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Abstract

The air pollutant NO is derived largely from transportation sources, and is known to cause various respiratory diseases.

Substantial reduction in transport and industrial processes around the globe stemming from the novel SARS-CoV-2 coronavirus

and subsequent pandemic resulted in sharp declines in emissions, including for NO. Additionally, the COVID-19 disease that

results from the coronavirus may present in its most severe form in those who have been exposed to high levels of air pollution

and thus have various co-morbidities. To explore these links, we compared ground-based NOsensor data from 15 US cities

from a one month window in 2019 versus the same window during shutdown in 2020. Levels of NO declined roughly 20-60% in

13 of the 15 cities in 2020, linked to similar declines in traffic volume in those cities. To broaden the spatial analysis beyond

the individual ground-based monitors, satellite data for tropospheric NO was also analyzed, and was largely consistent with

the ground measurements. Many of the cities studied had a substantial percentage of the population with various pre-existing

conditions, and a relationship was found between NO levels, respiratory disease, and COVID-19 case counts. This finding

indicates that substantial improvements in air pollution and health outcomes can be achieved quickly with local and state

policy directives, perhaps leading to more population-level health resilience in the face of future pandemics.

Supporting Information

Substantial decreases in NO2 emissions from reduced transportation volumes in US cities
during COVID-19 shutdowns reveal health vulnerabilities of urban populations

Asrah Heintzelman1,2, Vijay O. Lulla3, and Gabriel M. Filippelli1,2#

1Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI)

2Environmental Resilience Institute, Indiana University

3Department of Geography, Indiana University-Purdue University Indianapolis (IUPUI)

#Corresponding author: gfilippe@iu.edu

VMT -
normalized
area

Pct ped
asthma

Pct adult
asthma

Pct adult
asthma Pct copd

VMT -
normalized -
area

1

1



P
os

te
d

on
21

N
ov

20
22

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

32
67

.1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

VMT -
normalized
area

Pct ped
asthma

Pct adult
asthma

Pct adult
asthma Pct copd

pct ped
asthma

-0.335513897 1 1

pct adult
asthma

0.424744751 -0.209894652 -0.209894652 1

pct copd -0.051055607 0.616866122 0.616866122 0.3427601 1
pct-lung
cancer

0.192682223 0.665499529 0.665499529 0.330156319 0.844530689

Table S1. Disease Correlation

County City City Pct adult asthma Pct adult asthma Pct ped asthma

Queens Queens NY NY 8.17% 1.24%
Philadelphia Philadelphia Philadelphia Philadelphia 7.90% 2.11%
Maricopa Maricopa Phoenix Phoenix 7.71% 1.92%
Marion Marion Indianapolis Indianapolis 7.44% 2.14%
San Francisco San Francisco San Francisco San Francisco 7.33% 0.83%
Mecklenburg Mecklenburg Charlotte Charlotte 7.27% 2.71%
Duval Duval Jacksonville Jacksonville 6.81% 1.68%
Los Angeles Los Angeles LA LA 6.66% 1.34%
San Diego San Diego San Diego San Diego 6.66% 1.33%
Santa Clara Santa Clara San Jose San Jose 6.64% 1.35%
Travis Travis Austin Austin 5.81% 1.72%
Bexar Bexar San Antonio San Antonio 5.55% 2.02%
Tarrant Tarrant Fort Worth Fort Worth 5.51% 2.08%
Dallas Dallas Dallas Dallas 5.51% 2.07%
Harris Harris Houston Houston 5.47% 2.11%

Table S2. Percent Asthma

Correlation Pct adult asthma

pct adult asthma 1
death rate covid 0.467336406
cases rate covid 0.578234609
VMT jan normalized 0.424744751
pct ped asthma -0.209894652
pct copd 0.3427601
pct-lung cancer 0.330156319
mean NO2 2019 0.318820764
raster mar2019 0.218847794
raster apr2019 0.187058132

Table S3. Correlation of percent adult asthma
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Correlations VMT jan normalized

