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Abstract

Planning under deep uncertainty, when probabilistic characterizations of the future are unknown, is a major challenge in water

resources management. Many planning frameworks advocate for “scenario-neutral” analyses in which alternative policies are

evaluated over plausible future scenarios with no assessment of their likelihoods. Instead, these frameworks use sensitivity

analysis to discover which uncertain factors have the greatest influence on performance. This knowledge can be used to design

monitoring programs and adaptive policies that respond to changes in the critical uncertainties. However, scenario-neutral

analyses make implicit assumptions about the range and independence of the uncertain factors that may not be consistent with

the coupled human-hydrologic processes influencing the system. These assumptions could influence which factors are found to

be most important and which policies most robust. Consequently, the assumptions of uniformity and independence could have

decision-relevant implications. This study illustrates these implications using a multi-stakeholder planning problem within the

Colorado River Basin, where hundreds of rights-holders vie for the river’s limited water under the law of prior appropriations.

Variance-based sensitivity analyses are performed to assess users’ vulnerabilities to changing hydrologic conditions using four

experimental designs: 1) scenario-neutral samples of hydrologic factors, centered on recent historical conditions, 2) scenarios

informed by climate projections, 3) scenarios informed by paleo-hydrologic reconstructions, and 4) scenario-neutral samples of

hydrologic factors spanning all previous experimental designs. Differences in sensitivities and user robustness rankings across the

experiments illustrate the challenges of inferring the most consequential drivers of vulnerabilities to design effective monitoring

programs and robust management policies.
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Abstract14

Planning under deep uncertainty, when probabilistic characterizations of the future are15

unknown, is a major challenge in water resources management. Many planning frame-16

works advocate for “scenario-neutral” analyses in which alternative policies are evalu-17

ated over plausible future scenarios with no assessment of their likelihoods. Instead, these18

frameworks use sensitivity analysis to discover which uncertain factors have the great-19

est influence on performance. This knowledge can be used to design monitoring programs20

and adaptive policies that respond to changes in the critical uncertainties. However, scenario-21

neutral analyses make implicit assumptions about the range and independence of the un-22

certain factors that may not be consistent with the coupled human-hydrologic processes23

influencing the system. These assumptions could influence which factors are found to24

be most important and which policies most robust. Consequently, the assumptions of25

uniformity and independence could have decision-relevant implications. This study il-26

lustrates these implications using a multi-stakeholder planning problem within the Col-27

orado River Basin, where hundreds of rights-holders vie for the river’s limited water un-28

der the law of prior appropriations. Variance-based sensitivity analyses are performed29

to assess users’ vulnerabilities to changing hydrologic conditions using four experimen-30

tal designs: 1) scenario-neutral samples of hydrologic factors, centered on recent histor-31

ical conditions, 2) scenarios informed by climate projections, 3) scenarios informed by32

paleo-hydrologic reconstructions, and 4) scenario-neutral samples of hydrologic factors33

spanning all previous experimental designs. Differences in sensitivities and user robust-34

ness rankings across the experiments illustrate the challenges of inferring the most con-35

sequential drivers of vulnerabilities to design effective monitoring programs and robust36

management policies.37

1 Introduction38

Appropriately selecting, sizing, and operating water infrastructure to reduce the39

impacts of droughts and floods is an exercise in hedging uncertainty (Herman et al., 2020).40

Under-build and you risk severe socioeconomic impacts from water scarcity or flooding;41

over-build and you risk stranding assets for decades. Traditional planning mechanisms42

hedge against these risks by designing systems to be robust to historical variability. Yet43

changing climate and socioeconomic conditions make these methods inappropriate for44

the “deeply” uncertain nature of the future (Brown et al., 2020). Deep uncertainty refers45

to conditions under which planners do not know, or cannot agree on, the probability dis-46

tribution of the parameters describing a system model, its boundary conditions, or the47

model itself (Lempert & Collins, 2007). Recent work on decision making under deep un-48

certainty has advocated for “scenario-neutral” analyses in which alternative designs or49

policies are evaluated across a number of possible future scenarios, with no assessment50

of their likelihoods, since they are unknown (Prudhomme et al., 2010; Wilby & Dessai,51

2010). Approaches applying this philosophy include Robust Decision Making (RDM) (Lempert52

et al., 2010; Shortridge & Guikema, 2016; Hadjimichael et al., Accepted; Moallemi, El-53

sawah, & Ryan, 2020) and its Multi-Objective extension, MORDM (Kasprzyk et al., 2013;54

Herman et al., 2014; Quinn, Reed, & Keller, 2017; Hadjimichael et al., 2020), info-gap55

decision theory (Ben-Haim, 2006; Hine & Hall, 2010; Korteling et al., 2013), and deci-56

sion scaling (Brown et al., 2012; Steinschneider et al., 2015; Knighton et al., 2017; Ray57

et al., 2018; Freeman et al., 2020). The goal of scenario-neutral analyses is to use exploratory58

modeling (Bankes, 1993) to discover under what conditions, or scenarios, alternative de-59

signs no longer meet satisfactory performance (Bryant & Lempert, 2010; Herman et al.,60

2015; Maier et al., 2016; Dittrich et al., 2016; Moallemi, Zare, et al., 2020). This pro-61

cess, also called “scenario-discovery,” is a form of factor-mapping sensitivity analysis (Saltelli62

et al., 2008). From this mapping, one can learn when to adapt their current system de-63

sign as the conditions migrate to regions of failure (Whateley et al., 2014; Culley et al.,64

2016).65
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However, determining exactly when and how to adapt in the face of changing con-66

ditions is an additional challenge. Subsequent research has moved toward using factor-67

ranking sensitivity analysis to determine what uncertain factors most control system per-68

formance (Herman et al., 2015; Whateley & Brown, 2016). This can help determine what69

uncertainties should be monitored to detect that the system is likely moving toward a70

region of failure (Haasnoot et al., 2018; Hermans et al., 2017; Raso et al., 2019). New71

actions can then be triggered dynamically to maintain satisfactory performance (Haasnoot72

et al., 2013). Optimal control methods have been applied to map changes in these trig-73

ger values to adaptive management decisions such as expanding reservoir capacity, build-74

ing a desalination plant, or raising levee heights (Woodward et al., 2014; Kwakkel et al.,75

2015; Mortazavi-Naeini et al., 2015; Groves et al., 2015; Kwakkel et al., 2016; Zeff et al.,76

2016; Trindade et al., 2017; Fletcher, Lickley, & Strzepek, 2019; Fletcher, Strzepek, et77

al., 2019; Trindade et al., 2019). Optimization has also been used to define at what points78

in time options should be triggered, as opposed to under what climate or demand con-79

ditions (Jeuland & Whittington, 2014; Beh et al., 2014, 2015; Borgomeo et al., 2016; Beh80

et al., 2017; Fletcher et al., 2017).81

Applying such optimization approaches for dynamic adaptation requires that per-82

formance across the scenarios be aggregated into an objective function (Herman et al.,83

2020). Consequently, a probability distribution must be specified. A “neutral” approach84

typically assumes all scenarios are equally likely over a pre-specified range, i.e., that they85

have a uniform probability density function (pdf); scenarios outside of that range are im-86

plicitly deemed impossible (given zero probability). Some have considered these assump-87

tions unrealistic, choosing instead to optimize alternative designs to be robust to prob-88

ability distributions informed by climate projections (Fletcher, Lickley, & Strzepek, 2019;89

Borgomeo et al., 2014). However, there are known shortcomings of this approach as well:90

climate projections under-represent climate variability and persistence (Brown & Wilby,91

2012), are not independent (Knutti et al., 2013; Steinschneider et al., 2015), have known92

biases that cannot be corrected via downscaling (Ehret et al., 2012), and are also im-93

plicitly bounded by forcing scenarios that only provide a lower bound on the true range94

of future uncertainty (Stainforth et al., 2007; J. R. Lamontagne et al., 2018).95

Clearly neither of these approaches is entirely appropriate. Policies may be over-96

designed if the scenarios are too broad and unrealistic, or under-designed if the range97

is too narrow. Herman et al. (2020) argue that policies should therefore be optimized98

over multiple assumed probability distributions to test the sensitivity of the optimal so-99

lutions to these assumptions. Bartholomew and Kwakkel (2020) illustrate such a sen-100

sitivity analysis, optimizing lake management plans to be robust to deep uncertainties101

in the lake’s phosphorus recycling and loss parameters under alternative robust optimiza-102

tion frameworks. Each of these optimizations can be considered a “rival framing” that103

might reveal unintended consequences or unforeseen benefits of optimizing to different104

assumed probability distributions (Quinn, Reed, Giuliani, & Castelletti, 2017). We ar-105

gue that performing such sensitivity analyses may be equally important in the vulner-106

ability step, so planners should assess the sensitivity and robustness of alternative wa-107

ter management policies using multiple scenario designs and assumed probability dis-108

tributions. As noted by Saltelli et al. (2020), “the technique is never neutral”; rather “the109

choice of the methodology conditions the narrative produced by an analysis.”110

In this study, we explore how vulnerability assessments performed over competing111

hypotheses of how future hydrology might evolve dictate which uncertainties are found112

to most control water shortages for different users in an institutionally complex, multi-113

actor system, and subsequently, which users are found to be most robust. Several stud-114

ies have compared how robustness ranks of alternative management strategies or mul-115

tiple water users (i.e., policies and objectives) differ under alternative definitions of ro-116

bustness (Herman et al., 2015; Giuliani & Castelletti, 2016; Spence & Brown, 2018; McPhail117

et al., 2018; Hadjimichael et al., Accepted), or under alternative assumptions about the118
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range and joint distribution of uncertain factors (i.e., the experimental design) (Moody119

