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Abstract

We present a deep-learning approach for earthquake detection using waveforms from a seismic array consisting of multiple

seismographs. Although automated, deep-learning earthquake detection techniques have recently been developed at the single-

station level, they have potential difficulty in reducing false detections owing to the presence of local noise inherent to each

station. Here, we propose a deep-learning-based approach to efficiently analyze the waveforms observed by a seismic array,

whereby we employ convolutional neural networks in conjunction with graph partitioning to group the waveforms from seismic

stations within the array. We then apply the proposed method to waveform data recorded by a dense, local seismic array in

the regional seismograph network around the Tokyo metropolitan area, Japan. Our method detects more than $97$ percent of

the local seismicity catalogue, with less than $4$ percent false positive rate, based on an optimal threshold value of the output

earthquake probability of $0.61$. A comparison with conventional deep-learning-based detectors demonstrates that our method

yields fewer false detections for a given true earthquake detection rate. Furthermore, the current method exhibits the robustness

to poor-quality data and/or data that are missing at several stations within the array. Synthetic tests demonstrate that the

present method has the potential to detect earthquakes even when half of the normally available seismic data are missing. We

apply the proposed method to analyze 1-hour-long continuous waveforms and identify new seismic events with extremely low

signal-to-noise ratios that are not listed in existing catalogs. (241words)
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Key Points:17

• We developed a convolutional neural network (CNN) for automated18

earthquake detections using waveforms from a non-equispaced seismic array.19
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• Stations with similar waveforms are clustered via graph partitioning,21

substantially improving the CNN-based earthquake detection accuracy. (13822

characters)23

• The proposed CNN detected small-magnitude earthquakes with very low24

signal-to-noise ratios that were not listed in existing catalogs. (133 characters)25
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Abstract27

We present a deep-learning approach for earthquake detection using waveforms from a28

seismic array consisting of multiple seismographs. Although automated, deep-learning29

earthquake detection techniques have recently been developed at the single-station level,30

they have potential difficulty in reducing false detections owing to the presence of local noise31

inherent to each station. Here, we propose a deep-learning-based approach to efficiently32

analyze the waveforms observed by a seismic array, whereby we employ convolutional33

neural networks in conjunction with graph partitioning to group the waveforms from seismic34

stations within the array. We then apply the proposed method to waveform data recorded35

by a dense, local seismic array in the regional seismograph network around the Tokyo36

metropolitan area, Japan. Our method detects more than 97 percent of the local seismicity37

catalogue, with less than 4 percent false positive rate, based on an optimal threshold38

value of the output earthquake probability of 0.61. A comparison with conventional39

deep-learning-based detectors demonstrates that our method yields fewer false detections40

for a given true earthquake detection rate. Furthermore, the current method exhibits the41

robustness to poor-quality data and/or data that are missing at several stations within the42

array. Synthetic tests demonstrate that the present method has the potential to detect43

earthquakes even when half of the normally available seismic data are missing. We apply44

the proposed method to analyze 1-hour-long continuous waveforms and identify new seismic45

events with extremely low signal-to-noise ratios that are not listed in existing catalogs.46

(241words)47

1 Introduction48

Enormous volumes of continuous seismic data have been acquired from seismograph49

networks over the past decade, with these datasets consisting of observations from multiple50

seismic stations. Dense seismograph networks, such as the Japanese Metropolitan Seismic51

Observation network (MeSO-net) and the Southern California Seismic Network, monitor52

real-time seismicity and provide continuous waveforms from their respective network53

stations. Efficient and thorough analyses of these datasets should be of great benefit to54

seismology. The main objective of the present work, which represents a novel approach55

to and advance in seismic data analysis, is the development of an improved earthquake56

detection technique for these massive seismic network datasets (Bergan & Beroza, 2018; Li57

et al., 2018; Peng & Zhao, 2009).58

Deep neural networks have been attracting increasing interest as tools for analyzing59

seismic big data owing to their ability to handle such massive data volumes and improve60

data processing performance. Convolutional neural networks (CNNs) are a deep neural61

network architecture that is often used in seismic analyses. CNNs have been utilized for62

picking P-wave arrival times and discriminating first-motion polarities (Hara et al., 2019;63

Ross et al., 2018; Wang et al., 2019), detecting earthquakes and their localization (Perol64

et al., 2018), picking both compressional- and shear-wave (P- and S-wave) arrival times65

(Zhu & Beroza, 2018), and discriminating between usual earthquakes and tectonic tremors66

(Nakano et al., 2019). These studies have shed light on the effectiveness of employing CNNs67

to analyze large seismic datasets. Many other deep-learning-based studies have also been68

developed for various seismic analyses (Kong et al., 2019).69

Here, we present a new CNN-based method for earthquake detection using waveform70

data recorded in a seismic array. Earthquake detection at the single-station level has a71

potential inability to prevent false detections, because each station produces its own local72

noise that originates from the near-surface environment. The use of multiple seismic stations73

can help reduce false detections. Waveform similarity searches, such as template matching74

and auto-correlation approaches, have shown that simultaneous detections at multiple75

stations can be used to identify very weak seismic signals and reduce false positives (Bergan76
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& Beroza, 2018; Peng & Zhao, 2009). Our goal here is to develop CNNs for earthquake77

detection using seismographs recorded by a local seismic array.78

However, we need to carefully assess CNN approaches to waveforms from a local seismic79

array, as CNN inputs are designed to be equispaced (see Chapter 9 in Goodfellow et al.80