VMT jan normalized 1
cases rate covid 0.713780978
raster mar2019 0.592131794
raster apr2019 0.517037472
pct adult asthma 0.424744751
death rate covid 0.328400892
pct-lung cancer 0.192682223
Mean NO2 2019 0.031041247
pct copd -0.051055607
pct ped asthma -0.335513897

Table S4. Correlation of VMT normalized

Correlation Cases rate covid

cases rate covid 1
raster mar2019 0.825389115
death rate covid 0.78354049
VMT jan normalized 0.713780978
raster apr2019 0.709177717
pct adult asthma 0.578234609
pct-lung cancer 0.379933163
Mean NO2 2019 0.229179331
pct copd 0.113024761
pct ped asthma -0.220742254

Table S5. Correlation of COVID-19 cases rate

Correlation Death rate covid

death rate covid 1
cases rate covid 0.78354049
raster mar2019 0.69124339
raster apr2019 0.518801979
pct adult asthma 0.467336406
VMT jan normalized 0.328400892
pct-lungcancer 0.07930734
Mean NO2 2019 -0.073176656
pct copd -0.085953128
pct pedasthma -0.307275369

Table S6. Correlation of COVID-19 death rate

CountyName City Cases rate covid

Queens NY 1.90%
Philadelphia Philadelphia 0.66%
Marion Indianapolis 0.47%

3
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CountyName City Cases rate covid

Los Angeles LA 0.18%
San Francisco San Francisco 0.14%
Harris Houston 0.12%
Travis Austin 0.11%
Dallas Dallas 0.10%
Mecklenburg Charlotte 0.10%
Duval Jacksonville 0.10%
San Diego San Diego 0.08%
Tarrant Fort Worth 0.08%
Santa Clara San Jose 0.07%
Maricopa Phoenix 0.07%
Bexar San Antonio 0.06%

Table S7. COVID-19 cases in 15 cities

CountyName City Death rate covid

Queens NY 10.42%
Santa Clara San Jose 5.92%
Marion Indianapolis 4.74%
Los Angeles LA 4.66%
Maricopa Phoenix 3.89%
San Diego San Diego 3.88%
Bexar San Antonio 3.76%
Mecklenburg Charlotte 3.27%
Tarrant Fort Worth 2.86%
Dallas Dallas 2.64%
Philadelphia Philadelphia 2.61%
Travis Austin 2.44%
San Francisco San Francisco 1.79%
Duval Jacksonville 1.75%
Harris Houston 1.53%

Table S8. COVID-19 death rate in 15 cities

correlations death rate covid cases rate covid

pct adult asthma 0.467336406 0.578234609
pct ped asthma -0.307275369 -0.220742254
pct copd -0.085953128 0.113024761
pct-lungcancer 0.07930734 0.379933163

Table S9. Correlation of diseases and COVID-19 for all 15 cities studied.

Column1 Mean NO2 2019

Mean NO2 2019 1
raster apr2019 0.356824066
pct adult asthma 0.318820764

4
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Column1 Mean NO2 2019

raster mar2019 0.27820681
cases rate covid 0.229179331
pct-lungcancer 0.065654954
VMT jan normalized 0.031041247
pct copd 0.005648168
pct ped asthma -0.055242012
death rate covid -0.073176656

Table S10. Correlation of NO2 with disease in all 15 cities measured

5



 
 

1 

Substantial decreases in NO2 emissions from reduced transportation volumes in US cities 1 

during COVID-19 shutdowns reveal health vulnerabilities of urban populations 2 

Asrah Heintzelman1,2, Vijay O. Lulla3, and Gabriel M. Filippelli1,2# 
3 

1Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI) 4 

2Environmental Resilience Institute, Indiana University 5 

3Department of Geography, Indiana University-Purdue University Indianapolis (IUPUI) 6 