& Brown, 2013; Taner et al., 2019; Reis & Shortridge, 2019). Yet none of these studies120

has explored if and how the importance of uncertain factors differs under alternative ex-121

perimental designs. This could have decision-relevant implications since such sensitiv-122

ity analyses are often an advised first step for designing monitoring programs (Kwakkel123

et al., 2016) and optimizing triggers for adaptive management policies (Groves et al., 2015).124

Furthermore, differences in sensitivities across designs could explain why we see differ-125

ences in robustness ranks across them.126

To clarify these concerns, the next section presents a stylized example of how the127

choice of experimental design itself might influence robustness analyses. We then inves-128

tigate how this problem manifests in the Upper Colorado River Basin within the state129

of Colorado, where hundreds of water users vie for the region’s limited water under the130

doctrine of prior appropriation. We assess each of these user’s sensitivities to different131

hydrologic parameters under rival framings of how the future might evolve. In essence,132

we perform a sensitivity analysis of our sensitivity analysis (Shin et al., 2013; Paleari &133

Confalonieri, 2016; Noacco et al., 2019; Puy et al., 2020) to see if our conclusions change134

under alternative assumptions about the range and correlation of uncertain hydrologic135

parameters.136

2 Conceptualization of the Problem137

Fig. 1 presents a stylistic example of how the experimental design for a robustness138

analysis might influence which climate uncertainties are found to be most important to139

monitor, and which policies most robust to these uncertainties. The numerical details140

of this illustrative example are provided in the Supporting Information (SI). In Exper-141

imental Design 1 on the left, two policies are evaluated over a range of changes in pre-142

cipitation (x axis of Fig. 1(a-b)) and temperature (y axis of Fig. 1(a-b)) from current143

conditions (black point). These ranges are chosen to span a set of precipitation and tem-144

perature observations from different periods of the paleo-record (green points). The re-145

gions in which each policy does or does not satisfy some minimum performance crite-146

rion are shown in blue and red, respectively. A scenario-neutral risk assessment would147

find the policy with the greater blue region to be more robust, which in this case is Pol-148

icy 1. A paleo-informed risk assessment might compute the probability of achieving dif-149

ferent performance levels using a probability distribution fit to the Paleo points (Fig. 1(e)).150

One could integrate the area under this pdf within the blue success region to determine151

which policy is most robust (Fig. 1(f)), again concluding it is Policy 1. To determine which152

factor is most important for monitoring, one could use the scenario-neutral experiment153

to decompose which factors most explain variability in each policy’s performance, here154

reliability. This would conclude that Policy 1 is most influenced by changes in temper-155

ature (Fig. 1(i)), while Policy 2 is nearly equally influenced by changes in temperature156

and precipitation (Fig. 1(j)).157

These analyses and conclusions, while reasonable, are strongly dependent on the158

use of the paleo-data to define the ranges of precipitation and temperature, as well as159

their joint distribution used to calculate robustness. Another analyst might also consider160

climate projections from the Coupled Model Intercomparison Project (CMIP) in their161

analysis. These projections, shown in yellow in Fig. 1(c-d), might span beyond the range162

of temperature and precipitation explored in Experimental Design 1 (outlined in black163

in Fig. 1(c-d)). Designing a second scenario-neutral experimental design to encompass164

both sets of points (Experimental Design 2) would arrive at different conclusions. Un-165

der this design, the success region for Policy 2 is now larger, as well as its probability166

of success when integrated over a probability distribution fit to both the Paleo and CMIP167

points (Fig. 1(g-h)). Not only that, but conclusions about which factors are most im-168

portant to monitor also change, as precipitation and temperature now equally influence169
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Experimental Design 1 Experimental Design 2

a) b) c) d)

e) f ) g) h)

i) j) k) l)

Figure 1. Stylistic example of the influence of the experimental design on sensi-

tivity and robustness analyses. (a)-(d) Regions of success (blue) and failure (red) in meeting

an acceptable reliability threshold for two different policies sampled over two different size do-

mains of precipitation and temperature changes, informed by paleo-hydrologic reconstructions

(green) and CMIP climate projections (yellow). (e,g) Estimated probability distributions of per-

formance of Policies 1 (green) and 2 (purple) over (e) just paleo-reconstructions and (g) both

paleo-reconstructions and CMIP climate projections. Acceptable reliability levels are shaded

blue and unacceptable red. (f,h) Corresponding probabilities of success from integrating (e,g)

over the blue success region. (i-l) Decomposition of which factors most explain the variability in

performance of Policies 1 and 2 under each experimental design.

performance under Policy 1 (Fig. 1(k)), while precipitation now dominates performance170

under Policy 2 (Fig. 1(l)).171

Due to the deep uncertainty in future conditions, it is difficult to determine which172

of these experimental designs is “right”. What is more concerning is that the two ex-173

perimental designs lead to different conclusions on which policy is more robust and there-174

fore should be implemented. Similarly, under the two designs, the analysis identifies dif-175

ferent uncertainties that most influence the robustness of each policy, resulting in dif-176

ferent conclusions about how to allocate monitoring investments. In the following sec-177

tions, we explore whether we see such consequences in the real-world setting of the Up-178

per Colorado River Basin.179

3 Study area and model180

The headwaters of the Upper Basin of the Colorado River (UCRB) originate at the181

Continental Divide and flow southwest to the Colorado-Utah state line (Fig. 2), drain-182

–5–
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ing an area of 25,682 km2 (9,915 mi2). Within and outside of the UCRB, hundreds of183

stakeholders own rights to the river’s flow, which annually averages 6.9 billion m3 (5.6184

million acre-ft). These users include municipalities, industries, irrigation districts, and185

power plants, among others. The primary consumptive water use within the UCRB is186

for irrigation, with diversions for this purpose irrigating 930 km2 (230,000 acre-ft) (State187

of Colorado, 2015). Yet many of the basin’s demands actually lie east of the Continen-188

tal Divide, where 80% of Colorado’s population resides. To meet these users’ needs, ap-189

proximately 569 million m3 of water (461,000 acre-ft) are annually diverted eastward out-190

side the basin through tunnels in the Colorado Rockies (State of Colorado, 2015), pic-191

tured in Fig. 2. These users include the cities of Denver and Colorado Springs. Other192

demands include municipal and industrial uses on the west slope, recreational uses, and193

fisheries. The remaining flows are either stored in reservoirs with capacity totaling just194

under 1.8 billion m3 (1.5 million acre-feet), diverted for power generation and returned195

downstream (1.3 billion m3/year, or 1 million acre-ft/year), or left for the environment.196

The flows at the outlet contribute downstream deliveries to Lake Powell that are required197

by the Colorado River Compact.198

Adams Tunnel

Roberts 

Tunnel

Homestake 

Tunnel

Boustead 

Tunnel

Twin Lakes 

Tunnel

COLORADO

Moffat Tunnel

B
lue R

iver

Co
lo
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do

 R
iv
er

Colorado River

Gunnison 

River

Figure 2. Map of the Upper Basin of the Colorado River within the state of Col-

orado. Major transbasin diversions are indicated with large black circles while all other di-

versions (primarily for irrigation), are indicated with small olive circles. Figure adapted from

Hadjimichael et al. (Accepted).

