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Abstract

Climate models project that tropical warming is amplified aloft in response to increased CO$ 2$. Amplification aloft is expected

following moist adiabatic adjustment and the Clausius-Clapeyron relation. Here, we show that moist adiabatic adjustment

overpredicts the multi-model mean temperature response at 300 hPa by 12.9–25.3\% across the model hierarchy. We show

that overprediction is influenced by at least three mechanisms: large-scale circulation, direct effect of CO$ 2$, and convective

entrainment. Accounting for the large-scale circulation and the direct effect of CO$ 2$ reduces overprediction by 5.7\% and

3.8\% respectively, but does not eliminate it. To test the influence of entrainment, we vary the Tokioka parameter in aquaplanet

simulations with and without a large-scale circulation. When varying the climatological entrainment rate in the aquaplanet,

overprediction varies from 6.7–17.9\%. The sensitivity of overprediction to climatological entrainment rate in the aquaplanet

configured in radiative-convective equilibrium agrees well with the predictions of zero-buoyancy bulk-plume models.
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Key Points:7

• Moist adiabatic adjustment overpredicts the tropical upper tropospheric temper-8

ature response to warming across the CMIP5 model hierarchy.9

• The overprediction is non-zero after accounting for the large-scale circulation and10

the direct effect of CO2.11

• GFDL AM2.1 aquaplanet simulations show that overprediction scales with clima-12

tological entrainment rate.13
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Abstract14

Climate models project that tropical warming is amplified aloft in response to increased15

CO2. Amplification aloft is expected following moist adiabatic adjustment and the Clausius-16

Clapeyron relation. Here, we show that moist adiabatic adjustment overpredicts the multi-17

model mean temperature response at 300 hPa by 12.9–25.3% across the model hierar-18

chy. We show that overprediction is influenced by at least three mechanisms: large-scale19

circulation, direct effect of CO2, and convective entrainment. Accounting for the large-20

scale circulation and the direct effect of CO2 reduces overprediction by 5.7% and 3.8%21

respectively, but does not eliminate it. To test the influence of entrainment, we vary the22

Tokioka parameter in aquaplanet simulations with and without a large-scale circulation.23

When varying the climatological entrainment rate in the aquaplanet, overprediction varies24

from 6.7–17.9%. The sensitivity of overprediction to climatological entrainment rate in25

the aquaplanet configured in radiative-convective equilibrium agrees well with the pre-26

dictions of zero-buoyancy bulk-plume models.27

Plain Language Summary28

Climate models project that tropical warming will be amplified in the upper tro-29

posphere in response to increased CO2 concentration. This warming pattern is expected30

based on the increased release of latent heat in a warmer climate (moist adiabatic ad-31

justment). Understanding the vertical profile of warming has important implications for32

the strength of convective storms, the subtropical climate through its influence on the33

large-scale circulation, and the climate sensitivity. Here, we compare the moist adiabatic34

prediction to the warming response across a hierarchy of climate models. We find that35

the moist adiabat overpredicts the tropical warming aloft across the model hierarchy. We36

quantify the influence of three mechanisms that are missing in the moist adiabat: 1) dif-37

ferent temperature responses in regions of ascent versus descent, 2) the direct effect of38

increased CO2 in the absence of surface temperature increase, and 3) convective entrain-39

ment (the mixing of dry environmental air into moist ascent). Accounting for the first40

two mechanisms reduces the overprediction but does not eliminate it. In idealized aqua-41

planet simulations, we find that stronger entrainment leads to greater overprediction, in42

agreement with the expectation based on a simple model for the tropical temperature43

profile that includes the effect of entrainment.44

1 Introduction45

One of the earliest general circulation model (GCM) predictions of the response46

to increased CO2 is amplified warming aloft in the tropics (Manabe & Wetherald, 1975;47

Manabe & Stouffer, 1980). This prediction has since been confirmed by observations (Santer48

et al., 1996; Thorne et al., 2011; Flannaghan et al., 2014) and state-of-the-art models such49

as coupled Atmosphere-Ocean GCMs (AOGCMs) (Vallis et al., 2015) and cloud resolv-50

ing models (CRMs) (Lau et al., 1993; Romps, 2011). The tropical temperature response51

has important implications for the global climate, as it sets the 1) static stability in the52

tropics, which influences the strength of deep convection (Singh & O’Gorman, 2013; See-53

ley & Romps, 2015), 2) meridional temperature gradient, which influences the position54

of the Hadley Cell edge and subtropical jet (Shaw et al., 2016), and 3) lapse rate feed-55

back in the tropics, which exerts a strong influence on the global climate sensitivity ow-56

ing to the large contribution of the tropics to the global mean (Popke et al., 2013; Po-57

