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Abstract

The vertical accumulation of ozone and aerosol during an episode of the 2016 Southeastern United States Wildfires is analyzed

by integrating a regional chemical transport model with ozonesonde, O$ 3$ Differential Absorption Lidar (DIAL), ceilometer,

surface monitors, and satellite products. The results indicate that measurements capture the vertical extent of the smoke

plumes affecting the surface and upper air over Huntsville, AL, and also the enhanced ozone lamina in the plumes. Sensitivity

simulations and tendency diagnostics characterize the chemical and physical processes affecting the vertical profiles downstream

of the wildfires. The model results show that the net chemical ozone production (PO$ 3$) dominates the daytime ozone

accumulation by up to 19 ppb/10 hrs in the upper air over Huntsville. At the surface, the negative PO$ 3$ is offset by

positive O$ 3$ contributions from vertical mixing and advection. Fire emissions increase the vertical ozone by affecting local

chemical reactions, transportation, and vertical exchange. The dominant processes exhibit daily, diurnal, and vertical variability.

Quantitatively, fire emissions increase the daytime positive PO$ 3$ by up to 25\% in the upper air, and increase the daytime

PM2.5 by up to 77\%. The capability of the regional model for reproducing the observations is explored. Increasing the fire

aerosol emissions improves the model performance on domain-averaged PM2.5. The model captures the well-mixed aerosol

in the boundary layer but fails to fully reproduce the densest plumes seen in the DIAL and satellite. The discrepancies are

associated with poor satellite observing condition due to clouds and with uncertainties in emission inventories.
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• WRF-Chem performance and emission inputs are evaluated against ozonesonde,11
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the upper air, and increase PM2.5 by up to 77% during daytime.16
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Abstract17

The vertical accumulation of ozone and aerosol during an episode of the 2016 South-18

eastern United States Wildfires is analyzed by integrating a regional chemical transport19

model with ozonesonde, O3 Differential Absorption Lidar (DIAL), ceilometer, surface20

monitors, and satellite products. The results indicate that measurements capture the ver-21

tical extent of the smoke plumes affecting the surface and upper air over Huntsville, AL,22

and also the enhanced ozone lamina in the plumes. Sensitivity simulations and tendency23

diagnostics characterize the chemical and physical processes affecting the vertical pro-24

files downstream of the wildfires. The model results show that the net chemical ozone25

production (PO3) dominates the daytime ozone accumulation by up to 19 ppb/10 hrs26

in the upper air over Huntsville. At the surface, the negative PO3 is offset by positive27

O3 contributions from vertical mixing and advection. Fire emissions increase the ver-28

tical ozone by affecting local chemical reactions, transportation, and vertical exchange.29

The dominant processes exhibit daily, diurnal, and vertical variability. Quantitatively,30

fire emissions increase the daytime positive PO3 by up to 25% in the upper air, and in-31

crease the daytime PM2.5 by up to 77%. The capability of the regional model for repro-32

ducing the observations is explored. Increasing the fire aerosol emissions improves the33

model performance on domain-averaged PM2.5. The model captures the well-mixed aerosol34

in the boundary layer but fails to fully reproduce the densest plumes seen in the DIAL35

and satellite. The discrepancies are associated with poor satellite observing condition36

due to clouds and with uncertainties in emission inventories.37

1 Introduction38

Biomass burning (BB) can release substantial aerosol and ozone (O3) precursors39

that affect climate and air quality Akagi et al. (2011); Andreae and Merlet (2001); Crutzen40

and Andreae (1990); Crutzen, Heidt, Krasnec, Pollock, and Seiler (1979). In the past decades,41

observation and modeling studies have indicated that BB emissions contributed to lo-42

cal and regional air-quality problems Baker et al. (2016); Hodzic et al. (2007); D. A. Jaffe43

et al. (2013); Pfister, Wiedinmyer, and Emmons (2008); Wigder, Jaffe, and Saketa (2013),44

as well as to downwind air-quality problems by long-range transport Colarco et al. (2004);45

Cook et al. (2007); D. Jaffe et al. (2004); Lapina, Honrath, Owen, Val Martin, and Pfis-46

ter (2006); Lindaas et al. (2017); Martin et al. (2006); McKeen et al. (2002); Morris et47

al. (2006); Oltmans et al. (2010); Rogers, Ditto, and Gentner (2020); Sapkota et al. (2005).48

The impacts of biomass burning on air quality vary dramatically over time and space.49

Chemical transport models (CTMs) have been widely used for estimating fire im-50

pacts. CTMs can provide good spatio-temporal coverage, differentiate the impacts of spe-51

cific sources, and support mechanism understanding of chemical and dynamical processes Baker52

et al. (2018). However, large uncertainties in fire-emission estimations and their treat-53

ment in models present challenges for estimating the variability of fire impacts. Uncer-54

tainties of fire-emission estimation can arise from inherent limitations of satellite detec-55

tion (e.g., polar-orbiting detection, cloud/haze burden, small fires) and inherent uncer-56

tainties of empirical approaches for emission estimations Carter et al. (2020); Justice et57

al. (2002); Liu et al. (2020); Van Der Werf et al. (2017); Wang et al. (2018). The emis-58

sion estimation uncertainties can affect simulated smoke loading in domain-averaged scale,59

and at local and hourly-to-daily scales in particular Cohen, Ng, Lim, and Chua (2018);60

Liu et al. (2020); Zhang et al. (2014). Inappropriate model treatment can induce mis-61

placement of smoke plumes and O3 vertically Baker et al. (2018); Cohen et al. (2018);62

Fast et al. (2016, 2006); Wu et al. (2017). Therefore, observation evaluation is essential63

to understand the model bias and emission uncertainties for a given fire event.64

Although satellites and surface monitors make routine measurements of atmospheric65

O3 concentration, balloon soundings and the lidar technique can provide precise verti-66

cally resolved O3 observations throughout the troposphere and lower stratosphere Thomp-67
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son et al. (2011). This vertical information significantly benefits air-quality management68

and modeling improvement Cooper, Langford, Parrish, and Fahey (2015). We take ad-69

vantage of both ozonesonde Newchurch, Ayoub, Oltmans, Johnson, and Schmidlin (2003)70

and ozone lidar Kuang, Burris, Newchurch, Johnson, and Long (2011) at the University71

of Alabama in Huntsville (UAH) to observe vertical profiles. The UAH ozone lidar is af-72

filiated with the Tropospheric Ozone Lidar Network (TOLNet, https://www-air.larc.nasa.gov/missions/TOLNet/).73