(2016)), whereas the actual station distribution in an array is usually non-equispaced. We81

employ a graph-partitioning method, modularity maximization, to accommodate such a82

non-equispaced distribution by treating the seismograph network as a graph, with each node83

representing a seismic station in the array. Modularity maximization is a node-clustering84

algorithm that automatically produces sub-graphs from a given graph. We first group the85

seismic stations into clusters via modularity maximization and then stack the waveforms,86

which are convolved with learned filters in CNNs, from each partition. This step is regarded87

as average pooling with respect to the seismic stations. In conjunction with the max88

pooling with respect to time, this step reduces effective parameters in CNNs and leads89

to the improvement of the performance.90

We apply our method to waveform data recorded by MeSO-net (Hirata et al., 2009;91

Kano et al., 2017; Kasahara et al., 2009; Sakai & Hirata, 2009), with a focus on the92

earthquakes that occurred in the Kanto district, Japan, from 4 to 16 September 2011.93

MeSO-net is an online high-density seismic network that consists of approximately 30094

accelerometers installed in and around the metropolitan area in the Kanto district (Figure95

1). We adopt the 13 seismic stations that are located approximately in the center of the96

seismic activity around the Kanto district as the seismic array for our analysis. We compare97

our method with CNNs for a single station and a seismic array consisting of multiple stations98

without any pooling with respect to the stations. This comparison illustrates that our99

method markedly improves the detection accuracy of the seismic signals, particularly those100

with a low signal-to-noise ratio (SNR). We also demonstrate the robustness of our method for101

analyzing incomplete seismic records (e.g., due to sensor problems) and temporary increases102

in noise levels at several stations.103

Figure 1. (a) Map of the study area, the Kanto district, relative to Japan. (b) Locations of

the MeSO-net stations (gray and red inverted triangles) in the Kanto district. (c) The 13-station

seismic array (red inverted triangles) used in this study.

We note that CNNs have already been applied to waveform records in seismic networks,104

although not for earthquake detection (Kriegerowski et al., 2019; McBrearty et al., 2019;105

Zhang et al., 2020). Our idea is not task specific and can therefore be combined with CNN106

architecture therein.107
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2 Methods108

An outline of our method is presented in Figure 2. The input consists of two-dimensional109

(2D) arrays of the three-channel waveforms (UpDown, NorthSouth, and EastWest) recorded110

at the seismic stations within our local seismic array, where the horizontal axis of the 2D111

arrays is the elapsed time from a reference time before the P-wave onset, and the vertical112

axis corresponds to the station alignment. The output is the probability of the input data113

containing an earthquake record. Our method uses an undirected weighted graph that114

represents the geometry of the seismic stations within the array. The nodes of the graph115

represent the stations within the seismic array, and the weights of the edges represent the116

closeness of the stations, which are discussed below. We first introduce the two building117

blocks (CNN and graph partitioning) of our method, following which we present the resultant118

architecture that is a combination of these two blocks.119

Figure 2. Schematic diagram of the resultant CNN architecture. The process is four-fold. The

input consists of the three-component waveforms observed at multiple stations within the seismic

array. (1) Convolution with learned filters; (2) Max pooling with respect to (w.r.t.) the time axis;

(3) Average pooling with respect to the station axis via graph partitioning, with stations within

the same partition lying within the same ellipse; and (4) Fully connected neural network (NN).

2.1 Convolutional neural networks120

CNNs are one of the most powerful non-linear feature extractors and can learn a large121

number of digital filters in combination with fully connected neural networks. CNNs use122

these learned filters to also provide a function that maps an input (e.g., three-component123

2D arrays that represent the observed waveforms from a seismic array) into an output value124

(e.g., the probability that the input data contains an earthquake).125

CNNs build upon a series of layers that sequentially process the input data as follows:126

(a) convolve (or, more precisely, cross correlate) the input with a set of learnable filters; (b)127

downsample the convolution output; and (c) apply a non-linear transformation referred to128

as the “activation function” to the downsampled output. The first step (a) is termed the129

“convolution layer”: An input waveform {wt : t = 1, . . . , T} of length T and a learnable130

filter {ht : t = 1, . . . , F} of length F return a convolution layer that consists of the waveform131

convolved with the filter {
∑F

i=1 hiwt+i : t = 1, . . . , T}. Each filter {ht : t = 1, . . . , F} is132

learned during the training step (i.e., a learnable filter), and detects the presence of specific133

features in the original input. The second step (b) is called the pooling layer. This step134

drastically reduces the dimensionality, which is the number of parameters and computations135

in the network, to avoid overfitting caused by excess parameters. This step also introduces a136

degree of local translation invariance and robustness to local perturbations (see Section 9.3137

in Goodfellow et al. (2016) and references therein). There are two common pooling methods:138
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max pooling and average pooling. Max pooling is a pooling operation that calculates the139

maximum value for each point of each waveform convolved with a learnable filter, whereas140

average pooling is a pooling operation that calculates the local average for each point of141

each waveform convolved with a learnable filter. These operations can be written in the142

following mathematical forms: For the waveform {w̃t : t = 1, . . . , T} convolved with a143

filter, max pooling with size P returns {max{w̃t+m : m = 1, . . . , P} : t = 1, . . . , T}, and144

