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Abstract

Water resources systems models enable valuable inferences on consequential system stressors by representing both the geo-

physical processes determining the movement of water, and the human elements distributing it to its various competing uses.

This study contributes a diagnostic evaluation framework that pairs exploratory modeling with global sensitivity analysis to

enhance our ability to make inferences on water scarcity vulnerabilities in institutionally complex river basins. Diagnostic eval-

uation of models representing institutionally complex river basins with many stakeholders poses significant challenges. First,

it needs to exploit a large and diverse suite of simulations to capture important human-natural system interactions as well as

institutionally-aware behavioral mechanisms. Second, it needs to have performance metrics that are consequential and draw

on decision-relevant model outputs that adequately capture the multi-sector concerns that emerge from diverse basin stake-

holders. We demonstrate the proposed model diagnostic framework by evaluating how potential interactions between changing

hydrologic conditions and human demands influence the frequencies and durations of water shortages of varying magnitudes

experienced by hundreds of users in a sub-basin of the Colorado river. We show that the dominant factors shaping these effects

vary both across users and, for an individual user, across percentiles of shortage magnitude. These differences hold even for

users sharing diversion locations, demand levels or water right seniority. Our findings underline the importance of detailed

institutional representation for such basins, as institutions strongly shape how dominant factors of stakeholder vulnerabilities

propagate through the complex network of users.
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Key Points:7

• We contribute a novel diagnostic evaluation framework for understanding water8

scarcity in institutionally complex river basins9

• Magnitude-varying sensitivity analysis of the frequency and duration of water short-10

ages improves inferences on stakeholder-specific controls11

• The most influential stressors vary notably across users and alternative measures12

of shortage, even for users of similar characteristics13
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Abstract14

Water resources systems models enable valuable inferences on consequential system stres-15

sors by representing both the geophysical processes determining the movement of wa-16

ter, and the human elements distributing it to its various competing uses. This study17

contributes a diagnostic evaluation framework that pairs exploratory modeling with global18

sensitivity analysis to enhance our ability to make inferences on water scarcity vulner-19

abilities in institutionally complex river basins. Diagnostic evaluation of models repre-20

senting institutionally complex river basins with many stakeholders poses significant chal-21

lenges. First, it needs to exploit a large and diverse suite of simulations to capture im-22

portant human-natural system interactions as well as institutionally-aware behavioral23

mechanisms. Second, it needs to have performance metrics that are consequential and24

draw on decision-relevant model outputs that adequately capture the multi-sector con-25

cerns that emerge from diverse basin stakeholders. We demonstrate the proposed model26

diagnostic framework by evaluating how potential interactions between changing hydro-27

logic conditions and human demands influence the frequencies and durations of water28

shortages of varying magnitudes experienced by hundreds of users in a sub-basin of the29

Colorado river. We show that the dominant factors shaping these effects vary both across30

users and, for an individual user, across percentiles of shortage magnitude. These dif-31

ferences hold even for users sharing diversion locations, demand levels or water right se-32

niority. Our findings underline the importance of detailed institutional representation33

for such basins, as institutions strongly shape how dominant factors of stakeholder vul-34

nerabilities propagate through the complex network of users.35

1 Introduction36

1.1 Need for water systems model diagnostics37

Water resources systems models are important boundary objects for supporting de-38

cision making and facilitating inferences on consequential risks (Moallemi et al., 2020;39

Star & Griesemer, 1989; Star, 2010; White et al., 2010). Their use can inform the com-40

parison and assessment of alternative management policies, the evaluation of impacts41

of extreme events, and the allocation of limited resources among competing uses. Wa-42

ter systems models typically aim to represent the dynamics of water as a result of geo-43

physical processes, as well as the elements of human systems used to manage it: infras-44

tructure, institutions, and governance (Loucks, 1992). The inherent complexity of hu-45

man behavior and institutions poses a non-trivial challenge for adequately capturing the46

unique human and natural system traits of regions. As such, they have been criticized47

for not producing insights that are generalizable to other contexts (Brown et al., 2015).48

A weakness and potential danger in this critique emerges if it is used to justify regional49

model representations that remain overly generic and limited in their decision relevance.50

We argue that the inclusion of human processes in our models can indeed inform our fun-51

damental understanding of coupled human and natural processes as well as their inter-52

actions, if paired with formalized diagnostic frameworks that allow us to reconcile model53

behavior with the real-world decision-making contexts that shape consequential insights.54

Like all models, water resources systems models are simplified abstractions of the55

real world that allow us to reason and make testable predictions about the modeled sys-56

tem. Their utility hinges on their ability to represent the real system with some “accept-57

able” fidelity, which can be quantified by several metrics. In the case of water resources58

systems, the multiple interdependent human and natural processes taking place trans-59

late into modeled representations that are highly complex, non-linear, and present strong60

interactions and threshold behaviors (Hornberger & Spear, 1981). Further, model com-61

plexity and detail has been increasing based on our ever-improving understanding of eco-62

logic, geologic, atmospheric, and hydrologic processes, the availability of data, and the63

wider acceptance of their interactions, which in turn need to be represented (Saltelli et64
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al., 2019). As a result, performing diagnostic analyses of such models becomes more dif-65

ficult, both with regards to pinpointing the model components that most influence er-66

rors (Tang et al., 2007), but also with regards to broadening the scope of metrics used67

to evaluate model performance (Gupta et al., 1998). Recognition of this fact motivates68

the need for enhanced diagnostic tools and methods that move beyond error-driven eval-69

uations of hydrologic state predictions (Gupta et al., 2008).70

A centerpiece to modern model diagnostics, sensitivity analysis has had a long his-71

tory of application in hydrologic, environmental, and Earth systems modeling (Pianosi72

et al., 2016; Razavi & Gupta, 2015; Saltelli et al., 2019; Shin et al., 2013; Song et al., 2015),73

with several domains of application (as reviewed by the aforementioned studies): iden-74

tifying regions of sensitivity or uncertainty in model output, apportioning them to un-75

certain factors, identifying factors’ function and importance, and, the focus of this study,76

diagnostic model evaluation. In diagnostic evaluations, the results of sensitivity analy-77

sis can be used to identify model components to be prioritized during calibration, their78

degrees of interaction, and to compare the behavior of the model and its components with79

what is expected in reality (Gupta et al., 2008). In the latter application, the aim is to80

check whether the processes and factors appearing to control model behaviour are in-81

deed corroborated by our observations, so as to reject or support candidate formulation82

hypotheses, improve the model, and advance our fundamental understanding of such sys-83

tems (Clark et al., 2011; Oreskes et al., 1994; Saltelli et al., 2004; Wagener et al., 2003).84

There is however a point of departure here between natural-systems-focused hydrologic85

modeling and water resources systems modeling. Many agencies and institutions are ac-86

tively using water systems models as boundary objects that have met the conditions needed87

for establishing credibility (e.g., acceptable representational fidelity) but face broader tests88

on their salience and legitimacy in informing negotiated decisions (Cash et al., 2003; White89

et al., 2010). This consequence-oriented context is the lens through which we perform90

our diagnostic analysis.91

Applying diagnostic model evaluation using consequence-oriented or decision-relevant92

sensitivity analysis (Herman et al., 2015) faces an additional challenge: selecting the parts93

of the model behavior space that are reflective of the stakeholders’ viewpoints so that94

the most consequential uncertainties are identified and addressed (Saltelli & Funtowicz,95

2014). Water systems models in particular are an amalgam of geophysical, hydrologi-96

cal, and infrastructure-constrained institutional processes that yield a model behavior97

space as a multitude of outputs that go beyond hydrologic states. These outputs may98

have very diverse levels of salience to the real system’s stakeholders and to their goals99

being achieved. This is further complicated when such systems are also institutionally100

and dynamically complex, with multiple interacting domains and stakeholders. Consider101

the irrigation sector: access to several water sources and storage, differences in farming102

systems, the presence of contemporaneous risks and other factors affect the magnitude103

and duration of shortage that could be withstood by a farm in the case of drought (Komarek104

et al., 2020; Wallander et al., 2017).105

Further, it has been recognised that the importance of various model components106

may vary in time and space (Pianosi et al., 2016). This gave rise to a slew of time-varying107

and space-varying sensitivity analyses (e.g., see Pianosi and Wagener (2017) and Rougé108

et al. (2019) and references therein, as well as the earlier review by Song et al. (2015)).109

With a few exceptions (discussed below), these studies have focused on either concep-110

tual or case-specific hydrologic models describing rainfall-runoff processes in catchments,111

in which the human elements of the system are not a significant focus. This reflects a112

general challenge in hydrologic modeling, not limited to diagnostic studies: few models113

appropriately and adequately account for or represent the human activities that largely114

shape the flows of water (Wada et al., 2017; Wagener et al., 2010).115
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1.2 A framework for decision-relevant diagnostic evaluation116