Concern is growing over whether these deliveries can be met in the future under199

climate change without curtailing upstream users. Since the turn of the century, inflows200

to Lake Powell have exceeded the mean only five times. Paleo-hydrologic reconstructions201

in the basin suggest that decadal and multidecadal droughts are not uncommon in the202

UCRB (Woodhouse et al., 2006; Ault et al., 2013, 2014), but modeling suggests anthro-203

pogenic warming has exacerbated the emerging megadrought (Williams et al., 2020). Fur-204

thermore, rising temperatures are expected to increase agricultural water demands and205

result in earlier snowmelt, decreasing summer flows in the growing season (Christensen206

et al., 2004; Christensen & Lettenmaier, 2006; Rasmussen et al., 2014), a trend that is207
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already being observed (Xiao et al., 2018; Milly & Dunne, 2020). These recent climatic208

trends, compounded by population growth and development in the basin, suggest UCRB209

users could be greatly impacted by climate change.210

In this study, we investigate the vulnerability of UCRB rights holders to potential211

changes in hydrologic conditions using the State of Colorado’s Stream Simulation Model,212

StateMod. StateMod was jointly developed by the Colorado Water Conservation Board213

(CWCB) and the Division of Water Resources (DWR) to aid water resources planning214

in each of the State’s major basins (Malers et al., 2001). StateMod simulates stream-215

flows, diversions, environmental flow demands, and reservoir operations in the basin ac-216

cording to federal operating rules and the “law of the river” specifying how water is al-217

located by priority. It relies on detailed historical demand and operation records, includ-218

ing individual water right information for all consumptive use and diversions from all219

water structures (wells, ditches, reservoirs, and tunnels). Irrigation demands in State-220

Mod are typically computed by a separate model, StateCU, based on historical soil mois-221

ture, crop type, irrigated acreage, and conveyance and application efficiencies for each222

individual irrigation unit.223

StateMod simulations take as input all natural flows (flows that would occur with-224

out human diversions) and water demands, and use the law of the river to compute the225

volume of diversions for each user. All consumptive use in the basin is modeled, although226

some small structures with decrees less than 0.3m3/s (11 ft3/s) (25% of them) are ag-227

gregated into larger structures for model simplicity. This results in nearly 350 key di-228

version structures (CWCB & CDWR, 2016), each of which we consider a different user.229

Similarly, only reservoirs whose capacities exceed 4.9 million m3 (4,000 acre-feet) are mod-230

eled explicitly (accounting for 94% of total storage in the system), with the remaining231

storage aggregated into ten reservoirs and one stock pond (CWCB & CDWR, 2016). The232

model runs at a monthly time step, and reports the volumes of water diverted to each233

structure and their demand, as well as the flows along all reaches. The model can be run234

with historical flow and demand data, or synthetic data. In this study, we use histori-235

cal demand data, but generate synthetic flows to assess the effects of changing hydro-236

logic conditions on the basin’s rights holders in absence of demand growth or conserva-237

tion. While we do not change mean irrigation demands, we do ensure their historical cor-238

relation with streamflow is preserved through the synthetic generator.239

4 Methods240

4.1 Synthetic Streamflow Generator241

The synthetic streamflow generator used in this study is based on a two-state Hid-242

den Markov Model (HMM) that has been shown to accurately capture the extreme hy-243

drologic variability and persistence observed in the basin and projected for the future244

(Bracken et al., 2014). The two states in the model represent wet and dry years, which245

tend to cluster throughout the historical record due to persistence in large-scale climate246

phenomena, such as the Pacific Decadal Oscillations (PDO) and El Niño Southern Os-247

cillations (ENSO). Time series of wet and dry years are generated from a Markov model,248

and flow volumes in those years are then generated from a distribution conditioned on249

the state. Since only the flow volume is observed, the states are “hidden” and can only250

be inferred. We assume the distribution of annual flows under each state is log-normal.251

The model is fit to annual flows at the Colorado-Utah state line, the last stream252

node in StateMod. This requires estimation of six parameters: the mean and standard253

deviation of the dry state (µd and σd, respectively) and wet state (µw and σw, respec-254

tively) Gaussian distributions, as well as the probabilities of transitioning from a dry state255

in year t to a dry state in year t+1 (pd,d) and from a wet state in year t to a wet state256

in year t+1 (pw,w). Note that pd,w and pw,d are immediately given by 1−pd,d and 1−257
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pw,w, respectively. For an exploratory analysis, we can change these six parameters to258

determine which hydrologic conditions most influence users’ shortage, and to map what259

combinations of parameters lead to unsatisfactory performance.260

a)

b)

Figure 3. Two-state Gaussian HMM fit to the historical record from 1944-2013.

(a) The log-space historical distribution of annual flows in gray, with the fitted dry- and wet-state

distributions overlain in red and blue, respectively, and their combined distribution in black. (b)

State identification of historical years as dry in red or wet in blue.

Fig. 3 shows the fit of the two-state Gaussian HMM to historical flows at the Colorado-261

Utah state line from 1944-2013, and Table 1 lists the parameter values. Parameter es-262

timation was performed using Expectation-Maximization with Python’s hmmlearn pack-263

age (Lebedev, 2015). The fitted dry-state and wet-state distributions exhibit non-trivial264

overlap and together provide a strong fit to the observed distribution (Fig. 3(a)). As seen265

in Table 1, there is also strong persistence in the underlying states, with pd,d = 0.68266

and pw,w = 0.65. This can also be seen from the state identification (Fig. 3(b)), per-267

formed using the Viterbi algorithm in the hmmlearn package. More details on the fit-268

ting method and validation of the generator are provided in the SI (Figs. S1-S2).269

For our exploratory modeling experiment, we modify the parameters of the histor-270

ical two-state Gaussian HMM using delta shifts of the transition probabilities and mul-271

tipliers of the means and standard deviations. These modifications are determined us-272

ing four different experimental designs, described below. For each parameterization, ten273
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Table 1. Two-State Gaussian HMM Parameter Estimates. Using Maximum Likelihood

Estimation with Expectation-Maximization, a two-state Gaussian HMM is fit to log-space annual

flows at the Colorado-Utah state line, the last node in StateMod.

Parameter Description Maximum Likelihood Estimate

µd log-space dry-state mean, m3 (acre-ft) 22.38 (15.26)
σd log-space dry-state standard deviation 0.26
µw log-space wet-state mean, m3 (acre-ft) 22.78 (15.66)
σw log-space wet-state standard deviation 0.25
pd,d dry-to-dry transition probability 0.68
pw,w wet-to-wet transition probability 0.65

realizations of 105-year-long time series of log-space annual flows at the Colorado-Utah274

state line are synthetically generated from the two-state Gaussian HMM. The log-space275

annual flows are then converted to real space and temporally downscaled to monthly flows276

using a modification of the proportional scaling method used by Nowak et al. (2010). First,277

a historical year is probabilistically selected based on its “nearness” to the synthetically-278

generated flow in terms of annual total. The proportions of the annual flow delivered each279

month of the historical year are then applied to the synthetic annual flow to generate280

synthetic monthly flows. Similarly, the synthetic monthly flows at all upstream State-281

Mod nodes are generated by applying the historical year’s ratios between the monthly282

flows at the upstream nodes and the monthly flow at the Colorado-Utah state line. Val-283

idation of the generator’s ability to capture spatial correlation with this approach is pro-284

vided in the SI (Fig. S3), with links to the code for the synthetic streamflow generator.285

These monthly time series are provided as input to StateMod for the vulnerability as-286

sessment.287

Demand time series for the experiment use the maximum historical transbasin di-288

version demands, recent historical municipal and industrial demands, and synthetically289

generated irrigation demands. For irrigation demands, it is assumed their mean and cor-290

relation with annual streamflows is unchanged. To ensure this, we use a regression be-291

tween historical annual flow anomalies and annual irrigation demand anomalies, totaled292

across all users in the basin. Details of the regression and its performance are provided293

in the SI (Fig. S4). Based on the synthetically-generated annual flow anomaly, a total294

annual irrigation anomaly is generated from this regression, with added noise to preserve295

variance. The time series of total annual irrigation anomalies is then added to the mean296

and distributed to the irrigation structures using their average historical proportion of297

the total demand. While the mean demands across all sectors will likely change in the298

future in deeply uncertain ways, we focus this analysis exclusively on hydrologic changes299

for simplicity. However, based on our prior work in the basin using one experimental de-300

sign (Hadjimichael et al., Accepted), we expect the influence of changing demands to be301

significant. Future work can explore how these effects differ depending on the assumed302

correlation structure between mean demand and streamflow.303

4.2 Alternative Experimental Designs304

4.2.1 Box Around Historical Experiment305

We first consider a “scenario-neutral” experimental design commonly used in RDM306

analyses, in which the parameters of the two-state Gaussian HMM listed in Table 1 are307

varied independently and uniformly over pre-specified ranges (Prudhomme et al., 2010;308

Lempert et al., 2010). These ranges are simply meant to be expansive and enable the309

discovery of failure boundaries, i.e., combinations of the parameters under which differ-310

ent users no longer meet satisfactory performance levels. We call this experiment the “Box311
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Around Historical” experiment because the parameter ranges were chosen to expand above312

and below the historical values, creating a hypercube around the historical parameters.313

The ranges sampled for each parameter are provided in Table 2. The real-space equiv-314

alent across all of the samples generated from this experiment are provided in the SI (Ta-315

ble S2).316

Table 2. Uncertain factors and log-space sampling ranges. Parameters from the Box

Around Historical and All-Encompassing experiments are sampled uniformly and independently

over these ranges. Parameters for the CMIP and Paleo experiments are estimated from data and

the resulting ranges are shown below. These samples are not uniform or independent. Multipliers

are applied to the log-space parameter values, estimated from the annual flows in acre-ft.