average pooling with size P returns {
∑P

m=1 w̃t+m/P : t = 1, . . . , T}. This study uses zero145

padding, where w̃T+i = 0 for i = 1, . . . , P to maintain the same output dimension of the146

pooling operation as its input dimension. These pooling operations have different roles: Max147

pooling highlights the sharp changes in the convolved waveform, whereas average pooling148

smooths these changes. The third step (c) is the activation layer, which makes the output149

non-linear and therefore enables the network to express complex features.150

However, the challenge of accommodating a CNN to the spatial distribution (geometry)151

of the stations to boost the power of the CNN remains when applying the CNN to152

seismograms from a seismic array. Here, we take advantage of graph partitioning to address153

this challenge, as discussed below.154

2.2 Graph partitioning155

Graph partitioning is a way to reduce a graph to smaller sub-graphs by partitioning156

a set of nodes into mutually exclusive groups. Several methods for graph partitioning157

exist (Bichot & Siarry, 2013; Fortunato & Castellano, 2012). Here, we employ modularity158

maximization (Newman, 2006; Newman & Girvan, 2004), which finds a graph partition that159

maximizes the modularity score. The modularity score for a given graph partition is defined160

by:161

Q =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(ci, cj),162

where A = (Ai,j) is the adjacency matrix of the graph, m is the number of edges of the163

graph, and ki is the degree of node i, ci is the partition to which node i belongs, and164

δ(a, b) = 1 if a = b and 0 otherwise. It is shown that kikj/2m is the expected number165

of edges between nodes i and j under the assumption that a graph is randomly generated166

according to the configuration model. Therefore, the modularity score represents the number167

of edges within given partitions minus the expected number of randomly generated edges168

in an equivalent graph. Modularity maximization for graph partitioning stems from the169

idea that each partition within the “best” graph partition has edges that do not appear170

in the configuration model. This approach has been applied to a variety of research fields,171

including bioinformatics, brain science, and social science (Mill et al., 2008; Xia et al., 2013).172

We use modularity maximization in the CNN pooling layer via the following process: (i)173

We first create a graph that represents the seismic array by defining the weighted undirected174

graph with nodes that correspond to the stations and an adjacency matrix:175

Ai,j := exp(−αd(i, j)) if d(i, j) ≤ L and Ai,j := 0 otherwise, (1)176

where d(i, j) is the distance between stations i and j, α is a sensitivity parameter, and L177

is the effective distance parameter. We note that the determination of d(i, j) is important.178

Here, we use the usual Euclidean distance between stations because this distance is generally179

robust for earthquake patterns that have various epicenters and ray-paths. (ii) We then180

apply modularity maximization to the weighted undirected graph to obtain the graph181

partition. (iii) We finally convolve the waveforms with learnable filters in the CNN at182

each station and stack the waveforms at the stations belonging to the same partition. We183

essentially conduct average pooling with respect to the station axis by using the partitions.184

The core idea of this operation is that the waveforms convolved with a learned filter185

at the closer stations become similar to each other. Therefore, stacking (average pooling)186

along with graph partitioning can further improve the quality of the learned features. The187
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choices of d, α, and L may be important, but these can be chosen in a data-driven way, as188

discussed in the following subsection.189

2.3 Resultant architecture190

We propose the following architecture, which is a combination of the CNN and graph191

partitioning. We first convolve the input waveform at each station with filters, followed by192

waveform processing at each station via max pooling with respect to the time axis. We193

then conduct average pooling, along with graph partitioning (as described in the previous194

subsection) to the waveforms. We finally apply the fully connected neural network to the195

stacked waveforms and obtain the output probability.196

In this study, we specified the hyperparameters in the CNN as follows. The number197

of learnable filters in the convolution layer was 30, with each being 1 second in length.198

The activation function was a rectified linear unit, x 7→ max{x, 0}. The length of max199

pooling was 0.25 second. The number of units in the fully connected layer was 40. The200

batch size during the training step was 20. The filters in the CNN were optimized during201

the training step that was conducted by minimizing the cross-entropy loss using stochastic202

gradient descent optimization with momentum, where the learning rate was 0.005 and the203

momentum was 0.9. The cross-entropy loss is a function that maps a pair of true label y204

(y = 1 for earthquake and y = 0 for noise) and output probability p for an earthquake into205

−y log p− (1− y) log(1− p). Stochastic gradient descent optimization with momentum uses206

a linear combination of the gradient multiplied by the learning rate and the previous update207

multiplied by the momentum as the next update. The l1 penalty with the regularization208

parameter (1.0) was added to the loss.209

The hyperparameters α and L in Equation (1) were determined via hold-out validation.210

We set the candidates for α and L to {0.1, 0.5, 1.0, 5.0} and {4, 6, 8, 10, 12}, respectively, with211

α = 5.0 and L = 8 determined. We randomly split the training dataset into the training212

part (80% of the dataset) and the test part (the remaining 20%). The training part was213

used for the training step, and α and L were chosen to minimize the cross-entropy loss of214

the test part.215

3 Data216

We applied the proposed method to seismic records from a dense regional seismograph217

network, MeSO-net, deployed in the Tokyo metropolitan area, Japan, to demonstrate its218

performance. MeSO-net consists of 296 accelerometers at an average station interval of219

approximately 5 km. The station intervals in the central part of the station network are in220

the 2-3 km range. The observed waveforms contain various types of noise signal, such as221

from human activity, that originated from near-surface environments (Kawakita & Sakai,222

