A state estimate of the routes of the upper branch of the Atlantic Meridional Overturning Circulation

Louise Rousselet¹, Paola Cessi², and Gaël Forget³

¹Scripps Institution of Oceanography, University of California, San Diego ²Scripps Institution of Oceanography, University of California, San Diego ³Massachusetts Institute of Technology

November 21, 2022

Abstract

The origins of the upper branch of the Atlantic Meridional Overturning Circulation (AMOC) are traced with backward-in-time Lagrangian trajectories, quantifying the partition of volume transport between different routes of entry from the Indo-Pacific sector into the Atlantic. Particles are advected by a three-dimensional, incompressible velocity field from a recent release of "Estimating the Circulation and Climate of the Ocean' (ECCOv4). This time-variable velocity field is a dynamically consistent interpolation of over one billion oceanographic observations collected between 1992 and 2015. Of the 13.6 Sverdrups (1Sv = 10^6 m\$^3\$/s) of upper and intermediate water flowing northward across 6\mdeg S, 15% enters the Atlantic from Drake Passage, 35% enters from the straits between Asia and Australia, termed the Indonesian Throughflow, and 49% comes from the region south of Australia, termed the Tasman Leakage. The salinity budget shows that the AMOC exports freshwater out of the Atlantic.

A state estimate of the routes of the upper branch of the Atlantic **Meridional Overturning Circulation**

Louise Rousselet¹, Paola Cessi^{1*}, Gael Forget²

¹Scripps Institution of Oceanography, University of California, San Diego, USA ²Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Key Points: 6

1

2

3

5

12

7	•	The upper limb of the meridional overturning circulation originates primarily from the
8		Tasman Leakage and the Indonesian Throughflow
9	•	97% of the upper limb of the meridional overturning circulation enters the Atlantic from
10		the Agulhas region, around the tip of South Africa
11	•	Because its upper limb is saltier than its lower limb, the overturning exports freshwa-
12		ter out of the Atlantic basin.

^{*}Paola Cessi, Scripps Institution of Oceanography, University of California, San Diego,

La Jolla, CA 92039-0213, USA

Corresponding author: Paola Cessi, pcessi@ucsd.edu

13 Abstract

The origins of the upper branch of the Atlantic Meridional Overturning Circulation (AMOC) 14 are traced with backward-in-time Lagrangian trajectories, quantifying the partition of volume 15 transport between different routes of entry from the Indo-Pacific sector into the Atlantic. Par-16 ticles are advected by a three-dimensional, incompressible velocity field from a recent release 17 of "Estimating the Circulation and Climate of the Ocean" (ECCOv4). This global time-variable 18 velocity field is a dynamically consistent interpolation of over one billion oceanographic observations collected between 1992 and 2015. Of the 13.6 Sverdrups $(1Sv = 10^6 \text{ m}^3/\text{s})$ of up-20 per and intermediate water flowing northward across 6°S, 15% enters the Atlantic from Drake 21 Passage, 35% enters from the straits between Asia and Australia, termed the Indonesian Through-22 flow, and 49% comes from the region south of Australia, termed the Tasman Leakage. The 23

salinity budget shows that the AMOC exports freshwater out of the Atlantic.

Plain Language Summary

Particle trajectories in the upper limb of the Atlantic Meridional Overturning Circula-26 tion (AMOC) are traced from the equatorial Atlantic to different sections of origin in the South-27 ern Ocean. The three-dimensional velocity moving the particles is an estimate combining over 28 a billion of observations with a global ocean model that conserves mass, momentum, temper-29 ature, salinity and sea-ice over a regular grid. 97% of the particles enter the Atlantic from the 30 tip of South Africa, as a relatively warm and salty water mass, while the remaining 3% en-31 ters from the tip of South America cold and fresh. Because the upper limb of the AMOC en-32 tering the Atlantic is saltier than the exiting lower limb, this estimate shows that the AMOC 33 might collapse given appropriate freshwater perturbations. 34

35 **1 Introduction**

The meridional overturning circulation (MOC) of the Ocean is a key component of Earth's climate system. The Atlantic-sector MOC transports heat northwards at all latitudes (Hsiung, 1985), modulating the position of the Inter Tropical Convergence Zone (Kang et al., 2008).

The MOC includes northward flow of intermediate and upper waters from the Southern Ocean into the Atlantic, which are eventually transformed into North Atlantic Deep Water (NADW) in the Labrador and Nordic Seas. NADW then flows southward at depth upwelling in the Southern Ocean to close the *mid-depth cell* (red contours in figure 1). An equivalent middepth cell is absent in the Indo-Pacific sector (Cessi, 2019).

