Opposite phase changes of precipitation annual cycle over land and ocean under global warming

Fengfei Song¹, Jian Lu², Ruby Leung³, and Fukai Liu⁴

¹Pacific Northwest National Laboratory
²Pacific Northwest National Laboratory (DOE)
³PNNL
⁴Ocean University of Qingdao

November 23, 2022

Abstract

The annual cycle of precipitation is a fundamental aspect of the global water cycle. Climate warming induces amplitude enhancement and phase delay in the zonal-mean tropical precipitation. Here, we report a land-ocean contrast in the phase response of precipitation annual cycle, with a delay over land and an advance over ocean as climate warms. Although twothirds of the Earth's surface are covered by ocean, land dominates the zonal-mean phase delay, attributable to an increase in the effective atmospheric heat capacity. The phase advance over ocean is associated with a precipitation shift from land to ocean during the peak rainy season. This shift is well constrained by the energetic and related to a land-ocean contrast in the amplitude change of surface temperature annual cycle: seasonally different wind changes enhance this amplitude over ocean, while increased effective atmospheric heat capacity and surface cooling feedback reduce the amplitude over land.

1 Opposite phase changes of precipitation annual cycle over land and

2 ocean under global warming

3	Fengfei Song ¹ , Jian Lu ^{*1} , L. Ruby Leung ^{*1} , Fukai Liu ²
4	1. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,
5	Richland, Washington, USA
6	2. Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National
7	Laboratory for Marine Science and Technology, Qingdao, China
8	
9	* Corresponding authors: Jian Lu and L. Ruby Leung
10	Email: jian.lu@pnnl.gov and ruby.leung@pnnl.gov
11	
12	Fengfei Song: (Orcid-ID: 0000-0002-3004-1749)
13	L. Ruby Leung: (Orcid-ID: 0000-0002-3221-9467)
14	Jian Lu: (Orcid-ID: 0000-0001-8245-6930)
15	Fukai Liu: (Orcid-ID: 0000-0002-0687-9568)
16	
17	Submitted to Geophysical Research Letters

18 Keypoints:

19 1. Precipitation annual cycle shows a phase delay over land but a phase advance over ocean under

20 global warming;

- 2. The land delay is due to enhanced effective atmospheric heat capacity and the ocean advance is
- 22 linked to land-ocean rainfall shift in summer;
- 23 3. The enhanced and reduced surface temperature annual cycle over ocean versus land contribute
- 24 to the rainfall shift via energetic constraint.

25 Abstract

26 The annual cycle of precipitation is a fundamental aspect of the global water cycle. Climate 27 warming induces amplitude enhancement and phase delay in the zonal-mean tropical precipitation. 28 Here, we report a land-ocean contrast in the phase response of precipitation annual cycle, with a 29 delay over land and an advance over ocean as climate warms. Although two-thirds of the Earth's surface are covered by ocean, land dominates the zonal-mean phase delay, attributable to an 30 31 increase in the effective atmospheric heat capacity. The phase advance over ocean is associated 32 with a precipitation shift from land to ocean during the peak rainy season. This shift is well 33 constrained by the energetic and related to a land-ocean contrast in the amplitude change of surface 34 temperature annual cycle: seasonally different wind changes enhance this amplitude over ocean, 35 while increased effective atmospheric heat capacity and surface cooling feedback reduce the 36 amplitude over land.

37 Plain language summary

38 The seasonal monsoon rainfall provides the water resource for ~40% of the world population, but 39 it has been a longstanding challenge to predict when monsoon rain will arrive, especially at the 40 regional scale. By separating land from ocean, we revealed that the previous finding of seasonal 41 delay of zonal-mean rainfall under warming mainly occurs over land, where most human activities 42 take place, while ocean shows a phase advance. This contrasting phase behavior between land and 43 ocean is shown to be rooted in the first-principle physical constraints related to energy and climate 44 feedbacks, thus confidence is assigned to the differential phase response between the tropical land and ocean under climate warmng. 45

46 **1. Introduction**

47 Over the annual cycle, the most prominent hydrological feature is the advance and retreat 48 of tropical rainfall following the movement of monsoons and inter-tropical convergence zone 49 (ITCZ). The annual cycle of tropical rainfall is ultimately driven by solar insolation, but its exact 50 evolution is determined by a myriad of factors, including land-ocean distribution, land surface 51 properties and ocean heat fluxes. Global warming is poised to substantially delay the cyclic 52 progression of tropical rainfall, especially over the monsoonal regions (Biasutti and Sobel 2009; 53 Seth et al. 2011 2013; Pascale et al. 2016; Song et al. 2018a) and enhance its amplitude (Chou et 54 al. 2011; Chou and Lan 2012; Huang et al. 2013). The enhanced tropical precipitation annual cycle 55 mainly occurs over ocean and is due to the increase of moisture under global warming as a "wet-56 get-wetter" response (Held and Soden 2006; Chou et al. 2009). The seasonal delay of tropical 57 rainfall will induce seasonally-dependent subtropical high responses under warming (Song et al. 58 2018a, b).