Chedley et al., 2018).58

Amplified tropical upper tropospheric warming in response to increased CO2 is pre-59

dicted from the adjustment of a moist adiabat (Held, 1993). In particular, for a 4 K warm-60

ing at the surface with fixed relative humidity, moist adiabatic adjustment predicts warm-61

ing aloft of 10 K. While the moist adiabatic prediction is intuitive, it does not consider62
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many other processes that may influence the temperature response to warming, such as63

the large-scale circulation, the direct effect of CO2, and convective entrainment.64

Emanuel et al. (1994) show that in the presence of a strong large-scale circulation,65

the free troposphere and the sub-cloud layer become decoupled in regions of climatolog-66

ical descent. Thus, we expect moist adiabatic adjustment to apply only over regions of67

deep convection. Brown and Bretherton (1997), Flannaghan et al. (2014), and Fueglistaler68

et al. (2015) use precipitation-weighting to show that observed temperature trends in69

the upper troposphere are more strongly linked to surface trends in regions of deep con-70

vection. Andrews and Webb (2018) further demonstrate the importance of the large-scale71

circulation on the tropical warming response by showing in the HadGEM2-A model that72

localized SST warming in the western Pacific (where there is climatological deep con-73

vection) results in a warming response with strong amplification aloft, whereas the SST74

warming in the eastern Pacific (climatological descent) leads to warming confined be-75

low the tropical inversion. As Andrews and Webb (2018) focus on the role of the trop-76

ical temperature response on the lower-tropospheric stability, they do not quantify the77

deviation of the temperature response from a moist adiabat.78

We do not expect the direct effect of CO2 to lead to moist adiabatic adjustment79

because it does not impact the global-mean surface temperature. However, it does im-80

pact the large-scale circulation and tropical precipitation response (Bony et al., 2013;81

Merlis, 2015), and the tropospheric warming due to the direct effect is nearly uniform82

in height (He & Soden, 2015; Wang & Huang, 2020). Thus, we expect the moist adia-83

bat to overpredict the temperature response in the presence of the direct effect of CO2.84

We expect convective entrainment to weaken the amplification of warming aloft com-85

pared to a moist adiabat, as an entraining parcel releases less latent heat. Singh and O’Gorman86

(2013) and Seeley and Romps (2015) show that the increase in convective available po-87

tential energy (CAPE) with warming as obtained from CRMs is consistent with that pre-88

dicted by the zero-buoyancy bulk-plume model. The zero-buoyancy bulk-plume model89

is a simple model for the tropical temperature profile that includes the effect of clima-90

tological convective entrainment. As CAPE quantifies the deviation of a temperature91

profile from a moist adiabat, increasing CAPE with warming is consistent with the over-92

prediction of upper tropospheric warming by the moist adiabatic adjustment theory. Al-93

though previous studies have implied convective entrainment as an explanation for the94

overprediction of upper tropospheric warming by the moist adiabat (Tripati et al., 2014;95

Po-Chedley et al., 2019), the influence of varying entrainment rates on the temperature96

response in GCMs has not yet been reported in the literature.97

Here, we quantify the moist adiabatic prediction in response to warming across the98

CMIP5 model hierarchy. We show that the moist adiabat overpredicts the modeled tem-99

perature response. We quantify the importance of three mechanisms on the overpredic-100

tion of the moist adiabat: 1) the large-scale circulation, 2) the direct effect of CO2, and101

3) convective entrainment. We quantify the importance of convective entrainment by vary-102

ing the parameterized entrainment rate in idealized aquaplanet simulations.103

2 Methods104

2.1 CMIP5 models105

We examine the tropical temperature response to warming across the climate model106

hierarchy using CMIP5 data (Taylor et al., 2012). At the most complex end, we consider107

the AOGCM response to a quadrupling of CO2 (abrupt4×CO2) relative to a pre-industrial108

climate (piControl) in 29 models (Supplementary Table S1). We average the last 30 years109

of the 150-year simulation to study the near-equilibrium response.110
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In the mid-range of complexity, we consider 11 atmospheric GCMs (AGCMs, see111

Supplementary Table S1) that prescribe the sea-surface temperature (SST) according112

to observations from 1979 to 2008 following the AMIP protocol (Gates, 1992). The in-113

direct effect of CO2 increase is quantified by imposing: 1) spatially-varying SST warm-114

ing based on the CMIP3 multi-model mean response (amipF) and 2) uniform SST warm-115

ing of 4 K (amip4K). This allows us to study the importance of patterned SST warm-116

ing. We also consider the direct effect of increased CO2 in the absence of SST changes117

(amip4×CO2) and we add the direct and indirect effects to get the total response to in-118

creased CO2 (amipF/4K+4×CO2) that can be compared to the AOGCM response. We119

take the average over the entire 30 years of each simulation.120

Finally, at the simple end we consider 9 aquaplanet AGCMs (see Supplementary121

Table S1). The indirect effect is quantified as a response to a uniform SST warming of122

