=0.32) 

Cl- (μM) 150 178 133 116 144 124 133 121 124 93 
y = -0.014x + 676 

(p<0.05) b 

NO3
- (μM) 87 97 82 56 77 48 76 71 65 50 

y = -0.009x + 434 

(p<0.05) b 

HCO3
- (μM) 941 960 939 901 929 906 939 932 900 878 

y = -0.014x + 1484 

(p<0.05) b 

CO2(aq)c (μM) 96 156 155 294 243 184 246 492 187 291 
y = 0.053x - 1886 

(p=0.07) 

CO3
2- c (μM) 3 2 2 1 1 2 1 1 2 1 

y = -0.0005x + 22 

(p<0.01) 

pCO2 
c (μatom) 2047 3303 3214 6163 5032 3929 5081 10036 3875 5977 

y = 1.06x - 37686 

(p=0.07) 

Note. aLinear regression between each chemical component (y) and sampling date (x). bThese lines are shown in Figure 5.  cThese values were 
calculated using Text S2 and Text S3. 
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Text S2. Estimation of CO2(aq) and CO3
2- concentrations using observation data 

CO2 (aq) and CO3
2- concentrations were calculated using the following methods. 

 
When H2CO3 is dissolved in water, an acid-base equilibrium represented by equation (1) 

and equation (2) is established. 
 

𝐶𝑂2(𝑎𝑞) ⇌ 𝐻+(𝑎𝑞) + 𝐻𝐶𝑂3
−(𝑎𝑞) (1) 

  
𝐻𝐶𝑂3

−(𝑎𝑞) ⇌ 𝐻+(𝑎𝑞) + 𝐶𝑂3
2−(𝑎𝑞) (2) 

 
The acid dissociation constant in the above acid-base equilibrium can generally be written 

by equation (3) and equation (4). 
 

𝐾1 =
[𝐻+][𝐻𝐶𝑂3

−]

[𝐶𝑂2]
(3) 

 

𝐾2 =
[𝐻+][𝐶𝑂3

2−]

[𝐻𝐶𝑂3
−]

(4) 

 
However, K1 and K2 change with water temperature (T, K), salinity (S), and water pressure. 

K1 and K2 can be determined using the following empirical formulas reported by Lueker et al. 
(2000). 

 

𝑝𝐾1 =
3633.86

𝑇
− 61.2172 + 9.6770 ln 𝑇 − 0.011555𝑆 + 0.0001152𝑆2 (5) 

 

𝑝𝐾2 =
471.78

𝑇
+ 25.9290 − 3.1696 ln 𝑇 − 0.01781𝑆 + 0.0001122𝑆2 (6) 

 
𝑝𝐾𝑛 = −log10 𝐾𝑛 (7) 

 
In addition, the concentration of total carbonic acid (CT) dissolved in the aqueous solution 

is represented by equation (7). 
 

𝐶𝑇 = [𝐶𝑂2] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−] (8) 
 
When equation (3) and equation (4) are transformed and substituted into equation (8), 

they are written as equation (9). That is, the total carbonic acid concentration ( 𝐶𝑇) can be 
calculated from the water temperature (T), salinity (S), pH, and HCO3 concentration in each 
sample. 

        𝐶𝑇 =
[𝐻+][𝐻𝐶𝑂3

−]

𝐾1
+ [𝐻𝐶𝑂3

−] +
𝐾2[𝐻𝐶𝑂3

−]

[𝐻+]
 

= [𝐻𝐶𝑂3
−] ⋅ (

[𝐻+]

𝐾1
+ 1 +

𝐾2

[𝐻+]
) (9) 

Similarly, by deforming equation (8) and using the total carbonic acid concentration ( 𝐶𝑇) 
obtained above, it is possible to finally calculate the following concentrations. 
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[𝐶𝑂2] =
𝐶𝑇

1 + (𝐾1𝐾2 [𝐻+]2⁄ ) + (𝐾2 [𝐻+]⁄ )
(10) 

 

[𝐶𝑂3
2−] =

𝐶𝑇

([𝐻+]2 𝐾1𝐾2⁄ ) + ([𝐻+] 𝐾2⁄ ) + 1
(11) 

 

Text S3. Estimation of pCO2 values using observation data 

pCO2 values were calculated using the following method. 
 
When CO2 is dissolved in water, it is represented by the following equations. 
 

𝐶𝑂2(𝑔) ⇌ 𝐶𝑂2(𝑎𝑞) (12) 
 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂(𝑙) ⇌ 𝐻2𝐶𝑂3(𝑎𝑞) (13) 
 
The equilibrium constant in equation (12) is expressed as follows. 
 

𝐾0 =
[𝐶𝑂2(aq)]

𝑝𝐶𝑂2

(14) 

 
[CO2 (aq)] means the concentration of CO2 (aq) in the aqueous solution, and pCO2 means 

the partial pressure of CO2 in the air. Equation (14) is obtained by applying Henry’s law to CO2. 
The solubility under one atmosphere, expressed as K0, is shown as a function at water 
temperature (T [K]) and salinity (S) (Weiss, 1974). 

 

ln 𝐾0 = 93.4517 ×
100

𝑇
− 60.2409 + 23.3685 × ln

𝑇

100

                                      +𝑆 {0.023517 − 0.023656 ×
𝑇

100
+ 0.0047036 × (

𝑇

100
)

2

} (15)
 

 
If CO2 in the air dissolves in seawater (NaCl solution) and reaches the vapor-liquid 

equilibrium, the electrical neutrality in the seawater can be represented by equation (16). 
 