#Corresponding author: gfilippe@iu.edu 7 

 8 

Abstract 9 

The air pollutant NO2 is derived largely from transportation sources, and is known to cause 10 

various respiratory diseases. Substantial reduction in transport and industrial processes around 11 

the globe stemming from the novel SARS-CoV-2 coronavirus and subsequent pandemic resulted 12 

in sharp declines in emissions, including for NO2. Additionally, the COVID-19 disease that results 13 

from the coronavirus may present in its most severe form in those who have been exposed to 14 

high levels of air pollution and thus have various co-morbidities. To explore these links, we 15 

compared ground-based NO2 sensor data from 15 US cities from a one month window in 2019 16 

versus the same window during shutdown in 2020. Levels of NO2 declined roughly 20-60% in 13 17 

of the 15 cities in 2020, linked to similar declines in traffic volume in those cities. To broaden 18 

the spatial analysis beyond the individual ground-based monitors, satellite data for 19 

tropospheric NO2 was also analyzed, and was largely consistent with the ground 20 

measurements. Many of the cities studied had a substantial percentage of the population with 21 

various pre-existing conditions, and a relationship was found between NO2 levels, respiratory 22 

disease, and COVID-19 case counts. This finding indicates that substantial improvements in air 23 



 
 

2 

pollution and health outcomes can be achieved quickly with local and state policy directives, 24 

perhaps leading to more population-level health resilience in the face of future pandemics.  25 

 26 

Key Points: 27 

 The shut-down policies related to COVID-19 pandemic resulted in a 20-60% decrease in 28 

ground-level NO2 in most U.S. cities 29 

 Most of the NO2 decline can be attributed to a sharp drop in vehicular traffic during the 30 

shut-down 31 

 Pre-existing conditions that worsen COVID-19 disease correlated with NO2 and COVID-19 32 

incidence and mortality data 33 

 34 

Plain Language Summary: 35 

The global shutdown to stem the explosive growth of the SAR-CoV-2 pandemic led to 36 

substantially improved air quality worldwide as many transport and industrial practices ground 37 

to a halt. Air pollution influences morbidity and mortality, causing co-morbidities that seem to 38 

be linked to more severe cases of COVID-19. One vehicular-related air pollutant, NO2, 39 

decreased substantially in concert with lowered traffic volume in nearly all of the 15 U.S. cities 40 

analyzed here using ground-based measurements of NO2. Additionally, satellite-based 41 

measurements were consistent with the ground-based network, filling in key spatial data gaps 42 

and contextualizing the sparse ground-level data with more spatially integrative satellite 43 

observations. Health data from these cities show significant correlation between NO2, several 44 

pre-existing conditions, and COVID-19 cases and deaths, supporting the concept that air 45 

pollution might “pre-condition” some urban populations. The silver lining provided by shut-46 

down related air quality improvements are likely temporary, but lay bare the reality that air 47 

pollution likely makes inhabitants of some cities quite vulnerable to those very co-morbidities 48 

that exacerbate COVID-19 disease.  49 

 50 

 51 

 52 
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1. Introduction 53 

Due to a 13-fold increase in Coronavirus disease 2019 (COVID-19) cases outside of China on 54 

March 11, 2020 the World Health Organizations Director General characterized it as a pandemic 55 

(WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 - 11 March 56 

2020). At the time of this writing the Centers for Disease Control reported that there are 1.7M 57 

cases of COVID-19 in the U.S. with the total deaths exceeding 100K 58 

(https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html). This pandemic 59 

has resulted in instituting stay-at-home orders around the world, which has many negative 60 

externalities associated with it, but one positive one has been a marked decrease in many 61 

criteria air pollutants due to decreases in transportation volumes and industrial production 62 

(Nakada & Urban, 2020; Sharma et al., 2020), including reduced emissions of nitrogen dioxide 63 