4 K (aqua4K) relative to the aquaplanet configured with the qObs SST profile (aqua-123

Control) (Neale & Hoskins, 2000). We also consider the direct effect of increased CO2124

(aqua4×CO2) and add it to the indirect effect to get the total response to increased CO2125

in the aquaplanet (aqua4K+4×CO2).126

2.2 GFDL AM2.1 aquaplanet GCM127

In order to understand the importance of entrainment for the tropical temperature128

response to surface warming we configure the GFDL AM2.1 aquaplanet GCM (hereafter129

GFDL) with the Relaxed Arakawa-Schubert (RAS) convection scheme (Moorthi & Suarez,130

1992). In the RAS scheme, the Tokioka parameter (α) controls the minimum entrain-131

ment rate (εmin) as follows:132

εmin =
α

D
, (1)

where D is the depth of the planetary boundary layer. This constraint only affects plumes133

that detrain above 500 hPa, thus the Tokioka parameter controls the entrainment rate134

of deep convection only. Tokioka et al. (1988) varied α to study the influence of convec-135

tive entrainment on the Madden–Julian oscillation. The default climatological value is136

α = 0.025 in GFDL. To investigate the role of entrainment on the tropical tempera-137

ture response, we perturb α from its default climatological value as follows: α = 0, 0.00625,138

0.0125, 0.05, and 0.1.139

As varying α only indirectly affects the actual entrainment rate in the model, we140

quantify the entrainment rate using the output from the RAS scheme. The bulk entrain-141

ment rate 〈ε〉 is then calculated as the entrainment rate vertically averaged from 850–142

200 hPa. The expectation is that as convective entrainment rate increases (increasing143

α), the convecting plume becomes more sub-saturated, latent heating decreases, and the144

temperature response to surface warming weakens in the upper troposphere.145

We vary the entrainment in two configurations of the GFDL model: 1) the stan-146

dard aquaplanet configured with the qObs SST profile (GFDLaqua) (Neale & Hoskins,147

2000) and 2) rotating radiative-convective equilibrium (RCE) configured with a spatially148

uniform SST of 300 K (GFDLrce). The latter allows us to test for the robustness of our149

results in the absence of a large-scale circulation, which is a common idealized model con-150

figuration for the tropics (Wing et al., 2018). For both configurations we investigate the151

response to a uniform SST warming of 4 K (GFDLaqua4K and GFDLrce4K). Follow-152

ing Tan et al. (2019) the GFDL aquaplanet uses RRTMG radiation and does not include153

the radiative effects of ozone and clouds.154

We compare the tropical temperature response to warming with varying climato-155

logical entrainment in the aquaplanet to the zero-buoyancy bulk-plume models of Singh156

and O’Gorman (2013), hereafter SO13, Romps (2014), hereafter R14, and Romps (2016),157

hereafter R16. The zero-buoyancy bulk-plume model is a simple 1-D model that includes158

the effect of convective entrainment in RCE. The SO13 model assumes a fixed environ-159
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mental relative humidity, while the R14 and R16 models explicitly consider the water160

vapor budget to predict relative humidity, which is further assumed to be vertically con-161

stant in R16. For the SO13 model, we assume a constant relative humidity profile of 80%.162

For the R14 model, we assume a constant ratio of gross evaporation to gross condensa-163

tion of 0.75 (α in R14) as this gives a close fit to both the GFDLrce and SO13 results.164

For the R16 model, we assume a constant precipitation efficiency of 0.25 (PE in R16)165

to be consistent with the value of gross evaporation to condensation rate chosen for the166

R14 model. We configure all other parameters using the same values as reported in the167

literature.168

2.3 Calculating the moist adiabat and its overprediction169

We calculate the moist adiabatic temperature by setting the initial condition of the170

rising parcel as the annual mean 2 m temperature, humidity, and surface pressure. For171

models where the 2 m fields are not available, we interpolate the three dimensional tem-172

perature and humidity fields to the surface pressure. Where the surface pressure is greater173

than the lowest pressure level of the vertical grid (1000 hPa), we linearly extrapolate from174

the 1000 hPa value.175

We integrate the dry adiabatic lapse rate Γd up to the lifted condensation level (LCL).176

During this dry ascent, we assume that the water vapor mixing ratio is conserved. Above177

the LCL, we calculate temperature by integrating the moist-adiabatic lapse rate Γm fol-178

lowing the definition in the American Meteorological Society (AMS) glossary (AMS, cited179