Under a collaborative protocol, the TOLNet lidars have demonstrated their feasibility74

and capability in fire studies M. Johnson, Kuang, Wang, and Newchurch (2016); Kuang75

et al. (2017); A. Langford et al. (2015); Reid et al. (2017); Strawbridge et al. (2018) and76

extensive scientific projects Gronoff et al. (2019); Leblanc, Brewer, Wang, and Grana-77

dos Muñoz (2018); Sullivan et al. (2019). The continuous profiling of ozone and aerosols78

provides details missed by isolated measurements and is an asset for model evaluation79

by coordinating measurements A. Langford et al. (2018); A. O. Langford et al. (2019).80

In addition, the ultraviolet (UV) backscatter (or extinction) profiles retrieved from ozone81

lidar can quantify the aerosol variability at high spatio-temporal resolution and these82

measurements serve as a tracer for fire smoke Kuang et al. (2020); A. O. Langford et al.83

(n.d.). To our best knowledge, there has been little or no attempt to evaluate CTMs us-84

ing this range-resolved UV aerosol optical product.85

Integrating vertical observations into CTMs can also improve our understanding86

of the fire impacts on vertical profiles. Due to multiple O3 sources in troposphere and87

a lack of coincident measurements at sufficient spatial resolution, coordinating observa-88

tions and modeling are often crucial for understanding O3 production from fire emissions Fiore,89

Pierce, Dickerson, Lin, and Bradley (2014). The diagnostics of trace-gas tendencies in90

CTMs output are widely used to identify the drivers for ozone production due to var-91

ied anthropogenic and natural sources while fewer attempts for biomass burning sources92

occur Barth et al. (2012); Hu, Xue, Kong, and Zhang (2019); Lu et al. (2018); Pfister93

et al. (2019). In this study, the O3-tendency diagnostics, together with sensitivity sim-94

ulations both with and without fire emissions, allow exploration of the roles of chemi-95

cal and dynamical processes affecting vertical O3 accumulation downstream of fires. The96

enhancement of local vertical O3 due to fire emissions is expected to arise from multi-97

ple processes, including the local chemical reactions (e.g., photochemical reaction of in-98

put O3 precursors from fire emissions), transportation (e.g., the transported higher O399

produced by upwind smoke plumes), and the vertical exchange (e.g., redistribution of100

O3 by interactions between surface and upper air). We are interested in understanding101

the impact of those processes on vertical O3 variability in fire smoke.102

With relatively flat topography in the SEUS region, Huntsville station was usually103

dominated by local anthropogenic/biogenic/agricultural burning at the surface and more104

frequent wildfire plumes in the free troposphere (FT) Reid et al. (2017). In this case study,105

we observed smoke affecting both surface and upper air over Huntsville downstream of106

the wildfires. Using comprehensive observations (Huntsville ground-based lidars, in-situ107

measurements, satellite) to evaluate the performance of regional model simulations re-108

sults in a tool to estimate the vertical variability of fire impacts. Integrating vertical ob-109

servations and modeling can benefit the evaluation work and scientific understanding.110

The following objectives comprise this study: (1) Evaluate the model performance against111

regional and local observations, especially vertical ozone and UV aerosol extinction pro-112

files and understand the model capabilities and limitations to reproduce the observations.113

(2) Characterize the chemical and dynamical processes affecting the vertical ozone ac-114

cumulation in smoke plumes and understand the roles of local chemical reactions, trans-115

portation, and vertical exchange. (3) Quantify vertically the contribution from fire emis-116

sions to net chemical ozone production and particulate matter.117
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2 Data and Methods118

2.1 Wildfires Episode and Study Area119

The 2016 Southeastern United States (SEUS) Wildfires series occurred along the120

Southern Appalachians throughout October and November 2016 and burned over 158,000121

acres across six Southern states (see Table S1 in the supporting information). Multiple122

factors contributed to the extraordinary wildfires outbreak and spread, including the ex-123

ceptional drought, deep leaf litter and duff layers, many human ignitions with few light-124

ning strikes, episodic strong winds by frontal systems, and complex mountain landscapes125

Konrad and Knox (2017). We focus on a high-pollution episode when smoke influenced126

Huntsville station and the SEUS region in 12-14 November 2016. Figure 1a shows the127

locations and names of 14 largest active wildfires around this study period. Figure 1b128

shows the study domain with surface PM2.5 and O3 monitoring sites. Huntsville sta-129

tion is located in North Alabama, with ground-based lidars and ozonesondes to be in-130

troduced in the following sections.131

2.2 Huntsville Station Facilities132

Both the Ceilometer and the ground-based O3 DIfferential Absorption Lidar (DIAL)133

at the UAH campus (34.725◦N, 86.645◦W) detect the vertical aerosol structure. Balloon-134

borne Electrochemical Concentration Cell (ECC) ozonesonde launched from the UAH135

campus measures vertical O3 concentration in smoke plume. Model simulations with both136

DIAL (aerosol extinction and O3) and ozonesonde data assess how well the model cap-137

tures the vertical distribution of O3 and aerosol.138

Although primarily designed for the detection of cloud heights, ceilometers have139

the potential capability for a quantitative retrieval of aerosol backscatter coefficient Wieg-140

ner et al. (2014). The Vaisala CL51 ceilometer used in this study is a pulsed diode-laser141

lidar (905 nm) in the UAH Mobile Integrated Profiling System (MIPS) Wingo and Knupp142

(2015). For this case, the ceilometer, located on the UAH campus, measures backscat-143

ter profiles up to 15 km above ground level (AGL) with high spatial and temporal res-144

olution at 30 m and 15 s, respectively. Because the backscatter signal is dominated by145

the aerosol component at 905 nm, the total backscatter intensity serves as an indicator146

of relative aerosol loading during 12-14 November 2016.147

The UAH campus also houses one of the TOLNet O3 DIAL systems, named the148

Rocket-city O3 Quality Evaluation in the Troposphere (RO3QET) lidar. RO3QET mea-149

sures vertical O3 profiles from 0.1 km up to 10 km above the ground using 289 and 299-150

nm lasers with an uncertainty of about ±10% Kuang et al. (2011). The temporal res-151

olution of the lidar sampling is adjustable and is typically set at 10 minutes. The ver-152

tical resolution varies with altitude to obtain sufficient lidar signal-to-noise ratio and is153

between 150 and 300 m in the planetary boundary layer (PBL). Aerosol extinction co-154

efficients at the non-absorption line (299 nm) are retrieved by assuming a constant aerosol155

extinction-to-backscatter ratio, which is 60 sr for this study. Validation experiments through156

comparing co-located high spectral resolution lidar (HSRL) observations suggest that157

the RO3QET lidar is capable of capturing aerosol variability at high spatio-temporal res-158

olution up to 6 km Kuang et al. (2020).159

The Huntsville ECC ozonesonde attached with radiosonde provides vertical pro-160

files of ozone, temperature, relative humidity (RH), and wind. In this study, the data161

derive from one of the weekly flights, which make observations from the surface up to162