In recognition of the importance of human institutional coordination and control117

in large reservoir cascades, Quinn et al. (2019) and Rougé et al. (2019) applied time-varying118

sensitivity analyses as a diagnostic evaluation of reservoir release rules. Both studies high-119

light the dominating effect of operational coordination in achieving the systems’ objec-120

tives. The present study expands on this growing body of work by contributing a diag-121

nostic evaluation of a fine-scale model of an institutionally complex water resources sys-122

tem. The basin under study is the Upper Basin of the Colorado River within the state123

of Colorado (henceforth abbreviated to UCRB). The UCRB stretches from the headwa-124

ters of the Colorado River to the Colorado-Utah state line, from where it continues to125

deliver water downstream to Lake Powell. Water allocation in this basin, like in most126

other basins in the western United States, is determined by the doctrine of “prior ap-127

propriation”, which allocates water to users based on right seniority. Seniority is deter-128

mined based on the date each right was decreed and is associated with an amount of wa-129

ter that the user should put into a “beneficial use” (Kenney, 2005). In this manner, prior130

appropriation creates a hierarchical network of water allocation, where each of the users131

affects and is affected by water availability in the basin. This multiplex system of allo-132

cation is naturally accompanied by the infrastructure and conduits necessary to make133

the transfers possible, including large exports from the basin to other uses in the state134

of Colorado (further detailed in the Study area section). Given the important role that135

human systems play in regulating and distributing streamflow in such basins, one should136

question whether it is sensible to ignore them in model-based assessments, and, by ex-137

tension, neglect them in our broader views on the diagnostic analyses of models. As of138

the time of writing, the authors are not aware of a diagnostic evaluation of a water re-139

sources model that attempted to assess dominant model controls using user-specific, decision-140

relevant metrics for institutionally complex multi-stakeholder systems.141

Our proposed diagnostic framework is demonstrated using the State of Colorado’s142

Stream Simulation Model (StateMod), a generic network-based water system model for143

water accounting and allocation. StateMod is a component of Colorado’s Decision Sup-144

port System (CDSS), jointly developed by the Colorado Water Conservation Board (CWCB)145

and the Division of Water Resources (DWR), which includes databases and data man-146

agement tools, as well as several models for water resources planning for several basins147

in Colorado (Malers et al., 2001). Using detailed historic demand and operation records,148

StateMod replicates the UCRB’s application of the prior appropriation doctrine, account-149

ing for the entirety of the basin’s consumptive water use. This allows us to represent the150

monthly allocation of water to each individual user in the basin, as well as their unmet151

demand (shortages). The explicit representation of human systems and institutions in152

such fine detail establishes a direct connection between the processes abstracted by the153

model and the many stakeholders affected by those processes in reality.154

This study broadens the scope of traditional diagnostic evaluation of hydrologic155

models by contributing a diagnostic framework for institutionally complex river basins156

with a multitude of stakeholders. The framework brings together exploratory modeling157

(Bankes, 1993; Bankes et al., 2001; Lempert et al., 2003), global sensitivity analysis meth-158

ods (Saltelli et al., 2008), and visual analytics (Keim et al., 2008; Thomas & Cook, 2005;159

von Landesberger et al., 2012). Exploratory modeling literature also views models as hy-160

pothetical computational experiments that give us a picture of how a system would be-161

have if the various assumptions composing the model were correct. To be effective in pro-162

ducing a rich enough picture of a complex model’s behavior space, exploratory model-163

ing must examine a very large and diverse suite of model simulation runs that capture164

important interactions and mechanisms leading to consequences of interest (Goodwell165

et al., 2020; Gupta et al., 2008; Lamontagne et al., 2018; Raso et al., 2019). The model166

needs to therefore be evaluated under a large ensemble of potential states of the world167

(SOWs) which represent changes in “deeply uncertain” factors (Knight, 1921; Polasky168
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et al., 2011; Walker & Marchau, 2003). These are factors that could potentially signif-169

icantly affect a system, but that are so highly uncertain that experts either cannot know,170

or cannot agree on, statistical descriptions of the entire set of outcomes and their like-171

lihoods (Kwakkel et al., 2010; Lempert, 2002; Lempert et al., 2003). Such deep uncer-172

tainties are typically investigated for their implications for stakeholders through exploratory173

modeling approaches (most recently reviewed by Moallemi et al. (2020)).174

As we focus on better understanding how deeply uncertain factors affect each user175

as a function of the degree of water shortage being confronted, it is important to avoid176

myopic definitions of water scarcity extremes. Consequently, a core contribution of this177

study is to demonstrate the value of magnitude-varying water shortage diagnostics, akin178

to the time-varying approaches mentioned above. The reasoning behind our approach179

is similar in that different factors are likely to dominate different system states (Pianosi180

et al., 2016), but the critical states for different users may occur at different times, mak-181

ing magnitude-varying sensitivity analysis more decision-relevant to each user. Conse-182

quently, our magnitude-varying sensitivity analysis of the frequency and duration of each183

user’s water shortages identifies how dominant factors might vary not only across dif-184

ferent system modes, but also across the basin’s water users. Visual analytics allow us185

to present this complex information across scales and users, and to derive insight about186

the dominant controls of the modelled shortages across the UCRB. The diagnostic frame-187

work presented in this study188

2 Study area189

Our study area spans 25,682 km2 (9,915 mi2) in Western Colorado, from the head-190

waters of the Colorado River at the Continental Divide to the Colorado-Utah state line191

(Fig. 1). The primary consumptive use of water in the UCRB is irrigation, with several192

thousand diversions drawing from the river and its tributaries to irrigate approximately193

1,012 km2 (391 mi2). The basin is moderately populated, as most of Colorado’s pop-194

ulation lives east of the Continental Divide. As a result, major diversions of water need195

to cross the divide to deliver 567,400,000 m3 (460,000 acre-feet) of water to northern and196

eastern Colorado for municipal, industrial, and agricultural uses (State of Colorado, 2015).197

These transbasin diversions are served through several tunnels present in the basin, the198

largest of which are indicated in Fig. 1.199

Even though water for power generation is largely non-consumptive and does not200

deplete resources in the basin, the Shoshone Power Plant (indicated in Fig. 1) is a no-201

table feature in this basin. Owing to its water right being one of the oldest and largest202

in the basin (dating to 1902 with a decree of 39.40 m3/s—approximately 68% of the me-203

dian river flow at the location), it significantly affects how many other users, both down-204

stream and upstream, receive their allocation (Yates et al., 2015; USGS, 2019). When205

the Shoshone Power Plant requests their allotted water, junior (i.e., lower priority) trans-206

basin and irrigation users upstream, as well as junior-right reservoirs, must cease or off-207

set their diversion so the Shoshone call can be fully met. Conversely, users downstream208

from the plant benefit from its presence and senior call on the river, as almost all of the209

water Shoshone requests is immediately returned to the stream. This has led to the es-210

tablishment of several recreation services along the Colorado River in towns downstream211

from the plant (from Glenwood Springs down to De Beque), worth an estimated $32 mil-212

lion/year to the local economy (Armistead & Mojica, 2018). Perhaps most crucially, wa-213

ter allocated to Shoshone, as with all rights, needs to be put into a beneficial use. This214

means that in the case that the 100-year-old plant shuts down, their right no longer needs215

to be honored by the junior users upstream, whereas the junior downstream users can216

no longer benefit from the availability of that water in the stream. In the past 15 years217

the plant had to shut down for repairs and maintenance twice Gardner-Smith (2019);218

Proctor (2008).219

–5–



manuscript submitted to Water Resources Research

Further downstream from the Shoshone Power Plant is the so-called “15-mile reach”,220

a segment of the river extending from the towns of Palisade to Grand Junction, the con-221

fluence of the Gunnison and Colorado rivers (indicated in Fig. 1). The US Fish and Wildlife222

Service has made several recommendations on maintaining critical flows in this part of223

the river (USFWS, 1999), as it is considered critical to the recovery of several endangered224

species of fish: the razorback sucker (Xyrauchen texanus), the Colorado pikeminnow (Pty-225

chocheilus lucius), humpback chub (Gila cypha), and bonytail (Gila elegans) (IUCN, 2012b,226

2012a, 2012c, 2012d; USFWS, 2020). The seniority of in-stream flow demands along the227

15-mile reach, as well as the demands of irrigation users and transbasin diversions, and228

the functioning of the Shoshone Power Plant are all included in our ensemble of uncer-229

tain factors due to their immediate relevance to local agencies and stakeholders. This230

is further elaborated in the Methods section.231

Adams Tunnel

Roberts 
Tunnel

Homestake 
Tunnel

Boustead 
Tunnel

Twin Lakes 
Tunnel

COLORADO

Shoshone Power Plant

15-mile 
reach

Moffat Tunnel

Blue River

Co
lor

ad
o R

ive
r

Colorado River

Gunnison 
River

Figure 1. The Upper Colorado River Basin within the state of Colorado (UCRB),

with structures of interest indicated. The Shoshone Power Plant owns one of the largest

and oldest water rights in the basin. The 15-mile reach is critical for the recovery of endan-

gered species. The highlighted tunnels are the largest transbasin diversions, exporting water to

the eastern plains. The smaller points indicate all other modeled diversion points in StateMod

(primarily irrigation). Figure from Hadjimichael et al. (2020).