2009), even though the accelerometers were installed approximately 20 m below the surface.223

These noise signals appear only randomly in time at individual stations, whereas the seismic224

signals do not. Therefore, analysis of the information commonly recorded in the dense225

station network potentially improves the capability of earthquake detection.226

Here, we selected 13 stations located at the eastern part of MeSO-net as the target227

seismic array (Fig. 1) because they are distributed approximately in the center of the228

seismically active area in and around the Kanto district (Fig. 3). Therefore, this seismic229

array provided the most earthquakes determined by visual picking that are available for230

supervised learning by the CNNs. Three-component continuous data were recorded at a231

200 Hz sampling rate at each seismic station in the array. We downsampled the records to232

25 Hz and then applied a 2-8 Hz bandpass filter to remove stationary background noises.233

We detrended an input waveform and normalized it using the median of the maximums of234

each waveform.235
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The Earthquake Research Institute, The University of Tokyo, identified 599 earthquakes236

from MeSO-net data that spanned the 4–16 September 2011 time period (Fig. 3a). A total237

of 6241 noise signals were also obtained as a by-product of applying the short-term average238

over long-term average (STA-LTA) method to the waveform data. We manually eliminated239

all of the signals with very small SNRs at the target array after checking all of the potential240

earthquakes recorded by the array. Finally, we recognized 527 earthquake signals contained241

in the waveforms that were recorded by the seismic array.242

Figure 3. (a) Earthquake locations detected during 4–16 September 2011, and the seismic array

used in this study, which consisted of 13 stations (red inverted triangles). Black dots denote the

earthquake epicenters for the training dataset, and blue crosses denote those for the validation

dataset. (b) Locations of the additional earthquakes (2011–2016 time period) that were used for

the training (black dots).

We selected the waveforms from 209 available earthquakes that were detected during243

4–8 September 2011 as the training earthquake dataset. We also used the waveforms from244

927 ML > 2.8 earthquakes that occurred during the 2011–2016 period (excluding 4–16245

September 2011) for the training earthquake dataset. We extracted 20-s-long time windows246

that contained the onsets of both P- and S-wave arrivals for all of the available events247

where at least three stations recorded detectable P- and S-wave onsets. Figure 3 (b) shows248

the distribution of epicenters of these training earthquakes. We employed the waveforms249

from 318 earthquakes that were detected during 9–16 September 2011 as the validation250

earthquake dataset. We used the noise signals identified by the STA-LTA technique, with251

each waveform starting within ±5 s of the onset of each noise signal, as noise. A total of252

6241 noise signals with 20-s-long time windows from 4–16 September 2011 were used: those253

from 4–8 September for training, and those from 9–16 September for validation.254

We employed the dataset augmentation technique owing to the relatively small size255

of the original training dataset. Specifically, we injected zero-mean Gaussian white noise256

signals with randomly determined scales into the training windows. The distribution of257

scales was an exponential distribution with a mean of 0.001.258

We briefly mention the results from applying modularity maximization to the target259

seismic array when L and α in Equation (1) are fixed to values that are specified via hold-out260

validation. The resultant partition is illustrated in Figure 2. Modularity maximization261

using the Euclidean distance achieves a reasonably equispaced station distribution within262

the same partition. Furthermore, histograms of the S-P arrival-time differences are quite263
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similar to each other within the same partition, as shown in Figure S1, indicating that graph264

partitioning with the optimized hyperparameters works well.265

4 Results266

4.1 Performance of our method267

We begin with reporting the performance of our method by varying minimum threshold268

values for the output earthquake probability. Hereafter, we refer to this threshold as the269

“minimum detection probability (MDP).” Both true positives (classifying a true earthquake270

as an earthquake) and false positives (classifying a true noise as an earthquake) become271

smaller as MDP increases.272

Table 1. Resultant true positives and false positives of our method for three different minimum

detection probabilities (MDPs). The true positives are events that have been classified as

earthquakes from true earthquakes, and false positives are events that have been classified as

earthquakes from true noise. We used 318 true earthquakes and randomly selected 500 true noise

signals.

Minimum detection probability (MDP) 0.5 0.61 0.9

True Positives 312 (98.1%) 310 (97.5%) 289 (90.9%)
False Positives 38 (7.6%) 17 (3.4%) 2 (0.4%)

Figure 4. Receiver operating characteristics (ROC) curves for our method and two different

CNNs (conventional CNN and CNN@E.IIDM). The ROC curves are plotted as their true positive

rates (TPRs) over their false positive rates (FPRs) by changing the minimum detection probability

(MDP). The optimal MDP that corresponds to the FPR-TPR point closest to the upper left corner

is marked by an arrow for each CNN.

