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Abstract

Since the 1960s, carbon cycling in the high-latitude northern forest (HLNF) has experienced dramatic changes: most of the

forest is greening and net carbon uptake from the atmosphere has increased. During the same time period, the COseasonal cycle

amplitude (SCA) has almost doubled. Disentangling complex processes that drive these changes has been challenging. In this

study, we substitute spatial sensitivity to temperature for time to quantify the impact of temperature increase on Gross Primary

Production (GPP), total ecosystem respiration (TER), the fraction of Photosynthetic Active Radiation (fPAR), and the resulted

contribution of these changes in amplifying the COSCA over the HLNF since 1960s. We use the spatial heterogeneity of GPP

inferred from solar-induced chlorophyll Fluorescence in combination with net ecosystem exchange (NEE) inferred from column

COobservations made between 2015 and 2017 from NASA’s Orbiting Carbon Observatory -2. We find that three quarters of

the spatial variations in GPP and in the fPAR absorbed by the HLNF can be explained by the spatial variation in the growing

season mean temperature (GSMT). The long term hindcast captures both the magnitude and spatial variability of the trends

in observed fPAR. We estimate that between 1960 and 2010, the increase in GSMT enhanced both GPP and the SCA of NEE

by ˜20%. The calculated enhancement of NEE due to increase in GSMT contributes 56–72% of the trend in the CO SCA at

high latitudes, much larger than simulations by most biogeochemical models.
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Key Points: 

• 3/4 of the spatial variations in productivity of high-latitude northern forest can be 
explained by growing season mean temperature (GSMT). 

• Substituting space for time, we estimate the increase in GSMT enhanced productivity and 
net carbon uptake by ~20% between 1960–2010.  

• The calculated enhancement of net ecosystem exchange contributes 56–72% of the trend 
in the CO2 seasonal cycle amplitude at high latitudes. 
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Abstract 
Since the 1960s, carbon cycling in the high-latitude northern forest (HLNF) has experienced 

dramatic changes: most of the forest is greening and net carbon uptake from the atmosphere has 

increased. During the same time period, the CO2 seasonal cycle amplitude (SCA) has almost 

doubled. Disentangling complex processes that drive these changes has been challenging. In this 

study, we substitute spatial sensitivity to temperature for time to quantify the impact of temperature 

increase on Gross Primary Production (GPP), total ecosystem respiration (TER), the fraction of 

Photosynthetic Active Radiation (fPAR), and the resulted contribution of these changes in 

amplifying the CO2 SCA over the HLNF since 1960s. We use the spatial heterogeneity of GPP 

inferred from solar-induced chlorophyll Fluorescence in combination with net ecosystem 

exchange (NEE) inferred from column CO2 observations made between 2015 and 2017 from 

NASA’s Orbiting Carbon Observatory -2. We find that three quarters of the spatial variations in 

GPP and in the fPAR absorbed by the HLNF can be explained by the spatial variation in the 

growing season mean temperature (GSMT). The long term hindcast captures both the magnitude 

and spatial variability of the trends in observed fPAR. We estimate that between 1960 and 2010, 

the increase in GSMT enhanced both GPP and the SCA of NEE by ~20%. The calculated 

enhancement of NEE due to increase in GSMT contributes 56–72% of the trend in the CO2 SCA 

at high latitudes, much larger than simulations by most biogeochemical models.  

Plain Language Summary 

The carbon cycling in the high-latitude northern forest has experienced dramatic changes during 

the last 5-6 decades along with temperature increase almost double that of the global mean 

temperature. Using observations, we quantify the impact of temperature increase alone on the 

changes of gross primary production, greenness, and CO2 seasonal cycle amplitude. Our results 

show a dominant temperature effect on the changes of carbon cycle over the region. Our results 
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imply that an additional 2-5 °C temperature increase by 2100 (RCP6.0, IPCC AR5) would 

dramatically alter the distribution of tree species over the region: evergreen trees will invade the 

shrublands, and much of the evergreen forests will transition to deciduous trees. GPP over the 

region has the potential to double. 
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1 Introduction 
The High-Latitude Northern Forest (HLNF, 50°N to 75°N) is composed of needle leaf trees (both 

evergreen and deciduous), deciduous broad-leafed trees, and shrubland (Figure 1). It is responsible 

for ~20% of global Gross Primary Productivity (GPP) (Tramontana et al., 2017; Jung et al., 2017). 

Over the region northward of 50 degrees, precipitation substantially exceeds evaporation due to 

moisture convergence by the largescale eddy circulation, which results in a generally well-watered, 

thermally-limited ecosystem (Nemani et al., 2003). The northern extent of the forest is limited by 

the Arctic ocean and/or where summertime temperatures are too low. Because of its seasonality 

(days with nearly 24 hours of sunlight followed by days with 24 hours of darkness), uptake and 

release of carbon from the atmosphere is responsible for a large fraction of the seasonal cycle 

amplitude (SCA) in atmospheric CO2. Without the HLNF, the SCA of CO2 in the northern 

hemisphere would be only about half as large (Graven et al., 2013).  

 

Since the 1960s, carbon cycling in the HLNF has experienced dramatic changes: most of the forest 

is greening (Zhu et al., 2016; Keenan and Riley, 2018) and net carbon uptake from the atmosphere 

has increased (Ciais et al., 2019). Although the underlying processes driving these trends are 

uncertain (Randerson et al., 1997; Zeng et a., 2014; Gray et al.,2014; Forkel et al., 2016; Piao et 

al., 2018; Bastos et al., 2019), it is generally agreed that both the increase in temperature and CO2 

are responsible (Randerson et al., 1997; Forkel et al., 2016; Piao et al., 2018; Bastos et al., 2019). 

Global mean CO2 concentration has increased from 320ppm in 1958 to ~400 ppm in 2010s 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/). Plants generally grow faster as CO2 increases, 

which is called CO2 fertilization (Kimball et al., 1983; Long et al., 2004). The optimal temperature 

for plants growth is higher than the mean annual temperature over high-latitude biomes (Huang et 

al., 2019), thus, we expect that increase in temperature accelerates plants growth, unlike tropics 
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where the increase in temperature can suppress growth (Sullian et al., 2020). The temperature 

increase over the NH high latitudes is nearly double that of the mean temperature increase over 

land (IPCC AR5). In a parallel framing to CO2 fertilization, we call increase of productivity due 

to thermal dynamical effect as “thermal fertilization”. Quantifying the individual role of 

temperature and CO2 increases on plants growth and net carbon uptake is crucial for projecting 

future climate change (Friedlingstein et al., 2014). However, because the temporal changes in 

temperature and CO2 have been so correlated, disentangling their individual contribution with 

observations is difficult, especially over HLNF where conventional observations are sparse 

(Schimel et al., 2015). Previous studies primarily make use of factorial simulations of 

biogeochemical models to isolate the impact of change in climate from other factors (e.g., Bastos 

et al., 2019). Studies using observation constraint are scarce to none.  