35 km with a vertical resolution of 100 m Newchurch et al. (2003) at the Huntsville ozonesonde163

station on the UAH campus. Measurements have precision better than ±5% and an ac-164

curacy better than ±10% for O3 B. J. Johnson et al. (2002).165
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2.3 Surface Data and Satellite Products166

Hourly PM2.5 and O3 measurements retrieved from the Environmental Protection167

Agency (EPA) (https://www.epa.gov/outdoor-air-quality-data) are used to evaluate the168

model performance on surface air quality within the smoke-impacted region. Moderate169

Resolution Imaging Spectroradiometer (MODIS) Collection 6 Level 2 10 km aerosol op-170

tical depth (AOD) data onboard Terra and Aqua (MOD04_L2 and MYD04_L2) Levy,171

Hsu, et al. (2015) acquired from the NASA Earth Data Level-1 and Atmospheric Archive172

& Distribution System Distributed Active Archive Center (LAADS DAAC) website (https://ladsweb.modaps.eosdis.nasa.gov/)173

evaluate the model performance on horizontal plume extent. Supporting information (Text174

S1) details the AOD estimates from MODIS and the model. Visual images from MODIS175

and the Visible Infrared Imaging Radiometer Suite (VIIRS), available via NASA World-176

view website (https://worldview.earthdata.nasa.gov/), qualitatively assess plume cov-177

erage and fire detections from fires and thermal anomalies products. The sensor reso-178

lutions of MODIS and VIIRS hotspot detections are 1 km and 375 m, respectively.179

2.4 Model Description and Experiment Design180

A fully coupled meteorology-chemistry model, the Weather Research and Forecast-181

ing with Chemistry model (WRF-Chem V3.9.1) is applied in this study. The model con-182

figurations are listed in Table 1. For this study we selected the Model for Ozone and Re-183

lated chemical Tracers (MOZART) gas phase chemical scheme Emmons et al. (2010) cou-184

pled with the Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol185

Radiation and Transport (GOCART) aerosol scheme Chin, Rood, Lin, Müller, and Thomp-186

son (2000), referred to as MOZCART Pfister et al. (2011). Other parameterizations in-187

clude Morrison’s microphysics scheme, the Rapid Radiative Transfer Model (RRTM) long-188

wave and Goddard shortwave radiation schemes, the Monin-Obukhov surface layer, the189

Noah Land Surface Model, the Yongsei University (YSU) PBL, the New Grell cumulus190

scheme (G3), and the simplified Tropospheric Ultraviolet-Visible photolysis scheme (F-191

TUV). National Centers for Environmental Prediction (NCEP) North American Mesoscale192

(NAM) 12 km Analysis data (https://rda.ucar.edu/datasets/ds609.0/, accessed 7 Feb193

2018) provide the initial and lateral boundary meteorological conditions. MOZART-4194

global model outputs provide the initial and lateral chemical conditions. Biomass burn-195

ing emissions are calculated using the Fire Inventory from NCAR (FINNv1.5) Wiedin-196

myer et al. (2011) and the online plume-rise model Freitas et al. (2007). FINNv1.5 are197

based on fire counts derived from the Moderate Resolution Imaging Spectroradiometer198

(MODIS). The hourly emissions are allocated using the standard WRAP diurnal pro-199

file WRAP (2005). Anthropogenic emissions for both area and point sources are obtained200

from the 2011 U.S. EPA national emissions inventory (NEI 2011 v2). Biogenic emissions201

are calculated online using the Model of Emissions of Gases and Aerosols from Nature202

(MEGAN) module Guenther et al. (2006).203

Two nested domains cover CONUS and SEUS with 16 km and 4 km horizontal res-204

olutions, respectively. The vertical coordinate comprises 60 unequally spaced layers be-205

low 50 hPa, with 12 layers below 2 km altitude and a center height of 28 m for the low-206

est layer (see vertical grids structure in Figure S1). The simulation time period ranges207

from 8 to 14 November 2016, for which the 12-14 November period in the inner domain208

serves to avoid the influence of the model spinup during the first 4 days. The modeled209

meteorology is reinitialized with analysis fields every 24 hours but the chemistry is re-210

cycled from the previous day. Three simulations estimate the wildfire impacts (Table 1):211

simulation CTRL contains no fire emissions; simulation FIREorig contains the original212

fire emissions (speciated from FINNv1.5 PM2.5) without emissions correction; simula-213

tion FIREcorr contains the fire emissions with emissions adjustment (description in Sec-214

tion 3.2). In order to generate identical meteorology for the sensitivity analysis on fire-215

impacted O3, the aerosol-radiation feedback is disabled.216
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2.5 Fire Inventories and Burn Area Products217

The Monitoring Trends in Burned Severity database (MTBS; https://www.mtbs.gov)218

provides input for total burn acres since ignition for sorting large wildfires (Table S1).219

To investigate the emission inputs, the daily burn area is grouped for each wildfire by220

aggregating FINNv1.5 burn area in the geospatial bounding box from MTBS wildfire database.221

The fire emission inputs for this work (FIREorig and FIREcorr runs) are compared with222

three MODIS-based fire inventories: the FINNv1.5, the Global Fire Assimilation Sys-223

tem version 1.2 (GFASv1.2) Kaiser et al. (2012), and the Quick Fire Emissions Database224

version 2.5_r1 (QFEDv2.5_r1) Darmenov and da Silva (2013).225

3 Results226

3.1 Horizontal and Vertical Plume Transport227

In this section, analysis of the horizontal and vertical plume transport using satel-228

lite and ground-based lidars identifies the smoke-impacted period for model evaluation229

and diagnostic analysis later. This analysis also reveals that the daily and diurnal vari-230

ations of smoke transport are mediated by synoptic weather and PBL evolution.231

In Figure 2, MODIS AOD shows that the wildfires along the Southern Appalachi-232

ans continued to burn and emitted a significant amount of smoke over SEUS region in233

12-14 November 2016. Thus, we select 12-14 November to compare the model with MODIS234