Parameter Experiment Current value Lower bound Upper bound

µd multiplier Box Around Historical 1.0 0.98 1.02
CMIP 1.0 0.97 1.03
Paleo 1.0 0.90 1.01
All-Encompassing 1.0 0.90 1.03

σd multiplier Box Around Historical 1.0 0.75 1.25
CMIP 1.0 1.14 1.38
Paleo 1.0 0.80 2.63
All-Encompassing 1.0 0.75 2.63

µw multiplier Box Around Historical 1.0 0.98 1.02
CMIP 1.0 0.98 1.03
Paleo 1.0 0.98 1.01
All-Encompassing 1.0 0.97 1.03

σw multiplier Box Around Historical 1.0 0.75 1.25
CMIP 1.0 0.81 1.12
Paleo 1.0 0.69 1.22
All-Encompassing 1.0 0.39 1.25

pd,d delta Box Around Historical 0.0 -0.30 0.30
CMIP 0.0 -0.01 0.10
Paleo 0.0 -0.65 0.07
All-Encompassing 0.0 -0.65 0.30

pw,w delta Box Around Historical 0.0 -0.30 0.30
CMIP 0.0 -0.07 0.06
Paleo 0.0 -0.33 0.33
All-Encompassing 0.0 -0.33 0.33

For this experiment, 1,000 samples were generated using Latin hypercube sampling317

over the ranges in Table 2. In some of these samples, the dry-state mean was greater than318

the wet-state mean. In these cases, the wet- and dry-state parameter labels were swapped.319

After re-labeling, some points were then outside of the sampled ranges in Table 2, so these320

points were removed, leaving 985 samples. The remaining sample points are shown in321

salmon in Fig. 4. One can see they form a hypercube (“box”) around the historical pa-322

rameter values, shown in blue, with the exception of the lower right corner in the µw vs.323

µd panel where the dry-state mean would exceed the wet-state mean. Generating 10 re-324

alizations of 105-year time series of annual flows at the Colorado-Utah state line from325

each of these samples results in the range of annual flows shown in salmon in Fig. 5. This326

range extends beyond that of historical annual flows (shown in blue), as well as annual327

–10–



manuscript submitted to Earth’s Future

flows from the Coupled Model Intercomparison Project 5 (CMIP) experiment, shown in328

yellow and described next.329

Finally, since some of the experimental designs in this study contained far less than330

1,000 samples, we also repeated the Box Around Historical experiment with a Latin hy-331

percube sample size of 100 for the SI. After re-labeling and removing samples outside332

the parameter ranges in Table 2, this resulted in 96 samples. By repeating the sensitiv-333

ity analysis with a smaller sample, we test the stability of our findings and ensure dif-334

ferences between experiments cannot be ascribed to the different sample sizes, but rather335

their different correlation structures and ranges.336
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Figure 4. Gaussian HMM parameter samples across four experimental designs.

The historical parameter values are signified by a large, blue circle in each panel. Box Around

Historical samples are shown in salmon, CMIP samples in yellow, Paleo samples in green and

All-Encompassing samples in lavender. Box Around Historical and All-Encompassing experi-

ments assume uniformity and independence of all HMM parameters over different ranges, while

CMIP sample points are estimated from climate projections and Paleo sample points from paleo-

hydrologic reconstructions.
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Figure 5. Range of historical and synthetically-generated annual flows from each

experimental design. CMIP flows in yellow and Box Around Historical flows in salmon expe-

rience similar ranges despite their different parameterizations. Both expand upon the range of

historical flows in blue, but do not experience any dry years as severe as the Paleo flows in green.

The All-Encompassing experiment in lavender generates the widest range of flows.

4.2.2 Coupled Model Intercomparison Project 5 Experiment (CMIP)337

The second experimental design is informed by climate projections from the Cou-338

pled Model Intercomparison Project 5 (CMIP5) dataset. Several iterations of CMIP pro-339

jections have been used in numerous studies assessing potential impacts of climate change340

in the UCRB (Christensen et al., 2004; Christensen & Lettenmaier, 2006; Rasmussen et341

al., 2014). On average, these projections suggest future deliveries to Lake Powell will de-342

crease. However, there is great variability across these projections as well as within the343

time series of each projection (Harding et al., 2012).344

This study makes use of 97 CMIP5 projections used in the Colorado River Water345

Availability Study (CWCB, 2012). In each of these projections, monthly precipitation346

factor changes and temperature delta changes were computed between mean projected347

2035-2065 climate statistics and mean historical climate statistics from 1950-2013. These348

97 different combinations of 12 monthly precipitation multipliers and 12 monthly tem-349

perature delta shifts were applied to historical precipitation and temperature time se-350

ries from 1950-2013. The resulting climate time series were run through a Variable In-351

filtration Capacity (VIC) model of the UCRB, resulting in 97 time series of projected352

future streamflows at the Colorado-Utah state line.353

Since these projections rely on VIC simulations that will underestimate variabil-354

ity relative to observations (Farmer & Vogel, 2016), we add errors to the projected stream-355

flows using a model of the error between historical VIC streamflow simulations and ob-356

servations. Details of the historical error model and how it is applied to the CMIP pro-357

jections are provided in the SI (see Fig. S5). After adding noise to the CMIP projections,358

we then fit a two-state Gaussian HMM to the resulting time series. We repeat this with359

100 realizations of added noise and use the mean Gaussian HMM parameter estimates360

as our sample points. Using this approach on the historical VIC simulations, we see that361

the mean HMM parameter estimates across the VIC + noise simulations more closely362

match the observed record’s HMM parameter estimates than fitting the HMM directly363

to the VIC outputs (see SI Fig. S6). Across the 97 CMIP-forced VIC models, this method364

results in the 97 parameter combinations shown in yellow in Fig. 4.365
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For each of these CMIP samples, we generate 10 realizations of 105-year stream-366

flow inputs to StateMod. The range of annual flows generated across these simulations367

is similar to that of the Box Around Historical Experiment (see Fig. 5), even though it368

is generated using an entirely different parameter set. The CMIP simulations have a near-369

perfect correlation between µd and µw. If this correlation structure better describes the370

true joint distribution of plausible futures, sensitivity analysis using the Box Around His-371

torical analysis could provide misleading conclusions. Conversely, the CMIP experiment372

could negatively impact conclusions if its correlation structure is an artifact of apply-373

ing multipliers to historical precipitation and deltas to historical temperature to gener-374

ate inputs to the VIC simulations. Another way to gain insight into potential correla-375

tion structures between parameters is to consider paleo-reconstructions of streamflow.376

This is our third experiment.377

4.2.3 Paleo-hydrologic Experiment (Paleo)378

The Paleo experiment relies on reconstructed Colorado River streamflows at Cisco,379

Utah from Woodhouse et al. (2006). Since Cisco, Utah is a little downstream of the Colorado-380

Utah state line, these flows are bias-corrected by multiplying the reconstructed Cisco flows381

by the average ratio of natural flows at the Colorado-Utah state line to natural Cisco382

flows from 1909-1995. During the period of overlap between the scaled, reconstructed383

flows and observed flows at the state line (1909-1997), these reconstructions are unbi-384

ased, but less variable than the observed record (see SI Fig. S7). Like the VIC simula-385

tions of the CMIP projections, we build a model of the residuals between reconstructed386

and observed flows to ensure the paleo-reconstructions do not underestimate variabil-387

ity. Details of the error model and how it is applied to the paleo-reconstructions before388

the observed record are provided in the SI (Fig. S7).389

Again, similar to the CMIP projections, we use this error model to add noise to390

64-year moving windows of the paleo-reconstructions from 1569-1997. Shifting this win-391

dow every year results in 366 64-year windows. A window of 64 years was chosen since392

this is the same length as the CMIP projections. After adding noise to the annual flows393

in these windows, we then fit a two-state Gaussian HMM to the resulting time series.394

We repeat this with 100 realizations of added noise and use the mean Gaussian HMM395

parameter estimates as our sample points. The performance of this approach over the396

overlapping reconstruction and observed record is shown in SI Fig. S8. Similar to the397

CMIP estimation, the mean HMM parameter estimates are closer to the historical HMM398

parameter estimates than if the HMM were fit directly to the reconstructed flows.399

The HMM parameter estimates over the paleo-hydrologic 64-year moving windows400

are shown in green in Fig. 4. The corresponding range of synthetically-generated annual401

flows from 10 realizations of 105-year time series under each parameterization is shown402

in Fig. 5. Much drier years are synthetically generated by the Paleo HMM parameters403

than under either the CMIP or Box Around Historical experiments, consistent with past404

paleo-hydrological studies in the basin (Woodhouse et al., 2006). In addition, the HMM405

parameters over the paleo-record have a completely different correlation structure than406

the CMIP projections. While there is still a positive correlation between µd and µw, the407

relationship is different. There are also several interesting non-linear relationships, e.g.,408

between µd and pw,w, and between µd and σw. There is also a bifurcation in the rela-409

tionship between µd and σd, with a different correlation structure across the two clus-410

ters than within them. This suggests the correlation structure could be complex. How-411

ever, these samples are not independent, since they were generated from fits to overlap-412

ping windows to ensure a sufficient number of samples for sensitivity analysis. Similar413

to the CMIP experiment, this may lead to artifacts in parameter correlations that in-414

fluence conclusions from the sensitivity analysis.415
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4.2.4 All-Encompassing Experiment416

The Paleo experiment illustrates that the Box Around Historical simulations far417

under-represent potential droughts in the basin (Fig. 5), as well as potential Gaussian418