59 In the past decade, the atmosphereic energetic framework (e.g., Kang et al. 2008; Frierson 60 et al. 2013; Schneider et al. 2014; Boos and Korty 2016; Biasutti et al. 2018) has been developed 61 to relate the ITCZ shift to changes in the net energy input and/or the effective atmospheric heat 62 capacity (Song et al. 2018). The causes of the delay are only beginning to be unveiled through the 63 lens of this energetic perspective (Biasutti and Sobel 2009; Song et al. 2018a). Both the seasonal 64 delay of sea surface temperature (SST) and the annual-mean SST warming can lead to a seasonal 65 delay of tropical precipitation (Biasutti and Sobel 2009; Song et al. 2018; Dwyer et al. 2014). The 66 former is attributed to the high-latitude sea ice melting, which boosts the effective heat capacity of 67 the system by exposing the thick ocean mixed layer to the atmosphere (Dwyer et al. 2012; Donohoe 68 and Battisti 2013). The latter can be explained by the increase of the effective atmospheric heat capacity mainly due to the increase in atmospheric moisture with warming, resulting in a more
sluggish response of atmosphereic heat transport (AHT) and precipitation to the seasonal solar
forcing (Song et al. 2018a; Cronin and Emanuel 2013).

72 Mechanisms that have been used to explain the phase change in the annual cycle of 73 precipitation do not distinguish between the response over land and ocean. As land and ocean 74 differ in many ways, differentiating their phase responses is a natural next step towards 75 understanding regional water cycle in a warming climate. In this study, we find that under global 76 warming, the phase of tropical precipitation is delayed over land but advanced over ocean. 77 Interestingly, despite covering only one-third of the Earth's surface, it is land, not ocean, that 78 dominates the phase changes of zonal-mean precipitation annual cycle. The opposite phase 79 changes between land and ocean will have profound implications for both terrestrial/marine 80 ecosystems and human activities.

81

82 **2. Data and methods**

83 **2.1 Model simulation data**

Monthly mean data of multiple variables from 37 Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) models and daily precipitation data from 40 members of CESM1 Large Ensemble (LENS) Project (Kay et al. 2015) are used in this study. The statistics of the present-day climate for 1962-2005 are from the historical (HIST) simulations while those for the future climate of 2056-2099 are from the RCP8.5 (RCP85) scenario simulations.

89 To examine the role of wind-evaporation-SST (WES) feedback on the phase changes of 90 precipitation annual cycle, we also analyze two sets of experiments: one with the same fully 91 coupled CESM1 as used for the CESM LENS Project and the other with a partially coupled 92 configuration of CESM1 (Liu et al. 2018). Each set consists of a pair of 100-year long simulations 93 with one under the condition of pre-industrial CO_2 (1xCO₂) and the other with CO_2 quadrupling 94 (4xCO₂). In the partially coupled set, the wind speed from te pre-industrial simulation is prescribed 95 through the bulk formula that is used to compute the evaporation over ocean in both the $1xCO_2$ 96 and 4xCO₂ runs, so that the part of the climate change response due to WES feedback is disabled. 97 Comparing the response to $4xCO_2$ forcing between the fully coupled and partially coupled sets 98 allows the role of the WES feedback to be isolated. See Liu et al. (2018) for more details about the 99 design of the experiments.

100 **2.2 Phase estimated from the first Fourier harmonic**

101 To estimate the phase of the annual cycle, Fourier transformation is performed to fit the 102 related monthly time series to a Fourier harmonic (i.e., a sinusoidal function with time) with an 103 angular frequency of $2\pi/12$ mon. As the first Fourier harmonic explains more than 90% of 104 variance in most models, we only use it to determine the phase of the annual cycle.

105 **2.3 Atmospheric energetic framework**

106 According to the atmospheric energy equation (Neelin and Held 1987), the divergence of 107 AHT ($\nabla \cdot AHT$) is equal to the difference between the net energy input to the atmosphere F_{net} and 108 the column moist static energy (MSE) tendency $\frac{\partial \langle h \rangle}{\partial t}$:

109
$$\nabla \cdot AHT = F_{net} - \frac{\partial \langle h \rangle}{\partial t},$$
 (1)

110 where the angle bracket represents vertical integration between the surface and the top of the 111 model, F_{net} includes sensible heat flux, latent heat flux, net longwave radiation and net shortwave 112 radiation, *h* is the MSE. Following Boos and Korty (2016), we also isolate the divergent 113 component of the energy flux by solving the inverse Laplacian of energy flux potential χ , which 114 is defined as

115
$$\nabla^2 \chi = \nabla \cdot AHT \tag{2}$$

116

117 **3. Results**

118 Figure 1 shows the future change in the annual cycle of tropical precipitation over land and 119 ocean in both hemispheres. Climatologically, when the peak solar forcing moves across the equator 120 from one hemisphere to another, tropical precipitation increases rapidly in the warmed hemisphere, 121 but the timing of precipitation peak differs between land and ocean, with the former leading the 122 latter by about a month due to its lower heat capacity (solid lines in Fig. 1a-d). Under global 123 warming, there is an intriguing contrast in the future changes between land and ocean (bars in Fig. 124 1a-d): over land, precipitation anomalies peak much later than the climatological peak, while the 125 opposite is true over ocean, indicating a phase delay in the precipitation annual cycle over land but 126 a phase advance over ocean. The larger amplitude changes during the transition seasons over land 127 than ocean accentuate the dominance of the land response in the zonal-mean response.

The phase changes over land versus ocean (0-40°N/S) are further quantified. Most CMIP5 models (Fig. 1e) and all LENS members (Fig. 1f) exhibit a seasonal delay over land, with median values of 2 to 4.5 days, and a seasonal advance over ocean, with a similar range of median values. For the Northern Hemispheric (NH) land and ocean, 34 and 33 out of 37 CMIP5 models show the phase delay and advance, respectively. Similarly for the Southern Hemispheric (SH) land and ocean, 36 and 29 out of 37 CMIP5 models show the phase delay and advance, respectively.