 

In this study, we provide observation constraint on the impact of temperature change on Gross 

Primary Production (GPP), total ecosystem respiration (TER), and the resulting net ecosystem 

exchange (NEE) of the HLNF. We use the spatial heterogeneity of GPP inferred from solar-

induced chlorophyll Fluorescence (SIF) (Frankenberg et al., 2011) in combination with NEE 

inferred from column CO2 observations made between 2015 and 2017 from NASA’s Orbiting 

Carbon Observatory -2 (OCO-2) (Crisp et al., 2017; Eldering et al., 2017). OCO-2 provides 

unprecedented spatial coverage of column CO2 and SIF during this period.  

 

Substituting the observed spatial-sensitivity of GPP and TER to temperature for time, we estimate 

the change in carbon cycling in the HLNF between 1960s and 2010s due to the warming this region 

has experienced. We diagnose what contribution these changes have made to the observed increase 
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in the CO2 seasonal cycle amplitude (SCA) between 1958-1963 (International Geophysical Year 

(IGY) aircraft campaign) (Keeling et al., 1968) and 2009-2011 (Hiaper Pole-to-Pole observations 

(HIPPO) aircraft campaign) (Wofsy et al., 2011), and over NH high latitude CO2 flask sites with 

long-record (>25 years) (Alert (Canada), Cold Bay (Alaska, US), Barrow (Alaska, US), and 

Shemya Island (Alaska, US)). To evaluate whether space and time can be substituted,  we compare 

the trend and interannual variability in fPAR calculated with this assumption to observations of 

the changes in GIMMS3g fPAR (Zhu et al., 2013) over space and time.  

2 Materials and Methods 

We calculate monthly mean GPP (2.1) and NEE (2.2) for 2015–2017 with OCO-2 SIF and column 

CO2 retrievals, respectively. TER is calculated as the difference between NEE and GPP (2.2). We 

substitute seasonal (i.e., spring, summer, and fall (2.3)) spatial GPP–T and TER–T relationship for 

time to predict the temporal changes of GPP and TER and the resulting changes in NEE from 

increase in temperature for the time period of 1980–2011 and between 1958-1963 and 2009-2011 

(2.4). To evaluate the space-for-time substitution, we compare predictions of the change in fPAR 

between 1982 and 2012 based on the modern spatial fPAR–T relationship with the changes in 

GIMMS3g fPAR (2.4). Finally, we calculate the CO2 seasonal cycle amplitude (SCA) changes 

due to changes in NEE between 1958–1963 and 2009–2011 and for the time period of 1980–2011 

(2.5).  

2.1 Solar Induced chlorophyll Fluorescence (SIF) – constrained monthly mean GPP 

calculation 

We use SIF retrieved from OCO-2 to calculate monthly mean GPP. SIF is fluorescence from plants 

that occurs during photosynthesis. It is sensitive to both plant structure and photosynthetic 

function, and is linearly correlated with GPP under high-light conditions (Frankenberg et al., 2011; 
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Sun et al., 2018). OCO-2 SIF retrievals have footprint size ~1.2 x 2 km2. Each SIF retrieval is 

scaled based on solar zenith angle, date, latitude, and local passing time, ~ 1:30pm, to produce a 

daily mean (Frankenberg et al., 2011). The monthly mean value at each 4° x 5° grid is a simple 

averaging of the daily mean SIF values. The 4° x 5° spatial resolution is chosen for the consistency 

with the optimized NEE from top-down atmospheric CO2 flux inversion. We use OCO-2 level 2 

SIF observations from land nadir mode only between Jan 2015 and Dec 2017. The time frame is 

constrained by the availability of the FLUXCOM GPP product, an upscaling GPP product based 

on GPP from flux towers, ancillary satellite, and meteorology (Tramontana et al., 2016; Jung et 

al., 2017).  

 

The growing season mean SIF value increases exponentially with temperature over the grid points 

with tree cover larger than 40% (Figure S1). The SIF–temperature sensitivity is within the 

sensitivity range of the three FLUXCOM GPP products (Figure S1). There is no obvious 

discontinuity in the sensitivities of both SIF and FLUXCOM GPP products to temperature, so we 

calculate monthly mean GPP over 50°N-75° N at 4° x 5° spatial resolution as the product of OCO-

2 SIF and a scaling factor derived using the growing season (GS) mean GPP from three 

FLUXCOM products and mean SIF. The scaling factor, 22.9 ± 2.6 (gram carbon micron sr per day 

per watts (gC µm sr day-1 W-1)), is consistent with (Sun et al., 2018). In using the same conversion 

factor across the region, we have assumed that different tree types have the same relationship 

between SIF and GPP (see Section 4). 

 

2.2 Top-down NEE estimation with CMS-Flux and Total Ecosystem Respiration (TER) 

calculation during 2015 and 2017  
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We optimize monthly mean NEE with CMS-Flux system (Liu et al., 2014; 2017; 2018; Bowman 

et al., 2017) at each 4° x 5° grid with OCO-2 B9 land nadir observations (Eldering et al., 2017), 

which span from Sep 2014–April 2018. For readers interested in more details on atmospheric CO2 

flux inversion, please refer to (Liu et al., 2014; 2015; 2017). The prior fluxes include climatology 

terrestrial biosphere carbon fluxes from CASA-GFED 3 (Randerson et al., 1997), biomass burning 

from GFED4, fossil fuel emissions from ODIAC (Oda et al., 2018), and ocean carbon fluxes from 

ECCO-Darwin (Menemenlis et al., 2008). Except the climatology terrestrial biosphere fluxes from 

CASA-GFED3, the other types of carbon fluxes are yearly dependent. We calculate TER as the 

difference between the optimized NEE and GPP between 2015–2017. The right three panels in 

Figure S2 show the dependency of TER on temperature during the three growing season. The 

estimated TER shows strong dependence on temperature, which is expected, since TER’s two 

components, autotropic and heterotrophic respiration, depend on the amount of carbon fixed 

through photosynthesis (Baldocchi, 2008). In Figure S2, we remove points that have nonphysical 

negative TER values.  