3 Methods232

3.1 Model233

StateMod, the State of Colorado’s water planning model, is part of a wider set of234

decision support tools (CDSS) developed by Colorado state agencies to facilitate com-235

prehensive assessments of water allocation and use, as well as reservoir operations in all236

of the major sub-basins of the Colorado River within the state: White, Yampa, Gunni-237

son, Dolores, San Juan, San Miguel, and Upper Colorado, modeled here (CWCB, 2012;238

Parsons & Bennett, 2006). StateMod explicitly represents all the aforementioned struc-239
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tures in the UCRB, as well as over 300 other diversions, indicated by the points in Fig.240

1.241

Each diversion point carries detailed operational records of demand and supply, stored242

in the central database of the CDSS, HydroBase. The water demand data in HydroBase243

reflect best-estimates of population, irrigation levels, and reservoir capacities up to 2010.244

Demands for irrigation diversions are produced by StateCU, the consumptive use model245

available within CDSS. StateCU calculates water consumption for each irrigation unit246

based on soil moisture, crop type, irrigated acreage and irrigation efficiencies, and also247

calculates return flows from each diversion. Monthly demands for municipal diversions248

are given by the average diversions at each month of the year between 1998-2005. Mod-249

eled monthly demands for transbasin diversions reflect their historical diversions when-250

ever monthly data is available, or average estimates for dry, average, and wet conditions251

for the months without diversion data available. Reservoir filling demands are represented252

using minimum and maximum reservoir storage targets. The UCRB model’s manual con-253

tains additional information on how historical diversion demands were estimated for all254

consumptive use diversions (CWCB & CDWR, 2016). StateMod represents water years255

1909-2013, a period that includes extended periods of wet and dry flows, and years of256

extreme drought and high runoff. The current water year is defined as the period start-257

ing last October 1st, through the upcoming September 30th.258

To estimate the effect of diversions and operations on stream flow and water avail-259

ability, StateMod needs to first represent naturalized flow. To do so, historical diversion260

data, monthly reservoir storage, and return flows are superimposed on historical stream-261

flow observations from USGS gauges. However, many of the thousands of diversions that262

take place in the basin do not occur near the USGS gauges, so ungauged river nodes also263

need to be modelled. StateMod distributes flow to these ungauged locations by using264

proration factors accounting for how much drainage area contributes to each gauged lo-265

cation. The model then applies demand and operational information to represent reser-266

voir operations and diversions by each water right to reconstruct the remaining flow in267

the Colorado river and its tributaries within the UCRB.268

Each water right is associated with its location on the stream, an administration269

number that represents its allocation seniority, and the decreed water flow it is allowed270

to divert. At every monthly timestep the model resolves all diversions and other trans-271

fer operations in order of seniority and estimates remaining river flow. Even though the272

basin’s consumptive use of water is accounted for in its entirety, only 75% of the thou-273

sands of diversion points are represented in strictly correct locations, with the remain-274

ing grouped into aggregated representations based on size of diversion, location of wa-275

ter use, and tributary boundaries. In a similar manner, reservoirs and stock ponds with276

decreed capacities of less than 4,934,000 m3 (4,000 acre-feet) of water are modeled in ag-277

gregate. The remaining 18 reservoirs are explicitly represented at their strict locations278

and make up 94% of the total storage capacity in the UCRB. The manner with which279

structures in the basin have been aggregated is described in great detail in the UCRB280

model’s manual (CWCB & CDWR, 2016). Using this fine-scale set of data, StateMod281

is able to account for the effect of all users and their water rights on water availability282

in the UCRB. State agencies have in fact been actively using this model to assess im-283

pacts by proposed operations or other hypothetical scenarios for the past 30 years (Parsons284

& Bennett, 2006).285

3.2 Experimental design286

This study contributes a diagnostic framework for institutionally complex river basins287

by combining exploratory modeling with magnitude-varying sensitivity analyses of the288

frequencies and durations of shortages experienced by multiple users. StateMod is used289

to illustrate this diagnostic framework for the hundreds of users represented in the model.290
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For this exploratory assessment, we create a large ensemble of possible conditions for this291

system, representing changes in hydrology (drier and wetter conditions), human water292

demands, water rights, and physical storage. Our methodology then forces these changed293

conditions through the model to identify the factors dominating decision-relevant model294

outputs, specifically, the frequency and duration of different magnitudes of shortage for295

each user.296

Fig. 2 presents the diagnostic framework contributed by this study, following the297

notation by McPhail et al. (2018) and Hadjimichael et al. (2020). Panel I describes the298

generation of the ensemble of uncertain factors to be propagated through the model. A299

set (Ψ) of 1,000 samples of uncertain factors is generated, each representing a potential300

state of the world (SOW). For each SOW, ten streamflow realizations (s) are also gen-301

erated, for a total of 10,000 model evaluations. Model output is then produced as a re-302

sult of each realization (f(U, s)) for all users in the basin (U), as shown in Panel II. Each303

f(u, s) is therefore the model output related to user u for realization s, with the entire304

set of these (f(u, S)) being the model behavior for each user across all realizations in the305

ensemble (Panel III). Each f(u, S) can then be used to perform diagnostic analysis on306

the model, using outputs that are of consequence to each user. In this particular case,307

the decision-relevant model outputs are chosen to be the unmet demands (shortages) ex-308

perienced by each user, but this framework could be applied to other metrics in simi-309

lar multi-actor systems. Panel IV shows how this model output is subsequently classi-310

fied to percentiles of shortage magnitude for each user. Sensitivity analyses are then ap-311

plied to the frequency and maximum duration of each shortage magnitude (Panel V),312

using three different methods: the Delta method, Sobol variance decomposition, and lin-313

ear regression, detailed in section 3.4. Applying sensitivity analysis to the shortage mag-314

nitude corresponding to each discrete percentile of each individual user’s shortage dis-315

tribution allows us to identify which of 14 uncertain factors (and potentially, their in-316

teraction) control model behavior as it relates to different users, as well as identify how317

factor importance might vary at different shortage percentiles. The three sensitivity anal-318

ysis methods each reveal different valuable information about the relationships between319

each important factor and the output.320

3.3 Ensemble of uncertain factors321

To generate the ensemble of uncertain factors used in the experiment, we explore322

parameterized representations of human demands and institutions included in StateMod,323

and of streamflows fed as inputs to the model. Listed in Table 1 are the 14 uncertain324

factors considered in this experiment, with the first six being parameters of a synthetic325

streamflow generator and the remainder being human-system StateMod parameters. The326

set Ψ of 1,000 parameter combinations is generated using a Latin hypercube sample (McKay327

et al., 1979) across the parameter ranges shown in Table 1, assuming parametric inde-328

pendence and uniform distributions. These ranges have been informed by the related lit-329

erature (detailed below), but are intentionally expanded so as to capture important in-330

teractions and mechanisms with consequential effects (e.g., extreme multi-year droughts)331

(Bankes, 1993).332

3.3.1 Changing hydrologic conditions333

The synthetic streamflow generator used is a two-state Gaussian Hidden Markov334

Model (HMM), made up of two “hidden” climate states—one for dry and another for335

wet hydrologic conditions (Bracken et al., 2014). A HMM can be used to generate log-336

space flows from Gaussian distributions with different parameters; by changing the HMM’s337

parameters we can represent changes in the frequency, severity, and persistence of droughts,338

as well as wet years. This particular basin has observed great historical hydrologic vari-339

ability and persistence (Ault et al., 2013, 2014), something also reflected in the current340

bi-decadal drought being experienced in the region (Rhee et al., 2018; Schwartz, 2019).341
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Figure 2. Experimental design of this study. Panel I shows how the samples of uncer-

tain factors (Ψ) relate to the generation of streamflow realizations (s), i.e., ten streamflows for

each sample Ψ. The performance of the system is evaluated for each realization using StateMod

(panel II) producing shortages for all users (U) in the basin (f(U, s)). The performance for each

user (u) across all realizations (S) is then represented by f(u, S) (panel III). Panel IV shows how

that performance is classified to percentiles of magnitude for each user (t). Three sensitivity anal-

ysis methods are then applied to analyze the influence of 14 uncertain factors (and potentially,

their interaction) on the frequency with which different annual shortage levels are experienced,

and the maximum duration (in years) of annual shortages at that level. The chosen shortage

levels correspond to discrete percentiles of the historical annual shortage distribution (panel V).