AOD and surface monitors in later sections. NOAA WPC surface analysis (Figure S2)235

shows that a cold front passed over the wildfire region during 12-18 LT on 11 Novem-236

ber. After the frontal passage, smoke stretched across portions of SEUS region by north-237

easterly wind on 12 November. As high-pressure circulation dominated the following two238

days, AOD shows less spreading but more concentrated pattern around the wildfires.239

The UAH ceilometer captured the aerosol plumes downwind of the fires, as shown240

in Figure 3. The time-height curtain of backscatter intensity shows that several plumes241

passed over Huntsville in the nighttime residual layer (RL) (Figure 3a). Some plumes242

subsided toward surface before sunrise; others were entrained by a developing PBL in243

the morning and then mixed vertically throughout the PBL. This mixing provides a mech-244

anism for fire emissions to contribute to the downwind air quality over night. In addi-245

tion, an elevated aerosol plume stayed at ∼2 km AGL from 12 UTC (6 LT) on 12 Novem-246

ber to 12 UTC (6 LT) on 13 November, and it is likely to be fire smoke as MODIS shows247

obvious smoke spreading over Huntsville.248

The most severe surface particulate air pollution at Huntsville occurred on 13 Novem-249

ber, when an air-quality alert was issued for Madison and Morgan counties in the after-250

noon instigating DIAL measurement from 19:37 to 22:17 LT on 13 November under this251

high aerosol loading condition. The time-height curtain of aerosol extinction coefficient252

at 299 nm (Figure 3b) shows heavy background aerosols and relatively dense plumes within253

that domain. The background aerosols below the capping inversion layer (∼0.5/km be-254

low 1.5 km AGL) results from sufficient daytime mixing in the well-developed PBL. A255

relatively dense plume (>1.0/km) features about 4 times higher extinction than that in256

usual aerosol loading conditions. At 22 LT, the dense plume extended across the whole257

RL column and evolved to be a thicker layer (∼0.7 km thickness) between two finer lay-258

ers. The specified fine structure is highly consistent with that observed by ceilometer backscat-259

ter (Figure 3c). Ozonesonde and DIAL are used to assess the model performance on 12260

and 13 November, respectively.261

3.2 Model Performance for AOD and Emissions Adjustment262

In this section, the assessment of the model capability for reproducing the spatial263

pattern of smoke plumes as compared to satellite observations results in an adjustment264
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of emission inputs. We justify this adjustment by comparing our emission inputs with265

three fire inventories, which give different emission estimations.266

Comparing WRF-Chem AOD to MODIS AOD in 12-14 November (see details in267

Text S2 and Figure S3) suggests that the model is able to reproduce the overall spatial268

pattern of smoke plumes over SEUS, with a spatial correlation coefficient between mod-269

eled and observed AOD 0.6 on average. However, the model underestimated the AOD270

magnitude. The domain-averaged observed AOD is about 3.6 times of the simulated AOD.271

The cause could be uncertainties in emission estimations Pereira et al. (2016); Zhang et272

al. (2014), inadequate assumptions of aerosol optical properties Curci et al. (2015), the273

use of simplified aerosol chemistry modules without secondary organic aerosol Fast et274

al. (2006), or misrepresentation of transport processes Aouizerats, Van Der Werf, Bal-275

asubramanian, and Betha (2015); Wu et al. (2017). In this case, the bias in predicting276

the frontal passage could cause uncertainties to the smoke transport on 12 November (Fig-277

ure S2), and the aerosol scheme GOCART could also lead to uncertainties because it does278

not include secondary organic aerosols. However, quantifying each bias is a challenge be-279

yond our scope. In this case study, we focus on exploring the uncertainties of emissions280

only and increase the original fire aerosol emissions (PM2.5, PM10, organic carbon, black281

carbon, and sulfate are speciated from PM2.5 in FINNv1.5) by a factor of 3.6, without282

changing the fire gas-phase emissions. Even though this approach does not rectify all the283

uncertainties in the emission estimates and may not reflect the temporal-spatial varia-284

tions of smoke behavior, such a sensitivity study can help in constraining the emission285

estimates based on satellite observations.286

To justify this method for scaling the aerosol emissions, we compare the original287

simulation (FIREorig) and the simulation with scaled aerosol emissions (FIREcorr) with288

the inter-inventory differences. Figure 4 shows the ratio of carbonaceous aerosol (both289

organic carbon OC and black carbon BC) and carbon monoxide CO in different fire in-290

ventories and our simulations. Each data point indicates the daily fire emission from the291

fire inventories or our model inputs, summed over the wildfire region of interest defined292

in 33.46-38.17◦N and 78.75-86.25◦W (see the selected region in Figure S4). The three293

inventories show considerable discrepancies in the emissions ratios in November 2016 over294

the wildfire area. The ratio is about 0.07, 0.09, and 0.4 in Gg/Gg for FINNv1.5, GFASv1.2,295

and QFEDv2.5_r1, respectively. Such a broad range of emission ratios justifies our choice296

to scale the emission input from 0.08 Gg/Gg to 0.3 Gg/Gg.297

The discrepancies among fire inventories might arise from their different estima-298

tion processes. Although all of the three inventories are based on MODIS fire detections,299

FINNv1.5 turns MODIS fire counts into burned area based on some assumptions Wied-300

inmyer et al. (2011), GFASv1.5 assimilates MODIS Fire Radiative Power (FRP) Kaiser301

et al. (2012), and QFEDv2.5_r1 uses MODIS FRP directly combined with a scaling fac-302

tor by a top-down constraint for different biomes Darmenov and da Silva (2013). Carter303

et al. (2020) showed that fire aerosol emissions from different inventories differ by a fac-304

tor of 4 to 7 over North America. Liu et al. (2020) showed that temperate North Amer-305

ica (TENA) has a coefficient of variation as high as 102% for mean annual OC+BC emis-306

sions among fire inventories. Our comparisons agree with previous assessment about the307

uncertainties in fire aerosol emissions. The (OC+BC)/CO ratios over the SEUS wild-308

fire region differ by a factor of 5.7, within the discrepancy envelope of previous studies.309

Because the performance of an individual fire inventory also depends on the region and310

season, emission evaluation and adjustment is often necessary for a given fire event.311