 

We validate the top-down flux inversion results by comparing the CO2 SCA sampled at Mauna 

Loa against observed CO2 SCA, and comparing posterior CO2 concentrations between April and 

September against independent aircraft CO2 observations north of 30°N. The SCA of posterior 

CO2 concentration sampled at Mauna Loa is within the uncertainty range of the observed CO2 

SCA (Figure S3). The random error and bias of regional mean monthly posterior CO2 

concentration is 0.4 ppm and 0.1 ppm, respectively (Figure S3) (Supplementary Text).  

 

2.2 Definition of growing season  



manuscript submitted to AGU-Advances 

 9 

We define spring, summer, and fall with SIF-optimized GPP product (Parazoo et al., 2014), which 

optimally combines OCO-2 SIF observations with climatology mean state from TRENDY models 

(Sitch et al., 2015). The product maintains essentially the same seasonality as original SIF 

observations during growing season, while filling the observation gaps during the late growing 

season and winter. At each grid point, the growing season is defined as the time period when the 

GPP values are larger than 20% of the maximum GPP at that grid point. Spring and fall are defined 

as the time period when GPP is between 20% and 75% of maximum GPP, and summer is the time 

period between spring and fall. We choose 20% as the threshold to ensure that the plants have 

started growing and the start of the spring is well-defined. We find that 10% of grid points would 

have no spring if the threshold is 30% instead of 20%, since GPP increases sharply during spring 

over Eurasia.  

2.4 Prediction of growing season monthly mean GPP, TER, and fPAR  

We substitute the spatial sensitivity to temperature for time to predict the temporal changes in 

GPP, TER, and fPAR due to changes in temperature. Note that the spatial CO2 gradient is typically 

less than 10 ppm and so all plants are growing at any time experience the same [CO2]. Our 

approach of substitution of space-for-time to predict changes in carbon states due to climate has 

been used by others. For example, Sullivian et al. (2020) predicted changes in tropical biomass 

from changes in temperature using the spatial biomass–temperature sensitivity. Figure S4 shows 

that the fPAR – T spatial sensitivity is relatively constant, with variability less than 5%, implying 

that the spatial sensitivity to temperature represents a semi-equilibrium state. We use the spatial – 

temperature sensitivity shown in Figure S2 and S4 to predict temporal changes of GPP, TER, and 

fPAR. 
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In predicting GPP, we use GPP/PAR – T spatial sensitivity (Figure S2) to calculate the temporal 

changes of GPP/PAR with changes in temperature, and then multiply PAR to get final GPP 

prediction. Since PAR is only a function of latitude and seasons, we use the same PAR averaged 

over 2015-2017 to calculate GPP.    

 

With the spatial – temperature sensitivity derived from the observation-constrained GPP and TER 

between 2015 and 2017 and CRU monthly mean air temperature during 2009-2011 and 1958-

1963, we predict the monthly GPP and TER during growing season of these two time periods 

(Figure S6). In predicting the GPP for 2009-2011 and 1958-1963 time periods, we assume that the 

temporal range of the three growing seasons is the same as in 2015-2017, which is a reasonable 

assumption since the temporal resolution of our study is month and the growing season length only 

increases by ~0.25 month for every ~1 degree increase of temperature (Figure S7). We generate 

10-member ensemble GPP and TER predictions with the 95% confidence interval shown in Figure 

S2. We calculate the uncertainty from the ensemble GPP and TER hindcasts shown in Figure S6.  

 

We calculate NEE during growing season as the difference between ensemble TER and GPP, and 

assume that non-growing season NEE is proportional to the growing season NEE (Kauppi and 

Posch, 1985). The proportional assumption may be a conservative estimation of non-growing 

season NEE changes (see Section 4). 

 

To calculate NEE between 1980 to 2011, we predict growing season GPP and TER with four-year 

frequency, where we use monthly mean temperature averaged over every four years. We find that 

the results are not sensitive to the prediction frequency. In total, we have eight groups of NEE 
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hindcast between 1980 and 2011. We choose 2011 as the ending year to be consistent with the 

time frame of HIPPO aircraft campaign.  

 

With the same seasonally-dependent GPP/PAR – T spatial sensitivity and monthly mean 

temperature, we predict monthly mean GPP between 1960 and 2014. Following the same method 

described above, we predict monthly mean fPAR with the seasonally-dependent relationship 

calculated for 2013-2016 (Figure S5). The sensitivity shown in Figure S5 is based on fPAR from 

GIMMS3g. Since fPAR from GIMMS3g has more than 30-year record, the trend calculation is 

more robust than that is based on MODIS. In the main text, we use fPAR from GIMSS3g in trend 

calculation, but use fPAR from MODIS in Figure 2, since MODIS has higher spatial resolution 

than AVHRR used in the earlier record of GIMMS3g (https://nsidc.org/support/21524371-What-

are-the-MODIS-sensor-s-strongest-attributes-and-how-do-they-compare-to-other-sensors-).  

 

2.5 CO2 simulations with GEOS-Chem transport model 

We use GEOS-Chem transport model to simulate a 3-hourly 10-member ensemble of CO2 

concentrations with the predicted ensemble monthly NEE (i.e., TER-GPP) as boundary conditions 

during 1958-1963 (IGY), 2009-2011 (HIPPO) and the monthly NEE from 1980 to 2011. We 

assume the same diurnal biosphere fluxes during these two time periods, which are from CASA-

GFED3.  

 

We run GEOS-Chem transport model at 2° x 2.5° spatial resolution driven by MERRA2 reanalysis 

after regridding 4°x5° NEE to 2°x2.5° spatial resolution. The transport model has smaller transport 

errors over high latitudes at 2° x 2.5° resolution than at 4° x 5° resolution. For both IGY and HIPPO 
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CO2 simulations, we run ensemble transport model simulations continually from 2006 to 2011, 

and we then analyze CO2 simulation results over the last three-year simulation. The difference 

between IGY and HIPPO CO2 simulations is only from the boundary forcing, not from the 

meteorology forcing. For each of the eight-group NEE from 1980 to 2011, we run ensemble 

transport model simulations continually for six years with meteorology from 2006 to 2011, and 

then analyze CO2 simulation results for each group over the last three-year simulation. As a result, 

the changes of CO2 SCA are only due to changes of NEE, not due to changes of transport. We 

follow the same method described in Graven et al. (2013) (Supplementary Text) to calculate CO2 

SCA for both surface sites and aircraft observations and the corresponding model simulations.  