(NO2). This change has also been quantified via satellite imagery which indicates more than 10% 64 

decline in tropospheric pollutant measurements over inhabited regions around the globe (Liu et 65 

al., in review; Venter et al., 2020). 66 

As anthropogenic activities far surpass natural emissions (Walters et al., 2015)  they have 67 

resulted in a three-to six-fold increase in nitrogen oxide (NOx = NO + NO2) emissions since the 68 

pre-industrial era (Jaeglé et al., 2005). Sources of NOx include fossil fuel/biofuel combustion, 69 

industry, and transport category constituting of vehicles, ships, and aircraft, while as natural 70 

sources of NOx include soil nitrification-denitrification processes, wild fires and lightning 71 

(Walters et al., 2015). Road emissions from tail pipe emissions, resuspended dust particles and 72 

friction processes result in NOx, carbon monoxides and volatile organic compounds (VOC’s) 73 

which has profound and measurable health implications in populations (Cesaroni Giulia et al., 74 

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
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2013; Krzyżanowski et al., 2005; Peel et al., 2005). Besides increasing acidification, global 75 

climate changes, decrease in visibility, and ozone and aerosol increases in the troposphere 76 

(Bermejo-Orduna et al., 2014), NOx also increases small particle formation (Galloway et al., 77 

2003).  78 

The onset of COVID-19 has posed a unique opportunity to quantify changes in vehicular NO2 79 

emission as a result of reduction of vehicle volume in the U.S. Due to its adverse health impacts, 80 

NO2 emission, a precursor to ground-level ozone and particulate matter concentration, has 81 

resulted in its usage as a marker for combustion emissions over regions (Bechle et al., 2011). To 82 

examine changes in NO2 in cities and how that relates to vehicular traffic and health status of 83 

the population during the COVID-19 pandemic, we examine the impact of stay-at-home orders 84 

from March 23 – April 24, 2020, as compared with March 25 - April 26, 2019. We utilize 85 

calibrated high-quality daily data for NO2 from EPA grade sensors in cities around the US. NO2 86 

emissions in 15 of the top 17 most populous cities in the U.S. (Table 1) are assessed, and 87 

compared to satellite results. We also examined traffic comparative traffic volumes, and 88 

assessed the health status of inhabitations of cities to project potential theoretical health 89 

benefits of NO2 reductions and vulnerabilities to severe forms of COVID-19 disease due to 90 

asthma, COPD and lung cancer 91 

2. Methodology 92 

2.1 NO2 and Vehicle Miles travelled (VMT) data 93 

To examine the impact of the stay-at-home orders, NO2 daily averaged data from continuous 94 

ground level sensors from road segments in 15 of the top 17 populated (Table 1) cities in the 95 
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U.S. were accessed through the respective state agencies for our study period. Due to the 96 

recent nature of this data, the 2020 NO2 values had not been validated at the time of retrieval.  97 

 98 

Population – U.S. Census Bureau   

City County State Population Estimate (July 1,2019 

Indianapolis  Marion  Indiana 876,384 

San Francisco  San Francisco  California 881,549 

Charlotte  Mecklenburg  North Carolina 885,708 

Columbus  Franklin  Ohio 898,553 

Fort Worth  Tarrant  Texas 909,585 

Jacksonville  Duval  Florida 911,507 

Austin  Travis  Texas 978,908 

San Jose Santa Clara  California 1,021,795 

Dallas  Dallas  Texas 1,343,573 

San Diego  San Diego  California 1,423,851 

San Antonio  Bexar  Texas 1,547,253 

Philadelphia  Philadelphia  Pennsylvania 1,584,064 

Phoenix  Maricopa  Arizona 1,680,992 

Houston  Harris  Texas 2,320,268 

Chicago  Cook  Illinois 2,693,976 

Los Angeles Los Angeles  California 3,979,576 

New York Queens  New York 8,336,817 

Table1. Population data from U.S. Census Bureau (U.S. Census Bureau, May2020) 99 

Seven of the 15 cities traffic volume data was also accessed as reported by Department of 100 

Transportation’s continuous sensor on a roadway segment in the respective cities. To get a 101 

uniform scale of vehicle usage, aggregate VMT data for the 15 counties was accessed from 102 