HMM parameters (Fig. 4). Consequently, we consider one more experimental design that419

spans the parameter ranges explored across all experimental designs. This All-Encompassing420

experiment also assumes uniformity and independence across all parameters, but over421

wider ranges than the Box Around Historical experiment (see Table 2; note the ranges422

extend beyond the minimum and maximum of all others to encompass a fifth experiment423

using the CMIP projections without added noise, which we are not discussing). We em-424

ploy the same sampling strategy for the All-Encompassing experiment as for the Box Around425

Historical experiment, ultimately resulting in 932 parameter samples, shown in laven-426

der in Fig. 4. Their corresponding annual flow distribution extends far beyond all other427

experiments (Fig. 5). Finally, to test the stability of the variance decomposition to sam-428

ple size, we again repeated this experiment with only 100 Latin hypercube samples for429

the SI. After re-labeling and removing points outside their sampled ranges, this sample430

size was reduced to 92.431

4.3 Sensitivity Analysis432

We investigate the sensitivity of water rights holders in the UCRB to changing hy-433

drologic conditions under each of the above experiments using both factor ranking and434

factor mapping approaches (Saltelli et al., 2008). Factor ranking methods are used to435

rank uncertain parameters from most influential to least influential. This is useful for436

prioritizing which factors to monitor, a potentially expensive investment, but one that437

is necessary to detect failure. Factor mapping approaches are used to predict a perfor-438

mance metric, such as water shortage or the probability of satisfactory performance, as439

a function of uncertain parameters. This is useful for mapping the joint influence of dif-440

ferent uncertain factors on performance to determine if the system is moving toward an441

unacceptable region under which new actions may be needed (e.g., building more infras-442

tructure or increasing water efficiency). We use Sobol variance decomposition for fac-443

tor ranking and linear and logistic regression for factor mapping.444

4.3.1 Sobol Variance Decomposition445

Sobol sensitivity analysis decomposes the variability in a response variable, Y , into446

amounts contributed by each of n independent variables, individually and jointly (Sobol,447

1993). In this study, we use Sobol variance decomposition to estimate how much of the448

variance in a UCRB user’s annual shortage (Y ) can be explained by each of the Gaus-449

sian HMM parameters, where the i-th parameter is denoted Xi and n = 6 for the 6 HMM450

parameters. Building off of Hadjimichael, Quinn, and Reed (2020), we perform this de-451

composition at different percentiles of annual shortage. That is, for each StateMod sim-452

ulation, each user experiences a different time series of annual shortages that form a dis-453

tribution. Which of these shortages is of most concern may vary by user, depending on454

whether frequent or severe shortages are most impactful (Hadjimichael et al., Accepted;455

Hadjimichael, Quinn, & Reed, 2020). Consequently, we use Sobol sensitivity analysis to456

compute how much of the variability in a user’s shortages at each percentile is explained457

by each Gaussian HMM parameter. These first order contributions, Vi, represent the amount458

of variability in the output explained by each parameter, Xi, individually. Higher order459

contributions represent additional variability caused by the interaction of multiple vari-460

ables.461

In this study, we use Sobol variance decomposition with Python’s SALib package462

(Herman & Usher, 2017) to estimate first order contributions only of each Gaussian HMM463

parameter in explaining a particular percentile of shortage for each UCRB user. We re-464

port each parameter’s first order contribution, Si, as a fraction of the total variance in465
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Y : Si = Vi/Var(Y ). These are called first order Sobol sensitivity indices. Note 1−
∑n

i=1 Si466

represents the portion of the variability in Y explained by interactions. This term can467

be positive or negative. Positive interactions indicate some of the variability in short-468

age can only be explained by simultaneous changes in more than one HMM parameter.469

This means the relationship between the HMM parameters and shortage is nonlinear.470

Negative interactions indicate some of the variability in shortage explained by each of471

the HMM parameters is redundant. This can only occur when the HMM parameters are472

correlated with one another. If parameters are redundant, we should be able to detect473

changes in expected shortages by monitoring only one of them. If parameters have pos-474

itive, non-linear interactions, we may need to monitor both to detect these changes.475

4.3.2 Response Surface Modeling476

In addition to determining which Gaussian HMM parameters are most important477

in explaining a particular percentile of shortage, we also use linear and logistic regres-478

sion to create a response surface (Brown et al., 2012; Moody & Brown, 2013) that ei-479

ther predicts a particular percentile of shortage as a function of the parameters, or the480

probability of keeping a particular percentile of shortage below some threshold as a func-481

tion of the parameters. We display these response surfaces as two-dimensional contour482

plots of the shortage/probability estimates given values of the two most predictive HMM483

parameters. The two most predictive parameters in explaining shortage are the two pa-484

rameters with the greatest first-order Sobol sensitivity indices. Denoting these two vari-485

ables X1 and X2, our contour plots display the predicted value of shortage, Ŷ accord-486

ing to Equation 1:487

Ŷ = β0 + β1X1 + β2X2 + β3X1X2 (1)

The β coefficients are estimated using ordinary least squares regression using Python’s488

statsmodels package (Seabold & Perktold, 2010).489

For a given percentile of shortage, we not only display an estimated value of short-490

age given the two most predictive HMM parameters, but also an estimated probability491

that shortage is below different thresholds, T , given the two most predictive HMM pa-492

rameters. This is useful if users consider shortages above some threshold to be intoler-493

able, allowing us to determine under what conditions those failures occur. Not only that,494

but the probabilistic rather than binary classification of these failures allows users to de-495

fine regions of success based on their level of risk aversion (Quinn et al., 2018; J. Lam-496

ontagne et al., 2019). For example, they may define a region of success as staying be-497

low the threshold with 95% probability if they are highly risk averse, or only 50% prob-498

ability if they are risk neutral.499

The two HMM parameters that are most predictive of this probability are estimated500

by first fitting univariate logistic regression models that estimate the log-odds that short-501

age is below some threshold T , as a function of each of the individual HMM parameters,502

Xi:503

ln

(
P (Y < T )

1− P (Y < T )

)
= β0 + β1Xi (2)

where ln
(

P (Y <T )
1−P (Y <T )

)
is the log-odds. For each of these univariate models, we compute504

the McFadden’s pseudo R2:505

R2
McFadden = 1− ln L̂(Mfull)

ln L̂(Mintercept)
(3)
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where ln L̂(Mfull) is the log-likelihood of the full model (model with X0 and Xi as pre-506

dictors) and ln L̂(Mintercept) is the log-likelihood of the intercept model (model with just507

X0 as a predictor). McFadden’s pseudo R2 is therefore a measure of the improvement508

of predictor Xi in estimating P(Y < T |Xi) compared to always predicting the average509

probability of success. The two HMM parameters resulting in the largest R2
McFadden are510

therefore considered the two most predictive. After determining these two predictors,511

X1 and X2, we then make contour plots showing the estimated probability of success us-512

ing a logistic regression model with both parameters and their interaction:513

ln

(
P (Y < T )

1− P (Y < T )

)
= β0 + β1X1 + β2X2 + β3X1X2 (4)

P (Y < T ) =
exp

(
β0 + β1X1 + β2X2 + β3X1X2

)
1 + exp

(
β0 + β1X1 + β2X2 + β3X1X2

) (5)

Estimation of the logistic regression models was performed using maximum likelihood514

estimation with Python’s statsmodels package (Seabold & Perktold, 2010).515

4.4 Robustness Analysis516

Finally, robustness analyses not only use sensitivity analysis to determine to which517

uncertainties users are most sensitive, and under what conditions they fail, but also to518

rank users or management plans by their “robustness” across the possible future worlds519

investigated. Many definitions have been proposed to define how robust users are to these520

changes, and it has been noted that different definitions result in different conclusions521

about what plans or users are most robust (McPhail et al., 2018; Herman et al., 2015;522

Giuliani & Castelletti, 2016; Spence & Brown, 2018). This study is concerned with a slightly523

different question of whether or not the ranking of user robustness under a single met-524

ric is consistent across alternative experimental designs. For this investigation, we con-525

sider the domain satisficing criterion (Starr, 1969) denoted as the fraction of realizations526

in which a particular criterion is met. We choose hypothetical satisficing criteria, e.g.,527

“Shortage greater than 20% of demand occurs no more than 20% of the time,” and de-528

termine the percent of realizations in which each UCRB user meets these criteria under529

each experimental design. We then rank all of the users from most to least robust and530

compare the user rankings across experiments. We repeat this for several hypothetical531

satisficing criteria to see how sensitive the robustness rankings are to the experimental532

design when using different definitions of success for the satisficing metric.533

5 Results534

5.1 Impacts of hydrologic change across experiments535

Hundreds of UCRB water rights holders are modeled in StateMod, and we can ex-536

amine the vulnerabilities of each of them to changing hydrologic conditions using our four537

experimental designs. For brevity, we focus our results on comparing two users’ sensi-538

tivity differences across the four experiments. User 1 is an aggregation of irrigation users539

with a fairly senior right of moderately sized decree. However, User 1 is positioned up-540

stream in the basin on a tributary to the Colorado River, making them potentially vul-541

nerable to water shortages in the headwaters despite their right seniority. User 2 is an-542

other irrigation user with a much larger decree but less senior (mid-rank) priority. This543

user is located further downstream off the mainstem Colorado, though, where larger flows544

may be available to meet their demand if they are in priority.545
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Fig. 6 displays the distribution of shortages experienced by these two users in each546

of our four experimental designs, with User 1 on the top row (Fig. 6(a)-(d)) and User547

2 on the bottom row (Fig. 6(e)-(h)). In each panel, the black line shows the inverse cu-548

mulative distribution function of the respective user’s shortage over the historical sim-549

ulation from 1909-2013. For a given shortage magnitude on the y-axis, the correspond-550

ing value on the x-axis represents the percent of years in which shortages were below that551

magnitude. Each realization of each experiment has a different inverse CDF. In purple,552

we show the percentage of those realizations whose shortage is below different magni-553

tudes at each percentile, ranging from 90-100% realizations in light purple to only 0-10%554

in dark purple. The effects of the different experimental designs can therefore be seen555

by the differences in the ranges of these purple regions across panels.556

a) User1 b) c) d)

e) User 2 f ) g) h)

Figure 6. Shortage distributions across experimental designs for two UCRB users.