3 Results 
3.1 The spatial GPP – temperature relationship  

Over the HLNF, both the spatial distribution and seasonal evolution of GPP closely follow those 

of temperature (Figure 1). From April to July, increases in SIF propagate from the west to the east 

of each continent following the spatial increase of monthly mean temperature (Figure S8). From 

July to October, GPP decreases as cooler temperature propagates from the east to the west of each 

continent (Figure S8). The spatial changes illustrate how the onset and length of growing season 

(GS) are closely coupled to the surface temperature (Figure S7). The growing season length 

increases ~one week with each degree increase in surface temperature, consistent with Park et al. 

(2016). 
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Figure 1 Temperature controls on the spatial distribution of gross primary production (GPP) over high latitude 
northern forest (50°N – 75°N). (a). Tree percentage and dominant tree types at every 4° x 5° grid. Dots: shrubland; 
triangles: needleleaf forest; and squares: deciduous boreal forest. The tree type is based on condensed MODIS 
International Geosphere Biosphere Program (IGBP) map. (b). Mean temperature (unit: °C) between April and 
September over 2015-2017. (c). Mean GPP (unit: kgC/m2) integrated between April and September over 2015-2017. 
The temperature is 2-meter air temperature from ERA-interim reanalysis (Table S1). GPP is scaled SIF. 
 

Quantitatively, the spatial variation in GSMT explains 70% of GPP/PAR (Photosynthetic Active 

Radiation) variability (Figure 1b and c and Figure 2a) (and 75% of the variability in GPP, Figure 

S9). The ratio between seasonally-averaged GPP and the seasonally-averaged PAR removes the 

influence of the somewhat larger solar flux at lower latitude. While PAR is a function of latitude 

over this domain, it contributes less than 10% to the GPP – temperature spatial relationship (Figure 

S9). The correlation between GPP/PAR and GS mean temperature is not simply due to variations 

in latitude: trees growing at the same latitude have large variability in productivity due to the 

longitudinal-variation in GSMT. For example, at 62° ± 2° N latitude (highlighted by closed circles 

in Figure 2a), GPP/PAR varies from 0.10 to 0.45 gram carbon per mega Joules (gC MJ-1), highly 

correlated with the variation in GSMT.  

 

(a)

(b)

(c)
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The distribution of vegetation cover is also highly correlated with GSMT (Figure 2a). The mean 

GS temperatures are 9.2°C, 11.5°C, and 13.6°C for shrubland, needleleaf forest, and deciduous 

boreal forest, respectively. Between the transitional zones, mixed forest types co-exist. The 

correlation is illustrative of the complex role that temperature likely plays on many aspects of the 

ecology of the HLNF. From this correlation, we might anticipate that warming would lead to 

succession of the dominant trees in a fashion consistent with the patterns observed spatially (e.g. 

evergreen forests will transition to deciduous forests as the GSMT reaches 13°C). Limited field 

measurements are consistent with this hypothesis (Kharuk et al., 2007; Bjorkman et al., 2018). 

 

Why is GPP/PAR so sensitive to temperature in the HLNF? GPP/PAR is a product of amount of 

the fraction of PAR absorbed by plants (fPAR) and the light use efficiency (the efficiency of 

conversion of absorbed sunlight to assimilated carbon) (Farquhar et al., 1980). The fPAR reflects 

forest structure (leaf area index, LAI) and is observed to increase with temperature in the HLNF 

(Zhu et al., 2016) (Figure 2b). The fraction of absorbed sunlight resulting in fixation of CO2 (light 

use efficiency) depends on, among other things, plant functional types. Field experiments (Ahl et 

al., 2004) show that the light use efficiency of deciduous forest is ~30% higher than needle leaf 

trees, consistent with the behavior seen in Figure 2c. In the absence of water or nutrient limitations, 

light use efficiency is also expected to increase with temperature in cold forests (Figure 2c) (Horn 

and Schulz, 2011). Due to the high rates of precipitation and snow melt, water limitations – 

especially earlier in the growing season – are not expected. As shown in Figure S10, GPP increases 

with the increase in vapor pressure deficit, opposite to the expected relationship for water-limited 

ecosystems. Because the rate of nitrogen fixation also increases rapidly with temperature (Schimel 

et al., 1997; Welter et al., 2015), nitrogen limitation may not change as plants increase their 
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demand as temperature increases. Thus, the sensitivity of GPP/PAR to GSMT results from the 

sensitivity of both forest structure (fPAR) and light use efficiency, with similar contributions 

(0.090 vs. 0.100) from each (Figure 2 b and c).  

 
Figure 2 The spatial relationship between temperature and Gross Primary Production (GPP) and its 
contributing factors between 50°N and 75°N. The x-axis is the growing season mean temperature, GSMT. (a) 
GSMT vs. the ratio between GPP and photosynthetic active radiation (PAR) (unit: gram carbon per mega Joules (gC 
MJ-1); (b) GSMT vs. fraction of Photosynthetic Active Radiation absorbed by the forest (fPAR) (%); (c) temperature 
vs. light use efficiency (unit: gC MJ-1). Green: needleleaf forest; brown: deciduous boreal forest; blue: shrubland; The 
size of circles is proportional to the percentage of tree coverage. Filled circles are the points with latitude equal to 
62°N. The minimum of tree coverage for each type is 40%. The uncertainty is 3s of the fitting. The temperature 2-
meter air temperature from ERA-interim reanalysis (Table S1) 
 

3.2 Hindcast of the fPAR and GPP/PAR from the changes in GSMT since 1960 

With more than 30-year (1982-2016) of fPAR record from GIMMS3g (Zhu et al., 2013), we can 

test how well the temporal change in fPAR is explained by the observed spatial temperature 
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sensitivity. We find that the modern correlation of fPAR with GSMT accurately captures the 

variability and trend in fPAR over the past several decades. Remarkably, even the interannual 

variations in fPAR (Figure 3) are well predicted by the spatial fPAR – T correlations, with R2 

between observation and predicted fPAR equal to 0.62 (Figure 3d). The calculated temporal trend 

of fPAR during the period of fPAR observation is 0.29 ± 0.08 %/year, somewhat larger than the 

observed fPAR trend (0.20 ± 0.06 %/year). The larger trend in the GS fPAR hindcast results 

primarily from an over-prediction of the trends in the fall (Figure S11). The hindcast fPAR trend 

calculated from1960-2014 is 0.20 ± 0.06 %/year, consistent with the observed fPAR trend between 

1982 and 2014. Figure 3d indicates that the current spatial correlation between fPAR and GSMT 

can explain the historical changes in HLNF mean fPAR without invoking a significant role for 

CO2 fertilization .   