Water that has upwelled from the lower, southward branch of the mid-depth cell in the 44 Indo-Pacific sector (south of 30°S) can return to the North Atlantic through two pathways: the 45 warm route, i.e. westward and northward around the tip of South Africa (Gordon, 1986), or the 46 cold route, i.e. eastward and northward around Drake Passage (Rintoul, 1991). The quantita-47 tive contributions of these two routes differ among estimates, but this partition is important 48 for the transport of heat and freshwater into the Atlantic. Water that enters the South Atlantic 49 through the warm route is warm and salty, while that entering through the cold route is fresh 50 and cold. Many model simulations have shown that if the cold route prevails, the MOC is ro-51 bust to freshwater perturbation in the high latitudes of the North Atlantic and Arctic. Vice versa, 52 if the exchange is mostly via the warm route, then North Atlantic freshwater perturbations shut 53 down the MOC (de Vries & Weber, 2005; Beal et al., 2011; Drijfhout et al., 2011). 54

Several observational and numerical studies have estimated the relative contribution of
 the two routes. Most observational studies support the cold water route (Schmitz Jr, 1995; Mac donald, 1998; Sloyan & Rintoul, 2001; Talley, 2013), while most numerical studies and one
 observational analysis favor the warm water route (Speich et al., 2001; Holfort & Siedler, 2001;
 Donners & Drijfhout, 2004; Speich et al., 2007; Rodrigues et al., 2010; Cessi & Jones, 2017;
 Rühs et al., 2019). Donners and Drijfhout (2004) illustrate the difficulty of establishing the

origin of the MOC's upper branch using inverse models with sparse observations at hydrographic sections: this method applied to the output of an eddy-resolving computation leads to a qual-

itatively different partition between routes than that obtained with Lagrangian analysis.

⁶⁴ A major difficulty with identifying routes of the upper branch of the MOC is that inter-⁶⁵ basin connection is mediated by currents in the Southern Ocean, which are dominated by a ⁶⁶ recirculating component associated with the Antarctic Circumpolar Current (ACC) (Forget & ⁶⁷ Ferreira, 2019). The ACC recirculates about 50 Sv (1 Sv = $10^6 \text{ m}^3/\text{s}$) in the top 1000 meters ⁶⁸ of the water column, while the upper branch of the MOC carries about 14Sv, a small fraction ⁶⁹ of the recirculating transport (Cessi, 2019).

To overcome this difficulty, we quantify the pathways of intermediate water from the Indo-70 Pacific to the Atlantic using Lagrangian analysis. The method consists of tracking particle tra-71 jectories backwards in time from an "exit" section in the South Atlantic (here 6°S) to specific 72 "entry" sections. The origin of particle trajectories is identified by the backward-in-time first 73 passage through one of the "entry" sections. The quantification of mass transport with parti-74 cle trajectories is performed by initially populating the exit section with a large number of par-75 ticles whose concentration is proportional to the local transport. Each particle carries a small 76 amount of transport that is conserved following the trajectory because the velocity vector field 77 conserves mass (volume). This type of calculations has been successfully performed using ve-78 locity fields from ocean general circulation models (Döös, 1995; Speich et al., 2001; Rühs et 79 al., 2019), but not with global observations. To estimate Lagrangian transport, it is necessary 80 to have velocities interpolated over a global grid, tightly constrained by observations, while 81 strictly conserving mass. A product that satisfies these requirements is the three-dimensional, 82 time-variable, incompressible velocity from "Estimating the Circulation and Climate of the Ocean" 83 (ECCOv4) (Forget, Campin, et al., 2015; Fukumori et al., 2017). 84

The modern measure of the MOC is given in terms of the "residual" transport within isopycnal layers, rather than depth layers. The residual overturning circulation measures the (potential) density transport, rather than the volume transport: it is more meaningfully associated with the transport of tracers than is the overturning in depth coordinates (Young, 2012). Specifically, the residual overturning circulation captures the transport effected not only by the average meridional velocity but also by waves, eddies, and gyres with zero time- or zonally averaged velocity.

In models that do not fully resolve mesoscale processes, the eddy-flux of tracers needs 92 to be parametrized. The parametrized eddy-transport is typically expressed in terms of isopy-93 cnal diffusion and a "bolus" velocity related to the slope of isopycnals (Redi, 1982; Gent & 94 McWilliams, 1990; Griffies, 1998). In these models the appropriate way to calculate the resid-95 ual transport of the MOC is to use the sum of Eulerian velocity plus the bolus velocity, in-96 tegrated over density layers rather than depth layers. In figure 1, the time-averaged and lon-97 gitudinally integrated MOC is calculated in density coordinates and latitude, using σ_2 , i.e. po-98 tential density referred to 2000 decibars, as the vertical coordinate. Accordingly, the veloc-99 ity used to calculate Lagrangian trajectories is the sum of Eulerian velocity plus the bolus ve-100 locity in all three dimensions. 101