This drought has manifested through decreasing streamflows in the basin, despite greater342

precipitation, due to higher temperatures increasing evapotraspiration and causing ear-343

lier snowmelt (Xiao et al., 2018; Milly & Dunne, 2020). Such conditions are also con-344

sistent with regional projections (Christensen & Lettenmaier, 2007; Rasmussen et al.,345

2014).346

The synthetic generator captures such dynamics by fitting the HMM to the nat-347

uralized log-space annual flows at the outflow node of the basin’s model. This requires348

estimating the mean and standard deviation of the distributions of the two states, and349

the probabilities of transitioning between the two. To estimate the HMM parameters,350

we use the Expectation-Maximization algorithm available in the hmmlearn Python li-351

brary (Lebedev, 2015) and fit the model to the last 70 years of the 105-year hydrologic352

record (due to non-stationarity in conditions over the whole record). To classify each an-353

nual flow into one of the two “hidden” model states (wet and dry) we use the Viterbi354

algorithm, also available in the package. The parameter estimates, Gaussian fits, as well355

as additional details on fitting and validating the generator can be found in the Supple-356

mentary Information (SI) of Hadjimichael et al. (2020).357
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Table 1. Uncertain factors and sampling ranges. Using a Latin hypercube sample, 1,000

parameter combinations (SOWs) are generated, under which the system performance is evaluated

for every user.

Parameter Current
value

Lower
bound

Upper
bound

Hydrologic Factors

Log-space dry flow mean (m3) multiplier 1.0 0.98 1.02
Log-space dry flow standard deviation multiplier 1.0 0.75 1.25
Log-space wet flow mean (m3) multiplier 1.0 0.98 1.02
Log-space wet flow standard deviation multiplier 1.0 0.75 1.25
Change in dry-to-dry transition probability 0.0 -0.3 0.3
Change in wet-to-wet transition probability 0.0 -0.3 0.3
Shift in timing of snowmelt (days earlier) 0 0 60
Change in evaporation (cm/month) 0.0 -15.24 30.48

Demand Factors

Irrigation demand multiplier 1.0 0.5 1.5
Transbasin demand multiplier 1.0 0.5 1.5
Municipal and industrial demand multiplier 1.0 0.5 1.5

Environmental and Institutional Factors

Reservoir storage 1.0 0.8 1.0
Operation of Shoshone Power Plant 1 0 1
Seniority of environmental flows 0 0 1

To model changes in the mean and variance of the annual wet and dry flows in the358

record (the first four parameters listed in Table 1), as well as their persistence (the fifth359

and sixth parameters listed in Table 1), we modify the HMM parameter estimates us-360

ing multipliers and delta operators, respectively. The ranges of these parameters were361

selected so the resulting flows span both the monthly and annual flows generated using362

synthetic stationary conditions and the Coupled Model Intercomparison Project 3 (CMIP3)363

and 5 (CMIP5) projections (CWCB, 2012). As a result, this HMM generator allows us364

to capture a range of possible hydrologic conditions: a broader range of extremes can365

be explored, not only with regards to the magnitude and variability of flow, but also its366

persistence (e.g., droughts longer than any historically observed). All these attributes367

of change can have consequential effects on the stakeholders—larger, longer or more fre-368

quent water shortages—making their integration critical to this exploratory modeling369

analysis.370

Using the HMM, we synthetically generate log-space annual flows at the last model371

node under a range of HMM parameters. We then convert them to real-space, and then372

disaggregate them to monthly values, following an approach similar to Nowak et al. (2010):373

The monthly flow proportions are used from a historical year that is probabilistically se-374

lected based on how close its total annual flow is to that of the synthetically generated375

flow at the last node. A shift in the timing of snowmelt (controlled by the equivalent pa-376

rameter in Table 1) is applied to the daily hydrograph of this year, thereby dissipating377

its peak and moving it earlier in the year. The application of this parameter has been378

included in this diagnostic analysis to reflect reduced snow cover durations observed in379

this region, due to increasing temperatures and dust on snow (Livneh et al., 2015; Skiles380

& Painter, 2019). We then spatially downscale the monthly flows at the last model node381

to all other upstream nodes, by proportionally scaling them using the monthly ratios of382

upstream node to last node in the selected historical year. Additional details about how383
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this downscaling is performed, as well as figures of the generator’s ability to capture the384

spatial streamflow correlations are given in the SI of Hadjimichael et al. (2020).385

Lastly, the SOW ensemble includes a parameter to change the evaporation rate of386

all 18 reservoirs included in the model, as this is expected to increase with higher tem-387

peratures. The model accounts for reservoir surface evaporation by applying monthly388

evaporation rates (feet/month) to each reservoir. Annual rates are calculated by sub-389

tracting the weighted average effective precipitation from the estimated gross water sur-390

face evaporation. These are then scaled to monthly equivalents based on each reservoir’s391

elevation (CWCB & CDWR, 2016). The equivalent parameter in Table 1 is applied as392

an additive delta operator to these monthly evaporation rates.393

3.3.2 Changing water demands394

The state of Colorado’s population has grown significantly over the past century395

(DOLA, 2015), on a trend that is expected to continue, with the population doubling396

by 2050 by some estimates. This rise is typically accompanied by growing municipal and397

industrial (MI) water demands. However, even though population rise is expected, lo-398

cal governments and the state itself can influence where the population grows and how399

much water is needed to support this growth through conservation and efficiency mea-400

sures implemented across the state (CWCB, 2010; State of Colorado, 2015). For exam-401

ple, conservation and efficiency programs have reduced per capita water consumption402

by 5% across the state and up to 30% in some communities (CWCB, 2010, 2019). The403

largest water demand in the state, however, is related to the agricultural sector, mak-404

ing up 89% of the state’s total consumptive use (CWCB, 2019). Crop irrigation require-405

ments are expected to increase by up to 30% by 2040, due to the growing season of many406

crops getting longer, as a result of rising temperatures (CWCB, 2012). At the same time,407

irrigated area in the UCRB is estimated to decrease by 55 km2 (13,600 acres) by the mid-408

21st century, as cities expand into irrigated land and real estate developers purchase farm-409

lands (CWCB, 2019; State of Colorado, 2015). The use of emerging technologies for more410

efficient water application is also expected to decrease crop requirements and mitigate411

some of the increased demands due to the changing climate (CWCB, 2019).412

Based on these conflicting estimates, our diagnostic experiment explores the im-413

plications of both positive and negative changes in each type of demand present in the414

basin (municipal and industrial, transbasin, irrigation) by up to 50%. Applying this ex-415

ploratory broad range of values allows us to assess sensitivities and consequences in a416

broader context of deeply uncertain SOWs, and capture important mechanisms of fail-417

ure that might come about as a result of system conditions not previously observed. These418

scaling factors have been applied uniformly across all diversions representing each sec-419

tor. For the transbasin diversions the scaling factors have been applied to their maxi-420

mum historical monthly demand, to reflect their ideal amount of supply.421

Lastly, as evapotranspiration increases during dry years (when streamflow is low),422

irrigation demands should be anti-correlated with the synthetically generated stream-423

flows. To ensure this, for each sampled SOW, the annual flow anomalies are calculated424

for the last model node. Using a regression of historical annual total irrigation anoma-425

lies versus historical annual flow anomalies at the last node, we determine an appropri-426

ate annual total irrigation anomaly for each year of the synthetic SOW, with added noise427

to preserve variance. This time series is then added to the mean irrigation demand for428

that SOW. Additional details of how this step is performed can be found in the SI of (Hadjimichael429

et al., 2020).430
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3.3.3 Environmental and institutional changes431

The last three factors listed in Table 1, represent other potential environmental and432

institutional changes. We sample reservoir storage losses of up to 20% as a potential re-433

sult of sedimentation (Graf et al., 2010), and apply them uniformly to all reservoirs in434

the UCRB model. For the operation of the Shoshone Power Plant we use a binary vari-435

able sampled to indicate whether or not the plant is operational. If the plant is not op-436

erational, then it can no longer put water into a “beneficial use” and upstream junior437

users are not obligated to honor the call, while downstream users may be impacted by438

decreased deliveries. Finally, another binary variable is sampled to indicate a potential439

legal change to the seniority of the environmental flow right at the 15-mile reach. This440

change assigns a first priority senior right to this location, with a decree of 22.94 m3/s441

(810 cf/s, the minimum flow rate recommended during dry conditions; USFWS (1999)).442

3.4 Magnitude-varying sensitivity analysis443

3.4.1 Understanding sensitivities at different shortage magnitudes444

As illustrated in Fig. 2, the exploratory ensemble of potential changes (Ψ) is sim-445

ulated through StateMod, producing decision relevant outputs for each user (f(u, S)).446