 

The hindcast of fPAR also captures the spatial inhomogeneity in the observed fPAR changes. 

Between 2007-2011 and 1983-1987, the northeast Eurasia and western Europe have experienced 

larger increases in GSMT than North America (NA) (Figure 3a). The changes in both the observed 

and hindcast GS fPAR show similar spatial pattern as the temperature differences between these 

two time periods (Figure 3b and c). This, again, is consistent with temperature playing the 

dominant role in controlling fPAR. For example, if CO2 fertilization was responsible for enhanced 

fPAR, we would not expect the fractional change to be so well correlated with the spatial change 

in temperature given that the change in CO2 was identical across both space and time. The 

overestimate in the calculated fPAR changes over NA may be caused by the land cover changes 

from disturbance (Wang et al., 2019) that the hindcast does not consider.  
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The trend in the hindcast GPP during GS is 0.36 ± 0.07%/year, about two times the hindcast fPAR 

trend during 1960-2014, consistent with Figure 2 showing that only half of the GPP/PAR – T 

spatial sensitivity is attributed to change in fPAR. The trend in GPP during spring is larger than 

the other two seasons (0.44%  ±  0.09% vs. 0.34% ±  0.08% and 0.34%  ±  0.10%) (Figure S11), 

as a result of the both larger increase in temperature and higher sensitivity of GPP/PAR to 

temperature in spring (Figure S2).  

 

Only nine tower sites in FLUXNET 2015 data archive (https://fluxnet.fluxdata.org/about/) have 

record longer than 15 years between 50°N and 75°N, mostly over Europe. The sparseness of the 

FLUXNET 2015 over the region limit the ability of using FLUXNET GPP to evaluate GPP – T 

spatial relationship and the temporal changes of GPP with time.  

 
Figure 3. Annual hindcast of GPP and fPAR between 1960 and 2014. (A) Growing season (GS) mean temperature 
changes between 2007-2011 and 1983-1987. (B) Observed growing season fPAR change (%) between 2007-2011 and 
1983-1987. (C) Hindcast growing season fPAR change (%) between 2007-2011 and 1983-1987 calculated from the 
fPAR-T spatial relationship (SI Appendix, Figure S13). (D) Annual fPAR and GPP anomaly and trend. Black: 
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(D) Hindcast GS GPP and fPAR

trend(fPAR(obs))=0.20±0.06%/year

R2=    0.62
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observed fPAR anomaly and trend (dashed line); blue: hindcast fPAR anomaly and trend (%); green: hindcast GPP 
anomaly (%) and trend (dashed line); red: GS temperature anomaly. The mean values for each variable are the average 
between 1983 and 2014. The uncertainty is 3s of the linear fitting. The fPAR observations are from GIMMS3g. The 
temperature is from Climatic Research Unit (CRU) (Table S1) 
 

3.3 The impact of thermal fertilization on the NH CO2 seasonal cycle amplitude  

The increase of GPP would have increased both net carbon uptake during growing season and net 

carbon release during non-growing season (due to increased carbon pool size and increases in the 

rate of ecosystem respiration with temperature) (Zhao et al., 2014). As a result, it is expected that 

the increase in temperature would have enhanced the SCA of NEE. In turn, the increase of NEE 

SCA may have contributed to the documented large increase of NH CO2 SCA (Graven et al., 

2013). Between 1960 and 2010, the GPP and TER are calculated to have increased 20  ± 12% and 

18 ± 12%, respectively, between April and Sep (Figure S6).  The NEE between April and Sep 

increased by 23 ± 12%. The NEE amplitude, which is defined as the difference between the net 

source and net sink, increases by 21 ± 8% over 50°N-75°N (Figure S6).  

 

We sample the CO2 concentrations along the IGY and HIPPO aircraft locations, respectively, in 

the mid-troposphere (~500 hPa) and those four high latitude sites. Figure S12 summarizes the CO2 

SCA changes from observations and predictions. The change in GSMT is estimated to contribute 

19-42% of the total observed CO2 SCA changes north of 45°N between two aircraft campaigns, 

and 34 -76% of the CO2 SCA change due to changes in carbon cycling in the HLNF (Figure 4). 

At the four surface sites, increase in the GSMT is calculated to contribute 56 - 72% of the observed 

trends in the CO2 SCA (Figure 4).  
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Figure 4 Temperature driven change of NH CO2 seasonal cycle amplitude. Solid black line: the observed CO2 
seasonal cycle amplitude (SCA) changes between HIPPO (2009-2011) and IGY (1958-1963) aircraft campaigns at 
500 hPa. Dashed black line: the approximate CO2 SCA change between HIPPO and IGY at 500 hPa attributed to the 
HLNF. Red: the calculated CO2 SCA changes due to the temperature increase of the HLNF. Blue: observed (solid 
dot) and predicted (diamonds) CO2 SCA trend (unit: ppm/decade) at Shemya Island (Alaska, US) (52.71°N), Cold 
Bay (Alaska, US) (55.2°N), Barrow (Alaska, US) (71.3°N), and Alert (Canada) (82.4°N). The observation source is 
listed in Table S1.  
 