134 To decipher the contrasting precipitation phase changes between land and ocean, we 135 conduct Empirical Orthogonal Function (EOF) analysis on the annual cycle of precipitation and 136 identify two dominant modes (Fig. 2; Wang and Ding 2008): one characterized by an inter-137 hemispheric contrast (EOF1; accounting for 67.9% of variance) with a peak during local summer 138 and the other featuring a distinct land-sea contrast (EOF2; accounting for 18.6% of variance) with 139 a peak during local spring. Precipitation center tends to be well collocated with the local maxima 140 of column MSE (contours in Figs. 2a-b). The phase change in both PCs is in quadrature to the 141 phase of the corresponding climatological PCs, indicating a phase delay (Fig. 2c-d). The phase 142 delay in the EOF1 has been attributed to both the phase delay in the annual cycle of SST and the 143 annual-mean SST warming as explained above. The similar phase delays in PC1 and PC2 are 144 mainly the result of EOF analysis that requires the EOF modes to be orthogonal to each other. The 145 seasonal delay in both PC1 and PC2 is quite robust among the CMIP5 models and LENS 146 simulations (Fig. 2e), with 36 out of 37 CMIP5 models and 39 out of 40 LENS members showing 147 a delay. Another robust aspect in the response of the two EOF modes under warming is the 148 enhancement of the amplitude in all CMIP5 models and LENS members, with a median increase 149 of $\sim 10\%$ (Fig. 2f), consistent with the enhanced annual cycle of the global monsoon rainfall (Kitoh 150 et al. 2013; Lee and Wang 2014).

Were the spatial pattern of the leading two EOF modes unchanged, the delay in their phases would imply a phase delay in the precipitation annual cycle over both land and ocean. But it turns out not to be the case (Fig. 1). As the two leading EOF modes of precipitation annual cycle explain more than 85% of the total seasonal variance, we construct the precipitation annual cycle over land and ocean (P_L and P_o , respectively) based on the two modes as follows:

156
$$P_L = A_{1,L}PC1 + A_{2,L}PC2$$
 (3)

157
$$P_0 = A_{1,0}PC1 + A_{2,0}PC2 \tag{4}$$

Here, *PC*1 and *PC*2 are the corresponding normalized principle components, $A_{1,L}$ and $A_{2,L}$ are the amplitudes of EOF1 and EOF2 averaged over land, respectively; $A_{1,0}$ and $A_{2,0}$ are the same but over ocean.

161 Given the orthogonality of PCs, we can express the *PC*1 and *PC*2 as two sinusoidal 162 functions with *PC*2 leading *PC*1 by $\pi/2$. Then, the annual cycle of P_L and P_O can be written as:

163
$$P_L = \sqrt{A_{1,L}^2 + A_{2,L}^2} \sin\left(t - \phi_1 - \phi_L\right)$$
(5)

164
$$P_0 = \sqrt{A_{1,0}^2 + A_{2,0}^2 \sin(t - \phi_1 - \phi_0)},$$
 (6)

Here, *t* is time, ϕ_1 denotes the phase of PC1. It is found that the reconstructed precipitation annual cycle and the actual one is almost identical. This way, the phases of P_L and P_O are $\phi_1 + \phi_L$ and $\phi_1 + \phi_O$, respectively. $\phi_L = -\arcsin\left(\frac{1}{\sqrt{(\frac{A_{1,L}{A_{2,L}})^2 + 1}}\right)$ and $\phi_O = \arcsin\left(\frac{1}{\sqrt{(\frac{A_{1,O}{A_{2,O}})^2 + 1}}\right)$ represent extra

phase associated with the relative contribution of EOF1 versus EOF2 to the land and ocean annual cycle, respectively. Under warming, if the amplitude of EOF1 increases more than EOF2 over land, $\frac{A_{1,L}}{A_{2,L}}$ becomes larger and the resultant change in ϕ_L would imply a delay. The opposite is true over ocean (note the opposite signs between ϕ_L and ϕ_0). The actual land-ocean phase change differences (Fig. 1e-f) can be well explained by their amplitude-based estimates (i.e., $\phi_L - \phi_0$), with correlation of 0.97 and 0.89 in NH and SH, respectively (Supplementary Fig. 1), lending support to the decomposition framework here. Hence, the land-sea difference in phase changes of 175 precipitation annual cycles can also be casted in terms of the spatial pattern changes in EOF1 and

176 EOF2 (i.e.,
$$\frac{A_{1,L}}{A_{2,L}}$$
 and $\frac{A_{1,O}}{A_{2,O}}$).

Figure 3a shows a weak reduction in $\frac{A_{1,L}}{A_{2,L}}$, but a marked increase in $\frac{A_{1,O}}{A_{2,O}}$ in both hemispheres 177 $\left(\frac{A_{1,0}}{A_{2,0}}\right)$ increases by 38% and 29% for NH and SH, respectively) under warming, with the former 178 opposing slightly the delay in ϕ_1 by an amount ϕ_L , while the latter overwhelming the positive 179 change in ϕ_1 , resulting in a net phase advance in P_0 (i.e., $\phi_0 + \phi_1 < 0$) shown in Fig. 1. Further 180 examination indicates that the increase in $\frac{A_{1,0}}{A_{2,0}}$ is dominated by the increase in $A_{1,0}$ (Fig. 3b), with 181 $A_{2,0}$ showing negligible changes (not shown). The change of EOF1 precipitation pattern (Fig. 3c) 182 183 features large increases over broad tropical oceans, while the change is only marginal over tropical land, indicating a shift of precipitation from land to ocean during local summer when EOF1 peaks. 184 185 This shift is robust in terms of the land-minus-ocean precipitation change among CMIP5 models 186 (Supplementary Fig. 2a). 187 What tilts the land-ocean precipitation balance towards ocean in EOF1? As the "wet-get-