3.3 Model Performance for Surface PM2.5 and Vertical Extinction312

Using the adjusted emission inventory, we assess how well the model can simulate313

surface PM2.5 and vertical aerosol loading through comparing the model results with314

observations by surface monitors, lidar, and satellite.315
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Figure 5 shows the time series of U.S. EPA PM2.5 and modeled PM2.5 in three316

sensitivity simulations. The FIREorig simulation shows obvious underestimation of ob-317

served PM2.5. Quantitatively, the standard deviations normalized with respect to ob-318

servations are much lower than 1.0 (see pattern statistics in Figure S5). After the emis-319

sion adjustment, the FIREcorr simulation is able to capture the domain-averaged mag-320

nitude and reproduce the maximum hourly PM2.5 (∼200 µg/m3 on 12 November at Site321

1). Additionally, the improved model reveals dominant fire contributions to the observed322

PM2.5 exceedance of air quality standard (35 µg/m3 for 24-hour limit), especially at the323

rural sites nearby wildfires. Therefore, it is reasonable to use the FIREcorr simulation324

to investigate the fire impacts on PM2.5.325

Despite the improvement on magnitude, a domain-averaged scaling factor cannot326

improve the model performance on the diurnal variations. Both FIREorig and FIREcorr327

simulations perform well in reproducing the diurnal cycle at Site 3-7 but poorly at Site328

1, 2, and 8. Statistically, modeled and observed PM2.5 have a fairly strong to moder-329

ate correlation at Site 3-7 and weak correlation at Site 1, 2, and 8. This model bias in330

the diurnal fire behavior can be partly explained by satellites providing information at331

the overpass time only Wang et al. (2006), wind bias, and the domain-averaged scaling332

factor adopted here. Other potential error sources are discussed later.333

Figure 6 shows the comparison between the DIAL-retrieved aerosol extinction (at334

299 nm) and the simulated vertical aerosol extinction (at 300 nm) during 19-23 LT on335

13 November. The FIREcorr simulation is able to capture the nocturnal boundary layer336

aerosol (∼0.5/km below 1.5 km AGL), while the FIREorig simulation underestimated337

the magnitude. This comparison indicates that the improved simulation can reproduce338

the well-mixed smoke during the daytime PBL development. However, the FIREcorr sim-339

ulation missed the densest plume (>1.0/km after 20 LT on 13 November) observed by340

DIAL, and it underestimated the highest MODIS AOD nearby wildfires (observed at noon341

on 13 November in Figure S3) and PM2.5 at individual site nearby wildfire (e.g., Site342

2). A likely reason for the underestimate is missing fire sources.343

To confirm this hypothesis, we examine both MODIS and NPP/VIIRS reflectance344

images with the fires and thermal anomalies product (Figure 7), and group the FINNv1.5345

daily burn area by each wildfire (Figure 8). It was cloudy and hazy over the wildfires346

region on 13 November. Although some wildfires emitted visible dense smoke plumes (e.g.,347

the Rough Bridge Fire in north Georgia) and were counted in the NPP/VIIRS night de-348

tection, the fires were not counted in MODIS by the abnormal thermal product. Sub-349

sequently, the burn areas of many wildfires are zero on 13 November in FINNv1.5 inven-350

tory. Two other MODIS-based inventories (GFASv1.2 and QFEDv2.5_r1) also have quite351

small aerosol and gas emissions on 13 November (Figure S7). These differences imply352

that the clouds and thick haze probably obscured the MODIS fire detection on 13 Novem-353

ber. The detection limitation is probably associated with attenuated fire signal and so-354

lar heating during the day and the potential cloud/smoke classification issues Justice et355

al. (2002); Polivka, Wang, Ellison, Hyer, and Ichoku (2016). As a result, the model us-356

ing the MODIS-based fire inventories could not reproduce some freshly-emitted smoke357

plumes.358

3.4 Model Performance for Surface Ozone and Vertical Ozone359

This section reports the modeled O3 compared with surface monitors, ozonesonde,360

and DIAL measurements. Because the aerosol-radiation feedback has been turned off361

to generate identical meteorology, and MOZCART does not consider heteorgenous or aque-362

ous chemistry, the modeled O3 results in FIREorig and FIREcorr simulations are iden-363

tical.364

Figure 9 shows the time series of EPA O3 and modeled O3 in sensitivity simula-365

tions. Our model reproduced the observed surface O3 level (below 60 ppb) during 12-366
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14 November at most sites. The results show consistent diurnal variations between sim-367

ulated and observed O3 at both rural and urban sites, with strong to moderate corre-368

lation coefficients (see pattern statistics in Figure S6). The model performance at Site369

3 and 5 is weaker, indicated by a low correlation coefficient and high normalized root-370

mean-square (NRMS) error. The model bias on O3 can be complicated by meteorology,371

emissions, and model parameterizations. In this case, uncertainty in fire emissions is not372

the only possible source for the surface O3 bias. Other factors, such as transport bias373

during the frontal passage, model capability in reproducing nocturnal stable layer, and374

the accuracy of anthropogenic and biogenic gaseous emissions, might also induce larger375

model bias. The difference between FIREcorr and CTRL simulations suggests that the376

total fire impacts on surface O3 concentration was smaller than 10 ppb at most sites.377

An ozonesonde launched from UAH campus at 13 LT on 12 November. Figure 10378

compares modeled results with the observed vertical profiles, including ozone volume mix-379

ing ratio, relative humidity, potential temperature (θ), horizontal wind speed, and hor-380

izontal wind direction. The ozonesonde reveals an enhanced O3 lamina between two θ381

inversion layers between 1.4-2.3 km. It peaks at 1.8 km AGL with 56 ppb, ∼12 ppb larger382

than PBL. This thick lamina co-existed with the elevated aerosol plume observed in ceilome-383

ter in light northeasterly wind. This coexistence of fire-impacted aerosol plume and en-384

hanced O3 suggests a fire-impacted ozone lamina above the PBL height ∼1.4 km. Over-385

all, WRF-Chem is able to reproduce vertical ozone and meteorological profiles in smoke386

below 3 km. In particular, the model reproduces the wet and ozone-rich lamina, and ob-387

tains temperature and wind field consistent with observations; however, it is limited in388

simulating finer inversion layers. The model predicts a lower PBL height of 1.2 km than389

the observed 1.4 km, and it does not resolve the upper θ inversion at 2.3 km well. This390

limitation is likely due to the relatively coarse vertical resolution at ∼2 km and the bias391

in predicting wind shear when the wind turned sharply above the lamina, as observed392

by sonde. The underestimated O3 in PBL is consistent with the underestimated surface393