4 Discussion 

Though the predicted changes in carbon cycling in the HLNF is supported by the fPAR 

observations, further study is needed to test some assumptions used in the study. We have assumed 

a single scaling factor between the observed SIF and GPP. While this assumption is supported by 

(Sun et al., 2018; Li et al., 2018), it requires additional testing within these biomes. In particular, 

about 50% of the observed correlation between SIF and temperature is not explained by fPAR, but 

by the “light use efficiency”. The estimated change in light use efficiency is correlated with biome 

(evergreen vs. shrub vs. deciduous trees, Figure 2c) and further work is needed to test whether all 

the differences in SIF of these biomes is indeed related to the differing photosynthetic efficiency 

of these tree types or may (partially) reflect differences the optics of SIF within canopies differing 

in structure.   
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Though studies show that the magnitude of non-growing season NEE is positively correlated with 

GS NEE (Yuan et al., 2011), the assumption that the change in non-growing season NEE is 

proportional to the changes in GS NEE may not always be valid. In using this assumption, we have 

ignored the impact of changes of snow coverage and freezing/thaw on ecosystem respiration 

(Natali et al., 2019) and nonhomogeneous changes in temperature throughout the year. There is 

evidence that the rate of respiration outside the GS may have increased faster than during GS 

because of larger temperature increase during fall and winter (Schuur et al., 2015).  

 

The rapid increase in GPP with GSMT is certainly limited: the data shown in Figure 2 extends 

only to a GSMT of 16°C. It is expected that at some point, photosynthetic, water, and other nutrient 

limitations will limit further increase in GPP with temperature, especially during summer. Even 

today there is evidence that by mid/late summer such limitations come into play. In addition, the 

increase in abiotic (e.g. fire) and biotic (e.g. herbivory) disturbance with climate will also impact 

productivity.  

 
Despite the limitations noted above, the spatial variations in fPAR and GPP in the HLNF are 

remarkably well correlated with temperature (Figure 2 and Figure S1), consistent with a thermally-

limited ecosystem. The strong temperature control on changes in fPAR and GPP and its large 

contributions to changes in CO2 SCA are in contrast to results obtained from most (Piao et al., 

2018; Bastos et al., 2019), but not all biogeochemical models (Forkel et al., 2016), which generally 

suggest a dominant CO2 fertilization effect on changes on NEE in the HLNF (and thereby the CO2 

SCA). The high degree of spatial correlation between fPAR, GPP, and GSMT provides a key 

observational measure that can be used to evaluate and improve upon corresponding model 

simulated properties. A factorial simulation with changes only in temperature drivers for 
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biogeochemical models will be able to isolate temperature effect from other factors, and thereby 

test the model behavior against observations to identify possible model deficiencies. 

 

That warming alone accounts for nearly all the observed fPAR trend is in agreement with prior 

observational studies that suggest CO2 fertilization is not a major contributor to carbon exchange 

in mature forests (Jiang et al., 2020) and, more broadly, in the boreal (Girardin et al., 2011). Over 

mature forest, even under warmer climate (when CO2 fertilization is expected to contribute much 

more than in cooler climates), GPP increases ~12% with 150 ppm CO2 enrichment (Jiang et al., 

2020). Extrapolating the results in Jiang et al. (2020), the ~80 ppm increase in CO2 between 1960s 

and 2010s implies a ~6% increase of GPP over boreal forest, where a large proportion of forests 

is undisturbed, especially over Eastern and Northern Canada and Eurasia 

(https://daac.ornl.gov/NACP/guides/NA_Tree_Age.html). Since fPAR accounts for half of GPP 

increases, fPAR may only increases by ~3% from CO2 fertilization between 1960s and 2010, well 

within the uncertainty estimates shown in Figure 3. The more important role of temperature 

implied by the current spatial dependence of fPAR on GSMT is consistent with thermal 

fertilization explaining most of the temporal trend in fPAR.  

 

The ensemble of CMIP5 models suggest that by 2100, absent of efforts to mitigate climate forcing, 

these forests will experience an additional 2-5 °C increase relative to 1986-2005 (RCP6.0, IPCC 

AR5) in GSMT. Figure 2 implies that such a change would dramatically alter the distribution of 

tree species over the region: evergreen trees will invade the scrublands all the way to the Arctic 

ocean, and much of the current evergreen forests will transition to deciduous trees. GPP over the 

region has the potential to double.  
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5. Conclusion 

Three quarters of the spatial variations in gross primary production and fPAR over high-latitude 

northern forest can be explained by the spatial variation in growing season mean temperature. 

Substituting observed spatial sensitivity to temperature for time, we estimate the change in carbon 

cycling in the HLNF between 1960s and 2010s, and diagnose what contribution these changes 

have made to the observed increase in the CO2 SCA. The hindcast captures both the magnitude 

and spatial variability of the trends in observed fPAR. We calculate that the observed high-latitude 

warming results in a 20  ± 12% and 18  ± 12% increase in GPP and TER, respectively, during 

growing season. The calculated changes in GPP and TER result in an increased seasonality of NEE 

by 21 ± 8% between the 1960s and 2010s. In turn, the increase of the NEE SCA contributes 56-

72% of the observed increase in the CO2 SCA at high latitude continental surface sites and 17-

43% of the observed change in the SCA in the mid-troposphere.  

 

Data Availability  
 
The sources of all the data used in this paper are listed in Table S1.  
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Supplementary Information Text 

 
SM.1 Validation of posterior CO2 concentration from top-down flux inversion 

We validate posterior CO2 concentration from two perspectives: seasonality and its 

accuracy against aircraft observations. NEE constrained by OCO-2 column CO2 

observations is used to calculate TER together with SIF-constrained GPP. Therefore, it is 

important for the posterior NEE to capture the observed seasonal cycle amplitude. Here we 

compare the CO2 seasonal cycle amplitude constrained by OCO-2 observations with the 

observed CO2 SCA at Mauna Loa (MLO), which represents hemispheric signal. The 

posterior CO2 seasonal cycle amplitude sampled at Mauna Loa stations agree with the 

observations within uncertainty as shown in Figure S3. To calculate the uncertainty of the 

CO2 SCA, we calculate an ensemble of CO2 SCA based on ~10% of randomly sampled 

subset data. The mean and uncertainties of the CO2 SCA are based on 1000 samples. 

 

To further validate posterior NEE constrained by OCO-2 column CO2 observations, we 

compare the posterior CO2 concentrations from top-down flux inversion against 

independent aircraft observations north of 30°N collected between 2015-2017 (Table S1). 

Figure S31 C shows the distribution of aircraft observations, most of which are over NA. 

We sample posterior CO2 concentrations along aircraft tracks, and then compare monthly 

regional mean values against aircraft observations between April and September over 

2015-2017 in the bottom panel of Figure S3. Compared to the aircraft observations, the 

bias is -0.12ppm, and the root mean square (RMS) error is 0.37ppm.  