As typical cases we present results calculated for three MDPs (0.5, 0.61, 0.9) in Table273

1. Our method detects almost all of the earthquakes in the case where MDP is set to274

0.5, but it has a relatively large number of false positives. The number of false positives275

is significantly reduced when MDP is set to 0.9, but fewer earthquakes are detected in the276

process. MDP of 0.61 results in > 97% true positives among the true earthquakes and < 4%277
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false positives among the true noise signals. We chose 0.61 of MDP as an optimal MDP for278

our method from the receiver operating characteristics (ROC) curve in Figure 4. The ROC279

curve measures the classifier performance as the tradeoff between the true positive and false280

positive along the range of MDPs. The choice of 0.61 is the closest to the upper-left corner,281

which indicates that the proposed method yields nearly the ideal/best performance at this282

MDP. The ROC curve of our method also shows that the false positives are < 1% when283

MDP is large (> 0.8), < 10% when MDP is > 0.5, and increases markedly when MDP is284

<∼ 0.35.285

We also compared the ROC curve of our method with those of two different CNNs,286

namely, a CNN for a single station (CNN@station name) and the conventional CNN for287

multiple seismic stations (conventional CNN), as shown in Figure 4. The conventional CNN288

means a CNN without any pooling operation along the station axis, which is commonly289

employed in multi-station set-ups. We note that our method covers the conventional CNN290

as a specific case when L is less than the minimum of the distances between stations, and291

also the CNN for a single station when applied to a single station. We adopt E.IIDM as292

the single station used in a CNN for a single station because E.IIDM has the highest SNR293

among the stations in the seismic array (Fig. S2).294

The ROC curves of the three methods highlight that our method outperforms the other295

methods (Fig. 4). Our method has the lowest false positive rate among the three methods296

when the same true positive rate is given. Furthermore, a comparison of the three methods297

with the optimal values of MDPs (the closest points to the upper-left corner in the ROC298

curves) indicates that our method attains both the most true positives and fewest false299

positives.300

4.2 Temporal variation in output probability when detecting an event301

We checked time variation of the performance of our method. We calculated the output302

probability by applying our method to 2-8 Hz-bandpass-filtered waveform records. We303

obtained a time series of output probabilities by shifting the 20-s-long window in 0.02 s304

increments. Figure 5 shows a time variation of the output probability, which shows that305

the output of our method exhibits reasonable behavior sensitive enough to detect seismic306

signals: The output probability suddenly increases and exceeds 0.61 when P-waves have307

arrived in the time window at several stations (1), 0.95 when P-waves have arrivals in the308

time window at almost all of the stations (2), and 0.98 when both P- and S-waves appear309

in the window at almost all of the stations (3), and gradually reduces to < 0.61 when the310

S-wave arrivals are outside of the time window at several stations (4).311

4.3 Effects of the signal-to-noise ratio on event detection312

We introduced an SNR-based metric, the median of the ratios of the in-event median313

absolute deviances (MADs) to the pre-event MADs, to quantify the impact of the SNR on314

the performance of the method. Specifically, we defined the median MAD ratio (MADR)315

as:316

median MADR = median

{
median{|ain,i(t)− ãin,i| : t = 1, . . . , T}

median{|apre,i(t)− ãpre,i| : t = 1, . . . , T}
: i = 1, . . . , N

}
,317

where T is the time length, N is the number of stations, {apre,i(t) : t = 1, . . . , T} is the318

pre-event recorded amplitude at station i, {ain,i(t) : t = 1, . . . , T} is the in-event recorded319

amplitude at station i, ãpre,i is the median of apre,i(t) with respect to time t, and ãin,i is the320

median of ain,i(t) with respect to time t. We used the 20-s-long waveforms that started 30 s321

prior to P-wave arrivals as the pre-event waveforms. We defined the three-component median322

MADR as the median of three median MADRs that were calculated from the UpDown,323

NorthSouth, and EastWest components. The median MADR is a median version of the324

root-mean-square (RMS) deviation ratio and is more robust than the RMS deviation ratio325

when the waveforms are contaminated (see Chapter 5 of Huber and Ronchetti (2009)).326
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Figure 5. Performance test using the bandpassed (2-8Hz) waveforms of the manually detected

earthquake that occurred at approximately 00:06 JST on 9 September 2011. The output

probabilities were calculated by shifting the 20-s-long windows in 0.02 s increments. The Japan

Meteorological Agency (JMA) magnitude of this event is 2.1. Blue dots at the top denote output

probabilities with the dashed line denoting the 0.61 MDP line. (1,2,3,4) four 20-s-long windows.

Figure 6 (a) shows that the lower bound of the output probabilities of events with327

the same median MADR increases with increasing median MADR. Our method generally328
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Figure 6. Output probabilities and three-component median MADRs for (a) our method and

(b) the conventional CNN. The dotted horizontal lines denote the optimal MDPs of 0.61 and 0.82

in our method and the conventional CNN, respectively.

misses earthquakes with a small median MADR (i.e., a small SNR). Similar behaviors329

are observed in the conventional CNN (Fig. 6b), but our method generally yields higher330

output probabilities compared with the conventional CNN results. The combination of a331

higher output probability (Fig. 6) and lower false detection rate (Fig. 4) indicates that the332

appropriate clustering of stations in a seismic array greatly improves CNN-based earthquake333

detection.334

It is worth noting that events with median MADR values of < 1.0 can in some cases be335

detected with relatively high output probabilities. This means that changes in the pre- and336

in-event amplitudes are not significant for such events. Further analysis of the waveform337

and/or amplitude features of these events may improve the detection accuracy of earthquakes338

with small SNRs.339

5 Discussion340

5.1 Robustness with respect to missing data341

Continuous seismic records may be incomplete owing to temporary power outages,342

as well as failures in seismic sensors and/or data loggers. Therefore, we examined the343

robustness of our proposed method with respect to such incomplete data records to344

investigate its performance and stability. We created synthetic data that consisted of345

waveforms with missing data using the validation dataset (318 earthquakes). We also346

randomly removed seismic stations and created 10 synthetic datasets with different numbers347

of missing stations for the earthquakes in the validation dataset.348

Figure 7 (a) illustrates how the number of missing stations changes output probability349

for 3180 trials, with a drop in performance as the number of missing stations increases.350