[𝑁𝑎+] + [𝐻+] = [𝐶𝑙−] + [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝑂𝐻−] (16) 
 
Sodium and chloride ions do not react with carbonates. That is, [𝑁𝑎+] = [𝐶𝑙−]. When CO2 

in the air is dissolved in NaCl solution, the pH of the solution is expected to shift to acidic. 

Considering this, [𝐻𝐶𝑂3
−] ≫ [𝐶𝑂3

2−] holds. Therefore, equation (16) can be approximated to 
equation (17). 

 
[𝐻+] = [𝐻𝐶𝑂3

−] + [𝑂𝐻−] (17) 
 

By deforming equation (17) using the ionic product of water (Kw＝[H+]・[OH-]=10-13.127), 

equation (18) is obtained. 

[𝐻+] = [𝐻𝐶𝑂3
−] +

𝐾𝑤

[𝐻+]
(18) 
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By deforming equation (18) using equations (3) and (14), equation (19) is obtained, and it is 

finally possible to calculate the pCO2 values. 
 

[𝐻+]2 = 𝐾0 ⋅ 𝐾1 ⋅ 𝑝𝐶𝑂2 + 𝐾𝑤 (19) 
 

Text S4. Sampling stations in river 

In order to more accurately evaluate the amount of material supplied into Toyama Bay, in addition 
to the Katakai River Aluvial Fan, we collected samples at five river estuaries (Kurobe River, Joganji 
River, Jinzu River, Sho River, and Oyabe River) with large river flows. The locations are shown in 
Figure 1 and Table S6. These samples were collected in April, May, June, July, September, October, 
and November 2018. It has been reported that the water volume of these 6 rivers accounts for 
about 75-95% of the total river water flowing into Toyama Bay (Toyama Bay Water Conservation 
Study Group, 2001; Hatta et al., 2005; Hatta and Zhang, 2013). In this study, when calculating the 
nutrient and carbon supply in rivers in 2018, the concentrations shown in Tables S6 and S7 were 
used. These concentrations are weighted averages of the analyzed concentrations according to 
river flow. 
 

Table S6. Water volume, pH, and chemical compositions in five rivers in 2017-2018 

River Location Areaa Volumeb 

pH 

NO3 PO4 SiO2 HCO3 

 Lon. Lat. km2 
108 m3 

month- 
μM μM μM mg/L 

Oyabe 137.04 36.78 570 1.4±0.2 7.6 31±14 0.91±0.45 220±28 46±4 

Sho 137.06 36.77 1180 1.2±0.5 7.6 
15 (n=1 

) 
0.36±0.34 143±10 29±3 

Jinzu 137.22 36.75 2720 5.1±1.6 7.5 18±7 0.28±0.15 217±23 40±7 

Joganji 137.28 36.73 370 0.7±0.2 7.1 13±7 0.15±0.08 194±49 30±7 

Kurobe 137.43 36.92 660 1.4±1.0 7.5 11±7 0.17±0.16 125±21 22±6 
          

5 rivers 

Ave. 
   9.9±0.2c 7.5d 18d 0.4d 193d 37d 

Note. aMizutani & Satake (1997). bReported riverine input (Ministry of Land, Infrastructure, 
Transport and Tourism, Japan). cAveraged monthly total river flow of five rivers in 2018. 
dWeighted average concentration using river flow of each river. 
 

Table S7. Parameters used for flux calculation 

 Water 

volume 
N-NO3 P-PO4 Si-SiO2 HCO3

- CO2 (aq) CO3
2- 

108 m3 

month- 
mg/L μg/L mg/L mg/L mg/L mg/L 

2003 2018 2003 2018 2003 2018 2003 2018 2003 2018 2003 2018 2003 2018 

River 8a 15±4 0.8b 0.25 86b 12 6.4c 5.4 40.3e 37.0 2.2f 1.2 0.2f 0.4 

FSGD 1a 1.2±0.1 0.7±0.2d 0.41 1.5±0.2 0.9 4.0d 3.2 51.5±2.2e 58.6 3.0±0.1f 3.3 0.3f 0.3 

Note. aHatta & Zhang (2013). bYanagi et al. (2019). cTsujimoto et al. (2009). dNakaguchi et al. 
(2005). eHatta & Zhang (2013). fEstimated concentration from data reported by Suzuki and 
Zhang (2003). 
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Table S8. Nutrient fluxes into Toyama Bay via SGD and river water. 

 N Flux (ton month-) P Flux (ton month-) Si Flux (×103 ton month-) 

 2003 2018 2003 2018 2003 2018 

River 640 375 ± 100 69 18±5 5.1 8.1±2.2 

FSGD 70 ± 20 48 ± 4 0.15± 0.02 0.11±0.01 0.40 0.38±0.03 
 

Table S9. Carbon fluxes into Toyama bay via SGD and river water. 

 HCO3
- (×102 ton 

month-) 

CO3
2- (×102 ton 

month-) 

CO2(aq) (×102 

ton month-) 

Totala (×102 ton 

month-) 

 2003 2018 2003 2018 2003 2018 2003 2018 

River 320 555 ± 150 1.6 6.0 ± 1.5 18 18 ± 5 340 580 ± 160 

FSGD 52 ± 7 70 ± 30 0.3 0.4 ± 0.1 3.0 ± 1.5 4.0 ± 1.7 55 ± 9 74 ± 9 

Note. aTotal value of three carbonate components (CO3
2-, HCO3

-, CO2 (aq)). 
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