SM.2 Calculation of CO2 seasonal cycle amplitude (SCA) at surface sites 
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To calculate seasonal cycles at the four high latitude surface sites, we fit the following 

functions to surface data with “nlinfit” function in Matlab: 

𝑓 = 𝑎(1) × 𝑑𝑡 + 𝑎(2) × 𝑑𝑡, + 𝑎(3) + 𝑎(4) × 𝑠𝑖𝑛22𝜋 × 𝑑𝑡 + 𝑎(5)5 + 𝑎(6) ×

𝑠𝑖𝑛24𝜋 × 𝑑𝑡 + 𝑎(7)5 + 𝑎(8) × 𝑠𝑖𝑛26𝜋 × 𝑑𝑡 + 𝑎(9)5 + 𝑎(10) × 𝑠𝑖𝑛28𝜋 × 𝑑𝑡 + 𝑎(11)5 

(Equation 2) 

Where dt is the time interval with fraction of a year as unit, and a(:) are the coefficents.  

 

After removing the trend and intercept (i.e., the first three terms) from the raw data, we fit 

a four-harmonic (the last four terms in equation 2) curve for the data, and calculate the CO2 

seasonal cycle amplitude (SCA) every four years. We fit a linear trend to the CO2 SCA, 

and calculate one sigma uncertainty of the linear trend. We follow the same procedure to 

calculate model simulated CO2 seasonal cycle amplitude and its trend. Summary of the 

SCA trend and uncertainties for both observations and models are shown in Figure 4.  

SM.3 Calculation of CO2 seasonal cycle amplitude and uncertainty during 

International Geophysical Year (IGY) and HIPPO 

We quantify the contributions of NEE SCA changes between 50°N and 75°N (resulting 

from the increase in temperature alone) to the increase of CO2 SCA for the time period of 

observations obtained by two aircraft campaigns: International Geophysical Year (IGY) 

between 1958 and 1963 and HIPPO between 2009 and 2011 (Wofsy et al., 2011). The 

observations are the same as Graven et al. (2013). Table S1 list the source of CO2 

observations.  
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To calculate CO2 seasonal cycle amplitude of aircraft observations, we follow a procedure 

similar to that described in Graven et al. We only use CO2 observations obtained near 

500hPa because of sparse aircraft observations ~ 700hPa. The IGY CO2 observations were 

detrended to remove the 0.72 ppm/year linear trend derived from Mauna Loa (MLO) 

observations. A linear trend, calculated from MLO observations, was similarly removed 

from HIPPO observations. Finally, the observations were binned to 10-degree latitude 

bands between 15°N and 75°N, and into a 15-degree latitude band for 75°N-90°N.  

 

As in Graven et al., we calculate the specific shape of CO2 seasonal amplitude over each 

latitude band sampled by the NOAA’s aircraft observations using flask data from four 

ground stations: Molokai Island, Hawaii (HAA, 21°N), Trinidad Head, California (THD, 

41°N), Estevan Point, British Columbia (ESP, 50°N), and Poker Flat, Alaska (PFA, 65°N). 

After removing the linear trend (calculated from MLO observations), we fit a three 

harmonics at each aircraft location. 

 

 Following Graven et al., we assume the same seasonal cycle shape at each latitude band  

when we calculate the CO2 seasonal amplitude for IGY and HIPPO aircraft observations. 

We only fit a gain parameter to best fit the observations. Observed CO2 SCA in 1958-1963 

(black) and in 2009-2011 (blue) over seven latitude bands is shown in the top left panel in 

Figure S12, and its change is shown as solid magenta in the bottom right panel in Figure 

S12.  
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We follow the same procedure to calculate CO2 seasonal cycle with CO2 simulations forced 

by predicted ensemble NEE. The top right in Figure S12 shows the CO2 SCA forced by 

ensemble predicted CO2 monthly NEE over 50°N and 75 °N in 1958-1963 (black) and in 

2009-2011 (blue).  

 

To calculate uncertainties of the observed CO2 SCA we use a bootstrap method. We 

generate 1000 random samples of original data for each latitude bin, with each sample 

including one-third of the original data. The standard deviations of the CO2 SCA from these 

1000 samples are the uncertainties shown in the top left panel of Figure S12. We 

approximate the percentage contribution of boreal forest to CO2 SCA changes observed by 

IGY and HIPPO with the ratio between observational-constrained CO2 SCA in 1958-1963 

and the observed CO2 SCA in 1958-1963, which is shown in the bottom left in Figure S13. 

The uncertainty of bottom left panel in Figure S12  is the propagation of uncertainties from 

observed CO2 SCA and the predicted CO2 SCA in top right panel of Figure S12. The 

dashed magenta line in bottom right panel of Figure S12 and Figure 4 in the main text is 

the multiplication between observed CO2 SCA changes and the approximate contributions 

of the boreal forest to CO2 SCA observed by IGY and HIPPO. 

 

The uncertainty of predicted CO2 SCA changes shown in Figure 4 is the square root of as 

the sum variance of predicted CO2 SCA in 1958-1963 and 2009-2011.  
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Figure S1 Growing season mean SIF (Wm-2µm-1sr-1) vs. growing season mean 
temperature (top left panel) and the growing season mean GPP (gCm-2day-1) vs. 
temperature (Celsius) based on three FLUXCOM GPP products (top right and the bottom 
two panels) over 50°N-75°N. Each point has tree coverage larger than 40%. The 
uncertainty is 3s. The temperature is 2-meter air temperature from ERA-interim 
reanalysis (Table S1).  
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Figure S2 GPP/PAR vs. temperature (left column) and TER vs. temperature (right 
column) for spring (top), summer (middle), and fall (bottom) months. The color bars 
indicate latitudes. The uncertainty is 3s of the exponential fitting. 
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Figure S3 The CO2 seasonal cycle from Jan 2015 to the end of 2017 based on CO2 
observations at MLO (A) and posterior CO2 concentration sampled at MLO (B). The blue 
dots are the original data points, and the black lines with grey shades are the seasonal 
cycle fitting and its uncertainties. (C): the total number of aircraft observations between 2 
kilometers (km) and 5 km (unit: log) between 2015 and 2017. Bottom: the posterior CO2 
concentration (x-axis) sampled at aircraft observations vs. aircraft CO2 observations. 
Each point is a regional monthly mean value between April and September from 2015 to 
2017. The CO2 observations are from ObsPack 
(	https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_co2_1_OCO2MIP_v2
.1_2019-08-15) 
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Figure S4 Mean observed fPAR-T spatial sensitivity and its variability over eight 4-year 
groups from 1982.  The width of the bar is proportional to the R2 value of the spatial fitting 
between fPAR and temperature. The R2 are 0.4, 0.6 and 0.5 for spring, summer, and fall 
respectively (Figure S4). The fPAR is from GIMMS3g (Table S1).  
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Figure S5 The fPAR – temperature spatial relationship during spring (left), summer 
(middle), and fall (right) based on fPAR over 2013-2016. The fPAR is from GIMMS 3g. 
The temperature is CRU 2-meter air temperature.  
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Figure S6 Hindcast monthly mean GPP (A), TER (B), and NEE (C) seasonal cycles and 
its uncertainties over 50°N- 75°N for 1958-1963 (black line with grey shades) and 2009-
2011 (blue line with blue shades). The uncertainties are based on 95% shown in Figure 
S2.  
 