O3 at the nearby site. This underestimate can be due partly to the model bias in wind394

direction and relative humidity in PBL, as well as to other factors discussed. The model395

also reproduces the O3 laminae observed by DIAL during 19-23 LT on 13 November (Fig-396

ure 6), but it underestimates the O3 magnitude in the nocturnal boundary layer, which397

underestimate might be caused by the uncertainties in emission inputs as discussed in398

the previous section.399

3.5 Diagnosing Fire Impacts on Vertical O3 and PM2.5 Distribution400

Because the model performs well in simulating the vertical and surface ozone dis-401

tributions and reproducing the well-mixed aerosol during daytime, the model calcula-402

tions estimate the vertical ozone accumulation in fire smoke during daytime on 12 and403

13 November 2016. We begin with a regional sensitivity analysis to show the overall fire404

impacts and the possible sources, and then apply the model’s tendency diagnostics to405

further examine the processes contributing to the ozone accumulation over Huntsville.406

Fire-impacted PM2.5 indicates the altitude and strength of the fire smoke.407

3.5.1 Regional Impacts at 13 LT on 12 and 13 November 2016408

Figure 11 shows the modeled longitude-altitude curtain plots of O3, fire-impacted409

O3, and fire-impacted PM2.5 at 13 LT (19 UTC) on 12 November over the SEUS region.410

The curtain shows that an enhanced O3 lamina at 2 km ASL spreads widely from 78◦ W411

to 88◦ W and passes over the Huntsville station (Figure 11a). This thick layer is spread-412

ing above PBL and is capped below 3 km by a strong wind shear when the wind turns413

strongly westerly above ∼ 3 km. Figure 11b and 11c show the modeled fire impacts (FIREcorr414

minus CTRL) on O3 and PM2.5, respectively. The simulations show enhanced O3 con-415

centration within the elevated smoke plume, which are consistent with our observation416

analysis. Quantitatively, the fire emissions result in an O3 enhancement of 2-5 ppb and417
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PM2.5 enhancement of 10-20 µg/m3 at 13 LT. In 85-86◦ W, the enhancements in O3 and418

PM2.5 can be much larger than 5 ppb and 20 µg/m3, respectively. Using the modeled419

hourly PM2.5 and AOD (not shown here), we estimate that the smoke plume is trans-420

ported to Huntsville from multiple wildfires that occurred during the frontal passage on421

11 November (see the large active wildfires in Figure 8 and wildfire map in Figure 1a).422

The wind-shear structure caps the mixed smoke plume with enhanced O3 in the lowest423

level of FT. Below the elevated plume, there is slightly lower PBL O3 enhancement (1-424

2 ppb) and PM2.5 enhancement (5-15 µg/m3) in 86-88◦ W. The smoke in the PBL is425

relatively fresh with < 6 hrs transport time and is likely emitted from nearby small fire426

on 12 November.427

As the weather condition turns to high-pressure circulation on 13 November, a new428

pattern emerges with concentrated fire impacts from the surface up to 2 km ASL on a429

regional scale (Figure 12). PBL O3 increases in the stagnant air, and fire emissions con-430

tribute more to O3 and PM2.5. Quantitatively, the fire emissions result in a dominant431

O3 enhancement by 4-10 ppb or higher and PM2.5 enhancement by 40-80 µg/m3 or higher432

at 13 LT (Figure 12b and 12c). A large portion of the well-mixed PBL smoke is emit-433

ted from 12 November, when the wildfires are most active during our study period (Fig-434

ure 8). As illustrated in the observation analysis, the smoke remains in the residual layer435

overnight and can effectively be transported to affect other locations on the next day.436

3.5.2 Local Impacts in 7-17 LT on 12 and 13 November 2016437

The sensitivity simulations confirm that fire emissions impacted the vertical ozone438

contribution over Huntsville on 12 and 13 November. This local enhancement could be439

caused by the transport of ozone and/or its precursors from fire emissions. The mod-440

eled results also imply that fire is not an exclusive source contributing to the observed441

ozone laminae. This result brings up two questions: (1) What are the relative roles of442

chemical and dynamical processes on the vertical ozone accumulation? (2) What is the443

relative contribution of fire emissions to the total net photochemical ozone production?444

To address these questions, we analyze the processes affecting vertical ozone distribu-445

tion through WRF-Chem tendency diagnostics, including net chemical ozone produc-446

tion PO3 (Chem), horizontal and vertical advection of ozone (AdvH+AdvZ), and ver-447

tical mixing of ozone (Vmix). The daytime ozone tendency output from the sensitivity448

simulations with fire emissions (FIREcorr) and without fire emissions (CTRL) is used449

to explore the fire contribution. The following model results are averaged over 5×5 hor-450

izontal grids (20 km×20 km) over Huntsville for a better representativeness.451

Figure 13a and 13b show daytime-integrated (7-17 LT) O3 process tendencies and452

PM2.5 over Huntsville in the FIREcorr and CTRL simulations on 12 and 13 November,453

respectively. The absolute O3 process tendencies show similar patterns on both days. In454

the upper air (0.2-2.0 km AGL), the positive PO3 dominates the daytime ozone accu-455

mulation on both days. The total PO3 peaks on 13 November in the middle PBL by up456

to 19 ppb/10 hrs at 0.5 km. In the surface layer below 0.2 km, pronounced negative PO3457

is caused by the quick NOx titration near the surface (modeled NOx ∼15 ppb). The neg-458

ative PO3 is offset by positive O3 contributions from vertical mixing and advection pro-459

cesses. Vertical mixing contributes positively near the surface yet negatively in the up-460

per air, because it tends to disperse the enhanced O3 from the upper air to the surface Hu461

et al. (2019). The results imply that local chemical processes dominates the upper air462

ozone accumulation while dynamical processes directly contribute to the build-up of ground-463

level ozone over Huntsville.464

Figure 13c and 13d extract the relative O3 tendencies and PM2.5 contributed by465

fire emissions (FIREcorr minus CTRL) on 12 and 13 November, respectively. Here FIREcorr-466

CTRL SumTend (SumTend means the sum of all process tendencies) indicates the daytime-467

integrated ozone change due to fire emissions (Figure S8). During 12-13 November, fire468
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emissions increase the vertical O3 concentrations by affecting local chemical reactions,469

transportation, and the vertical exchange. The total daytime ozone increase due to fire470

emissions is similar on both days, with largest contributions at lower altitude (up to ∼8471

ppb). However, the dominant processes contributing to the total signals show daily and472

vertical variability. On 12 November, an increase of positive PO3 dominates the upper-473

level (above 1.2 km) fire-impacted O3 accumulation, while the transport process dom-474

inates at the lower level. In contrast, on 13 November, an increase in PO3 (either through475

increased ozone chemical production or a decrease in ozone chemical loss) dominates the476

lower level (below 1.0 km), while the transport processes dominate at the upper level.477