StreetLight Data (https://www.streetlightdata.com/our-data/) which run over 100 billion 103 

location data into an algorithm to aggregate and normalize travel patterns by region. 104 

2.2 Tropospheric NO2 data 105 

https://www.streetlightdata.com/our-data/
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For monthly averaged NO2 tropospheric data (January through April of 2020), we acknowledge 106 

the free use of tropospheric NO2 column data from the Global Ozone Monitoring Experiment-2 107 

(GOME-2 (METOP-B)) satellite from www.temis.nl. This sun-synchronous satellite processes 108 

NO2 concentrations from the ground up to about 10 Km and has a geometric pixel resolution of 109 

60 x 30 km2. Due to environmental uncertainties and the density of the slant column retrieved 110 

by the sensor this data can accurately estimate tropospheric column with 35-60% precision 111 

(Boersma et al., 2004). Major chemical and transport processes related to NO2, along with 112 

cloud cover, also play a role in the retrieval process and uncertainty in these values. However, 113 

the integrated tropospheric column of NO2 data is dominated by lower tropospheric amounts 114 

of NO2 (Ma et al., 2006), which makes it a useful variable to incorporate for such studies. 115 

Fifteen locations of the continuous NO2 sensors were used to extract pixel values of the 116 

tropospheric NO2 data utilizing ESRI’s ArcGIS Desktop 10.8, which was then rescaled on a scale 117 

of 0-100 for visual comparison. 118 

2.3 Health Data 119 

To assess the health status of the cities studied, Estimated Prevalence and Incidence of Lung 120 

Disease data from American Lung Association (ALA) was accessed. This data estimation is 121 

available at a county level and is based on a Behavioral Risk Factor Surveillance Survey 122 

conducted in 2017 and 2018 Centers for Disease Control’s (CDC) joint report with other state 123 

and national registries (https://www.lung.org/research/trends-in-lung-disease/prevalence-124 

incidence-lung-disease). Additionally, county-level COVID-19 cases and death data was 125 

accessed from USAFacts (https://usafacts.org/), a not-for-profit organization providing U.S. 126 

government data. 127 

http://www.temis.nl/
https://www.lung.org/research/trends-in-lung-disease/prevalence-incidence-lung-disease
https://www.lung.org/research/trends-in-lung-disease/prevalence-incidence-lung-disease
https://usafacts.org/
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 128 

 129 

3. Results  130 

A sharp reduction in NO2 was observed in 13 of the 15 cities examined, based on the same ~1-131 

month window from 2019 to shut-down conditions in 2020 (Table 2). All cities except 132 

Jacksonville, Florida showed a decline in the continuous NO2 sensors, from -4% to -63%, with an 133 

average across the cities of -26% for weekdays and -24% on weekends (Table 2). Averaged 134 

monthly values during the study period show a decline in NO2 values ranging from -5.89% to -135 

59.7% (Table 3). 136 

NO2 by City 

Mean 
wkday 
2019 
(ppb) 

Mean 
wkday 
2020 
(ppb) 

Mean 
wkend 
2019 
(ppb) 

Mean 
Wkend 

2020 
(ppb) 