Increasing the number of missing stations from one to six results in 83%, 80%, 78%, 74%,351

68%, and 58% of the trials possessing output probabilities of > 0.61, respectively. It also352

shows that the median output probability remains above 80%, regardless of the number of353

missing stations, which implies that performance deterioration is relatively low for half of the354

trials. These two observations suggest that data quality, in the form of missing data, impacts355
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Figure 7. Changes in output probability caused by missing data relative to the optimal MDP

(0.61). (a) Boxplots of output probability for different numbers of missing stations. (b) Mean

output probability for three selected events that have different three-component median MADRs.

on performance deterioration. We selected three events with different median MADRs356

to illustrate this point (Fig. 7b). The event with the highest median MADR (= 95.30)357

possessed an output probability of approximately 1.0, even when the data loss arising from358

missing stations increased. The event with the median MADR nealy 1.0 possessed an359

output probability that decayed as a function of data loss and remained high (> 0.9) until360

the number of missing stations increased to six. The event with the low median MADR361

(= 0.77) possessed an output probability that decayed substantially, falling below 0.61 in362

cases where the number of missing stations increased to five. Given the high quality of the363

data, our CNN-based method can reliably evaluate earthquakes, even if up to half of the364

seismic data are missing.365

5.2 Continuous application to the 2011 September 9 data366

We applied our method to 1-hour-long continuous waveform data, starting at 0:00367

JST on 9 September 2011, to explore the feasibility of the proposed method in detecting368

earthquakes from continuous streaming data. We used the data because a large number369

of earthquakes are excited by the 2011-March-11 Tohoku-oki earthquake (M9) even in the370

Kanto district (e.g., Ogata et al. (2019)). We calculated the temporal change in the output371

probabilities by shifting the 20-s-long window in 0.02 s increments over the entire hour. We372

picked event candidates that possessed output probabilities of > 0.61 for more than 1 s373

(yellow stars and orange stars in Fig. 8b).374

A comparison of the time series of the median MAD at the stations within the array and375

the output probabilities from our method (Fig. 8) reveals several sharp peaks in the output376

probability sequence that are synchronous with local peaks in the median MAD sequence,377

with four event candidates being detected with a high degree of confidence. Two of these378

event candidates correspond to earthquakes that had been detected by JMA and MeSO-net379

(orange stars in Fig. 8), thereby implying the validity of our method in detecting earthquakes380

using the seismic array. Although the other two candidates (yellow stars in Fig. 8b) were381

not detected in the routine MeSO-net detection procedure, we consider these to be actual382

earthquakes, as seismic signals can be identified in the nationwide seismic network in the383

Kanto district (e.g., high-sensitivity seismograph network in Japan (Hi-net); (Obara et al.,384
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Figure 8. Application of our method to 1-hour-long waveform data starting at 0:00 JST on 9

September 2011. (a) Time series of the median MAD for the 13-station array. (b) Time series of

the output probabilities, with the detected events indicated (orange stars if the catalogs exist and

yellow stars if not). (c, d) Waveforms of two newly detected events. (e) Epicenters of detected events

(orange and yellow stars) and training events during the time period from 4 to 11 September 2011

and the 2011–2016 time period (gray dots) relative to the 13-station array (inverted red triangles).

2005; Okada et al., 2004)) at the time of these two events. The relocated hypocenters of385

these events, which were determined from arrival times picked visually, fall within the lateral386
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range of the training earthquakes (Fig. 8e). The event at approximately 00:50:20 JST has387

a very high (> 0.99) output probability (Fig. 8d). This high output probability and the388

proximity of the event to a cluster of training earthquakes imply that events occurring near389

training earthquakes can be detected with a high output probability. MeSO-net consists of390

a large, dense distribution of seismic stations around the Tokyo metropolitan area compared391

with the nationwide seismic network. Therefore, the level of performance obtained in this392

study suggests that implementation of a suitable method can improve the ability to detect393

and monitor small earthquakes that occur in and around metropolitan areas.394

5.3 Extension to large N-arrays395

We shall discuss the ability to extend our method to large N -arrays (N is typically396

about 100 or 1000), given that we restricted our CNN-based application to 13 stations in a397

local array. Seismic analyses using large N -arrays have recently received increasing attention398

(Hayashida et al., 2020; Karplus & Schmandt, 2018; Li et al., 2018; Riahi & Gerstoft, 2017)399

because they allow analysis of very weak seismic signals.400

The application of our method to large N -arrays may not be straightforward. A large401

N -array means that the CNNs will become more computationally intensive because the size402

of the CNN input becomes substantially larger as the number of stations within the array403

increases. A practical solution to this issue is the use of a divide-and-conquer approach that404

recursively decomposes the detection in a larger array into detection in smaller sub-arrays.405