188 wetter" response doesn't hold well over land due to the limited moisture supply (Fasullo 2012; 189 Chadwick et al. 2013; Byrne and O'Gorman 2015; Donat et al. 2016), it may not be surprising that 190 the land precipitation change is subdued relative to the ocean response. Here we explore other 191 possible mechanisms via the energetic perspective. Viewing from the energetic constraint on 192 precipitation, the land-ocean precipitation shift in EOF1 should be associated with an AHT from 193 ocean to land, and indeed this is evidenced by the direct calculation of the change in AHT 194 divergence contrast between land and ocean (Fig. 3c; Supplementary Fig. 2). This divergent flow 195 of MSE appears to be from the warmer ocean to the colder land (Fig. 3c&d). According to the 196 convective quasi-equilibrium argument suitable for the tropical convective regions (Emanuel

197 1995; Shekar and Boos 2016), the column MSE is approximately in equilibrium with the sub-198 cloud entropy, which is in turn regulated by the surface temperature (TS) when the surface relative 199 humidity is high. With the diffusive nature of energy transport (Boos and Korty 2016), AHT should 200 point from higher MSE to lower MSE regions and hence from the relatively warmer TS to the 201 colder TS regions. The correlation between the land-sea contrast of AHT divergence and TS 202 changes among CMIP5 models is 0.81 and 0.63 in NH and SH, respectively. Even over land, the 203 corresponding correlation is 0.70 and 0.54, still statistically significant at 1% level. Previous 204 studies (e.g., Hurley and Boos 2013; Roderick et al. 2014) suggested that over land, TS is mainly 205 driven by precipitation when evaporation is limited. If so, the TS change would be negatively 206 correlated with the change in precipitation and AHT divergence. Here, the significantly positive 207 correlation between TS and AHT divergence changes over land implies the decreased TS over 208 land does play a role in the suppressed precipitation in summer. As such, the land-sea precipitation 209 shift during summer is linked to the opposite amplitude changes in the TS annual cycle over land 210 and ocean, which is the focus of our investigation next.

211 Over ocean, a robust climate change response is the strengthening of surface wind in the 212 winter subtropics and the weakening in the summer subtropics (Sobel and Camargo; contours in 213 Fig. 3d). As wind speed is identified to be important in the tropical SST warming pattern formation (Xie et al. 2010), the contrasting wind response induces relative cooling in the winter subtropics 214 215 and warming in the summer subtropics via WES feedback (Xie and Philander 1994; Lu and Zhao 216 2012), leading to the enhanced SST annual cycle (Fig. 3d). Thus, more rainfall occurs over ocean 217 during summer, resulting in a phase advance over ocean. To further support our hypothesis, the 218 CESM1 experiments with active WES reproduce the opposite phase changes of precipitation 219 annual cycle over land and ocean (red crosses in Fig. 1f). When the WES feedback is disabled in 220 the 4xCO₂ experiments, the phase advance over ocean is completely nullified in NH and reduced 221 by more than half in SH, whereas the land phase delay mostly persists (blue crosses in Fig. 1f).

222 In contrast to the increased amplitude of TS over ocean, the amplitude of TS is reduced 223 over land, most notably in the monsoon regions (Fig. 3d). The governing mechanism for the annual 224 cycle of temperature over land can be captured by an atmosphere-land surface interaction model 225 forced by a periodic solar insolation:

226
$$C_A \frac{dT_A}{dt} = \lambda (T_S - T_A) - B T_A$$
(7)

227
$$C_S \frac{dT_S}{dt} = -\lambda(T_S - T_A) + R,$$
(8)

where T_A is the mass-weighted temperature of the column atmosphere, which is dominated by the 228 near surface air temperature, T_s is the land TS, C_A and C_S are the effective heat capacities of the 229 230 atmosphere and surface, respectively. The total surface-atmosphere energy exchange including 231 longwave radiation, sensible and latent heat fluxes is parameterized to be linearly proportional to $T_S - T_A$ with an exchange coefficient λ (as similarly treated in Barsugli and Battisti (1998) and 232 233 Zhou and Xie (2018)). B is the bulk feedback parameter accounting for all the radiative processes 234 at the top of atmosphere, including water vapor, cloud, lapse rate and Planck feedbacks. Since the adjustment of T_A through the top of the atmosphere is slower than that at the surface, B is generally 235 236 smaller than λ (Barsugli and Battisti 1998). The system is forced at the surface by a periodic solar 237 radiation R with a frequency of yr^{-1} , hence shortwave absorption by the atmosphere is neglected.

Over tropical land, C_S is estimated to be one order smaller than C_A . Thus, adding Eqs. (7) 238 and (8) together and ignoring the small term associated with C_S reduce the system to a single 239 240 variable system:

$$241 C_A \frac{dT_A}{dt} = -BT_A + R, (9)$$

from which the amplitude relation between T_A and R can be derived:

243
$$|T_A| = \frac{|R|}{\sqrt{B^2 + \omega^2 C_A^2}},$$
 (10)

where $\omega = 2\pi yr^{-1}$. Under the condition $\omega C_A \ll \lambda$, which holds well for the modern climate condition, the amplitude relation between T_A and T_S can be written as:

$$246 \quad |T_S| \approx (1 + \frac{B}{\lambda})|T_A|, \tag{11}$$

Thus, for a given solar insolation, the amplitude of atmospheric temperature decreases with the increase in the effective atmospheric heat capacity and bulk feedback parameter *B*. The same may also be said of the amplitude of T_s considering the linear relationship between T_s and T_A from Eq. (11).