¹⁰² 2 Calculation of Lagrangian trajectories

The velocities used in the calculation of Lagrangian trajectories are the monthly climatology available in the release 3 of ECCOv4 on the native model grid at 1° horizontal resolution (the *Lat-Lon-Cap-*90 grid as defined in Forget, Campin, et al. (2015)) and with 50 vertical levels (Forget, Campin, et al., 2015; Fukumori et al., 2017). These velocities derive from the dynamically-consistent assimilation of over one billion observations for the period 1992-2015 into a primitive-equations ocean-sea-ice model that satisfies exact conservation laws for mass, temperature, salinity and sea-ice.

Figure 1. Residual meridional overturning circulation vertically integrated above surfaces of constant σ_2 , then time averaged and zonally integrated in the Southern Ocean south of 37°S, and in the Atlantic sector north of 37°S, as a function of latitude (abscissa) and σ_2 (ordinate). The ordinate is remapped into a depth-like coordinate ζ (latitude, σ_2) which represents the time and zonal averaged (over all longitudes) depth of each σ_2 surface. The ECCO4 (release 3) horizontal velocity (Eulerian+bolus), temperature and salinity reanalysis fields are used. Positive values (red) indicate clockwise circulation. The contour interval is 2 Sv (1 Sv = 10^6 m^3 /s). The thick black line marks the depth ζ (latitude, σ_2 =36.6 kg/m³), which approximately divides the upper and lower branches of the residual MOC.

110 111

The assimilated data consist of satellite products (including along-track altimetry, mean dynamic topography, remotely sensed ocean bottom pressure, sea-surface temperature, sea-ice concentration and surface salinity), and temperature and salinity profiles collected in-situ (in-112 cluding from all Argo floats). To minimize misfit between the model and the observations, the 113 following model parameters are optimized (Forget, Campin, et al., 2015; Fukumori et al., 2017): 114 initial conditions in January 1992, air-sea interactions throughout 1992-2015, diapycnal and 115 isopycnal tracer diffusion rates, and the parameterized advective effect of mesoscale eddies (Gent 116 & McWilliams, 1990; Forget, Ferreira, & Liang, 2015). Because the optimization uses the ad-117 joint and forward versions of the model, for fifty iterations, the adjustment of the control pa-118 rameters can be effected and beneficial on a time-scale of hundreds of years, even though the 119 data record is only 24 years long (Forget, Ferreira, & Liang, 2015). 120

Many studies have looked at various measures and methods to assess the ECCOv4 estimate, which collectively affirm its value for understanding both the Ocean climatology and its variability from observations (Forget, Campin, et al., 2015; Fukumori et al., 2017; Forget & Ponte, 2015; Forget & Ferreira, 2019; Jackson et al., 2019). The estimate of the MOC according to ECCOv4 is in broad agreement with several independent (i.e. not assimilated) estimates [see Table 1 in Cessi (2019)]. The ACC transport at Drake Passage in ECCOv4 is 155 Sv which is intermediate between the two recent independent 'in-situ' estimates of Cunningham et al. (2003) (134 ± 11 Sv) and Donohue et al. (2016) (173 ± 11 Sv), and in the middle of the estimates compiled by Uotila et al. (2019).

To determine the Lagrangian trajectories, the ECCOv4 climatological monthly veloci-130 ties are interpolated in space using an incompressibility-preserving, transport-weighted algo-131 rithm (Döös, 1995; Blanke & Raynaud, 1997) and advected backward in time using a Runge-132 Kutta fourth-order scheme for 2011 years (more details in the supplemental material). Because 133 the climatological monthly velocities are one-year periodic, the annual cycle can be repeated 134 as many times as needed. Particles are initialized every month for one year (for a total of 63482 135 particles) at 6°S in the South Atlantic, at depths above the $\sigma_2 = 36.6 \text{kg/m}^3$ surface: this de-136 fines the "exit section". The $\sigma_2 = 36.6$ kg/m³ surface marks the lower boundary of the upper, 137 northward branch of the MOC. Each particle carries about 2×10^{-4} Sv so that the number 138 of particles per each grid-face on the section is proportional to the transport of that grid-face 139 (the exact transport of each particle is recorded). Because the three-dimensional velocity vec-140 tor is exactly incompressible, the transport of each particle is conserved following the trajec-141 tory (Döös, 1995; Blanke & Raynaud, 1997). This conservation can be used to quantify the 142 transport through different "entry" sections, determining the origin of waters that feed the up-143 per branch of the MOC. The place and time of origin is defined as being the first passage from 144 the exit to one of the four entry sections going backward in time. 145