Another potential issue is that the waveform patterns may become too complex to learn406

properly as the regional size of the seismic array increases. Incorporating hypocenter location407

information into the event analysis, as well as utilizing other machine-learning techniques,408

may assist in overcoming this issue.409

6 Conclusions410

We developed a CNN that incorporated graph partitioning for earthquake detection411

using a multi-station local seismic array. The performance of our method is validated by412

both its high true detection rate and low false detection rate. Our method outperforms two413

different conventional types of CNN-based detector. We found that the temporal variations414

in the output earthquake probability of our method during event detection are concordant415

with the P- and S-wave arrivals in the array. We used the median MADR as a measure of416

the SNR to confirm that the SNR has some influence on the output earthquake probability417

of our method; however, some low-SNR events can be detected with relatively high output418

probabilities. Synthetic tests demonstrated that our method exhibits robustness when some419

data are missing. We also identified new seismic events with extremely low SNRs that are420

not listed in existing earthquake catalogs by applying our method to 1-hour-long continuous421

waveform data. We finally note that the architecture of our method is not task specific and422

can be applied to other tasks using a seismic array, such as earthquake relocation and423

classification.424

7 Acknowledgements425

Seismic waveform data used in the present study is available via the website (http://426

www.eri.u-tokyo.ac.jp/project/iSeisBayes/MeSO-net Narita-Array 2020). The427

Hi-net data (National Research Institute for Earth Science and Disaster Resilience, 2019)428

were used for relocating detected events. GMT software package (Wessel & Smith, 1998)429

was used for creating geographical figures. TensorFlow was used for training and applying430

CNN. NetworkX (Hagberg et al., 2008) was used for conducting graph partitioning. We431

sincerely thank Hiromichi Nagao, Shigeki Nakagawa, Hiroshi Tsuruoka, and Miwa Yoshida432

for their help in processing the MeSO-net data. This work is supported by JST CREST433

Grant Number JPMJCR1763, Japan.434

–14–



manuscript submitted to Journal of Geophysical Research: Solid Earth

References435

Bergan, K., & Beroza, G. (2018). Detecting earthquakes over a seismic network436

using single-station similarity measures. Geophysical Journal International , 213 (3),437

1984–1998. doi: https://doi.org/10.1093/gji/ggy100438

Bichot, C., & Siarry, P. (2013). Graph partitioning. Hoboken, NJ: John Wiley & Sons.439

Fortunato, S., & Castellano, C. (2012). Community structure in graphs. In R. Meyers (Ed.),440

Computational Complexity (pp. 490–512). New York, NY: Springer, New York.441

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT442

Press.443

Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and444

function using NetworkX. In Proceedings of the 7th Python in Science Conference445

(SciPy2008) (pp. 11–15). Pasadena, CA.446

Hara, S., Fukahata, Y., & Iio, Y. (2019). P-wave first-motion polarity determination447

of waveform data in western japan using deep learning. Earth, Planets and Space,448

71 (127). doi: https://doi.org/10.1186/s40623-019-1111-x449

Hayashida, Y., Matsumoto, S., Iio, Y., Sakai, S., & Kato, A. (2020). Nondouble-couple450

microearthquakes in the focal area of the 2000 Western Tottori earthquake (M 7.3) via451

hyperdense seismic observations. Geophysical Research Letters, 47 (4). doi: https://452

doi.org/10.1029/2019GL084841453

Hirata, N., Sakai, S., Sato, H., Satake, K., & Koketsu, K. (2009). An outline of the special454

project for earthquake disaster mitigation in the Tokyo metropolitan area–subproject455

I: Characterization of the plate structure and source faults in and around the Tokyo456

metropolitan area [in Japanese with English abstract]. Bulletin of the Earthquake457

Research Institute, University of Tokyo, 84 , 41–56.458

Huber, P., & Ronchetti, E. (2009). Robust statistics (Second ed.). Hoboken, NJ: John Wiley459

& Sons. doi: https://doi.org/10.1002/9780470434697460

Kano, M., Nagao, H., Nagata, K., Ito, S., Sakai, S., Nakagawa, S., . . . Hirata, N. (2017).461

Seismic wavefield imaging of long-period ground motion in the Tokyo metropolitan462

area, Japan. Journal of Geophysical Research: Solid Earth, 122 (7), 5435–5451. doi:463

https://doi.org/10.1002/2017JB014276464

Karplus, M., & Schmandt, B. (2018). Preface to the focus section on geophone array465

seismology. Seismological Research Letters, 89 (5), 1597–1600. doi: https://doi.org/466

10.1785/0220180212467

Kasahara, K., Sakai, S., Morita, Y., Hirata, N., Tsuruoka, H., Nakagawa, S., . . . Obara, K.468

(2009). Development of the Metropolitan Seismic Observation Network (MeSO-net) for469

detection of mega-thrust beneath Tokyo metropolitan area [in Japanese with English470

abstract]. Bulletin of the Earthquake Research Institute, University of Tokyo, 84 ,471

71–88.472

Kawakita, Y., & Sakai, S. (2009). Various Types of Noise in MeSO-net [in Japanese with473

English abstract]. Bulletin of the Earthquake Research Institute, University of Tokyo,474

84 , 127–139.475

Kong, Q., Trugman, D., Ross, Z., Bianco, M., Meade, B., & Gerstoft, P. (2019). Machine476

learning in seismology: Turning data into insights. Seismological Research Letters,477