Following Schwartz (2007), the effective atmospheric heat capacity is defined as $C_A =$ 251 $\frac{\partial \langle h \rangle / \partial t}{\partial \langle T \rangle / \partial t}$, with $\langle h \rangle$ and $\langle T \rangle$ representing the vertically-integrated MSE and temperature. This 252 253 definition of C_A allows to estimate it by regressing the monthly tendency of multi-model ensemble mean < h > against that of < T >. Based on this definition, C_A can be scaled as $C_A \approx c_p + \frac{L_v < q >}{< T >}$, 254 where $\langle q \rangle$ is the vertically integrated water vapor. As $\langle q \rangle$ increases nonlinearly with 255 256 temperature following the Clausius-Clapeyron relation, C_A increases as the mean climate warms. 257 Song et al. (2018a) has already shown that the annual cycle of $\partial < h > /\partial t$ is robustly enhanced 258 mainly due to the contribution from $\partial < L_{\nu}q > /\partial t$, which scales linearly with global warming. 259 Here, we provide further evidences for the increase of effective atmospheric heat capacity 260 (Supplementary Fig. 3). In the current climate, C_A is 2162.10 and 2704.01 J kg⁻¹ K⁻¹ for NH and SH, respectively. Under global warming, C_A is increased to 2393.10 and 3271.39 J kg⁻¹ K⁻¹, with an increase rate of 10.7% and 21.0% for NH and SH, respectively. The enhancement of C_A is ubiquitous across all CMIP5 models examined (Supplementary Fig. 4). As no robust change in *B* is found over tropical land under warming in CMIP5 models, the robust increase of the effective atmospheric heat capacity acts to reduce the amplitude of the T_A and T_s annual cycle over land, consistent with Cronin and Emanuel (2013) based on radiative-convective equilibrium simulations.

Since a good proportionality holds between T_A and T_S with small phase differences for the system above, we can further simplify Eq. (8) into a surface energy balance model for T_S :

$$270 \qquad C_S \frac{dT_s}{dt} = -\beta T_s + R,\tag{12}$$

where β is a parameter to measure the surface cooling feedback, encompassing processes of net longwave radiative cooling and turbulent heat fluxes. A similar surface energy model has been used to understand the temperature annual cycle in an extraterrestrial planet (Mitchell et al. 2014), where only longwave radiation is considered in the damping term. The amplitude of T_s governed by Eq. (12) is determined by

276
$$|T_s| = \frac{|R|}{\sqrt{\beta^2 + \omega^2 C_s^2}},$$
 (13)

and is expected to decrease with an increase of the feedback parameter β . We estimate β by regressing the total surface energy flux excluding the shortwave fluxes on the annual cycle of TS for both current and future climates. The resultant β is generally positive over land in the current climate (Supplementary Fig. 5a), vindicating its physical meaning as a damping parameter. In the tropical monsoonal regions, β indeed increases across the majority of CMIP5 models under the RCP85 scenario and geographically, it coincides with regions of decreased TS annual cycle (Fig. 3d and Supplementary Fig. 5b). Averaged over the land monsoonal regions, the change of β is significantly (at 1% level) correlated with that of summer-vs-winter TS difference across the CMIP5 models, with correlations reaching -0.68 in NH and -0.46 in SH (or -0.81 with the outlier models excluded) (Supplementary Fig. 6). Taken together, both the increase of C_A and β work in tandem to dampen the TS amplitude over land.

288

4. Conclusions

290 This study discovers intriguing opposite phase changes in the precipitation annual cycle 291 between land and ocean under climate warming: a delay over land, but an advance over ocean. 292 Although land only covers one-third of the Earth's surface, it dominates the phase delay of zonal-293 mean precipitation annual cycle previously found (Biasutti and Sobel 2009; Song et al. 2018a). 294 The delay over land is mainly determined by the increased effective atmosphereic heat capacity 295 under warming, the same mechanism responsible for the zonal-mean precipitation delay (Song et 296 al. 2018a). The phase advance over ocean is related to a shift of precipitation center towards ocean 297 in the local summer, which overwhelms the phase delay resulting from the increased effective 298 atmospheric heat capacity. The shift of precipitation from land to ocean during the peak rainy 299 season corresponds well to the pattern of AHT divergence change, epitomizing the energetic 300 constraint on the tropical precipitation change even at the regional scale. The AHT divergence 301 change under climate warming is closely related to the opposite changes in the amplitude of TS 302 annual cycle between land and ocean. The strengthened surface wind in winter cools SST and the 303 weakened one in summer warms SST, enhancing the amplitude of SST annual cycle. Over land, 304 on the other hand, both the increased effective atmospheric heat capacity and surface cooling

feedback over monsoonal regions act to dampen the amplitude of TS annual cycle. The combination of enhanced TS amplitude over ocean and reduced TS amplitude over land rebalances the atmospheric column energy in favor of ocean precipitation. As a result, the center of precipitation shifts towards ocean, which is further manifested as a differential phase change between land and ocean.

Considering the earlier transition from dry to wet seasons over land than ocean in the climatological annual cycle, the phase delay over land and phase advance over ocean under warming will make the two more in sync in a warmer future. The delayed onset of rainfall as well as the dampened annual cycle of temperature over land would have profound economic and societal impacts, especially for regions like Asia, Africa and Latin America, where the local rainfed agriculture and economy are under the sway of monsoonal rain.