The entry sections at which we measure the first-passage are at Drake Passage (DP, at 146 66°W), at the Indonesian Throughflow (IT, at 116°E), at the Tasman leakage region (TL, at 147 116°E) and in the South Atlantic at 6°S for depths below the $\sigma_2 = 36.6 \text{ kg/m}^3$ surface, i.e. 148 in the lower limb of the MOC (cf. figure 2). The northward transport at the "exit" section is 13.64 Sv. The particles are followed backward in time for 2011 years, after which all but 0.3% 150 151 have moved through one of the entry sections. The region encompassed by the entry and exit sections has a net evaporation of 0.44Sv, but our procedure does not allow particles to exit or 152 enter the air-sea boundary: instead particles that try to escape the surface are reinjected into 153 the first model level. The computation was repeated for 512 years with double the number of 154 particles (126964), and the transport values at the exit region differ at most by 0.2% over that 155 time from those with 63482 particles. Henceforth, we present the result with 63482 particles, 156 which we trust to be robust. By convention, the particle trajectories and their transport are de-157 scribed as forward-in-time in the following sections. 158

3 Routes of the upper limb of the MOC

The MOC upper limb pathways are quantified by considering the subsets of trajectories 160 connecting the exit section (6° S) with each of the entry sections. Figure 2 shows the trans-161 port streamfunction (contours) obtained by summing vertically the particles in bins of $1^{\circ} \times$ 162 1° , weighted by their transport (magnitude and sign). The sign convention for the transport 163 streamfunction is for forward-in-time trajectories. The color shading shows the depth of the 164 $\sigma_2 = 36.6 \text{kg/m}^3$ surface, averaged over the 24-years period covered by ECCOv4. The trans-165 port streamfunction flows around the edge of the Southern Ocean supergyre, whose shape is 166 highlighted by the depth contours of the $\sigma_2 = 36.6 \text{kg/m}^3$ (Speich et al., 2001, 2002, 2007). All trajectories converge to the region separating the subtropical and tropical gyres in the South 168 Atlantic before reaching 6°S. The net transport at the exit section is composed of: 169

- 170 **DP** 2.0 Sv across Drake Passage at 66°W;
- IT 4.8 Sv across the Indonesian Throughflow at 116°E;
- TL 6.6 Sv at 130°E, south of Australia (Tasman Leakage);
- ¹⁷³ **6°S** 0.2 Sv at 6°S flowing southward at depths below the $\sigma_2 = 36.6 \text{ kg/m}^3$ surface.
- Trajectories that enter through DP flow around the edge of the subtropical gyres of the
- ¹⁷⁵ South Atlantic and of the South Indian Ocean before moving northward across the exit sec-
- tion at 6°S, so that a large fraction of the particles entering DP (80% or 1.6 Sv) subsequently
- go through the Agulhas current region at the tip of South Africa. This pathway has been termed

the "indirect cold route" (Gordon et al., 1992) and has a typical transit time longer than 25 years, shown by the secondary peaks in the distribution on the bottom panel of figure 3. The direct cold route, which avoids the Agulhas Current, is a small fraction (20% or 0.4Sv), with typical transit times of 12 years.

Most trajectories come through the Tasman Leakage and the Indonesian throughflow, all 182 steered by the flow around the outer edge of the supergyre. Interestingly, the TL entry sec-183 tion carries more transport (6.6Sv) than the IT (4.8Sv), while the opposite is true in previous 184 analyses (Speich et al., 2001). Our estimate of the median transit time (see figure 3) is 30 years 185 for DP and IT, and 33 years for TL. Both median transit times are substantially shorter than 186 those of Speich et al. (2001), who found 52 years for DP and IT, and 81 years for TL. Fur-187 thermore, the e-folding time of the transit-time distribution across TL is shorter (30 years) than 188 the e-folding time across IT (47 years). In all cases, there are long tails in the transit-time dis-189 tributions, indicating extensive recirculations. 190

The total transport entering the South Atlantic from the east at 22°E (the tip of South 191 Africa) carries 97% of the transport, while DP through the direct cold route only carries 3% 192 of the MOC. These results should be compared with the partition found in the analysis of an 193 eddy-resolving simulation (Rühs et al., 2019), which finds a 60-40% split between these two 194 routes, i.e. ten times what we find for the direct cold route. One reason for this difference is 195 that ECCOv4 has a stronger climatological eastward transport of the Antarctic Circumpolar 196 Current at Drake passage (155 Sv) than the eddy-resolving, non-assimilative model simula-197 tion of Rühs et al. (2019) (116 Sv) – allowing ECCOv4 to carry trajectories that cross DP away 198 from the South Atlantic more efficiently, and perhaps more realistically. 199