(a)-(d) User 1’s shortage distributions across experiments. (e)-(h) User 2’s shortage distributions.

User 1 is a small, senior irrigation user located in an upstream tributary. User 2 is a large, mid-

rank irrigation user located downstream on the Colorado mainstem. Black lines in each panel

indicate the historical cumulative frequency of different shortage levels. Shades of purple indicate

the percent of realizations in each experimental design below different shortage levels at each

percentile.

As highlighted previously by Hadjimichael et al. (Accepted), despite modest changes557

in right seniority and no change in sector, two users in the same basin can experience558

starkly different shortage distributions across historical and alternative hydrologic con-559

ditions. Here we see that these differences also depending on the experimental design.560

Looking first at User 1 (Fig. 6(a)-(d)), we can see that across all experiments, small mag-561

nitude shortages become less severe relative to historical, while large magnitude short-562

ages become more severe, increasing the variability of this user’s shortage across years.563

However, as would be expected, the range of shortages across the four experiments varies,564

with the All-Encompassing experiment experiencing the widest range (Fig. 6(d)) due565

to its expansive sampling. It is somewhat surprising that the differences in the ranges566

of shortage experienced in the CMIP experiment (Fig. 6(b)) and the Paleo experiment567

(Fig. 6(c)) are not greater given their extremely different parameterizations (Fig. 4) and568

annual flow ranges (Fig. 5). Therefore, similar impacts can be achieved in different ways,569

–17–



manuscript submitted to Earth’s Future

suggesting the parameter sensitivities for User 1 may be different in these two experi-570

ments.571

The implications are similar for User 2 (Fig. 6(e)-(h)). Across experiments, this572

user’s shortages tend to become more severe relative to historical, but the impacts are573

not very significant under the Box Around Historical (Fig. 6(e)) and CMIP (Fig. 6(f))574

experiments. Once again, the ranges of shortage experienced across these two experiments575

is very similar despite their different parameterizations, suggesting sensitivities may be576

different. Under the Paleo experiment (Fig. 6(g)), this user’s most severe shortages in-577

crease significantly, while their smaller shortages are not greatly impacted. Under the578

All-Encompassing experiment (Fig. 6(h)), their shortage magnitude increases at all per-579

centiles.580

5.2 Sobol Variance Decomposition581

Fig. 7 shows how the sensitivities of these two users differ across experiments based582

on the Sobol sensitivity analysis for each percentile of shortage. To illustrate the stabil-583

ity of the variance decomposition with smaller sample sizes, this figure is also shown in584

SI Fig. S9 using only 100 initial samples in the Box Around Historical and All-Encompassing585

designs instead of 1000. In both figures, the x-axis in each plot represents the percentile586

of shortage and the y-axis represents the portion of the variability in shortage at that587

percentile that is explained by each HMM parameter (or their interactions).588

a) b) c) d)

e) f ) g) h)

User 1

User 2

Figure 7. Variance decomposition of two users’ shortage distributions across ex-

perimental designs. (a)-(d) Variance decomposition of User 1’s shortage distribution. (e)-(h)

Variance decomposition of User 2’s shortage distribution. The y-axis in each panel indicates the

portion of the variability in shortage at each percentile that is explained by each of the HMM pa-

rameters. The influence of dry-state HMM parameters is shown in shades of red and of wet-state

parameters in shades of blue, with interactions shown in lavender. Note these interactions can be

negative, which occurs when the first order indices sum to more than 1, indicating they explain

redundant information.

For both users, there are clearly strong differences in sensitivities across experiments.589

Under the Box Around Historical experiment, User 1’s low percentiles of shortage are590
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most explained by the wet-state mean with smaller, relatively equal contributions from591

the dry-state mean and transition probabilities (Fig. 7(a)). The influences of the dry-592

and wet-state standard deviations are negligible, but there are significant positive inter-593

actions across parameters, indicating non-linearity in the shortage response to the HMM594

parameters. Moving to higher percentiles of shortage, the influence of the wet-state mean595

decreases, while that of the dry-state mean increases. They are nearly equally influen-596

tial at the median, but then their influences swap at higher shortage percentiles, where597

the dry-state mean becomes more important. The All-Encompassing experiment, which598

makes the same assumptions of uniformity and independence in the HMM parameters599

but over different ranges, follows a similar shape (Fig. 7(a)). The strength of the param-600

eters’ first order sensitivities just become larger in the All-Encompassing experiment, with601

the importance of positive interactions decreasing.602

However, User 1’s sensitivities under the CMIP and Paleo experiments are com-603

pletely different from the other two and each other. Under the CMIP experiment (Fig.604

7(b)), shortage at almost all percentiles is explained most by the wet- and dry-state means605

in relatively equal magnitudes. The dry-state standard deviation is also more influen-606

tial across percentiles in this design, with only minor contributions from the other pa-607

rameters. Except for the most extreme shortage percentiles, the first order sensitivity608

indices sum to more than 1, meaning the parameters explain redundant information, re-609

sulting in negative interactions. This is due to the near perfect correlation (and conse-610

quently, nearly equal influence) of the wet- and dry-state mean parameters, which is likely611

a consequence of using the delta change method to generate precipitation and temper-612

ature time series for the CMIP projections. If only the CMIP projections were used for613

this vulnerability assessment, one would conclude that either the dry-state mean or wet-614

state mean could be monitored to detect changes in shortage for User 1. Yet if the true615

correlation structure in the future is more similar to the past, User 1’s sensitivities un-616

der the Paleo experiment suggest the opposite could be true.617

Under the Paleo experiment (Fig. 7(c)), for most of the shortage distribution, none618

of the parameters alone explain much of the variability across realizations. Instead, com-619

plex nonlinear relationships between them are needed to understand the cause of this620

variation. Even at the most extreme end of the distribution where individual parame-621

ters gain influence, their contributions are all fairly comparable, indicating they should622

all be monitored. Clearly one would come to different conclusions about how to design623

a monitoring program for User 1 depending on the experimental design used for the vul-624

nerability assessment.625

Similar conclusions are drawn for User 2 (Fig. 7(e)-(h)). The lack of variability in626

shortage experienced by this user in the Box Around Historical (Fig. 6(e)) and CMIP627

(Fig. 6(f)) experiments makes it hard to determine which parameters are controlling the628

variability (Fig. 7(e)-(f)). This may not be a problem if this user is truly not vulnera-629

ble to climate change, but the highest shortages experienced by this user under the Pa-630

leo experiment (Fig. 6(g)) suggest they would have certainly been vulnerable to condi-631

tions observed in the past. The sensitivities at these high percentiles under the Paleo ex-632

periment have strong negative interactions suggesting a number of parameters could be633

monitored and explain the same information. Yet unlike the redundancy in User 1’s CMIP634

experiment, there are not two predominant factors that are obviously explaining the same635

information. Rather, the influence of all of the parameters is relatively equal, so one would636

need to compute higher order interactions to determine which are redundant (those with637

negative interactions) before designing a monitoring program. This is different than the638

conclusions one would draw from the All-Encompassing experiment (Fig. 7(h)), which639

suggests the dry-state mean explains most of the variability in User 2’s extreme short-640

ages.641
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5.3 Response Surface Modeling642

While Fig. 7 shows that the experimental design can clearly influence which fac-643

tors one concludes are most important for monitoring a user’s shortage, it does not ex-644

plain why that is. Building response surfaces of shortage as a function of the uncertain645

parameters can help explain those differences. By mapping shortage as a function of the646

HMM parameters, we can see how they interact and how the detection of those inter-647

actions differs depending on where the sample points lie.648

Fig. 8 shows the response surfaces for User 1’s 50th and 90th percentiles of short-649

age, while response surfaces for User 2’s 50th and 90th percentiles of shortage are shown650

in SI Fig. S10. Black lines in Fig. 8(a) show the ranges of shortage experienced at the651