2020: Moist-adiabatic lapse rate).180

Γm = Γd

1 + Lvrv
RT

1 +
L2

vrv
cpdRvT 2

, (2)

where Lv is the latent heat of vaporization, rv is the vapor mixing ratio, R is the spe-181

cific gas constant of dry air, Rv is the specific gas constant of water vapor, T is temper-182

ature, and cpd is the isobaric specific heat capacity of dry air. This moist adiabat is a183

simplified form of a moist pseudoadiabat where it is assumed that all condensates pre-184

cipitate out immediately and rv � 1. Furthermore, we do not consider the effect of freez-185

ing (latent heat of fusion).186

We quantify the overprediction Op of the moist adiabatic response at a pressure187

level p as follows:188

Op =
∆Tm,p −∆Tp

∆Ts
(3)

where ∆ denotes the difference between the warmer and climatological climates, Tp is189

the GCM temperature at pressure level p, Tm,p is the moist adiabatic temperature at190

pressure level p, and Ts is the surface temperature. We evaluate overprediction at 300191

hPa following Fueglistaler et al. (2015). The tropical-mean overprediction is obtained192

from horizontally-averaging between 10◦S and 10◦N.193

To test the impact of the large-scale circulation, we average overprediction only over194

regions of climatological ascent at 500 hPa that exceeds the 75th percentile value in the195

tropics following Sherwood et al. (2014). This corresponds to ≈ −35 hPa/d in the multi-196

model mean climatology of the piControl and AMIP simulations. The overprediction in197

regions of deep convection is then obtained from the horizontally-averaged overpredic-198

tion within regions that satisfy the 75th percentile pressure velocity criteria. We use −35199

hPa/d as the threshold value across all models. We do not filter the GFDLrce response200

by vertical motion due to the absence of a large-scale circulation.201
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3 Results202

3.1 Overprediction across the CMIP5 model hierarchy203

Moist adiabatic warming systematically overpredicts the multi-model mean upper204

tropospheric warming across the CMIP5 model hierarchy (red bars in boxes Fig. 1a). Ac-205

cording to a t-test, the difference in mean overprediction between abrupt4×CO2 and the206

simpler models is statistically significant at the 5% level (Supplementary Table S2). The207

multi-model mean overprediction varies by a factor of 2 across the model hierarchy, from208

25.3% for abrupt4×CO2 to 16.6%, 17.0%, and 12.9% for amipF, amip4K, and aqua4K,209

respectively. The overprediction is largest in the upper troposphere (Supplementary Fig.210

S1) and is similar for alternative definitions of moist adiabats, such as the pseudoadi-211

abat and the reversible adiabat (Supplementary Table S3).212

In what follows we focus on quantifying the impact of the following mechanisms213

on overprediction: 1) large-scale circulation, 2) direct effect of CO2, and 3) convective214

entrainment.215

3.2 Large-scale circulation216

The moist adiabatic prediction does not take into account the presence of the large-217

scale climatological circulation or its response to warming. Since the moist adiabat is218

a model of a convecting parcel, we expect overprediction to be smallest over regions of219

deep convection (defined here as regions where climatological ω < −35 hPa/d at 500220

hPa).221

Overprediction is small in regions of deep convection such as the western Pacific222

warm pool (Fig. 2a–d, inside the red contour line). Conversely, overprediction is large223

over the eastern Pacific, which is characterized by climatological descent (Fig. 2a–d, re-224

gions outside of red contour line). Overprediction over the eastern Pacific is smaller in225

amip4K compared to amipFuture, suggesting that enhanced future warming in the east-226

ern Pacific contributes to overprediction. Overprediction is zonally uniform in aqua4K227

(Fig. 2e) and nearly meridionally uniform as most of 10◦N/S is a region of climatolog-228

ical deep convection in the aquaplanet.229

When averaged only over regions of deep convection, multi-model mean overpre-230

diction decreases to 19.3%, 9.3%, and 13.4% for abrupt4×CO2, amipF, and amip4K (Fig. 1b).231

This decrease is statistically significant at the 5% level (Supplementary Table S4). In232

contrast, the multi-model mean overprediction over regions of deep convection for aqua4K233

slightly increases to 13.1%, but this increase is not statistically significant. Clearly, the234

climatological large-scale circulation has an influence on the tropical temperature response,235

but accounting for this does not eliminate overprediction.236

3.3 Direct effect of CO2237

The direct effect of increased CO2 has a significant impact on the tropical circu-238

lation and precipitation but does not lead to significant global-mean surface warming239

(Bony et al., 2013). When the response to the direct effect of CO2 is added to the sur-240

face warming effect in the AGCM and aquaplanet models, the multi-model mean over-241

prediction over regions of deep convection increases to 20.1%, 21.1%, and 16.6% for amipF,242

amip4K, and aqua4K, respectively (compare Fig. 1b to Fig. 3), and the AMIP model243

results become more similar to CMIP5 models. A t-test shows that this increase is sta-244

tistically significant at the 5% level for all three model configurations (Supplementary245

Table S5). Thus, the direct effect of CO2 contributes to a non-zero overprediction as ex-246

pected from previous work that showed the tropical temperature response to the direct247

effect of CO2 is vertically uniform (compare vertical structure of black and orange lines248

in Supplementary Fig. S2).249
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Figure 1. a) Intermodel spread of overprediction across the CMIP5 model hierarchy. For each

model configuration, black dots denote overprediction of individual models, the red horizontal

line is the mean, the red vertical bar is the 5–95% confidence interval of the mean, and the blue

vertical line is the standard deviation. b) Same as a), but overprediction averaged only over

regions of deep convection (defined as where ω < −35 hPa/d at 500 hPa).