4 Thermodynamic properties of the upper limb of the MOC

The thermodynamic characteristics at the entry regions differ markedly between DP, IT 201 and TL. The right panels in figure 4 show the potential temperature-salinity $(\theta - S)$ volumet-202 ric diagram (colored points, weighted by transport), for the particles at three entry regions, plus 203 at the Agulhas section at 22°E (boxed inset in bottom right panel). The water at DP is cold 204 (mean temperature = 2.3° C) and fresh (mean salinity = 34.3 PSU); the water at the IT is 205 warm (mean temperature = 17.2°) and slightly saltier (mean salinity = 34.4 PSU); the wa-206 ter at TL is intermediate in temperature between DP and IT (mean temperature $= 8.7^{\circ}$ C) and 207 saltier (mean salinity = 34.6 PSU). The TL water includes a fraction which shares the prop-208 erties originating at the Drake Passage, i.e. cold and relatively fresh: this water is associated 209 with the outer streamlines (positive near zero values), which flow eastward in the southern re-210 gion of the ACC and then turn around to enter the TL section. 211

As in the original "warm-cold route" nomenclature (Gordon, 1986), there is a substan-212 tial difference in temperature between the waters originating in DP and those originating in 213 IT and TL, while the distinction in salinity is not as pronounced. However, by the time the 214 particles reach 6° S the differences between these characteristics are erased and the three groups are undistinguishable in $\theta - S$ space, as found in Rühs et al. (2019). This is because all tra-216 jectories eventually merge into the narrow South Equatorial Current and North Brazil Current 217 before reaching 6°S. This merger facilitates property transformations along isopycnals. Prop-218 erties are also transformed through diapycnal mixing and air-sea interaction across isopycnals. 219 Furthermore, the IT, TL and "indirect-route" DP waters are all eventually squeezed into the 220 narrow Agulhas Current system, from which they emerge as a single water mass in the South 221 Atlantic, with a tight θ – S relation at 22°E (the boxed inset in the bottom right panel of fig-222 ure 4), with an average salinity of 35 PSU. 223

The bulk of particles arriving at 6°S have a salinity near 35.6 PSU which is larger than any of the water masses at their sections of origin, or at 22°E. This requires loss of freshwater in the journey to and across the South Atlantic in this region that loses a total of 0.44 Sv of freshwater at the surface. The net surface evaporation is consistent with an increase in La-

Figure 2. Transport streamfunction calculated from particle trajectories (contours): red contours are 4Sv apart; the black solid contour is -1Sv, the black dotted contour is -1.5Sv and the black dashed contour is -1.75Sv. The color shading shows the depth (in m) of the time-averaged σ_2 =36.6kg/m³. The exit section at 6°S is marked by black x, and the entry sections are at Drake passage (66°W green), at Tasman Leakage (130°E magenta), and Indonesian Throughflow (116°E dark purple). The transport at each entry section is marked in the corresponding color. The transport at the exit section is 13.6Sv. After 2011 years there are 0.04Sv still recirculating in the region bounded by the four sections, and 0.2Sv have entered 6°S from the North below σ_2 =36.6kg/m³.

grangian transport of salinity between the entry and exit regions of 16.6 PSU Sv, which is equivalent to a mass evaporation of 0.46 Sv at an average surface salinity of 36 PSU.

While the particles become saltier from their region of origin at DP, IT and TL, the par-230 ticles from DP and TL become sufficiently warmer to overcome the density increase due to 231 salinification. The net result is that, with the exception of the particles originating in the IT, 232 the particles at 6° S become less dense than at their origin. The particles originating at the IT 233 experience a general cooling as they pass through the Agulhas Current system, only to be warmed 234 up again in the South Atlantic. Typical trajectories from the entry regions of TL, IT, DP (in-235 cluding both direct and indirect route) to the exit region are shown in the supplemental ma-236 terial. The animations provide a visualization of both time scales and pathways, while also re-237 vealing salinity and potential temperature transformations along the trajectories. 238

The particles entering the South Atlantic through the "warm route" have an average salinity of 35 PSU at 22°E (the Agulhas region), i.e. slightly saltier than the average salinity of NADW, which is 34.9 PSU (as quantified by the average salinity water at 6°S with densities larger than $\sigma_2 = 36.6$ kg/m³). The upper branch of the MOC gets saltier as it flows northward,

Figure 3. Distribution of transit times from the exit to each entry section weighted by transport. The inset also shows the median, the 90th percentile and the e-folding time-scales fitted to the distributions between 9 and 150 years.

reaching 35.6 PSU at 6°S, so that it is saltier than NADW at both 30°S and 6°S, thus exporting freshwater out of the North Atlantic sector.