The outputs in this case are water shortages experienced by each user, further classified447

to increasing percentiles of annual magnitude (f ′(u, t)). Fig. 3 shows the water short-448

ages experienced by six basin users across the entire ensemble, presented in this magnitude-449

varying fashion. The six users shown here are: (a) a senior-right irrigation user located450

upstream; (b) a median-right irrigation user located downstream; (c) a junior-right ir-451

rigation user located downstream; (d) a senior irrigation user with a large decree of wa-452

ter allocation located downstream; (e) a transbasin diversion located midstream; and (f)453

the 15-mile reach (downstream). These users were selected out of the hundreds present454

in the basin so as to represent a range of diversion patterns, locations, levels, and right455

seniorities. The decreed diversion flows for these users are: (a) 0.47 m3/s, (b) 0.35 m3/s,456

(c) 0.96 m3/s, (d) 26.63 m3/s, and (f) 24.95 m3/s. User (e) is a transbasin diversion rep-457

resented by a tunnel in the model, which has an average annual demand of 69 million458

m3.459

In each panel, the black line shows the shortages that were experienced historically460

by each user, with the magnitude of annual shortage indicated by the y axis and its non-461

exceedance probability by the x axis. The blue shaded areas show the frequency with462

which each magnitude of shortage was experienced across the ensemble, with lighter shades463

indicating increased cumulative frequency. For example, the 80th percentile shortage ex-464

perienced historically by the user shown at Fig. 3 (b) was approximately 1 million m3.465

Across the ensemble, shortages at the 80th percentile of each realization ranged between466

0.5 and 3 million m3.467

As elaborated in Hadjimichael et al. (2020), the users experience significantly dif-468

ferent changes in their shortage distributions as a result of the same ensemble of changes469

in the 14 deeply uncertain factors. Comparing the historical magnitudes at each percentile470

with those across the ensemble, some users see their shortages increase both in magni-471

tude and frequency in most realizations (e.g., users (a) and (b)), while others only ex-472

perience more severe shortages in about half of the realizations (e.g., users (c) and (e)).473

The variability of magnitudes for each percentile also varies even when looking at a sin-474

gle user (e.g., 20th percentile and 90th percentile of shortage magnitude for user (c)).475

Lastly, the two dashed vertical lines in pink and yellow indicate the years during which476

the basin as a whole experienced its median and worst shortages, 1943 and 2002, respec-477

tively (further discussed in section 4.3). The differences between the relative shortages478

of the six users during these two reference years should also be noted: the worst year basin-479

wide is not nearly the worst for users (a) and (f), nor is the basin-wide median the me-480

dian for users (a), (c), (e), and (f).481
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(a) Upstream 
senior-right irrigation user

(b) Downstream
median-right irrigation user

(c) Downstream
junior-right irrigation user

(d) Downstream
large-decree irrigation user (e) Midstream transbasin diversion (f) 15-mile reach (downstream)

Cumulative frequency in experiment
0-10% 10-20% 20-30% 40-50%30-40% 50-60% 60-70% 70-80% 90-100%80-90%

Historical shortages experienced Year of median basin shortage (1943) Year of max. basin shortage (2002)

Figure 3. Percentile-varying impacts on shortage magnitude and frequency for six

users in the basin. Each panel represents shortages experienced by a specific user in the basin:

(a) a senior-right irrigation user; (b) a median-right irrigation user; (c) a junior-right irrigation

user; (d) an irrigation user with a large decreed flow of water; (e) a transbasin diversion; (f) the

15-mile reach. The black line in every panel indicates the percent of time each annual shortage

magnitude was experienced historically by each user. The shaded areas represent the frequency

with which these magnitudes of shortage are experienced at each percentile across the simulated

ensemble. Lighter shades indicate increased cumulative frequency. The dashed vertical lines in

pink and yellow indicate the years during which the basin as a whole experienced its median and

worst shortages, 1943 and 2002, respectively. Adapted from Hadjimichael et al. (2020).

One can draw two important inferences from this figure. First, selecting a single482

metric to be applied for the diagnostic performance of this model would be a very dif-483

ficult (if not impossible) undertaking if one is indeed concerned with the metric captur-484

ing decision-relevant and consequential effects. Second, the differences seen across mag-485

nitude percentiles and users beg the question of whether different sets of factors are ac-486

tive at different levels of water scarcity extremes. These findings consequently motivate487

the application of magnitude-varying sensitivity analyses as a diagnostic tool for better488

understanding the state-consequence dynamics of this network of multi-sector stakehold-489

ers. For each user, the analyses are applied to both the frequency and the maximum du-490

ration of different annual shortages magnitudes corresponding to increasing percentiles491

of that user’s historical annual shortage distribution.492

3.4.2 Methods used for magnitude-varying sensitivity analysis493

Three sensitivity analysis measures were applied to analyze the sensitivity of the494

frequencies and durations with which each user experiences different shortage magnitudes:495

the Delta moment-independent measure (Borgonovo, 2007; Plischke et al., 2013), Sobol496

variance decomposition (Sobol, 2001), and linear regression. Sobol sensitivity analysis497
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is a widely applied method which decomposes the variance of a response variable (in this498

case, either the frequency or the maximum duration of a historical percentile of short-499

age) into the amounts contributed by each of the independent variables, both individ-500

ually and by way of interactions. The first-order Sobol index represents the amount of501

variance in the response variable attributed to each parameter individually (i.e., with-502

out considering its interactions with the other parameters), whereas higher-order Sobol503

indices measure the additional variance caused by interactions between the parameters.504

The Delta Method is a density-based measure that identifies model parameters that505

most influence the entire distribution of the response variable. The resulting Delta in-506

dex for each parameter measures the normalized expected shift in the distribution of the507

response variable induced by the parameter (Borgonovo, 2007). The difference between508

the two lies in the fact that Sobol identifies parameters that achieve the greatest reduc-509

tion in only the variance of the response variable, whereas the Delta index is a moment-510

independent measure. The application of the two methods is performed through the Python511

library SALib (Herman & Usher, 2017), which calculates both metrics using the method512

of Plischke et al. (2013), as it does not require a specific sampling scheme.513

Lastly, we also apply ordinary least squares regression using the Python package514

statsmodels (Seabold & Perktold, 2010), as the third way to measure the parameters’515

influence on the dependent variables. For this step, a simple linear regression model is516

fit using each parameter alone, with the resulting R2 indicating the proportion of vari-517

ance in the response variable explained by that parameter. For all three methods we also518

perform the analysis for a control variable that has no bearing on the model. This is done519

so as to avoid attributing misplaced significance to any parameter that is in actuality520

an artifact of the bootstrap calculation of the indices. For all users, percentiles and meth-521

ods, the sensitivity measure of each parameter is compared to that of the control vari-522

able and is set to zero if it does not exceed it.523

The rationale for applying these three methods (Delta, Sobol, and ordinary least524

squares) is because they allow the diagnostic evaluation of different effects that the un-525

certain parameters might have on the response variables (the frequency and maximum526

duration of water shortages at different percentiles of historical shortage). The first-order527

Sobol index and R2 attribute importance to each parameter according to its effect on528

output variance, with the difference that R2 can only capture linear effects between the529

dependent and independent variables. The relative difference in parameter sensitivity530

resulting from the two methods suggests the presence of non-linear relationships between531

a parameter and the output of interest. The application of the Delta method allows us532

to further analyze potential effects the parameters might have on higher order moments533

of the distribution. This is particularly relevant to parameters changing the likelihoods534

of events in the tails of the output distribution—in this experiment, the hydrologic fac-535

tors sampled are indeed expected to produce both drier and wetter conditions with in-536

creased durations in some realizations.537

To summarize, our magnitude-varying sensitivity analysis is performed in the fol-538

lowing steps. For every user, the percentiles of water shortage experienced historically539

are calculated based on the annual magnitudes of shortage (these are the black lines shown540

in Fig. 3). The shortage magnitude at each discrete percentile of this distribution (f ′(u, t))541

is experienced with different frequencies in each realization from our ensemble. It is also542

associated with a different maximum duration in each realization. For each user in the543

basin, the three sensitivity analyses methods described above are applied to understand544

which uncertain factors influence variability across realizations in both the frequency and545

the maximum duration of every historical percentile of shortage (Panel V in Fig. 2).546
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4 Results and discussion547