3.4 Convective entrainment250

Even after accounting for the large-scale circulation and the direct effect of CO2,251

overprediction is still non-zero (as shown by the AMIP and aquaplanet model results in252

Fig. 1b). This motivates us to consider the role of entrainment on overprediction, an-253

other mechanism that is missing in the moist adiabatic prediction. We study how the254

strength of climatological entrainment in the RAS convection scheme affects the mag-255

nitude of the overprediction in the GFDL model. With the default Tokioka parameter256

(α = 0.025), the moist adiabat overpredicts the GFDLrce4K and GFDLaqua4K response257

by 11.6% (Supplementary Table S3) and 13.2% (Supplementary Table S6), respectively.258

The magnitude of overprediction in GFDL is similar to that of the CMIP5 aqua4K multi-259

model mean, making GFDL a good representative model for this study.260

When the Tokioka parameter is increased and thus there is a larger entrainment261

rate, the temperature response is weakened aloft in both the RCE (Fig. 4a) and aqua-262

planet (Fig. 4b) configurations. The range of the overprediction obtained from varying263

the climatological entrainment rate in GFDLrce4K (GFDLaqua4K) is 6.7% to 17.1% (8.3%264

to 17.9%). Increasing α beyond the range shown here does not further increase the en-265

trainment rate. Thus, the range of bulk entrainment rates obtained here represent nearly266

the full extent of the entrainment rate regime that can be studied by perturbing the Tokioka267

parameter in GFDL.268

We find that overprediction is strongly correlated with the logarithm of the clima-269

tological entrainment rate for both GFDLrce4K (R = 0.95, see Fig. 4c) and GFDLaqua4K270

(R = 0.98, see Fig. 4d). While the range of overprediction obtained in GFDLaqua4K271

is similar to that of GFDLrce4K, GFDLaqua4K exhibits larger entrainment rates given272

the same Tokioka parameter. The sensitivity of overprediction to the strength of clima-273

tological entrainment obtained in GFDLrce4K is consistent with the zero-buoyancy bulk-274

plume models of SO13 and R14 up to 〈ε〉 = 0.1 km−1 (dashed and solid black lines in275
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Figure 2. a) Spatial structure of the overprediction of the moist adiabat at 300 hPa in re-

sponse to warming for the CMIP5 multi-model mean. The red contour denotes the boundary of

the multi-model mean climatological deep convection as described in the text. b)–e) are the same

for the amipF+4×CO2, amipF, amip4K, and aqua4K multi-model mean responses, respectively.
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Figure 3. Same as Fig. 1b but including the direct effect of CO2 in the AMIP and aquaplanet

model results.

Fig. 4c). The R16 model predicts weaker overprediction for a given climatological en-276

trainment rate compared to GFDLrce, SO13, and R14. The R16 prediction does not change277

substantially with varying values of precipitation efficiency.278

4 Summary and Discussion279

4.1 Summary280

Here, we investigate the accuracy of the moist adiabatic prediction of the tropical281

upper tropospheric temperature response to warming. We found that the moist adia-282

bat overpredicts the multi-model mean tropical upper tropospheric warming at 300 hPa283

by 12.9–25.3% across the CMIP5 model hierarchy. We quantified the importance of three284

mechanisms, not included in the moist adiabat theory, to the overprediction: 1) large-285

scale circulation, 2) direct effect of CO2, and 3) convective entrainment. The importance286

of convective entrainment was quantified by varying the Tokioka parameter in idealized287

aquaplanet simulations. Our conclusions are:288

1. The climatological large-scale circulation has a significant impact on overpredic-289

tion. Overprediction is largest in regions of descent and weak ascent. Overpredic-290

tion is smaller but non-zero in tropical regions of deep convection. This explains291

why multi-model mean overprediction is higher for the amip4K response (17.0%)292

compared to the aqua4K response (12.9%), which does not include climatologi-293

cal descent in the deep tropics (10◦N/S).294

2. The direct effect of increased CO2, which impacts tropical circulation and precip-295

itation but not global-mean warming, contributes significantly to overprediction.296

This explains why multi-model mean overprediction is higher for the abrupt4×CO2297

response (25.3%) compared to the configurations with prescribed surface warm-298

ing (16.6% for amipF, 17.0% for amip4K, and 12.9% for the aqua4K).299

3. Parameterized convective entrainment contributes significantly to overprediction300

in the GFDL aquaplanet model configured with various Tokioka parameters. Over-301

prediction scales with the logarithm of the climatological entrainment rate in the302