245 **5** Conclusions

Based on a state estimate which is a close fit to most available global data constraints, we evaluate the routes and thermohaline properties of the upper branch of the MOC using a Lagrangian analysis using the three-dimensional velocities of ECCOv4. We find that the upper branch of the MOC receives its transport primarily from the region south of Australia (Tasman Leakage), followed by a close second contribution at the Indonesian Throughflow, and a distant third contribution from Drake Passage.

Eighty percent of the particle transport through 6°S originating from Drake Passage goes through the indirect cold route. This tortuous path results in a loss of identity in θ -S space. Indeed all three contributions have essentially the same properties when entering the South At-

Figure 4. Particle transports binned in potential temperature/salinity space following particles at the entry (right) and exit (left) sections. Particles entering from Tasman Leakage are in the top row, from Indonesian Throughflow in the middle row, and from Drake passage in the bottom row. The boxed inset in the bottom right panel shows the θ -*S* relation of the particles crossing the Agulhas section at 22°E, south of Africa. This entry section carries 13.2 Sv (97% of the exit transport) compressed in a tight θ -*S* relation, regardless of the upstream entry point (DP, IT, or TL). The dashed lines show contours of constant σ_2 .

lantic, casting doubts on the ability to recognize the origin of this transport through compar-ative analysis of water masses, as remarked in Rühs et al. (2019).

We demonstrate that the MOC exports freshwater out of the North Atlantic sector. This is important because simple models of the MOC indicate that when the MOC exports freshwater out of the Atlantic, the salt-advection feedback is operating, leading to potential bistability of the overturning circulation (Stommel, 1961; de Vries & Weber, 2005; Beal et al., 2011; Drijfhout et al., 2011).

262 Acknowledgments

Support by the National Science Foundation under Grant OCE-1634128 and by the National 263 Aeronautic and Space Administration under grant 80NSSC20K0796 is gratefully acknowledged. 264 Computational resources were provided by the Extreme Science and Engineering Discovery 265 Environment (XSEDE) on Stampede2 at the Texas Advanced Computing Center through al-266 location TG-OCE130026. XSEDE is supported by the National Science Foundation grant num-267 ber ACI-1548562. The ECCOv4 data can be downloaded from ftp://ecco.jpl.nasa.gov/ 268 Version4/Release3/, while the MITgcm FLT package can be downloaded from https:// 269 github.com/MITgcm/MITgcm/tree/master/pkg/flt. 270

271 **References**

291

292

293

294

295

	. others
--	----------

- (2011). On the role of the Agulhas system in ocean circulation and climate. *Nature*,
 472, 429.
- Blanke, B., & Raynaud, S. (1997). Kinematics of the Pacific Equatorial Undercurrent:
 An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27(6),
 1038-1053.
- Cessi, P. (2019). The Global Overturning Circulation. Annual review of marine science, 11, 249–270.
- Cessi, P., & Jones, C. (2017). Warm-route versus cold-route interbasin exchange in the
 meridional overturning circulation. J. Phys. Oceanogr., 47, 1981–1997.
- ²⁸² Cunningham, S., Alderson, S., King, B., & Brandon, M. (2003). Transport and variabil ²⁸³ ity of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res.: Oceans,
 ²⁸⁴ 108(C5).
- de Vries, P., & Weber, S. L. (2005). The Atlantic freshwater budget as a diagnostic for
 the existence of a stable shut down of the meridional overturning circulation. *Geophys. Res. Lett.*, 32, L09606.
- Donners, J., & Drijfhout, S. (2004). The Lagrangian view of South Atlantic interocean
 exchange in a global ocean model compared with inverse model results. J. Phys.
 Oceanogr., 34, 1019–1035.
 - Donohue, K., Tracey, K., Watts, D., Chidichimo, M. P., & Chereskin, T. (2016). Mean Antarctic Circumpolar Current transport measured in Drake Passage. *Geophys. Res. Let.*, 43, 11–760.
 - Döös, K. (1995). Interocean exchange of water masses. J. Geophys. Res., 100, 13499– 13514.
- Drijfhout, S., Weber, S. L., & van der Swaluw, E. (2011). The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. *Clim. Dyn.*, 37, 1575-1586.
- Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: an integrated framework for non-linear inverse modeling and
- 301global ocean state estimation.Geoscientific Model Development, 8(10), 3071–3104.302Retrieved from http://www.geosci-model-dev.net/8/3071/2015/doi:30310.5194/gmd-8-3071-2015
- Forget, G., & Ferreira, D. (2019). Global ocean heat transport dominated by heat export from the tropical Pacific. *Nature Geoscience*. Retrieved from https://doi.org/10