The following sections present the diagnostic results from the three magnitude-varying548

sensitivity analyses applied to the frequency (section 4.1) and maximum duration (sec-549

tion 4.2) of shortage at each historical percentile. Although the analysis was performed550

for the over 300 users represented in StateMod, our initial detailed diagnostic results fo-551

cus on the six users shown in Fig. 3, who span a range of sectors, basin locations and552

levels of seniority. Our final section of results provides broader diagnostic insights across553

the full suite of multi-sector users in the basin (section 4.3).554

4.1 Factors controlling the frequency of shortages555

Fig. 4 shows the results of the three sensitivity methods applied to the senior-, median-556

and junior-right irrigation users (panels (a-c) in Fig. 3). The figure illustrates interest-557

ing differences in which factors dominate the frequencies with which each user experi-558

ences their historical percentiles of shortage across realizations. The frequencies of wa-559

ter shortages for the senior-right user (a, d, e) are largely controlled by the snowmelt tim-560

ing parameter (in gold color), the relative effect of which is reduced when looking at the561

other two users. The other two most significant factors for this user are the mean wet562

and dry flow parameters (in blue and red, respectively). This finding suggests that this563

user is not considerably (if at all) susceptible to changes in the water demands of the basin’s564

irrigation sector, even though this includes their own demands. Rather, they are more565

susceptible to changes in water supply, and particularly its seasonality, as the snowmelt566

timing parameter simulates a shift in peak runoff to earlier in the year.567

On the other hand, the median- and junior-right users’ shortage frequencies are con-568

trolled in large part by the irrigation demand (in orange). The effect of this factor also569

increases for shortages of larger magnitudes. The relative importance of the mean wet570

and dry flow also switches between low and high percentiles of shortage, which can be571

attributed to different system states being active when different levels of shortage oc-572

cur. In other words, the magnitude-varying sensitivity analysis allows us to directly link573

the magnitude of shortage experienced by these users to the dry and wet conditions in574

the basin: their largest shortages occur when streamflow is low (determined by the mean575

dry flow parameter) and their smallest shortages occur when streamflow is high (deter-576

mined by the mean wet flow parameter). Furthermore, for the junior-right user (Fig. 4577

(c, f, i)) snowmelt timing is not as significant as for the other two users. This could be578

attributed to the timing of their shortages not coinciding with the timing of the shift in579

snowmelt.580

Examining this figure top to bottom (i.e., across methods) we see that the relative581

factor significance attributed by the first-order Sobol indices and the R2 values are largely582

the same. This suggests that the relationship between these factors and the correspond-583

ing water shortage frequencies is mostly linear. The differences observed between these584

figures (Fig. 4 (d-i)) and those showing the Delta method indices (Fig. 4 (a-c)) can be585

attributed to the effects these parameters have on higher-order moments of those dis-586

tributions. In particular, factors such as the operation of the Shoshone plant (in dark587

purple) and the seniority of the environmental flow right (in green) are more apparent588

in these panels. Note that white areas in these panels represent magnitude percentiles589

where indices could not be computed as historical shortages were zero (see equivalent590

panels in Fig. 3).591

The equivalent results for the large-decree irrigation user, the transbasin diversion592

and the 15-mile reach are presented in Fig. 5. Here, the frequencies of shortages at dif-593

ferent historical percentiles are controlled primarily by a single factor: the irrigation de-594

mand for the irrigation user (in orange), the transbasin demand for the transbasin di-595

version (in cyan), and the environmental flow right seniority (in green) for the 15-mile596

reach. Similar to the previous findings, comparing between the first-order Sobol and the597
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Senior-right irrigation user Median-right irrigation user Junior-right irrigation user

Percentile-varying sensitivity analysis on shortage frequency

Irrigation demand
Reservoir loss
Transbasin demand
M&I demand

Shoshone operational
Environmental right seniority
Evaporation
Mean dry flow

Dry flow variance
Mean wet flow
Wet flow variance
Dry flow persistence

Wet flow persistence
Snowmelt timing
Factor interactions

(a) Delta indices

(d) 1st order Sobol indices

(g) R2 values

(b) Delta indices

(e) 1st order Sobol indices

(h) R2 values

(c) Delta indices

(f) 1st order Sobol indices

(i) R2 values
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Figure 4. Percentile-varying sensitivity indices of shortage frequency for three ir-

rigation users. Each panel presents the magnitude-varying sensitivity indices attributed to each

factor, for the frequency of shortages experienced by: (a, d, g) the senior-right irrigation user; (b,

e, h) the median-right irrigation user; and (c, f, i) the junior-right irrigation user. The results are

ordered by method, with the first row showing factor significance as estimated using the Delta

indices, the second row using the first-order Sobol indices, and the third row using the R2 values.

The dashed vertical lines in pink and yellow indicate the percentile of shortage experienced by

each user in the years during which the basin as a whole experienced its median and worst short-

ages, 1943 and 2002, respectively. The colors in the legend are listed in the order that they are

plotted, from bottom, up.

R2 panels (Fig. 5 (d-i)) suggests that the nonlinear effects of the parameters do not change598

the rank order of factor importance. However, the effects are more nonlinear for these599

users, as the magnitude of the first order Sobol indices for irrigation demands (d), trans-600

basin diversion demands (e) and environmental right seniority (f) are larger than their601

corresponding linear effects captured by the R2 metric (g, h and i, respectively).602

Several other factors are identified by the Delta method as affecting the frequency603

of shortages at moments beyond its variance for all three users (Fig. 5 (a-c)). Looking604

specifically at the 15-mile reach, the seniority of the environmental flow right explains605
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Large-decree irrigation user Transbasin diversion 15-mile reach

Percentile-varying sensitivity analysis on shortage frequency
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Figure 5. Percentile-varying sensitivity indices of shortage frequency for three

basin users. Each panel presents the magnitude varying sensitivity indices attributed to each

factor, for the frequency of shortages experienced by: (a, d, g) the large-decree irrigation user; (b,

e, h) the transbasin diversion; and (c, f, i) the 15-mile reach. The results are ordered by method,

with the first row showing factor significance as estimated using the Delta indices, the second row

using the first-order Sobol indices, and the third row using the R2 values. The dashed vertical

lines in pink and yellow indicate the percentiles of shortage experienced by each user in the years

during which the basin as a whole experienced its median and worst shortages, 1943 and 2002,

respectively. The colors in the legend are listed in the order that they are plotted, from bottom,

up.

more than 80% of the variance in shortage frequency. Looking at its equivalent Delta606

index (Fig. 5 (c)), the distributions of shortage frequency are also significantly affected607

by several other factors. This suggests that shortage frequencies at the tails of the dis-608

tribution (i.e., SOWs that have extremely frequent large shortages) occur as a result of609

a combination of many factors changing together: increased demands (in orange, cyan,610

and yellow), drier and more variant flows (in red and light red), more evaporation (in611

light orange). Lastly, we compare the results from the Delta method applied to the trans-612

basin diversion (Fig. 5 (b)) with those produced by the other two methods (Fig. 5 (e613

and h)). The findings suggest that reservoir loss (in brown) and irrigation demand (in614
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orange) also affect the tail events in the distribution of frequencies, in that they contribute615

to the occurrence of either very frequent or very infrequent shortages of all magnitudes.616

Further, the first-order Sobol and R2 indices (Fig. 5 (e and h)) attribute an increasing617

significance to the transbasin demand (in cyan) as we move to higher percentiles of short-618

age, something not seen in the equivalent Delta method panel (Fig. 5 (b)). This differ-619

ence has implications regarding the effect of changing transbasin diversion demands on620

the frequency of shortages experienced. It appears that changing demands have a stronger621

relative effect on high-magnitude shortages with regard to the variance of their frequency,622

but affect equally significantly the asymmetry and tail thickness of the frequency of short-623

ages across all percentiles.624

4.2 Factors controlling the maximum duration of shortages625

In addition to the severity and frequency of water shortages, their duration is a third626

dimension of concern, especially when considering large supply deficits caused by droughts627

(Lal et al., 2012; McKee et al., 2000; Timilsena et al., 2007). The maximum durations628

of different shortage magnitudes corresponding to historical percentiles of shortage are629

also examined for each user. Fig. 6 mirrors Fig. 3 but instead shows the maximum num-630

ber of consecutive years each level of shortage was experienced historically and across631

the experiment. Let us use the median-right irrigation user (b) to illustrate how Fig. 6632

should be interpreted and compared to Fig. 3. Historically, the magnitude of this user’s633

20th percentile annual shortage was approximately 0.2 million m3 (Fig. 3 (b)). Fig. 6634

shows that consecutive shortages of this magnitude and larger have historically been at635

most 25 years long (y position of black line when x=20). The maximum durations of short-636

ages equal or in excess of the shortages in the two reference years, 1943 and 2002, are637

also shown in yellow and pink, respectively.638

Reflecting the impacts on shortage frequency seen in Fig. 3, we again see varying639

implications for the presented users. Approximately half of the realizations in our ex-640

ploratory ensemble see the large-decree irrigation user (Fig. 6 (d)) and the transbasin641

diversion (Fig. 6 (e)) having significantly longer durations of shortages at all levels. In642

many of the SOWs of the ensemble, the transbasin diversion (Fig. 6 (e)) experiences some643

level of shortage (albeit small) at all times. The senior-right irrigation user (Fig. 6 (a))644

sees all their shortage durations increase in length across the majority of ensemble re-645

alizations. The junior-right irrigation user (Fig. 6 (c)) and the 15-mile reach (Fig. 6 (f))646

see their shortage durations decrease in most of the SOWs in the exploratory ensemble.647