316 Acknowledgement

This research is supported by the U.S. Department of Energy Office of Science Biological and 317 318 Environmental Research as part of the Regional and Global Modeling and Analysis program area. PNNL is operated for the Department of Energy by Battelle Memorial Institute under contract DE-319 320 AC05-76RL01830. We acknowledge the World Climate Research Program's Working Group on 321 Coupled which CMIP5 Modeling, makes data available (http://www.ipcc-322 data.org/sim/gcm monthly/AR5/Reference-Archive.html) and NCAR CESM1 group, which 323 makes the large-ensemble (LENS) experiments available 324 (http://www.cesm.ucar.edu/projects/community-projects/LENS/).

325 **References**

- Barsugli, J. J. and D. S. Battisti (1998), The basic effects of atmosphere-ocean thermal coupling
 on midlatitude variability. J. Atmos. Sci. 55, 477–493.
- 328 Biasutti, M. and A. H. Sobel (2009), Delayed Sahel rainfall and global seasonal cycle in a warmer
- 329 climate. Geophys. Res. Lett., 36, L23707.
- 330 Biasutti, M., A. Voigt, W. R. Boos, P. Braconnot, J. C. Hargreaves, S. P. Harrison, et al (2018),
- 331 Global energetics and local physics as drivers of past, present and future monsoons. *Nature*
- 332 *Geoscience* 11(6), 392-400.
- Boos, W. R. and R. L. Korty (2016), Regional energy budget control of the intertropical
 convergence zone and application to mid-Holocene rainfall. *Nat. Geosci.* 9, 892–897.
- Byrne, Michael P. and Paul A. O'Gorman (2015), The Response of Precipitation Minus
 Evapotranspiration to Climate Warming: Why the "Wet-Get-Wetter, Dry-Get-Drier" Scaling Does
 Not Hold over Land. Journal of Climate 28, 8078-8092.
- 338 Chadwick, R., I. Boutle, and G. Martin, (2013) Spatial patterns of precipitation change in CMIP5:
- 339 why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822.
- 340 Chou, C., J.-Y. Tu and P.-H. Tan (2007), Asymmetry of tropical precipitation change under global
- 341 warming. Geophys. Res. Lett. 34, L17708.
- 342 Chou, C., J. Neelin, C. Chen and J. Tu (2009), Evaluating the 'rich-get-richer' mechanism in
- tropical precipitation change under global warming. J. Clim. 22, 1982–2005.
- Chou, C. and C-W. Lan (2012), Changes in the annual range of precipitation under global warming.
- 345 J. Clim. 25, 222–235.

- 346 Cronin, T. W. and K. A. Emanuel (2013), The climate time scale in the approach to radiative-
- 347 convective equilibrium. J. Adv. Model. Earth Syst. 5, 843–849 (2013).
- 348 Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O'Gorman and N. Maher (2016) More extreme
- 349 precipitation in the world's dry and wet regions. *Nat. Clim. Change* 6, 508–513.
- 350 Donohoe, A. and D. S. Battisti (2013), The seasonal cycle of atmospheric heating and temperature.
 351 *J. Clim.* 26, 4962–4980.
- 352 Dwyer, J. G., M. Biasutti and A. H. Sobel (2012), Projected changes in the seasonal cycle of
- 353 surface temperature. J. Clim. 25(18), 6359–6374.
- 354 Dwyer, J. G., M. Biasutti and A. H. Sobel (2014), The effects of greenhouse gas-induced changes
- in SST on the annual cycle of zonal mean tropical precipitation. J. Clim. 27, 4545-4565.
- Emanuel, K. A. (1995), On thermally direct circulation in moist atmosphere. J. Atmos. Sci. 52,
 1529-1534.
- Fasullo, J. (2012), A mechanism for land–ocean contrasts in global monsoon trends in a warming
 climate. *Clim. Dynam.* 39, 1137–1147.
- Frierson, D. M. W. et al (2013), Contribution of ocean overturning circulation to tropical rainfall
 peak in the northern hemisphere. *Nature Geosci.* 6, 940–944.
- Held, I. M. and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming. *J. Clim.* 19, 5686–5699.
- Huang, P., S-P. Xie, K. Hu, G. Huang and R. Huang (2013), Patterns of the seasonal response of
- tropical rainfall to global warming. *Nature Geosci.* 6, 357–361.

- Hurley, J. V., and W. R. Boos (2013), Interannual variability of monsoon precipitation and
 subcloud equivalent potential temperature, J. Climate, 26, 9507–9527.
- 368 Kang, S. M., I. M. Held, D. Frierson and M. Zhao (2008), The response of the ITCZ to extratropical
- thermal forcing: Idealized slab-ocean experiments with a GCM. J. Clim. 21(14):3521–3532.
- 370 Kay, J. E. et al (2015), The Community Earth System Model (CESM) Large Ensemble Project: A
- 371 Community Resource for Studying Climate Change in the Presence of Internal Climate Variability,
- 372 Bull. Am. Meteorol. Soc. 96, 1333-1349.
- 373 Kitoh, A. et al (2013), Monsoons in a changing world: a regional perspective in a global context.
- 374 J. Geophys. Res. 118, 3053–3065.
- Lee, J.-Y. and B. Wang (2014), Future change of global monsoon in the CMIP5. *Clim Dynam* 42,
 101–119.
- Liu, W., J. Lu, S. P. Xie and A. Fedorov (2018), Southern Ocean heat uptake, redistribution, and
 storage in a warming climate: The role of meridional overturning circulation. *J. Clim.* 31, 4727–
 4743.
- Lu, J. and B. Zhao (2012), The role of oceanic feedback in the climate response to doubling CO2. *J. Clim.* 25, 7544–7563.
- 382 Mitchell, J. L., G. K. Vallis, and S. F. Potter (2014), Effects of the Seasonal Cycle on Superrotation
- in Planetary Atmospheres, The Astrophysical Journal 787(1), 23.
- Neelin, J. and I. M. Held (1987), Modeling tropical convergence based on the moist static energy
 budget. Mon. Wea. Rev. 115, 3–12.
- 386 Pascale, S., V. Lucarini, X. Feng, , A. Porporato & S. Hasson (2016), Projected changes of rainfall
- 387 seasonality and dry spells in a high greenhouse gas emissions scenario. *Clim. Dyn.* 46, 1331–1350.