306	.1038/s41561-019-0333-7 doi: 10.1038/s41561-019-0333-7
307	Forget, G., Ferreira, D., & Liang, X. (2015). On the observability of turbulent transport rates
308	by argo: supporting evidence from an inversion experiment. Ocean Sci., 11, 839-853.
309	Forget, G., & Ponte, R. M. (2015). The partition of regional sea level variability. <i>Progress in</i>
310	Oceanography, 173–195.
311	Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., & Ponte, R. M. (2017). Ecco
312	version 4 release 3 (Tech. Rep.).
919	Gent P & McWilliams I C (1990) Isonycnal mixing in ocean circulation models I Phys
313	Oceanogr 20 150-155 doi: 10 1175/1520-0485(1990)020<0150:IMIOCM>20 CO:
314	2
313	Gordon A. I. (1986) Interocean exchange of thermocline water. I. Geonbus Res. 91
310	5037-5046
317	Cordon A I Waiss R E Smathia W M & Warner M I (1002) Thermoaline and in
318	termediate water communication between the south etlentic and indian accord. <i>L</i> Cae
319	news Res 07 7223 7240
320	Phys. Res., 97, 7225-7240.
321	Grinies, S. M. (1998). The Gent-Mc williams skew liux. J. Phys. Oceanogr., 28(5), 851-
322	
323	Holfort, J., & Siedler, G. (2001). The meridional oceanic transports of heat and nutrients in
324	the South Atlantic. J. of Phys. Oceanogr., 31, 5–29.
325	Hsiung, J. (1985). Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr.,
326	15, 1405-1413.
327	Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino, D., Zuo, H.
328	(2019). The mean state and variability of the north atlantic circulation: A perspec-
329	tive from ocean reanalyses. J. Geophys. Res.: Oceans, 124(12), 9141-9170. doi:
330	10.1029/2019JC015210
331	Kang, S. M., Held, I. M., Frierson, D. M. W., & Zhao, M. (2008). The response of the ITCZ
332	to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Cli-
333	mate, 21, 3521-3532.
334	Macdonald, A. M. (1998). The global ocean circulation: A hydrographic estimate and re-
335	gional analysis. Progress in Oceanography, 41(3), 281–382.
336	Redi, M. H. (1982). Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr.,
337	12, 1154-1158. doi: 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
338	Rintoul, S. R. (1991). South Atlantic interbasin exchange. J. Geophys. Res., 96, 2675-2692.
339	Rodrigues, R. R., Wimbush, M., Watts, D. R., Rothstein, L. M., & Ollitrault, M. (2010).
340	South Atlantic mass transports obtained from subsurface float and hydrographic data.
341	J. of Mar. Res., 68, 819–850.
342	Rühs, S., Schwarzkopf, F. U., Speich, S., & Biastoch, A. (2019). Cold vs. warm water route
343	- sources for the upper limb of the atlantic meridional overturning circulation revisited
344	in a high-resolution ocean model. <i>Ocean Science</i> , 15(3), 489–512. Retrieved from
345	https://www.ocean-sci.net/15/489/2019/ doi: 10.5194/os-15-489-2019
346	Schmitz Jr, W. J. (1995). On the interbasin-scale thermohaline circulation. <i>Reviews of Geo-</i>
347	physics, 33(2), 151–173.
348	Slovan, B. M., & Rintoul, S. R. (2001). Circulation. renewal. and modification of Antarctic
349	Mode and Intermediate Water, J. Phys. Oceanogr., 31(4), 1005-1030.
350	Speich, S., Blanke, B., & Cai, W. (2007). Atlantic meridional overturning circulation and the
351	southern hemisphere supergyre. <i>Geophys. Res. Lett</i> 34 1.23614 doi: doi:10.1029/
352	2007GL031583
252	Speich S Blanke B de Vries P Drijfhout S Döös K Ganachaud A & Marsh R
353	(2002) Tasman leakage: A new route in the global ocean conveyor belt <i>Coonhys</i>
355	R_{PS} Lett 29(10) 55-1-55-4
000	Sneich S Blanke B & Madec G (2001) Warm and cold water routes of an accomptant
356	mobaline conveyor belt <i>Geophys Ros Lett</i> 28 311 314
357	Stommel H (1961) Thermohaline convection with two stable regimes of flow Tallies 12
350	224-230
000	

- Talley, L. D. (2013). Closure of the global overturning circulation through the Indian, Pa cific, and Southern Oceans: Schematics and transports. *Oceanography*, 26(1), 80-97.
 doi: 10.5670/oceanog.2013.07
- Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A., Bricaud, C., ... others
 (2019). An assessment of ten ocean reanalyses in the polar regions. *Clim. Dyn.*, 52, 1613–1650.
- Young, W. R. (2012). An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42(5), 692-707.