NO2 
pct_chg 
wkday 

NO2 
pct_chg 
wkend 

Jacksonville 17.77 19.16 11.05 15.29 7.87% 38.35% 

Fort Worth 8.04 7.70 7.00 6.10 -4.24% -12.86% 

Houston 19.71 17.63 13.31 9.74 -10.53% -26.85% 

Austin 14.38 11.59 7.93 7.49 -19.41% -5.52% 

Indianapolis 8.99 7.13 7.09 5.84 -20.69% -17.64% 

Phoenix 17.05 13.45 12.88 8.61 -21.12% -33.15% 

Charlotte 5.60 4.32 3.05 3.38 -22.81% 10.74% 

Dallas 4.63 3.42 2.78 2.13 -26.19% -23.42% 

San 
Francisco 8.16 5.80 5.38 2.75 -28.92% -48.84% 

NY 13.16 9.00 13.63 9.85 -31.60% -27.77% 

San Antonio 9.31 6.26 7.31 6.31 -32.75% -13.68% 

LA 16.40 10.75 13.75 6.13 -34.45% -55.45% 

San Diego 15.09 9.71 11.63 4.88 -35.65% -58.06% 

San Jose 9.58 5.46 6.25 3.50 -43.04% -44.00% 

Philadelphia 29.51 10.87 22.93 12.45 -63.18% -45.68% 

Table 2. NO2 mean values in parts per billion 137 
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City 
Mean_NO2 
2019 

Mean_NO2 

2020 
Pct 
change 

Jacksonville 16.03 18.22 13.67% 

Fort Worth 7.77 7.31 -5.89% 

Houston 18.16 15.72 -13.43% 

Austin 12.82 10.60 -17.33% 

Charlotte 4.96 4.09 -17.51% 

Indianapolis 8.53 6.82 -20.07% 

Phoenix 16.04 12.27 -23.46% 

Dallas 4.18 3.10 -25.74% 

San Antonio 8.82 6.27 -28.91% 

NY 13.28 9.22 -30.57% 

San Francisco 7.48 5.06 -32.39% 

San Diego 14.19 8.82 -37.87% 

LA 15.76 9.59 -39.12% 

San Jose 8.75 4.97 -43.21% 

Philadelphia 27.92 11.25 -59.70% 

Table 3. Monthly average of NO2 from continuous sensors on a road segment 138 

The stay-at-home order resulted in a significant drop in VMT in the 15 counties in this study (Fig 139 

1). For the seven cities where traffic volume data was available, the drop in weekday volume 140 

correlates with the decrease in NO2 –an expected but nevertheless significant finding (Fig. 2), 141 

with the exception of San Jose, California. The relationship between traffic volume and NO2 on 142 

the weekends is weaker (Fig. 3).  143 

Most of the tropospheric NO2 data from the 15 cities shows a decline in March and April 2020 144 

as compared to 2019 (Table 4), with the month of March resulting in the highest aggregated 145 

decline of 34.5% (Fig. 4). New York showed the highest unit decline in March, and Houston 146 

showed the highest unit decline in April (Table 4; Figs. 5, 6)— both cities experienced the 147 

greatest unit decline during these months. Raster images from these two cities visualize this 148 

decline (Fig. 7). 149 
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 150 

 151 

Fig 1. StreetLight Data for the 15 counties 2020. 152 

 153 

 154 

Fig 2. Continuous Traffic volume and NO2 sensors on weekdays from sites in 7 cities 155 
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 156 

Fig 3. Continuous Traffic volume and NO2 sensors on weekends from sites in 7 cities 157 

  158 

Table 4. GOME-2 Tropospheric NO2 changes between January-April 2019 and 2020 159 

 160 

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

Weekend Traffic Volume and NO2 Changes in 
2020 from 2019 

weekend_traffic_volume Pct_chg_weekend_NO2

City 
January_Tropo 
NO2 

February_Tropo 
NO2 

March_Tropo 
NO2 

April_Tropo 
NO2 

NY 16.03% -12.35% -48.19% -30.85% 

LA -10.46% 77.00% 14.82% -0.81% 

Houston 6.01% -3.27% -57.00% -59.33% 

Phoenix 49.38% -7.62% 14.86% -7.14% 

Philadelphia 20.67% -13.53% -29.19% -21.41% 

San Antonio 17.38% -19.34% -44.69% -29.40% 

San Diego 62.84% 16.12% -48.40% -36.36% 

Dallas 10.21% -11.44% -30.10% -23.79% 

San Jose 17.87% 24.70% -62.26% -37.84% 

Austin 24.96% -25.61% -38.21% -19.15% 

Jacksonville -5.59% -9.60% 18.01%    0.33% 

Fort Worth 22.04% -0.28% -26.44% -18.55% 

San Francisco 20.82% 35.79% -47.19% -38.64% 

Charlotte 7.65% -6.57% -26.68% -47.42% 

Indianapolis 30.02% -22.02% -16.23% -14.18% 
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161 
Fig 4. Tropospheric change comparison 2020 to 2019 162 