50th and 90th percentiles across the All-Encompassing realizations, while black lines in652

8(d) show the portion of that variability explained by the different uncertain factors. Dots653

in Fig. 8(b) represent two-dimensional projections of the different sample points from654

the All-Encompassing design, colored by the average 50th percentile shortage experienced655

across the 10 realizations of that parameterization. The x-axis is the value of the HMM656

parameter with the greatest first order Sobol index at that percentile, and the y-axis is657

the value of the HMM parameter with the second greatest first order Sobol index. The658

contours represent the predicted 50th percentile shortage from a second order linear re-659

gression model estimating shortage as a function of the two most important HMM pa-660

rameters and their interaction. Fig. 8(e) shows the same contours, but with the two-dimensional661

projections of the CMIP sample points in yellow and the Paleo sample points in green662

instead of the All-Encompassing sample points. Fig. 8(c) and (f) show the same thing663

as Fig. 8(b) and (e), but for the 90th percentile of shortage instead of the 50th.664

a) User 1

d)

b)

e)

c)

f )

CMIP Paleo

Experiment

Figure 8. User 1’s 50th and 90th percentile shortage response surfaces. (a) User 1’s

shortage distribution across the All-Encompassing experiment. (b) Average simulated 50th per-

centile shortage (points) in each All-Encompassing sample and the predicted shortage (contours)

from a linear regression with the two most predictive parameters and their interaction, shown on

the x and y axes. (c) Same as (b) but for the 90th percentile of shortage. (d) Variance decompo-

sition of User 1’s shortage under the All-Encompassing experiment. (e)-(f) Same as (b)-(c) but

with CMIP samples in yellow and Paleo samples in green.
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At the 50th percentile, the wet- and dry-state means are most predictive of short-665

age (Fig. 8(d)). The relationship of these three variables is shown in Fig. 8(b). The up-666

per left corner is left blank as the dry-state mean exceeds the wet-state mean in this re-667

gion. From this plot, one can see that shortage increases as both the wet and dry-state668

mean decrease. The shortage contours are linear, meaning the two parameters do not669

interact. From Fig. 8(e), one can see that the CMIP sample points are perpendicular670

to the shortage contours. Consequently, as either the wet-state mean or dry-state mean671

decreases in the CMIP sample points, they experience the same increase in shortage. Hence,672

either one or the other could be monitored to detect shortage changes, explaining their673

negative interactions in Fig. 7(b). The Paleo points in green are not perpendicular to674

these contours. Rather, as the wet-state mean decreases (x-axis), shortages increase much675

more dramatically than as the dry-state mean increases (y-axis), making the wet-state676

mean more influential at this percentile under the Paleo experiment.677

At the 90th percentile, a different set of factors are most important in explaining678

shortage: the dry-state mean and wet-wet transition probability (Fig. 8(d)). Shortage679

increases across the All-Encompassing experiment as these two parameters decrease (Fig.680

8(c)). This relationship has some curvature, indicating positive interactions between the681

two variables. Looking at Fig. 8(f), one can see that the Paleo points in green nearly fol-682

lowing these nonlinear shortage contours. This makes it hard to detect changes in short-683

age from only one of the parameters alone, explaining why there are strong positive in-684

teractions in explaining User 1’s shortage under the Paleo experiment (Fig. 7(c)). The685

CMIP points, however, experience very little variability in the wet-wet transition prob-686

ability across their experimental design. Consequently, they miss this interaction and687

only detect changes in 90th percentile shortage as a consequence of changes in the dry-688

state mean. They also attribute these to changes in the wet-state mean because of their689

near perfect correlation in the CMIP experiment. This could be a mis-attribution if that690

correlation structure is not representative of the distribution of plausible futures.691

While Fig. 8 is useful for understanding how a UCRB user’s shortage will change692

at different percentiles as a function of the basin’s hydrologic parameters, water users693

are often more concerned with detecting changes in the probability of observing a crit-694

ical, intolerable value of shortage rather than its whole range, i.e., a “failure”. In addi-695

tion to exploring how the most important factors in explaining variability depend on the696

experimental design, another important question is, are the most important factors in697

explaining the probability of failure the same as the most important factors in explain-698

ing variability? We investigate this question by building logistic regression models that699

map the probability that shortage at the 50th and 90th percentiles stays below differ-700

ent thresholds of acceptability as a function of the HMM parameters. These response701

surfaces are shown in Fig. 9 for User 1 and in SI Fig. S11 for User 2.702

Fig. 9(a) illustrates User 1’s shortage distribution across the All-Encompassing re-703

alizations with an example of how success and failure could be defined for the 50th per-704

centile of shortage. In this example, a success is defined as the 50th percentile shortage705

being at or below the historical level shown in gold. This shortage level is displayed on706

the y-axis as a fraction of the user’s demand. Fig. 9(e) displays a satisficing surface in-707

troduced by Hadjimichael et al. (Accepted) illustrating the percent of realizations in the708

All-Encompassing experiment meeting a range of such possible success definitions (see709

SI Fig. S12-S13 for how this surface differs depending on the experimental design). In710

this figure, the color in each box represents the percent of realizations in which the per-711

cent of demand that is short (x-axis) is experienced different percentages of time in the712

simulation (y-axis). The gold boxes in Fig. 9(e) represent the historical frequency at which713

different shortage magnitudes are experienced. For example, Box (c) corresponds to the714

example success threshold in Fig. 9(a) in which shortages of 50% of demand are expe-715

rienced no more than 50% of the time. At the 90th percentile, shortages of 70% of de-716

mand are experienced 10% of the time historically (Box (g)).717
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b)a) c) d)

f )e) g) h)

b c d

f g h

Successes

Failures

User 1

Figure 9. User 1’s probability of success response surfaces under different defini-

tions of success. (a) User 1’s shortage distribution under the All-Encompassing experiment

with a sample definition of success. (b)-(d) Predicted probability (contours) of different shortage

magnitudes occurring less than 50% of the time, with the historical magnitude printed in gold.

The x axis indicates the most important factor and the y axis the second most important. All-

Encompassing sample points are shaded blue if at least 5/10 realizations are successes and red

otherwise. (e) User 1’s satisficing surface under the All-Encompassing experiment. The color of

each box represents the percent of realizations in which shortages of varying magnitudes on the

y axis are experienced not more than x percent of the time. Boxes highlighted in yellow indicate

the historical shortage magnitude experienced at each frequency. (f)-(h) Same as (b)-(d) but with

different shortage magnitudes occurring less than 10% of the time.

We explore which HMM parameters are most predictive of these two possible suc-718

cess definitions, as well as more and less conservative definitions at the same percentile.719

In addition to being successful at the 50th percentile if shortages of no more than 50%720

of demand are experienced (Fig. 9(c)), we also consider a stricter definition of no more721

than 30% of demand if User 1 finds even historical conditions unacceptable (Fig. 9(b)),722

and a more lenient definition of no more than 70% of demand if User 1 is willing to tol-723

erate an increase in shortage (Fig. 9(d)). Similarly, at the 90th percentile, we consider724

a smaller ratio of no more than 50% of demand being experienced 10% of the time (Fig.725

9(f)), a historical ratio of no more than 70% of demand (Fig. 9(g)), and a larger ratio726

of no more than 90% of demand (Fig. 9(h)).727

The response surfaces for the 50th percentile definitions are shown in the top row728

of Fig. 9 ((b)-(d)), while the response surfaces for the 90th percentile definitions are shown729

in the bottom row ((f)-(h)). In each response surface, the most predictive HMM param-730

eter is shown on the x-axis and the second most predictive parameter on the y-axis. The731

dots in these figures represent two-dimensional projections of the All-Encompassing sam-732

ple points and are shaded light blue if 5 or more of the 10 realizations of that param-733

eterization met the success definition and red otherwise. The contours display the pre-734
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dicted probability of success from a logistic regression model with the two most predic-735

tive parameters and their interaction. For this user, the most predictive parameters when736

using the historical shortage magnitude for the failure definition (printed in gold above737

Fig. 9(c) and (g)) is the same as the most predictive parameters of variability at that738

percentile. However, interactions between µd and pw,w at the 90th percentile are weaker739

when predicting success of staying below the historical shortage level than when predict-740

ing shortage itself. In fact, interactions for this user are minimal across all failure def-741

initions.742

While interactions are negligible across all failure definitions, the most predictive743

parameters are not the same across them. This suggests that designing monitoring pro-744

grams is not only complicated by the fact that sensitivities depend on the experimen-745

tal design, but also by the fact that sensitivities depend on whether one is monitoring746

for any changes in shortage, or for changes around a particular level. These sensitivity747

differences are not simply because we are only displaying the top two at each threshold748

and there is always a consistent close third. Table 3 reports the McFadden’s pseudo R2
749

values for each HMM parameter under all possible failure definitions in 10% increments750

for the 50th percentile definitions, while Table 4 reports the same for the 90th percentile751

definitions. As you can see, the strength of each parameter’s predictability varies strongly752

across the possible failure definitions. Note columns of these tables with no reported Mc-753

Fadden’s pseudo R2 values either experienced no failures or no successes under that suc-754

cess definition.755

Table 3. McFadden’s pseudo R2 values in predicting User 1’s success in 50th per-

centile shortage staying below different magnitudes under the All-Encompassing

experiment. Values of each HMM parameter when fitting a univariate logistic regression are

reported for models predicting the probability that User 1’s 50th percentile shortage is below

different shortage levels, reported as a fraction of demand. The McFadden’s pseudo R2 values of

the two most predictive parameters at each shortage threshold are shown in bold.