90 (1), 3–14. doi: https://doi.org/10.1785/0220180259478

Kriegerowski, M., Petersen, G., Vasyura-Bathke, H., & Ohrnberger, M. (2019). A479

deep convolutional neural network for localization of clustered earthquakes based on480

multistation full waveforms. Seismological Research Letters, 90 (2A), 510–516. doi:481

https://doi.org/10.1785/0220180320482

Li, Z., Peng, Z., Hollis, D., Zhu, L., & McClellan, J. (2018). High-resolution seismic event483

detection using local similarity for large-N arrays. Scientific Reports, 8 (1646). doi:484

https://doi.org/10.1038/s41598-018-19728-w485

McBrearty, I., Delorey, A., & Johnson, P. (2019). Pairwise association of seismic arrivals486

with convolutional neural networks. Seismological Research Letters, 90 (2A), 503–509.487

doi: https://doi.org/10.1785/0220180326488

–15–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Mill, J., Tang, T., Kaminsky, Z., Khare, T., Yazdanpanah, S., Bouchard, L., . . . Petronis, A.489

(2008). Epigenomic profiling reveals DNA-methylation changes associated with major490

psychosis. American Journal of Human Genetics, 82 (3), 696–711. doi: https://491

doi.org/10.1016/j.ajhg.2008.01.008492

Nakano, M., Sugiyama, D., Hori, T., Kuwatani, T., & Tsuboi, S. (2019). Discrimination493

of seismic signals from earthquakes and tectonic tremor by applying a convolutional494

neural network to running spectral images. Seismological Research Letters, 90 (2A),495

530–538. doi: https://doi.org/10.1785/0220180279496

National Research Institute for Earth Science and Disaster Resilience. (2019). NIED Hi-net.497

National Research Institute for Earth Science and Disaster Resilience. doi: https://498

doi.org/10.17598/NIED.0003499

Newman, M. (2006). Modularity and community structure in networks. Proceedings of the500

National Academy of Sciences of the United States of America, 103 (23), 8577–8582.501

doi: https://doi.org/10.1073/pnas.0601602103502

Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in503

networks. Physical Review E , 69 (2), 026113. doi: https://doi.org/10.1103/PhysRevE504

.69.026113505

Obara, K., Kasahara, K., Hori, S., & Okada, Y. (2005). A densely distributed506

high-sensitivity seismograph network in Japan: Hi-net by National Research Institute507

for Earth Science and Disaster Prevention. Review of Scientific Instruments, 76 ,508

021301. doi: https://doi.org/10.1063/1.1854197509

Ogata, Y., Katsura, K., Tsuruoka, H., & Hirata, N. (2019). High-resolution 3D earthquake510

forecasting benearth the greater Tokyo area. Earth Planets Space, 71 (113). doi:511

https://doi.org/10.1186/s40623-019-1086-7512

Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., & Yamamoto,513

A. (2004). Recent progress of seismic observation networks in Japan Hi-net, F-net,514

K-NET and KiK-net. Earth Planets Space, 56 , 15–28. doi: https://doi.org/10.1186/515

BF03353076516

Peng, Z., & Zhao, P. (2009). Migration of early aftershocks following the 2004 Parkfield517

earthquake. Nature Geoscience, 2 , 877–881. doi: https://doi.org/10.1038/ngeo697518

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake519

detection and location. Science Advances, 4 (2), e1700578. doi: https://doi.org/520

10.1126/sciadv.1700578521

Riahi, N., & Gerstoft, P. (2017). Using graph clustering to locate sources within a dense522

sensor array. Signal Processing , 132 , 110-120. doi: https://doi.org/10.1016/j.sigpro523

.2016.10.001524

Ross, Z., Meier, M., & Hauksson, E. (2018). P wave arrival picking and first-motion525

polarity determination with deep learning. Journal of Geophysical Research: Solid526

Earth, 123 (6), 5120–5129. doi: https://doi.org/10.1029/2017JB015251527

Sakai, S., & Hirata, N. (2009). Distribution of the Metropolitan Seismic Observation528

network [in Japanese with English abstract]. Bulletin of the Earthquake Research529

Institute, University of Tokyo, 84 , 57–70.530

Wang, J., Xiao, Z., Liu, C., Zhao, D., & Yao, Z. (2019). Deep learning for picking seismic531

arrival times. Journal of Geophysical Research: Solid Earth, 124 (7), 6612–6624. doi:532

https://doi.org/10.1029/2019JB017536533

Wessel, P., & Smith, W. (1998). New, improved version of generic mapping tools released.534

EOS Transactions, American Geophysical Union, 79 , 579. doi: https://doi.org/10535

.1029/98EO00426536

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: a network visualization tool for537

human brain connectomics. PLoS One, 8 (7), e68910. doi: https://doi.org/10.1371/538

journal.pone.0068910539

Zhang, X., Zhang, J., Yuan, C., Liu, S., Chen, Z., & Li, W. (2020). Locating induced540

earthquakes with a network of seismic stations in Oklahoma via a deep learning541

method. Scientific Reports, 10 (1941). doi: https://doi.org/10.1038/s41598-020-58908542

-5543

–16–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Zhu, W., & Beroza, G. (2018). PhaseNet: A deep-neural-network-based seismic arrival-time544

picking method. Geophysical Journal International , 216 (1), 261–273. doi: https://545

doi.org/10.1093/gji/ggy423546

–17–