GFDL model. The sensitivity of overprediction to the climatological entrainment303
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Figure 4. Temperature response in the GFDL aquaplanet when varying the Tokioka param-

eter for the a) RCE (GFDLrce4K) and b) aquaplanet (GFDLaqua4K) configurations. Over-

prediction of the moist adiabat increases with the strength of climatological entrainment for c)

GFDLrce4K and d) GFDLaqua4K. The deviation as predicted by zero-buoyancy bulk-plume

models of Singh and O’Gorman (2013) (labeled SO13), Romps (2014) (labeled R14), and Romps

(2016) (labeled R16) are shown as black lines in panel c.
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rate in the RCE configuration agrees well with the zero-buoyancy bulk-plume mod-304

els of Singh and O’Gorman (2013) and Romps (2014). The Romps (2016) model305

does not agree as closely. This may be due the additional simplifying assumptions306

that it makes about the vertical structure of entrainment, detrainment, and rel-307

ative humidity.308

4.2 Discussion309

While Tripati et al. (2014) and Po-Chedley et al. (2019) attribute the overpredic-310

tion of the moist adiabat to convective entrainment, our results show that the large-scale311

circulation and the direct effect of CO2 also contribute to overprediction. This suggests312

that the predictions made by the zero-buoyancy bulk-plume models may have limitations313

outside of the idealized RCE configuration. Indeed, while the sensitivity of overpredic-314

tion to climatological entrainment in the GFDL RCE aquaplanet agrees well with the315

zero-buoyancy bulk-plume model, this is not the case for the GFDL aquaplanet with a316

large-scale circulation. Future work could evaluate the bulk-plume model of Singh et al.317

(2019), which improves on the Singh and O’Gorman (2013) and Romps (2014) models318

by also considering the effect of the large-scale vertical motion on the predicted temper-319

ature response.320

In our study, we perturbed the entrainment rate in an aquaplanet model by an or-321

der of magnitude but were not able to capture the full intermodel spread among the aqua4K322

models. Some possible reasons that our perturbation experiment failed to capture the323

full spread of overprediction include: 1) the RAS convection scheme is not used by all324

CMIP5 aquaplanet models and other convection schemes may show greater sensitivity325

to entrainment, 2) the entrainment response to warming (rather than the climatologi-326

cal entrainment) may influence overprediction, and 3) physical processes other than en-327

trainment may influence overprediction. The importance of 1) may be addressed by run-328

ning experiments using a different convection scheme that more explicitly allows the en-329

trainment rate to be controlled. The importance of 2) may be quantified by prescrib-330

ing different entrainment rates in a warmer climate. Prescribing different Tokioka pa-331

rameters in the control and warm climates of the GFDL aquaplanet leads to a large range332

of overprediction (−40.4%–73.5%, see Supplementary Fig. S3). However, parameterized333

entrainment must be compared to more direct measures of entrainment such as those334

diagnosed from cloud-permitting model simulations (Romps, 2010). Future work could335

also explore 3) by quantifying the influence of other processes that are not represented336

in a moist adiabat on overprediction, such as precipitation efficiency, the ice phase, and337

cloud radiative effects.338

This work highlights the limitations of moist adiabatic adjustment as a quantita-339

tive theory for the tropical temperature response predicted by climate models, and pro-340

vides a first step towards a mechanistic understanding of this misfit. A full understand-341

ing of tropical lapse rate changes is critical to determine the robustness of model pre-342

dictions, and to provide confidence in tropical climate forecasts more generally.343
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Table S1. Overprediction in % of the moist adiabat across the model hierarchy for individual

models used in this study. Blank data denote models for which data was not available in the

corresponding model configuration.
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ACCESS1-0 10.6 – – – – – –
ACCESS1-3 27.5 – – – – – –
bcc-csm1-1 23.1 19.4 15.6 22.8 18.4 – –
bcc-csm1-1-m 32.3 – – – – – –
BNU-ESM 27.1 – – – – – –
CanESM2 25.5 15.8 14.0 15.6 13.5 – –
CCSM4 26.4 22.8 22.9 23.8 23.9 23.6 22.6
CNRM-CM5 46.9 40.3 33.3 40.2 31.9 52.0 40.1
CNRM-CM5-2 46.4 – – – – – –
CSIRO-Mk3-6-0 28.0 – – – – – –
FGOALS-g2 24.5 – – – – 20.5 17.3
FGOALS-s2 35.5 – – – – – –
GFDL-CM3 22.2 – – – – – –
GFDL-ESM2G 31.4 – – – – – –
GFDL-ESM2M 33.8 – – – – – –
GISS-E2-H 23.8 – – – – – –
GISS-E2-R 21.2 – – – – – –
HadGEM2-ES 12.6 10.0 5.1 11.2 5.6 7.1 4.4
inmcm4 36.6 – – – – – –
IPSL-CM5A-LR 27.1 21.0 21.5 21.1 21.7 22.4 23.2
IPSL-CM5A-MR 27.1 – – – – – –
IPSL-CM5B-LR 13.4 12.3 12.0 13.1 12.7 – –
MIROC-ESM 8.2 – – – – – –
MIROC5 22.8 17.8 16.0 18.0 15.8 19.4 19.9
MPI-ESM-LR 16.5 16.0 8.3 18.5 9.5 −11.4 −17.3
MPI-ESM-MR 16.9 19.6 11.1 21.3 11.7 −9.3 −15.6
MPI-ESM-P 17.0 – – – – – –
MRI-CGCM3 29.8 26.4 23.1 26.5 22.5 24.8 21.1
NorESM1-M 20.9 – – – – – –