One should note that the cumulative frequencies with which these shortage durations648

are observed across the ensemble depend on the ranges of parameters sampled in the ex-649

perimental design and should not be considered predictive for this system. They are rather650

used in a diagnostic manner, as explained in the introduction. In other words, the in-651

tent here is to gauge the response of the model output that is relevant to each user specif-652

ically (i.e., the duration of their water shortages) as a result of an intentionally broad653

range of perturbations (the deeply uncertain factors). The approach is used to demon-654

strate how performing model diagnostics at this decision-relevant scale indeed illuminates655

how the impacts to each user would differ should the hypothetical perturbations come656

to be in the system.657

We further assess the relative importance of these changing factors on shortage du-658

ration, by following the same sensitivity analysis procedure for the maximum durations659

of all historical shortage percentiles. The results are presented for the six users in Figs.660

7 and 8. Looking at the three irrigation users and comparing with the equivalent results661

for shortage frequency (Fig. 4), the factors controlling the maximum duration (Fig. 7)662

do show some differences. The persistence of dry flow (in dark red) has a larger relative663

significance for this aspect of drought behavior for all three users. Change in this fac-664

tor reflects a change in the likelihood of a dry water year being followed by another dry665
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(a) Upstream 
senior-right irrigation user

(b) Downstream
median-right irrigation user

(c) Downstream
junior-right irrigation user

(d) Downstream
large-decree irrigation user (e) Midstream transbasin diversion (f) 15-mile reach (downstream)

Max. duration of historical shortages Year of median basin shortage (1943) Year of max. basin shortage (2002)

Figure 6. Percentile-varying impacts on the maximum duration of different lev-

els of shortage for six users in the basin. Each panel represents the maximum duration of

shortages in excess of different historical annual percentiles experienced by a specific user in the

basin: (a) a senior-right irrigation user; (b) a median-right irrigation user; (c) a junior-right irri-

gation user; (d) an irrigation user with a large decreed flow of water; (e) a transbasin diversion;

(f) the 15-mile reach. The black line in every panel indicates the maximum duration (y-axis) of

consecutive annual shortages in excess of different historical shortage percentiles (x-axis) that

was experienced historically by each user. The shaded areas represent the percent of realizations

across the ensemble in which different maximum durations (y-axis) of shortage in excess of dif-

ferent historical shortage percentiles (x-axis) are experienced. Lighter shades indicate increased

cumulative frequency within the ensemble. The dashed vertical lines in pink and yellow indicate

the percentiles of shortage experienced by each user in the years during which the basin as a

whole experienced its median and worst shortages, 1943 and 2002, respectively.

water year, thereby increasing the duration of experiencing water shortages at all lev-666

els.667

Another notable difference between these results (Fig. 7) and the equivalent for the668

frequency of shortage (Fig. 4) is the increased relative effect of interactions between fac-669

tors (in grey), especially for the junior-right user (Fig. 7 (f and i)). The implication of670

this difference is that there is increased non-linearity and complexity in how these chang-671

ing factors are propagated through the networked system to affect the duration of short-672

ages experienced by this user. This is also reflected in the diminished first-order and lin-673

ear importance attributed to the wet-flow persistence (in dark blue) in these two pan-674

els, which is still captured by the Delta method (Fig. 7 (c)) as it affects the distribution675

of durations in a way that does not significantly change the variance.676
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Figure 7. Percentile-varying sensitivity indices of the maximum duration of short-

ages in excess of different historical annual percentiles for three irrigation users.

Each panel presents the magnitude varying sensitivity indices attributed to each factor, for:

(a,d,g) the senior-right irrigation user; (b,e,h) the median-right irrigation user; and (c,f,i) the

junior-right irrigation user. The results are ordered by method, with the first row showing fac-

tor significance as estimated using the Delta indices, the second row using the first-order Sobol

indices, and the third row using the R2 values. The dashed vertical lines in pink and yellow indi-

cate the percentiles of shortage experienced by each user in the years during which the basin as a

whole experienced its median and worst shortages, 1943 and 2002, respectively.

The largest differences in this regard are seen in the Delta indices for the median-677

right user: several factors that were not attributed any importance with regards to their678

effect on shortage frequency, do influence the maximum duration to at least some ex-679

tent (Fig. 7 (b)). Specifically, municipal and industrial, and transbasin water demands680

(in yellow and cyan, respectively), the operation of Shoshone (in dark purple), the se-681

niority of the environmental flow right at the 15-mile reach (in green), and dry and wet682

flow variance (in light red and light blue, respectively) all affect the distribution of short-683

age durations experienced by this user. This is not the case for the equivalent frequen-684

cies of these shortages (Fig. 4 (b)).685
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The results for the other three users (the large-decree irrigation user, transbasin686

diversion, and 15-mile reach) are largely consistent when comparing the sensitivity in-687

dices for frequency (Fig. 5) and those for maximum duration (Fig. 8). However, factor688

interactions (in grey) are relatively more important for the maximum shortage durations689

experienced by these users, as compared to their importance for shortage frequencies.690

Their importance also increases for durations of shortages of larger magnitudes (Fig. 8691

(d-e) and (g-h)). These observations hold especially for the transbasin diversion: com-692

pare Fig. 5 (e) with Fig. 8 (e) and 5 (h) with Fig. 8 (h). This result could be attributed693

to the fact that there is less variation across the ensemble in the frequency of low mag-694

nitude shortages (Fig. 3 (e)) and in the duration of high magnitude shortages (Fig. 6695

(e)), making it harder to decompose the variance to the various factors. Consequently,696

this complicates the identification of parameter changes leading to high-magnitude (and697

therefore high impact) drought durations, such as repeated years of 2002 shortage lev-698

els (the red dashed line).699

The 2002 drought event, one of the most severe droughts ever recorded in the state700

of Colorado (Pielke et al., 2005), was indeed one of the worst years in terms of shortages701

experienced by the six users highlighted in this study (indicated by a red dashed line in702

Fig. 3 and others), but some users experienced worse shortages in other years. There703

is naturally more concern with these high-magnitude events, especially when their oc-704

currence is sustained for several years, but if different users experience severe shortages705

in different years, diagnosing their influential factors using time-varying sensitivity anal-706

ysis would not be appropriate for everyone. This is where performing sensitivity anal-707

ysis in a magnitude-varying manner is most valuable, as it allows us to diagnose their708

manifestation in the model even if they occur at different times for different users.709

Consider, for instance, the shortages for the three irrigation users presented in Figs.710

4 and 7. Moving to higher percentiles (i.e., considering their largest experienced short-711

ages) we generally see increasing first-order effects from irrigation demands and mean712

dry flow for the median- and junior-right users, and increasing effects from snowmelt tim-713

ing for the senior-right user. However, this increasing importance is not always mono-714

tonic (sometimes there are abrupt shifts) which complicates the identification of conse-715

quential scenarios, especially when also looking at the results of the Delta method. If716

we just focus on the frequency and duration of higher-magnitude shortages (for instance,717

those above the 80th percentile), there are several factors contributing at least to some718

extent to these events. In fact, all 14 factors considered appear at least once in panels719

(a-c) of Figs. 4 and 7. As a reminder, we have also included an inconsequential control720

variable in all analyses to ensure that all identified factors indeed matter to the outcome721

more than the control.722

Performing the sensitivity analysis on increasing percentiles of shortage allows us723

to illuminate the varying importance of the considered factors, as well as pinpoint the724

ones related with outcomes most relevant to each user. Performing the analysis on both725

the frequency and maximum duration of those shortages informs the identification of con-726

sequential scenarios pertaining to each. It also makes apparent that the duration of short-727

ages, especially high-magnitude shortages, is a result of more interactive and non-linear728

relationships between the factors, making it therefore more difficult to develop triggers729

for adaptive management strategies (e.g., for water conservation) to reduce such impacts.730

Finally, performing the analysis on the many stakeholders of the basin further illumi-731

nates where such control strategies would be most effective, or how those triggers should732

vary across users.733

4.3 Summarizing important effects across the basin734

Even though the six users highlighted were selected to reflect stakeholders of dif-735

ferent characteristics, demand levels, diversion locations and right seniorities, the con-736
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Figure 8. Percentile-varying sensitivity indices of the maximum duration of short-

ages in excess of different historical annual percentiles for three basin users. Each

panel presents the magnitude varying sensitivity indices attributed to each factor, for: (a,d,g) the

large-decree irrigation user; (b,e,h) the transbasin diversion; and (c,f,i) the 15-mile reach. The

results are ordered by method, with the first row showing factor significance as estimated using

the Delta indices, the second row using the first-order Sobol indices, and the third row using the

R2 values. The dashed vertical lines in pink and yellow indicate the percentiles of shortage expe-

rienced by each user in the years during which the basin as a whole experienced its median and

worst shortages, 1943 and 2002, respectively.