The decrease of negative PO3 in the surface layer (i.e., PO3 is more negative in CTRL478

compared to FIREcorr below 0.2 km) is affected by the additional NOx and VOCs from479

the fire emissions.480

Quantitatively, the percentage contribution from fire emissions to the net chem-481

ical ozone production is calculated by (FIREcorr-CTRL)/FIREcorr results during day-482

time over Huntsville. Fire emissions contribute 14% to the highest daytime PO3 on 12483

November (2 ppb out of 17 ppb at 1.6 km) and 25% on 13 November (5 ppb out of 19484

ppb at 0.5 km). This different photochemcial production is associated with the varied485

fire emissions and smoke transport. The smoke strength is indicated by the fire-impacted486

PM2.5 here. The percentage contribution from fire emissions to vertical hourly PM2.5487

peaks at 51% on 12 November (10 µg/m3 out of 19 µg/m3 at 1.8 km) and 77% on 13488

November (37 µg/m3 out of 48 µg/m3 at 1.0 km). The results suggest an increased fire489

contribution to the enhancement of ozone and particulate matter from day to day.490

Diurnal variability of process tendencies can be affected by the boundary layer evo-491

lution, transport changes over the course of the day, and photochemistry. To examine492

how the different processes vary over the day, we analyze the total and fire-impacted pro-493

cess tendencies for 7-9 LT, 11-13 LT, and 15-17 LT in Figure 14. The total PO3 clearly494

peaks in the middle of the day. The total advection term dominates in the late afternoon495

on 12 November and the middle of the day on 13 November when the largest inflow of496

ozone occurred. The total vertical mixing process is strongest when the PBL is built up497

in the middle of the day, and it dominates the surface ozone accumulation by dispers-498

ing considerable upper air ozone downward.499

The diurnal variability of the total tendency terms can help explain what processes500

drive the ozone increase from fire emissions during different times of the day. On 12 Novem-501

ber, transport process in the late afternoon drives the largest fire impacts on O3 accu-502

mulation (∼4 ppb/2 hrs near the surface), which is associated with the freshly emitted503

smoke plume discussed. Fire-impacted PO3 from morning to the middle of the day is504

not intensive, yet this local chemical reaction dominates the ozone increase in the ele-505

vated smoke plume (compared to little dynamical process tendencies). On 13 Novem-506

ber, the middle of the day drives the largest ozone increase (> 4 ppb/2 hrs), with high-507

est PO3 and inflow of O3 from fire emissions, as well as the strongest vertical mixing that508

dispersing O3 to the lower level. The combined effect of chemical reaction, transport,509

and vertical mixing on O3 accumulation is pronounced in the middle of the day when510

fire smoke impacted the boundary layer.511

4 Conclusions512

This case study for the 2016 Southeastern Wildfires illustrates the high spatio-temporal513

variations of smoke impacts on air quality at both regional and local scales. Integrat-514

ing vertical aerosol and O3 profiles with modeling and multi-platform observations can515

fill the knowledge gap at altitudes above ground to improve our understanding of the fire516

impacts on vertical aerosol and O3 distribution. In particular, the fire-impacted processes517

and fire-source contributions on 12 and 13 November are demonstrated by sensitivity sim-518

ulations and tendency diagnostics: (1) Fire emissions increase the vertical ozone concen-519
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trations downstream of the fires by affecting local net chemical ozone production, inflow520

and outflow of ozone, and vertical ozone exchange. The dominant process has daily, di-521

urnal, and vertical variability due to the PBL evolution, photochemistry, and smoke trans-522

port changes over the course of the day. On 12 November, local photochemical ozone pro-523

duction over Huntsville dominates the fire-impacted ozone enhancement in the elevated524

plume; while transport process dominates the boundary layer ozone accumulation in the525

late afternoon. (2) In this study, biomass burning is not a dominant source contribut-526

ing to the local chemical ozone production (positive PO3 is increased by up to 25% in527

the upper air), but can still play an important role in changing the O3 concentrations528

because of additional impacts of vertical mixing and advection processes. The combined529

effect of chemical and dynamical processes lead to an increase of O3 concentration by530

up to ∼8 ppb during daytime at lower altitude. In the upper air, the increased concen-531

tration is smaller than 8 ppb, but the relative contribution from fire emissions to the to-532

tal O3 increase can be dominant. Fire emissions contribute significantly to the vertical533

accumulation of PM2.5 (by up to 77%) during daytime. Besides the freshly emitted smoke534

plumes, relatively aged plumes emitted from previous day contribute considerably to the535

local PM2.5 accumulation.536

In this case, WRF-Chem can capture the general day-to-day AOD pattern, air qual-537

ity variations, vertical structure of aged plumes, and enhanced ozone lamina. Three main538

avenues for future work: (1) Discrepancies in fire emission estimations need to be con-539

sidered for model inputs. (OC+BC)/CO emission ratios in FINNv1.5, GFASv1.2, and540

QFEDv2.5_r1 fire inventories differ by a factor of 5.7 (in Gg per Gg) over the 2016 SEUS541

wildfire regions. A scaling ratio of 3.6 on aerosol emissions (derived from FINNv1.5 PM2.5),542

within the spanned range of the emission ratios in different inventories, can improve the543

modeled magnitude of surface PM2.5, vertical aerosol extinction, and AOD, but this was544

tested in only a single case study. (2) After the emission adjustment, underestimation545

of the densest plume in DIAL and highest AOD in MODIS is partly due to missing fire546

detections under clouds on 13 November. Adding extra satellite detections (e.g., FINNv2.2547

includes VIIRS information) or filling in the gap of missing fire counts in emission es-548

timation algorithms could be considered; (3) The density, continuity, and species of ver-549

tical measurements are relatively limited for modeling evaluation in this case study. Com-550

bining larger samples of vertical measurements (ground-based and airborne) with am-551

bient data will benefit regional-model evaluation in future fire studies.552
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Table 1. Key Configurations for the WRF-Chem v3.9.1 Simulations642

Simulations 1. CTRL (fire off) 2. FIREorig (fire on) 3. FIREcorr (fire on, correction)

Vertical 60 vertical levels from the surface to 50 hPa (vertical grids in Figure S1)