All model mean 25.3 20.1 16.6 21.1 17.0 16.6 12.9
AMIP-subset mean 23.7 20.1 16.6 21.1 17.0 16.1 12.3
Aqua-subset mean 24.8 21.7 17.6 22.6 17.8 16.6 12.9
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Table S2. P-values of the T-test for the null hypothesis that the difference in mean overpredic-

tion between the abrupt4×CO2 response and that of simpler models are indistinguishable. The

mean difference and the 5–95% confidence interval are also shown. The difference is statistically

significant for all model configurations (p-value < 5%, indicated in bold).

Lower Bound Mean Upper Bound p-value

abrupt4×CO2−amipF 4.85 7.10 9.35 3.58E-5
abrupt4×CO2−amip4K 4.01 6.69 9.37 2.41E-4
abrupt4×CO2−aqua4K 2.61 11.96 21.31 0.0185

Table S3. Overprediction in % of the moist adiabat across the model hierarchy for various

types of the moist adiabat. Three types of moist adiabats are shown here following the defini-

tions in the AMS glossary. Standard : The limit of a moist pseudoadiabat when rv � 1 (AMS,

cited 2020: Moist-adiabatic lapse rate). Pseudo: Moist pseudoadiabat, which assumes that all

condensates precipitate immediately (AMS, cited 2020: pseudoadiabatic lapse rate). Reversible:

Reversible moist-adiabat, which assumes that all condensates remain in the rising parcel (AMS,

cited 2020: reversible moist-adiabatic process).

Standard Pseudo Reversible

abrupt4×CO2 25.3 30.5 24.7
amipF 16.6 21.6 15.4
amip4K 17.0 22.1 15.9
aqua4K 12.9 18.6 11.9
GFDLaqua4K 14.2 19.9 13.5
GFDLrce4K 11.6 16.8 11.1

Table S4. P-values of the T-test for the null hypothesis that the difference in mean overpre-

diction averaged over 10◦N/S and averaged only over regions of strong mean ascent (ω500 < −35

hPa/d, indicated with an asterisk below) are indistinguishable. The mean difference and the

5–95% confidence interval are also shown. The difference is statistically significant for model

configurations that have zonally-asymmetric circulations. (p-value < 5%, indicated in bold).

Lower Bound Mean Upper Bound p-value

abrupt4×CO2−abrupt4×CO∗
2 3.89 6.10 8.30 0.0000

amipF−amipF∗ 3.92 7.27 10.63 0.0007
amip4K−amip4K∗ 0.88 3.62 6.36 0.0146
aqua4K−aqua4K∗ −3.76 −0.21 3.35 0.8973

Table S5. P-values of the T-test for the null hypothesis that the difference in mean overpre-

diction between the combined surface warming plus the direct CO2 response and only the surface

warming response are indistinguishable. The mean difference and the 5–95% confidence interval

are also shown. The difference is statistically significant for all model configurations (p-value

< 5%, indicated in bold).

Lower Bound Mean Upper Bound p-value

amipF+4×CO∗
2−amipF∗ 1.53 3.63 5.72 0.0032

amip4K+4×CO∗
2−amip4K∗ 1.54 3.94 6.33 0.0043

aqua4K+4×CO∗
2−aqua4K∗ 0.94 3.15 5.35 0.0110
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Table S6. Same as Table S3 but overprediction is evaluated only over regions of strong mean

ascent (ω500 < −35 hPa/d, indicated by an asterisk). This filter is not applied to GFDLrce4K as

the RCE configuration lacks a climatological large-scale circulation.