clusions drawn with regards to the factors most strongly affecting the frequency and du-737

ration of their shortages do not necessarily extend to all users in the basin. The follow-738

ing section summarizes these results for all simulated users by examining the two wa-739

ter years in the basin’s record during which the median and worst total basin shortages740

across users were experienced: 1943 and 2002, respectively. Water year 2002 is one of741

the most severe drought years in the record with effects felt throughout the state (Pielke742

et al., 2005). Yet the effects of the 2002 drought were not uniformly worst across users,743

nor was 1943 uniformly the median year. The shortages during water years 1943 and 2002744

therefore correspond to different historical percentiles of shortage for every user (indi-745

cated by yellow and pink dashed lines in Fig. 3).746
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Fig. 9 presents the single most important factor affecting the frequency and max-747

imum duration of shortages at the corresponding historical percentiles of shortage for748

years 1943 and 2002, for all users in the basin. The factors shown here are those iden-749

tified using the Delta method, but as can be seen in Figs. 4 - 8, the three methods gen-750

erally agree on the most dominant factor they identify. In every panel of this figure each751

user is represented by a radius. Radii lengths denote the ratio of shortage to demand ex-752

perienced by every user in water year 1943 (Fig. 9 (a) and (c)), and water year 2002 (Fig.753

9 (b) and (d)). The users are plotted in decreasing water right seniority, starting from754

the right-hand side of the circle and moving anti-clockwise. Since some users own mul-755

tiple rights, seniority was determined using a volume-weighted rank. Radii colors indi-756

cate the single most important factor affecting the frequency (top row) or maximum du-757

ration (bottom row) of experiencing shortages in excess of historical 1943 (left column)758

and 2002 (right column) magnitudes for every user. To facilitate interpretation, the fac-759

tors that do appear in the radial plots are indicated in bold text and a black border in760

the legend. For instance, reservoir loss (in light brown) is never the most important fac-761

tor affecting either the frequency or maximum duration of these shortage levels for any762

user. There are users that did not experience a shortage in one or both of the years (e.g.,763

in Fig. 3 we see that users (a) and (f) did not experience any shortage during 1943), in764

which case the dominant factors of frequency and shortage could not be identified.765

Several model insights can be drawn from this visual summary. Looking at the lengths766

of the radii, it appears that water right seniority alone is surprisingly not predictive of767

impacts to the users in the basin. Moving down the seniority rank (anti-clockwise from768

the right-hand side) does not produce an equivalent sorting of shortage ratios for either769

of the two years. This conclusion is also supported by findings in Hadjimichael et al. (2020)770

with regards to the robustness of the basin’s users to uncertainties in future basin char-771

acteristics. Comparing between the two water years, significantly larger shortages are772

seen in 2002, with several users being fully short of their demanded water. In contrast,773

none of the 1943 shortages are above 90% of demand. The majority of modeled users774

(approximately 65%) experienced no shortages during water year 1943; the majority of775

them (approximately 78%) also experienced at least some level of shortage in the 2002776

water year.777

Looking at radii colors, irrigation demand (in orange) and mean dry flow (in red)778

are the most commonly identified single most important factors. Other factors identi-779

fied as most important for users are the transbasin demand (in cyan), the operation of780

Shoshone (in dark purple), the seniority of the environmental flow right (in green), the781

mean wet flow (in blue), and the change in snowmelt timing (in gold). As evident in Figs.782

4 - 8, these are not the only important parameters for each user, but are shown here to783

illustrate the variety of factors that are most consequential to different users when such784

decision-relevant metrics are considered. Lastly, one notes differences in the color of sev-785

eral radii when comparing between Fig. 9 (a) and (c), and when comparing between Fig.786

9 (b) and (d). This suggests that for the same level of shortage for the same user, the787

most dominant factor controlling the shortage’s frequency differs from the equivalent fac-788

tor controlling its maximum duration.789

Relating these results to their spatial context, Fig. 10 places the important factors790

presented in radial form for each user in Fig. 9 (b) at their diversion location. The size791

of every point reflects the size of shortage during water year 2002. Black color is used792

to indicate diversions that did not have a shortage during that water year and therefore793

no dominant factor could be identified (“N/A”). The points indicated as having trans-794

basin demands as their most important factor (in cyan) do in fact correspond to the trans-795

basin diversion locations represented in the model (diversion tunnels). Shortage frequency796

for users diverting from Roan Creek and Roaring Fork is largely (but not entirely) driven797

by changes in mean dry flow (in red). This finding suggests that users in these tributaries798

might be more sensitive to streamflow (un)availability rather than demands depleting799
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Figure 9. Shortages as a fraction of demand for all users in the basin, colored by

the single most important factor influencing their frequency and maximum duration

of 1943 and 2002-level shortages. Each radius represents a UCRB user, sorted anti-clockwise

in decreasing seniority from 0 degrees. Radii lengths denote the shortage to demand ratio expe-

rienced by each user in water years 1943 (a and c) and 2002 (b and d). The color of each radius

indicates the dominant factor identified by the Delta method as controlling the frequency (a-b) or

the maximum duration (c-d) of experiencing shortages in excess of that year’s shortage for each

user. The factors indicated in bold text and a black border in the legend are factors identified to

be most important for at least one user in at least one of the panels.

flow. Another notable insight from this figure is that beyond the aforementioned, there800

are no other clear spatial clusters of co-located users with the same dominant factor. This801

result underlines that water shortages as well as the factors most significantly shaping802

this consequential model output vary as a result of water right seniority and other user-803

specific characteristics. This contribution of our paper has only been possible through804
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the detailed representation of institutional information on water supply for this basin,805

enabled by StateMod.806
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Figure 10. Shortages for all users in the basin during water year 2002, colored by

the single most important factor identified as contributing to the frequency of an

equivalent shortage. Each point represents a UCRB user and the size of each point denotes

the shortage to demand ratio experienced by that user during the 2002 water year. The color of

each point indicates the dominant factor identified as controlling the frequency of that level of

shortage.

5 Conclusions and future work807

This study contributes a diagnostic framework for water resources systems mod-808

els representing institutionally complex river basins with many stakeholders. The frame-809

work pairs exploratory modeling with global sensitivity analysis methods and visual an-810

alytic techniques to evaluate a fine-scale water supply and allocation model, StateMod.811

The sensitivity analysis is applied in a novel, magnitude-varying manner that estimates812

factor contributions to the frequency and maximum duration of different levels of short-813

age. The reasoning behind this approach is primarily rooted in the hypothesis that dif-814

ferent factors are likely to dominate the system states related to different shortage mag-815

nitudes (e.g., small shortages happening under wet conditions versus large shortages hap-816

pening during droughts), articulated by several previous studies and also demonstrated817

herein (Herman et al., 2013; Pianosi et al., 2016; Quinn et al., 2019; Rougé et al., 2019).818

These prior studies have advocated for the use of time-varying sensitivity analysis in model819
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diagnostics to understand how system sensitivities vary under flood versus drought events.820

However, different water users in a basin may experience varying degrees of impacts from821

such events, particularly in complex multi-user basins that are heavily influenced by in-822

stitutional as well as hydrologic factors. In such cases, we illustrate the benefits of in-823

stead performing magnitude-varying sensitivity analysis for model diagnostics, so that824

the factors influencing drought severity for particular users can be assessed independent825

of the time they occurred. As seen here, while the basin-wide impacts of the 2002 drought826

were most severe, this was not true for all users. By performing magnitude-varying sen-827

sitivity analysis, we were able to find which factors are most important for each user’s828

most extreme shortages, a more decision-relevant metric for everyone than the basin-level829

event. Applying this approach, we find that the dominant model parameters shaping the830

frequency and duration of shortages indeed vary among users and when transitioning across831

percentiles of shortage magnitude. Hydrologic factors in particular switch in relative im-832

portance when moving from smaller to larger shortage magnitudes. Across users, we see833

several different dominant shortage controls even for users of the same demand levels,834

water use, water right seniority, and basin location.835

Future work will further examine how these characteristics relate and potentially836

shape how the dominant factors propagate through such institutionally complex river837

basins to affect their users. For example, clustering could be applied to discover groups838

of users with similar institutional and other characteristics that also have common fac-839

tors influencing their water shortages. Even though the extent of factor interactions varies840

across users and percentiles, it appears to be more relevant to the durations of shortages,841

as opposed to their frequencies. Additional and more comprehensive sensitivity analy-842

ses should also be performed to more rigorously diagnose how uncertain factors inter-843

act to shape these decision-relevant model outputs. Lastly, to create the ensemble of un-844

certain factors we employ an experimental design that samples plausible, but wide and845

uniform ranges. Future analyses should investigate the implications of such design choices846

on the conclusions drawn by, for instance, fitting the synthetic streamflow generator to847

different hydrologic data or using more detailed water demand projections across the dif-848

ferent sectors.849
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