- 388 Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar (2014), A general framework for
- 389 understanding the response of the water cycle to global warming over land and ocean. Hydrol.
- 390 Earth Syst. Sci., 18, 1575–1589.
- 391 Schneider, T., T. Bischoff and G. H. Haug (2014), Migrations and dynamics of the intertropical
- 392 convergence zone. *Nature* 513, 45–53.
- 393 Schwartz, S. E. (2007), Heat capacity, time constant, and sensitivity of Earth's climate system. *J.*394 *Geophys. Res.* 112, D24S05.
- 395 Seth, A., S. A. Rauscher, M. Rojas, A. Giannini and S. J. Camargo (2011), Enhanced spring
- 396 convective barrier for monsoons in a warmer world? *Climatic Change* 104, 403–414.
- Seth, A. et al. (2013), CMIP5 projected changes in the annual cycle of precipitation in monsoon
 regions. *J. Clim.* 26, 7328–7351.
- Shekar, R. and W. R. Boos (2016), Improving energy-based estimate of monsoon location in the
 presence of proximal desert. J. Clim. 29, 4741-4761.
- 401 Sobel, A. H. and S. J. Camargo (2011), Projected future changes in tropical summer climate. *J.*402 *Clim.* 24, 473–487.
- 403 Song, F., L. R. Leung, J. Lu and L. Dong (2018a), Seasonally dependent responses of subtropical
- 404 highs and tropical rainfall to anthropogenic warming. *Nature Clim. Change* 8, 787–792.
- 405 Song, F., L.R. Leung, J. Lu and L. Dong (2018b), Future changes in seasonality of the North
- 406 Pacific and North Atlantic subtropical highs, *Geophysical Research Letters*, 45, 11,959-11,968.
- 407 Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experiment
- 408 design. Bull. Am. Meteorol. Soc. 93, 485–498.

- 409 Wang, B. and Q. Ding (2008), Global monsoon: Dominant mode of annual variation in the tropics.
- 410 Dynam Atmos Oceans 44, 165–183.
- 411 Xie, S. P. and S. G. H. Philander (1994), A coupled ocean-atmosphere model of relevance to the
- 412 ITCZ in the eastern Pacific. *Tellus A* 46, 340–350.
- 413 Xie, S. P. et al. (2010), Global warming pattern formation: Sea surface temperature and rainfall. J.
- 414 *Clim.* 23, 966–986.
- 415 Zhou, W., and S. P. Xie (2018), A Hierarchy of Idealized Monsoons in an Intermediate GCM, J.
- 416 *Clim.* 31(22), 9021–9036.

Figure 1 The annual cycle of precipitation (unit: mm day⁻¹) in HIST runs (black line) and its future 418 419 changes between RCP85 and HIST runs over (a) North Hemispheric (NH) land (0°-40°N), (b) 420 South Hemispheric (SH) land (0°-40°S), (c) NH ocean (0°-40°N) and (d) SH land (0°-40°S). Box-421 plots for the future phase changes in the precipitation annual cycle over land and ocean from (e) 422 CMIP5 monthly data and (f) CESM1 LENS daily data. The lines in each box represent the 25th 423 percentile, median, and the 75th percentile, and the whiskers represent the minimum and maximum 424 of the multi-model (or LENS) ensemble. In (f), the red and blue crosses indicate the phase changes 425 between the 4xCO₂ and 1xCO₂ experiments of CESM1 with and without WES feedback, 426 respectively.

417

Figure 2 The spatial patterns of (a) EOF1 and (b) EOF2 in HIST runs and the corresponding normalized principle components (c) PC1 and (d) PC2 in HIST (black line) and their corresponding future changes between RCP85 and HIST. In a (b), overlaid as contours is the vertically-integrated MSE (unit: 10^7 J kg⁻¹) regressed upon the normalized PC1 (PC2) in HIST runs. The bold line indicates zero and solid (dashed) lines represent positive (negative) values with an interval of 0.5×10^7 J kg⁻¹. Box-plots for (e) the phase changes and (f) the amplitude ratio between RCP85 and HIST for the two EOF modes from CMIP5 (blue) and CESM1 LENS (red).

- 435 The lines in each box represent the 25th percentile, median, and the 75th percentile, and the
- 436 whiskers represent the minimum and maximum of the multi-model (or LENS) ensemble.