 163 

164 
Fig 5. Tropospheric NO2 change from March 2019 to March 2020 165 
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 166 

167 
Fig 6. Tropospheric NO2 change from April 2019 to April 2020 168 

 169 

  170 

Fig 7. Tropospheric NO2 change in NY and Houston from March 2019 to March 2020 171 
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Health data at the county level from USAFacts and ALA indicates that in 2018, Marion County 173 

(the City of Indianapolis consolidated the entire county, thus county health data is at the same 174 

population scale as city data) had the highest percent of COPD and lung cancer cases, which are 175 

highly correlated at 0.84 (Table 6 and Table S1). Marion County ranked 4th highest in percent 176 

asthma cases and 2nd highest in percent pediatric asthma cases (Table S2). Percent adult 177 

asthma has a high correlation of 0.57 with percent COVID-19 cases and 0.42 with normalized 178 

VMT (Table S3). 179 

County City pct_copd pct-lungcancer 

Marion Indianapolis 6.35% 0.07% 

Duval Jacksonville 5.78% 0.06% 

Mecklenburg Charlotte 5.61% 0.07% 

Maricopa Phoenix 5.25% 0.04% 

Philadelphia Philadelphia 4.89% 0.06% 

Queens NY 4.52% 0.06% 

Bexar San Antonio 4.48% 0.05% 

Tarrant Fort Worth 4.45% 0.05% 

Dallas Dallas 4.33% 0.05% 

Travis Austin 4.31% 0.05% 

Harris Houston 4.28% 0.05% 

San Francisco San Francisco 3.85% 0.04% 

Los Angeles LA 3.55% 0.04% 

San Diego San Diego 3.54% 0.04% 

Santa Clara San Jose 3.53% 0.04% 

Table 6.  Percent COPD and Lung-Cancer  180 

The five highest correlations among the health and data were percent COVID-19 cases, percent 181 

COVID-19 deaths, VMT normalized by area of the counties, asthma, and tropospheric NO2 182 

extracted from GOME-2 pixel values (Table S4, S5, S6).  183 

COVID-19 data indicates that during our study period, COVID-19 case rates and death rates in 184 

Marion County were both 3rd highest (Table S7, S8). The percentage of people with adult 185 
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asthma shows the highest correlation with cases and death related to COVID-19 (Table S9), and 186 

correlations of mean NO2 values indicate that it has the second highest positive correlation 187 

(0.32) with asthma cases in the study region (Table S10). 188 

 189 

4. Discussion 190 

 191 

High vehicular emissions can result in corridors of heavy pollution (Redling et al., 2013) in rural 192 

and urban regions. If left un-examined this can have increased adverse health effects on the 193 

population in the region, thus worsening conditions like respiratory disease, cardiovascular 194 

disease, and cancers, and even causing premature mortality (Lamsal et al., 2013; Filippelli et al., 195 

2020). Findings in our study are consistent with other research which shows that NO2 pollution 196 

is linked with increased asthma events in predominantly urban areas (Achakulwisut et al., 197 

2019). Despite uncertainties from co-pollutants, short term exposure to NO2 results in a likely 198 

causal relationship between it and ischemic heart disease (IHD) (Cesaroni Giulia et al., 2013; 199 

Stieb et al., 2020), and a 20 ppb increase in NO2 results in increase in chronic obstructive 200 

pulmonary disease (COPD) hospital visits, cardiovascular disease, lung cancer in adults, and 201 

respiratory mortality (Cesaroni Giulia et al., 2013; Peel et al., 2005). 202 

Most states in the U.S. started their stay-at-home order close to the third week in March of 203 