Percent of Demand that is Short 50% of the Time
Parameter 10 20 30 40 50 60 70 80 90 100

µd 0.162 0.019 0.025 0.059 0.103 0.149 0.188 0.309 0.402 -
σd 0.001 0.002 0.002 0.001 0.000 0.002 0.005 0.005 0.000 -
µw 0.343 0.361 0.400 0.352 0.232 0.062 0.014 0.008 0.000 -
σw 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.005 -
pd,d 0.006 0.013 0.020 0.025 0.043 0.141 0.225 0.234 0.253 -
pw,w 0.117 0.100 0.054 0.041 0.056 0.071 0.061 0.037 0.049 -

5.4 Robustness Analysis756

The variance decomposition and response surface modeling clearly reveal that us-757

ing sensitivity analysis to design monitoring programs to detect changes in water users’758

vulnerabilities is challenging in contexts of deep uncertainty. The other common use of759

sensitivity analysis for decision making under deep uncertainty is to evaluate alterna-760

tive management plans to see which are most robust to potential futures. It would be761

concerning if different experimental designs led to different conclusions about policy ro-762

bustness, as it would influence which policy is chosen to be implemented. While we do763

not investigate alternative policies in this study, we can instead see how the ranking of764

different water users’ robustness changes depending on the experimental design.765

Fig. 10 illustrates the variability in this ranking across experiments under differ-766

ent satisficing definitions of robustness. These satisficing definitions again correspond767
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Table 4. McFadden’s pseudo R2 values in predicting User 1’s success in 90th per-

centile shortage staying below different magnitudes under the All-Encompassing

experiment. Values of each HMM parameter when fitting a univariate logistic regression are

reported for models predicting the probability that User 1’s 90th percentile shortage is below

different shortage levels, reported as a fraction of demand. The McFadden’s pseudo R2 values of

the two most predictive parameters at each shortage threshold are shown in bold.

Percent of Demand that is Short 10% of the Time
Parameter 10 20 30 40 50 60 70 80 90 100

µd - - 0.276 0.069 0.064 0.248 0.327 0.478 0.546 0.261
σd - - 0.143 0.028 0.002 0.007 0.008 0.006 0.008 0.018
µw - - 0.303 0.217 0.203 0.139 0.050 0.010 0.006 0.002
σw - - 0.065 0.039 0.021 0.003 0.001 0.001 0.000 0.006
pd,d - - 0.009 0.000 0.014 0.003 0.005 0.010 0.013 0.148
pw,w - - 0.003 0.260 0.217 0.099 0.081 0.039 0.027 0.049

to combinations of shortage magnitudes and frequencies. Fig. 10(f) indicates which sat-768

isficing definitions are used here with black boxes around User 1’s satisficing surface for769

the All-Encompassing design. The three black boxes in the top row correspond to in-770

creasing one’s tolerance of 90th percentile shortages from 10% of demand, to 50% of de-771

mand to 100% of demand. The criteria thus become easier to meet as one moves from772

left to right. The three black boxes in the first column correspond to increasing one’s773

tolerance for the frequency at which shortages of 10% of demand are experienced from774

10% of the time to 50% of the time to 100% of the time. The criteria thus become eas-775

ier to meet as one moves from top to bottom.776

Fig. 10(a)-(c) show the robustness ranks of 342 water users in StateMod under the777

satisficing definitions of increasing magnitudes of 90th percentile shortage. Fig. 10(a),(d)778

and (e) show the robustness ranks under satisficing definitions of increasing frequencies779

for shortages of 10% of demand. The x-axis in each panel is the rank of each user in the780

All-Encompassing experiment, where 1 corresponds to the most robust user. The y-axis781

in each panel corresponds to the same user’s rank in each of the other experiments, with782

the Box Around Historical ranks shown in salmon, the CMIP in yellow, the Paleo in green,783

and the All-Encompassing in lavender. If all of the experiments were consistent in their784

robustness ranks, all points would lie on top of each other on a one-to-one line. This clearly785

does not always happen. Horizontal lines of points with a constant rank on the y axis786

represent ties in user robustness. Ties are less common in the All-Encompassing exper-787

iment, indicating its wider sampling is able to better distinguish users in terms of robust-788

ness. Deviations along the vertical dimension indicate a given user’s rank varies signif-789

icantly across experiments. The variability in ranks along the y-axis decreases as the short-790

age magnitude or frequency in the satisficing definition increases. This suggests that, at791

least for this problem, robustness rankings are more consistent for easier-to-meet crite-792

ria. Conversely, the more conservative one wants to be in finding robust policies, the harder793

it is to choose this consistently across experimental designs. The same conclusions hold794

when only using 100 samples for the Box Around Historical and All-Encompassing ex-795

periments, indicating these differences are not due to the different sample sizes of the796

experiments, but their different designs (see SI Fig. S14).797

6 Conclusions and Future Work798

The results of this work illustrate the challenges of designing scenarios for vulner-799

ability assessments under deep uncertainty. The diverging parameter ranges and corre-800
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a) b) c)

ed

User 1

Increasing Shortage Magnitude

Increasing Shortage Frequency

Figure 10. Consistency of robustness ranks across experiments. (a)-(c) Robustness

ranks across experiments with increasing shortage magnitudes experienced no more than 10%

of the time. (d)-(e) Robustness ranks across experiments with increasing frequencies of observ-

ing shortages of no more than 10% of demand. (f) User 1’s satisficing surface under the All-

Encompassing experiment. Black boxes indicate the satisficing thresholds under which robustness

rankings are compared in the other panels.

lation structures across past and projected climate conditions indicate that the appro-801

priate experimental design for such analyses is itself deeply uncertain. This would not802

be concerning if the alternative potential designs led to similar conclusions about poli-803

cies’ or users’ sensitivities and robustness ranks. However, the results presented here show804

that alternative ranges and correlation structures have decision-relevant implications about805

the needed monitoring complexity to detect change or success, with the potential to pro-806

mote insufficient, under-designed monitoring programs or costly, over-designed programs.807

For this reason, we recommend that vulnerability assessments under deep uncertainty808

be performed using competing hypotheses of how the future might evolve. That is, to809

be “robustly robust,” analysts should perform robustness analyses over alternative pos-810

sible experiment designs as done here to find policies/users that perform consistently well811

across competing designs. Since the goal of robustness analyses is to find policies that812

are less sensitive to design assumptions about critical uncertainties, one should extend813

this philosophy not only to the range of such critical uncertainties, but also to their cor-814

relation structure. Investigating these rival framings of experimental designs could re-815

veal the potential consequences of each, enabling water managers to guard against the816

potential mis-identification of important factors or their interactions in designing a mon-817

itoring program to detect changing or failure conditions.818

While this study only considered hydrologic uncertainty for illustrative purposes,819

vulnerability assessments under deep uncertainty should also include uncertainties in climate-820

human feedbacks as part of the alternative experimental designs. Many past bottom-821

up vulnerability assessments have found changes in human demands to equal or exceed822

climatic influences on vulnerability (Herman et al., 2014; Hadjimichael et al., Accepted).823

Yet such assessments rarely consider the correlation between human decisions and the824

climate, when correlations were shown in this study to significantly influence which fac-825
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tors and interactions were most important. Furthermore, past research on socio-hydrologic826

systems has shown that there can be strong positive and negative correlations between827

human decisions and water availability, but that these relationships are location-dependent.828

For example, Worland et al. (2018) found that in the water-abundant Northeastern U.S.,829

water use is more sensitive to social variables like persons per household and the Cook830

Partisan Voting Index, while in the drier Southwest, water use is more sensitive to en-831

vironmental variables like precipitation and temperature. While humans generally de-832

crease water consumption in drier areas (Worland et al., 2018), they also build reservoirs833

to mitigate the severity of droughts. However, this can actually exacerbate the problem834

if humans then increase water consumption due to the perceived increased availability835

from the reservoir (Di Baldassarre et al., 2018). Consequently, water system analysts should836

also consider how alternative policies themselves interact with model uncertainties be-837

fore drawing conclusions about their robustness. Incorporating these possible climate-838

human feedbacks into alternative correlation structures for climate vulnerability assess-839

ments under deep uncertainty will be important for capturing interactions between the840

two systems that may influence perceived user/policy sensitivity and robustness. More841

broadly, as system complexity grows, it is increasingly important to design vulnerabil-842

ity assessments under deep uncertainty that test the sensitivity of the assessment to its843

underlying assumptions. As eloquently stated in Saltelli and Funtowicz (2015), we need844

to “Find sensitive assumptions before these find [us].”845
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