Standard Pseudo Reversible

abrupt4×CO∗
2 19.3 24.6 18.3

amipF∗ 9.3 14.4 7.7
amip4K∗ 13.4 18.6 11.9
aqua4K∗ 13.1 18.8 11.9
GFDLaqua4K∗ 13.2 18.7 12.4
GFDLrce4K∗ – – –
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Table S7. Same as Table S1 except overprediction is evaluated only over regions of strong

mean ascent (ω500 < −35 hPa/d, indicated by an asterisk).

a
b
ru
p
t4
×
C
O

∗ 2

a
m
ip
F
+
4
×
C
O

∗ 2

a
m
ip
F
∗

a
m
ip
4
K
+
4×

C
O

∗ 2

a
m
ip
4
K

∗

a
q
u
a
4K

+
4×

C
O

∗ 2

a
q
u
a
4K

∗

ACCESS1-0 7.6 – – – – – –
ACCESS1-3 23.2 – – – – – –
bcc-csm1-1 11.6 5.9 1.4 12.3 7.4 – –
bcc-csm1-1-m 29.3 – – – – – –
BNU-ESM 27.9 – – – – – –
CanESM2 10.4 6.2 5.9 9.3 9.1 – –
CCSM4 29.4 22.2 22.1 26.7 26.6 23.2 21.7
CNRM-CM5 46.2 39.5 32.1 39.8 31.4 50.3 43.0
CNRM-CM5-2 45.5 – – – – – –
CSIRO-Mk3-6-0 9.6 – – – – – –
FGOALS-g2 22.4 – – – – 19.6 16.9
FGOALS-s2 24.6 – – – – – –
GFDL-CM3 18.4 – – – – – –
GFDL-ESM2G 30.5 – – – – – –
GFDL-ESM2M 31.6 – – – – – –
GISS-E2-H 19.8 – – – – – –
GISS-E2-R 18.2 – – – – – –
HadGEM2-ES 8.1 8.2 4.5 10.7 6.5 5.2 4.7
inmcm4 24.2 – – – – – –
IPSL-CM5A-LR 21.0 11.0 8.6 21.5 19.5 21.9 21.8
IPSL-CM5A-MR 19.2 – – – – – –
IPSL-CM5B-LR 6.1 11.0 −2.0 3.6 3.4 – –
MIROC-ESM −11.3 – – – – – –
MIROC5 10.5 10.4 8.3 14.2 11.9 11.0 11.4
MPI-ESM-LR 11.1 9.6 1.8 13.1 4.4 −4.0 −9.9
MPI-ESM-MR 10.0 13.0 4.4 16.2 6.6 −5.4 −10.4
MPI-ESM-P 12.2 – – – – – –
MRI-CGCM3 17.9 18.2 15.7 23.4 20.6 24.1 18.6
NorESM1-M 23.2 – – – – – –

All model mean 19.2 13.0 9.3 17.3 13.4 16.2 13.1
AMIP-subset mean 16.6 13.0 9.3 17.3 13.4 15.8 12.6
Aqua-subset mean 19.5 16.5 12.2 20.7 15.9 16.2 13.1
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Figure S1. a) Vertical structure of the temperature response over the tropics (defined as

10◦N/S) for the CMIP5 multi-model mean (black) and the prediction based on a moist adiabat

(orange). The moist adiabat overpredicts the CMIP5 response by 25.34% at 300 hPa. b)–d) are

the same for the amipF, amip4K, and aqua4K multi-model mean responses, respectively. e) and

f) are the same for GFDLaqua4K and GFDLrce4K responses.
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Figure S2. a) Vertical structure of the difference in multi-model mean temperature response

between amipF+4×CO2 and amipF (black) and the corresponding moist adiabatic prediction

(orange). While the warming due to the direct effect of CO2 is approximately uniform with

height in the multi-model mean, the moist adiabat predicts amplified warming aloft. b) and c)

are the same for the differences between amip4K+4×CO2 and amip4K and aqua4K+4×CO2 and

aqua4K, respectively.
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Figure S3. Temperature responses simulated in GFDL where the Tokioka parameter α is

held fixed at 0.025 for the control climate and varied as shown only for the warm climate. The

amplified warming in the upper troposphere weakens when the entrainment strengthens with

warming in a) GFDLrce4K and b) GFDLaqua4K. Overprediction of the moist adiabat scales

with the response of entrainment in both c) GFDLrce4K and d) GFDLaqua4K. The deviation as

predicted by zero-buoyancy bulk-plume models of Singh and O’Gorman (2013) (labeled SO13),

Romps (2014) (R14), and Romps (2016) (R16) are shown as black lines in panel c.
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Figure S4. The difference between overprediction averaged over 10◦N/S and overprediction

averaged only over regions of climatological deep convection (ω500 < −35 hPa/d) for each model

across the model hierarchy (black dots). The mean difference in overprediction is denoted by the

red line. The red box shows the 5–95% confidence interval of the mean. The blue line shows one

standard deviation of the distribution.
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Figure S5. The difference in overprediction between the combined surface warming plus the

direct CO2 response and only the surface warming response for each model across the model hier-

archy (black dots). The mean difference in overprediction is denoted by the red line. The red box

shows the 5–95% confidence interval of the mean. The blue line shows one standard deviation of

the distribution.
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