  



 
manuscript submitted to AGU-Advances 

 

12 
 

 
 
Figure S7 Left panel: latitudinal (50°N-75°N) mean growing season length (black) vs. 
monthly mean temperature (red, unit: °C) between March and September as a function of 
longitude.  Right panel: scatter plot of monthly mean temperature between March and 
September (unit: °C) and the growing seasonal length (unit: months) as each 5° longitude. 
The R2 is 0.58.  
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Figure S8 Monthly mean GPP (average over 2015-2017) (22.9 times of the solar induced 
chlorophyll fluorescence) (unit: gCm-2day-1) and mean temperature (2015-2017) from 
April to October (from the top to the bottom).  
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Figure S9 Growing season GPP (unit: gC/m2/day) vs. T (top panel) and PAR (W/m2) vs. 
T (bottom panel). Brown: deciduous broadleaf forest; green: needle leaf forest; blue: 
shrubland. The uncertainty is 3s. The temperature is 2-meter air temperature from ERA-
interim (Table S1).  
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Figure S10 Sensitivity of GPP to precipitation (a) (unit: mm/day) and to vapor pressure 
deficit (VPD) (b).  The relationship between growing season mean temperature and 
precipitation (c). The VPD is calculated with temperature and relative humidity from 
ERA-interim. The precipitation is CPC Merged Analysis of Precipitation (Table S1) 
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Figure S11 Seasonal hindcast of GPP and fPAR between 1960 and 2014. Seasonal fPAR 
and GPP anomaly and trend. (A): spring; (B): summer, and (C): Fall. Black: observed fPAR 
anomaly and trend (dashed line); blue: hindcast fPAR anomaly and trend (%); green: 
hindcast GPP anomaly (%) and trend (dashed line). The mean values for each variable are 
the average between 1983 and 2014. The uncertainty is 3s of the linear fitting. The fPAR 
observations are from GIMMS3g. 
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Figure S12 Top left panel:  observed CO2 seasonal cycle amplitude at 500hPa based on 
IGY (1958-1963) (black) and HIPPO (2009-2011) (blue lines) aircraft campaigns; top right 
panel: the corresponding model simulated seasonal cycle amplitude forced by hindcast 
forest NEE over 50°N-75°N. Bottom left panel: the contributions of boreal forest to the 
CO2 SCA at each latitude bands, which is the ratio between model simulated CO2  SCA 
forced by forest NEE over 50°N-75°N and the observed CO2 SCA. Bottom right panel: the 
changes of observed CO2 SCA at each latitude bands (solid magenta), and the approximate 
CO2 SCA changes due to changes of forest NEE over 50°N and 75°N (dashed magenta), 
which is the multiplication between the observed CO2 SCA changes and the percentage 
contribution of boreal forest to the CO2 SCA.  
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Table S1 Physical variables and the data source 

Variable Source Data link 
Air Temperature Climate Research Unit 

(CRU) 
 

https://crudata.uea.ac.uk/cru/data/hrg/ 
cru_ts_4.03/cruts.1905011326.v4.03/ 

 
ERA-interim https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era-interim 
Photosynthetic 

Active Radiation 
(PAR) 

CERES SYN1deg product under: 
https://ceres.larc.nasa.gov/order_data.php 

Precipitation CPC Merged Analysis of 
Precipitation Standard 

ftp.cpc.ncep.noaa.gov precip/cmap/monthly 

Fraction of PAR MODIS (2003-2017) 
MCD15A3H_006 

https://lpdaac.usgs.gov/product_search/ 
?collections=Combined+MODIS& 

collections=Terra+MODIS&collections 
=Aqua+MODIS&view=list 

 
AVHRR (1982-2016)  GIMMS3g 

Surface CO2 sites: 
Alert, Canada 

(ALT), Cold Bay, 
Alaska (CBA), 

Barrow, Alaska 
(BRW), and 

Shemya Island 
(SHM) 

NOAA https://www.esrl.noaa.gov/gmd/dv/data/ 

CO2 from IGY 
aircraft 

campaign 

 https://scrippsco2.ucsd.edu/data/atmospheric_co2/aircraft_c
ampaign_data.html  

CO2 from HIPPO  http://hippo.ornl.gov/ 
Aircraft CO2 
observations 
(2005-2011) 

NOAA https://www.esrl.noaa.gov/gmd/ccgg/obspack/  

Aircraft CO2 
observations 

between 2015 
and 2017 

NOAA CO2 observations are from ObsPack 
(	https://www.esrl.noaa.gov/gmd/ccgg/obspack/dat
a.php?id=obspack_co2_1_OCO2MIP_v2.1_2019-08-15 

Solar Induced 
Chlorophyll 

Fluorescence 
(SIF) 

OCO-2 https://disc.gsfc.nasa.gov/datasets/ 
OCO2_L2_Lite_SIF_8r/summary? 

keywords=OCO-2%20SIF 

Column CO2 
observations 

OCO-2 
b-9 

https://co2.jpl.nasa.gov/#mission=OCO-2 

FLUXCOM GPP FLUXCOM http://www.fluxcom.org 
Top-down NEE 
fluxes between 
2015 and 2017 

Top-down CO2 flux 
inversion  

https://data.nas.nasa.gov/carboncycle/ 
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