Figure 3 Box-plots comparing the ratio of the amplitude of (a) EOF1 over land $A_{1,L}$ divided by 438 EOF2 over land $A_{2,L}$ and EOF1 over ocean $A_{1,0}$ divided by EOF2 over ocean $A_{2,0}$ and (b) EOF1 439 over land $A_{1,L}$ and EOF1 over ocean $A_{1,O}$ between the RCP85 and HIST runs (i.e., RCP85 divided 440 441 by HIST) among CMIP5 models. Future change of (c) precipitation (shaded; unit: mm day⁻¹), energy flux potential (contour; unit: W) and divergent energy flow (vectors; unit: 10⁷ W m⁻¹) and 442 443 (d) TS (unit: K) regressed on the PC1 of precipitation annual cycle between the RCP85 and HIST 444 runs. In c, the bold line is zero and the solid (dashed) contours denote positive (negative) values with the contour interval of 0.4×10^{13} W. The line patterns over ocean in d have the same meaning 445 446 as c except that it is the change in the 1000 hPa wind speed congruent with EOF1 and the interval is 0.2 m s⁻¹. The orange and blue contours over land in d indicate the 0.5 and -0.5 mm day⁻¹ contours 447 of precipitation EOF1 shown in Fig. 2a, respectively, demarcating the boundaries of the land 448 449 monsoonal regions. The purple dots over land indicate regions of increased surface cooling 450 feedback parameter β under global warming. The horizontal lines in a and b represent the 451 minimum, 25th percentile, median, 75th percentile, and the whiskers are the maximum and 452 minimum values of the multi-model ensemble.

Opposite phase changes of precipitation annual cycle over land and ocean under global warming

3	Fengfei Song ¹ , Jian Lu ¹ , L. Ruby Leung ¹ , Fukai Liu ²		
4	1. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,		
5	Richland, Washington, USA		
6	2. Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National		
7	Laboratory for Marine Science and Technology, Qingdao, China		
8			
9			
10	Supplementary information.		
10	Supplementary information:		
11	One table and 6 Figures.		
12			
13	Submitted to Geophysical Research Letters		
14			
15			
16			
17			
18	Corresponding authors:		
19	Jian Lu (jian.lu@pnnl.gov) and L. Ruby Leung (ruby.leung@pnnl.gov)		

20 Supplementary Table 1 Data from the HIST and RCP85 simulations in 37 CMIP5 mode	ls used
--	---------

21 in this study.

No.	Model	Energy fluxes	Other variables
1	ACCESS1-0	×	×
2	ACCESS1-3	×	×
3	bcc-csm1-1	×	×
4	bcc-csm1-1-m	×	×
5	BNU-ESM	×	×
6	CanESM2	×	×
7	CCSM4	×	×
8	CESM1-BGC	×	×
9	CESM1-CAM5	×	×
10	CESM1-WACCM	×	×
11	CMCC-CESM	×	×
12	CMCC-CM	×	×
13	CMCC-CMS	×	×
14	CNRM-CM5	×	×
15	CSIRO-Mk3-6-0	×	×
16	FGOALS-g2	×	×
17	FIO-ESM		×
18	GFDL-CM3	×	×
19	GFDL-ESM2G	×	×
20	GFDL-ESM2M	×	×
21	GISS-E2-H	×	×
22	GISS-E2-R	×	×
23	HadGEM2-AO		×
24	HadGEM2-CC	×	×
25	HadGEM2-ES	×	×
26	inmcm4	×	×
27	IPSL-CM5A-LR	×	×
28	IPSL-CM5A-MR	×	×
29	IPSL-CM5B-LR	×	×

30	MIROC5	×	×
31	MIROC-ESM-CHEM	×	×
32	MIROC-ESM	×	×
33	MPI-ESM-LR	×	×
34	MPI-ESM-MR	×	×
35	MRI-CGCM3	×	×
36	NorESM1-M	×	×
37	NorESM1-ME	×	×

Supplementary Fig. 1 Scatterplot between the change of the actual land-sea phase difference and the corresponding estimate (i.e., $\phi_L - \phi_0$) among the CMIP5 models in NH (red dots) and SH (blue dots). Each dot represents one model. Positive value indicates that land and ocean precipitation become more in phase with each other. The correlation is 0.97 in NH and 0.89 in SH, respectively.

30 **Supplementary Fig. 2** Box-plots for the change (RCP85 – HIST) in land-sea difference of (a) 31 precipitation (unit: mm day⁻¹) and (b) divergence of atmospheric heat transport ($\nabla \cdot (AHT)$; unit: 32 W m⁻²) regressed on the precipitation EOF1 among CMIP5 models.

Supplementary Fig. 3 Scatterplot and regression between the monthly tendencies of $\langle h \rangle$ and $\langle T \rangle$. These tendencies are computed based on the multi-model ensemble mean climatological monthly values averaged over (a) NH (0°-40°N) and (b) SH (0°-40°S), respectively. The regression slope (C_A) provides an estimate of the effective atmospheric heat capacity in the hemisphere examined. The blue and red dots and lines are for the HIST and RCP85 simulations, respectively. The shading indicates one standard deviation of the regression slope among the CMIP5 models.

41 **Supplementary Fig. 4** The effective atmospheric heat capacity C_A changes between the RCP85 42 and HIST experiments in the CMIP5 models in (a) NH (0°-40°N) and (b) SH (0°-40°S). M 43 indicates the multi-model ensemble mean and each number denotes one of the 35 CMIP5 models.

Supplementary Fig. 5 The surface cooling feedback parameter β in (a) the HIST run and (b) its 46 change between the RCP85 and HIST runs.

47

48 Supplementary Fig. 6 Scatterplot between the change of surface cooling feedback β and the 49 temperature difference between summer (July-August-September (JAS) for NH and January-50 February-March (JFM) for SH) and winter (JFM for NH and JAS for SH) over the land monsoonal 51 regions, which are defined as regions with the magnitude of precipitation anomalies in EOF1 greater than 0.5 mm day⁻¹. Each dot represents one CMIP5 model with red (blue) for NH (SH). 52 53 The correlations are listed at the upper-right corner of the figure, all being statistically significant 54 at 1% level based on Student's t-test. Note that the correlation for SH can be augmented to -0.8155 when three outlier models (GFDL-ESM2G, GFDL-ESM2M and GISS-E2-H) are excluded.