Supporting Information for "A state estimate of the routes of the upper branch of the Atlantic Meridional Overturning Circulation"

Louise Rousselet¹, Paola Cessi¹ *, Gael Forget²

¹Scripps Institution of Oceanography, University of California, San Diego, USA

²Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Contents of this file

- 1. Text S1 to S4 $\,$
- 2. Figure S1

Additional Supporting Information (Files uploaded separately)

1. Captions for Movies S1 to S2 $\,$

^{*}Paola Cessi, Scripps Institution of

Oceanography,

University of California, San Diego,

La Jolla, CA 92039-0213, USA

X - 2

Introduction

A description of the algorithm and software used for the Lagrangian trajectories is provided, together with two animations of four typical particle trajectories.

Particle-trajectory calculation

ECCOv4 provides the three-dimensional velocity field on a gridded mesh in latitude, longitude and depth for the 24 years of the assimilated period. We use the monthly climatological average repeated for 2011 years over the annual period. In order to preserve the conservation properties of the gridded ECCOv4 fields, and in particular the incompressibility of the velocity, it is important to use the fields on the native curvilinear grid. The global domain of ECCOv4 is decomposed in 13 tiles, and particle trajectories must be exchanged across the tiles' boundaries (Forget et al., 2015). To our knowledge, the only code that is capable of seamlessly exchanging particles across tiles on the three dimensional ECCOv4 curvilinear grid is the FLT package within the MITgcm suite and this is what we used (Campin et al., 2019). Additionally, the FLT package is computationally efficient on the multi-processor, multi-node supercomputer available to us.

The spatial interpolation algorithm for the velocity field was modified according to Döös (1995), to *linearly* interpolate the *transport* associated with each velocity component on the staggered grid used by ECCOv4: in this way incompressibility of the velocity is guaranteed at every point along the particle trajectory. With velocity incompressibility satisfied exactly, particles never reach the land points where the velocity vanishes. Unlike Döös (1995), we use a 4th order Runga-Kutta scheme to time-step the trajectories; this introduces a small error in the time-integration, without violating incompressibility.

Particle-trajectory animations

In figure S1 and in the associated animations, four particles are tracked from their initial entry in one of the sections to the exit section at 6°S in the Atlantic. The particles are chosen as they best represent: (i) the average temperature and salinity at each entry section (i.e. ± 0.2 from mean T°C and ± 0.1 PSU from mean salinity); (ii) the median transit times shown in Figure 2 (i.e. ± 15 years from T50%). Particle entering through Tasman Leakage and Indonesian Throughflow are shown respectively with a diamond and a circle. Both "direct" and "indirect" cold routes from Drake Passage are shown by two different trajectories (stars). In addition to the position, which is shown every 3 months, the color of the particle denotes its temperature or salinity at that position, allowing to visualize the thermodynamic transformations occurring along each trajectory. The temperature and salinity variations over time (along trajectories) are also displayed in the bottom right inset. The bottom left legend indicates the arrival time of each particle at 6°S.

Movie S1. Positions of four particles along typical trajectories from the entry sections are shown every 3 months with different symbols: stars denote particles entering at DP, diamonds are for entry at TL, and dots are for entry at IT. The color of the symbols denotes salinity (in PSU). The salinity evolution for each particle is shown in the bottom right inset. The bottom left legend indicates the arrival time of each particle at 6°S.

Movie S2. Positions of four particles along typical trajectories from the entry sections are shown every 3 months with different symbols: stars denote particles entering at DP, diamonds are for entry at TL, and dots are for entry at IT. The color of the symbols denotes potential temperature (in $^{\circ}$ C). The temperature evolution for each particle is shown in the bottom right inset. The bottom left legend indicates the arrival time of each particle at 6°S.

References

- Campin, J.-M., Heimbach, P., Losch, M., Forget, G., edhill3, Adcroft, A., ... McRae,
 A. T. T. (2019, October). *Mitgcm/mitgcm: checkpoint67m.* Zenodo. Retrieved from https://doi.org/10.5281/zenodo.3492298 doi: 10.5281/zenodo.3492298
- Döös, K. (1995). Interocean exchange of water masses. J. Geophys. Res., 100, 13499–13514.
- Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. *Geoscientific Model Development*, 8(10), 3071–3104. Retrieved from http://www.geosci-model-dev.net/8/3071/2015/ doi: 10.5194/ gmd-8-3071-2015

Figure S1. Positions of four particles along typical trajectories from the entry sections are shown every 3 months with different symbols: stars denote particles entering at DP, diamonds are for entry at TL, and dots are for entry at IT. The color or the symbols denote salinity (in PSU) in the top panel and potential temperature in the bottom panel (in $^{\circ}$ C). The salinity and temperature evolution for each particle is shown in the bottom right inset. The bottom left legend indicates the arrival time of each particle at 6°S.

June 1, 2020, 2:18pm