Horizontal D01: 16 km×16 km, D02: 4 km×4 km

Emissions Fire: FINNv1.5, Anthropogenic: NEI 2011 v2, Biogenic: MEGAN

IC&BC Met: NAM 12 km, Chemical: MOZART global

Chemistry MOZART gas, GOCART aerosol

Physics Goddard, RRTM, Morrison’s, Monin-Obukhov, Noah, YSU, G3, F-TUV
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Figure 1. (a) Map of 14 active wildfires (red triangles) during 11-14 November, 2016 (see
Table S1 for details). Here the names of wildfires are defined by the Monitoring Trends in Burn
Severity project (MTBS; www.mtbs.gov). (b) WRF-Chem inner domain (D02) and terrain height
(m). Black dots, blue dots, and magenta dot represent the 8 EPA PM2.5 sites, 6 EPA O3 sites,
and Huntsville station, respectively. The magenta line indicates the cross section of D02 across
Huntsville station used for Figure 11.
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Figure 2. MODIS aerosol optical depth (AOD) at 550 nm in SEUS region on 12, 13, and 14
November 2016, respectively. MODIS AOD is calculated by mean of Aqua AOD at 19 UTC (13
LT) and Terra AOD at 17 UTC (11 LT) (or 16 UTC (10 LT) on 13 November). Cross marker
indicates Huntsville location.

583

584

585

586

–21–



manuscript submitted to JGR-Atmospheres

Figure 3. (a) Time-height curtain of UAH CT25K ceilometer backscatter intensity in 12-14
November 2016 (courtesy of Kevin Knupp). Here UTC time minus 6 hours is local time. The
black triangle indicates the launch time of an ozonesonde. The black rectangle indicates the mea-
surement time of DIAL. (b) Time-height curtain of DIAL aerosol extinction coefficient at 299 nm
in 1:37-4:17 UTC on 14 November (19:37 to 22:17 LT 13 November). (c) Same time period with
(b), but for ceilometer backscatter intensity at 905 nm.
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Figure 4. Comparison of fire emission ratios for (OC+BC) versus CO between this work
and the different inventories. Daily emissions in the wildfire region are summed up within the
latitude and longitude boundary 33.46-38.17◦ N and 78.75-86.25◦ W (Figure S4). The black,
red, and blue dots represent daily emissions in 1-30 November 2016 from FINNv1.5, GFASv1.2,
and QFEDv2.5_r1 inventories, respectively. Unfilled aqua and orange squares represent daily
emissions in 8-14 November 2016 from FIREorig and FIREcorr runs, respectively. The gray dots
denote a scaling by 3.6 on the original FINNv1.5 aerosols for a reference.
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Figure 5. Comparison between 8 EPA sites (black line) and WRF-Chem hourly PM2.5 in 12-
14 November 2016 for control run CTRL (aqua), before the emissions adjustment FIREorig (red),
and after the emissions adjustment FIREcorr (brown). The control run is performed to show the
modeled PM2.5 without fire impacts. Pattern statistic can be seen in Figure S5. 8 EPA PM2.5
sites include: 1. Asheville, NC, 2. Mitchell, NC, 3. Swain, NC, 4. Greenville-Anderson-Mauldin,
SC, 5. Chattanooga, TN-GA, 6. Nashville-Davidson-Murfreesboro-Franklin, TN, 7. Macon, GA,
8. Decatur, AL.
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Figure 6. Modeled time-height curtain of aerosol extinction coefficient (at 300 nm) and ozone
before (FIREorig) and after (FIREcorr) the emissions adjustment in 1-5 UTC on November 14
(19-23 LT on 13 November), compared with DIAL aerosol extinction (at 299 nm) and ozone.
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Figure 7. Corrected Reflectance, Fires and Thermal Anomalies on 13 November 2016 from
(upper) Terra and Aqua/MODIS (Day and Night); (middle) NPP/VIIRS (Day, 375 m); (bottom)
NPP/VIIRS (Night, 375 m). Image source: NASA Worldview.
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Figure 8. FINNv1.5 daily burn area (acres) group by individual wildfire during 11-14 Novem-
ber 2016. The daily burn area is aggregated in the geospatial boundary box of each wildfire that
defined by MTBS database.
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Figure 9. Comparison between EPA (black line) and WRF-Chem ozone in 12-14 November
2016 for control run (light blue), before correction (red), and after correction (brown). Pattern
statistic can be seen in Figure S6. 6 EPA O3 sites include: 1. Great Smoky Mountains NP-Look
Rock, TN, 2. Cranberry, NC, 3. Sand Mountain, AL, 4. St.Andrews State Park, Panama City
Beach, FL, 5. Coweeta, NC, 6. South DeKalb, GA.
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Figure 10. Comparison between ozonesonde (black color) and WRF-Chem FIREcorr simu-
lation (red color) at 19 UTC (13 LT) on 12 November 2016. Ozone volume mixing ratio (O3),
relative humidity (RH), potential temperature (θ), horizontal wind speed (WS), and horizontal
wind direction (WD) are displayed respectively. The aqua lines represent the PBL heights from
sonde (solid line) and model (dashed line).
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Figure 11. (a) Modeled (FIREcorr) vertical sections of O3 mixing ratio (ppb) from west to
east in SEUS region across Huntsville latitude (34.72◦ N) at 19 UTC (13 LT) on 12 November
2016 at 0-4 km ASL altitude. Solid red line denotes the longitude of Huntsville. Arrows indicate
modeled direction and speed of horizontal wind. (b) Same as Figure a, but for fire-impacted
(FIREcorr minus CTRL) O3 mixing ratio. Note the colorbar range is different from Figure a. (c)
Same as Figure b, but for fire-impacted PM2.5 concentration (µg/m3).
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Figure 12. Same as Figure 11, but for 19 UTC (13 LT) on 13 November 2016.632
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Figure 13. (a) and (b) Process analysis of daytime-integrated vertical ozone tendencies and
daytime-averaged PM2.5 over Huntsville in simulations with (FIREcorr, solid lines) and without
(CTRL, dashed lines) fire emissions during 7-17 LT on 12 and 13 November, respectively. Pro-
cesses include chemical reactions (Chem, red), horizontal and vertical advections (AdvH+AdvZ,
blue), vertical mixing (Vmix, gray), and summed tendencies of all processes (SumTend, black).
PM2.5 is represented by green lines. (c) and (d) are same as Figure (a) and (b) but for fire-
impacted values, calculated by the difference between FIREcorr and CTRL simulations.
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Figure 14. Same as Figure 13, but present diurnal variability by integrating 2 hours in 7-9,
11-13, and 15-17 LT on 12 November (row 1, 3) and 13 November (row 2, 4), respectively.
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