2020. All the cities in this study except Jacksonville, FL significantly declined in NO2 emission 204 

data from the continuous sensors in the road segments. The Jacksonville case was likely a result 205 

of a delayed start to the stay-at-home order in Florida, or perhaps too great of a mismatch 206 

between the location of the NO2 monitor and the traffic volume sensor. When ground level 207 
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data lacks consistency, tropospheric NO2 satellite data, even with a geometric pixel resolution 208 

of 60 x 30 km2, can be utilized in a meaningful way to examine various regions. GOME-2 data 209 

here also shows Jacksonville with the highest increase of 18% in tropospheric NO2 column in 210 

March 2020, but in April 2020 it decreases down to almost the same levels as 2019, when most 211 

cities in the U.S. followed the stay-at-home orders. It is important to keep the difference in 212 

spatial resolution in mind when comparing ground level sensor data to satellite measurements 213 

(Drosoglou et al., 2017). 214 

In comparing traffic volume and NO2 emissions in 7 of the 15 cities we find traffic volume 215 

reduction and NO2 emissions following a similar trend of substantial declines during weekdays, 216 

with the exception of San Jose. Since the traffic volume sensors and the NO2 sensor are not co-217 

located, we need to be careful in pairing the two sets of data. For a comprehensive 218 

examination, VMT can also be used as a proxy to NO2 emissions or in conjunction with ground 219 

level sensor. It is important to note that meteorological conditions like temperature, wind 220 

speed, relative humidity, and precipitation which play a role in transport of atmospheric gases 221 

(Tobías et al., 2020) and particles were not considered in this analysis.  222 

Overlaying available health data from ALA and USAFacts, we find that Queens (NY) had the 223 

highest case rate and death rate from COVID-19. Marion County (Indianapolis) was third in 224 

place for both at 0.47% and 4.74%. VMT (normalized by area of each county) has the highest 225 

correlation of 0.71 with COVID-19 case rate and 4th highest at 0.42 with percent adult asthma 226 

cases (Table S4) which in turn has a 0.58 correlation with percent COVID-19 cases (Table S9).  227 

Correlations of percent COVID-19 case rate, death rate, and VMT normalized by area, and 228 

ground level NO2 all include asthma and tropospheric NO2 values.  229 
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Disability Adjusted Life Years (DALYs) can be calculated based on population exposure to a 230 

number of pollutants (e.g., Landrigan et al., 2017), including criteria air pollutants such as ozone 231 

and PM2.5. For the purposes of this study using NO2 only, and for a short window of time 232 

during which NO2 decreases, DALY calculations are not appropriate. We assume that the 233 

decreases would have to be substantial and long-lived to yield a life-time health benefit, but 234 

our results do point to a future for many US cities where improved population health due to a 235 

decrease in air pollution is achieved through electrifying vehicular fleets and improving 236 

industrial emission controls. 237 

5. Conclusion 238 

 239 

These results reveal a number of critical relationships between traffic volume, local emissions 240 

of NO2, and the pre-existing health conditions of those most heavily impacted by air pollution, 241 

which may make them more susceptible to the more severe presentation of COVID-19 disease: 242 

1. A substantial decline in NO2 can be driven largely by policy—in this case, crisis policy 243 

involving virtually locking down vehicular traffic in cities. 244 

2. Many urban areas have substantial percentages of the population with pre-existing 245 

conditions, potentially linked to air pollution exposure, which may make them more susceptible 246 

to severe COVID19 disease. 247 

3. Linking NO2 data derived from ground-based and satellite-borne sensors is useful for filling in 248 

key spatial data gaps and for contextualizing the sparse ground-level data with more spatially 249 

integrative satellite observations. 250 
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The silver lining provided by shut-down related air quality improvements are likely temporary, 251 

but lay bare the reality that air pollution likely makes inhabitants of some cities quite vulnerable 252 

to those very co-morbidities that exacerbate COVID-19 disease.  253 

 254 
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