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Abstract

Many water quality and ecosystem functions performed by streams occur in the benthic biolayer, the biologically active upper

(˜5 cm) layer of the streambed. Solute transport through the benthic biolayer is facilitated by bedform pumping, a physical

process in which dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and dunes) drive

flow across the sediment-water interface. In this paper we derive two predictive modeling frameworks, one advective and the

other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks closely reproduce

patterns and rates of bedform pumping previously measured in the laboratory, provided that the diffusion model’s dispersion

coefficient declines exponentially with depth. They are also functionally equivalent, such that parameter sets inferred from

the advective model can be applied to the diffusive model, and vice versa. The functional equivalence and complementary

strengths of these two models expands the range of questions that can be answered, for example by adopting the advective

model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on flow-dependent

processes, and the diffusive model to study problems where multiple transport mechanisms combine (such as bedform pumping

and turbulent diffusion). By unifying advective and diffusive descriptions of bedform pumping, our analytical results provide a

straightforward and computationally efficient approach for predicting, and better understanding, solute transport in the benthic

biolayer of streams and coastal sediments.
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• Parallel advective and diffusive models of solute transport through the benthic biolayer of 20 
streams by bedform pumping are derived 21 

• The two models are functionally equivalent provided that the diffusion model’s 22 
dispersion coefficient decays exponentially with depth  23 

• Both frameworks closely reproduce measured patterns and rates of bedform pumping, 24 
and provide complementary predictive capabilities  25 
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Abstract. Many water quality and ecosystem functions performed by streams occur in the 26 

benthic biolayer, the biologically active upper (~5 cm) layer of the streambed. Solute transport 27 

through the benthic biolayer is facilitated by bedform pumping, a physical process in which 28 

dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and 29 

dunes) drive flow across the sediment-water interface. In this paper we derive two predictive 30 

modeling frameworks, one advective and the other diffusive, for solute transport through the 31 

benthic biolayer by bedform pumping. Both frameworks closely reproduce patterns and rates of 32 

bedform pumping previously measured in the laboratory, provided that the diffusion model’s 33 

dispersion coefficient declines exponentially with depth. They are also functionally equivalent, 34 

such that parameter sets inferred from the advective model can be applied to the diffusive model, 35 

and vice versa. The functional equivalence and complementary strengths of these two models 36 

expands the range of questions that can be answered, for example by adopting the advective 37 

model to study the effects of geomorphic processes (such as bedform adjustments to land use 38 

change) on flow-dependent processes, and the diffusive model to study problems where multiple 39 

transport mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 40 

advective and diffusive descriptions of bedform pumping, our analytical results provide a 41 

straightforward and computationally efficient approach for predicting, and better understanding, 42 

solute transport in the benthic biolayer of streams and coastal sediments. 43 

 44 

  45 
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Plain Language Summary 46 

How far and fast pollutants travel downstream is often conditioned on what happens in a thin 47 

veneer of biologically active bottom sediments called the benthic biolayer. However, before a 48 

pollutant can be removed in the benthic biolayer it must first be transported across the sediment-49 

water interface and through the interstitial fluids of these surficial sediments. In this paper we 50 

demonstrate that one important mechanism for transporting solutes to, and through, the benthic 51 

biolayer—bedform pumping—can be interchangeably represented as either a two-dimensional 52 

advective process or a one-dimensional dispersion process. The complementary nature of these 53 

models expands the range of benthic biolayer processes that can be studied and predicted with 54 

the end goal of improving coastal and stream water quality.     55 

  56 
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1. Introduction 57 

The movement of water into and out of the hyporheic zone, or “hyporheic exchange”, occurs 58 

over a wide range of spatial (and temporal) scales, from >10 km (>1 year) to <1 m (<1 hr) 59 

(Boano et al., 2014; Gomez-Velez and Harvey, 2014; Wörman et al., 2007). This >103 range of 60 

temporal and spatial scales raises trade-offs—relative to residence times, reaction times, and 61 

exchange rates—that can influence the hyporheic zone’s ability to process nutrients and other 62 

pollutants (Harvey et al., 2013). For example, Gomez-Velez et al. (2015) evaluated the residence 63 

time/exchange rate trade-off for aerobic respiration and denitrification in the Mississippi River 64 

Network, calculating for each reach a so-called Reaction Significance Factor, RSF (Harvey et al., 65 

2013). In the RSF framework, more nutrients are removed when hyporheic zone residence times 66 

are comparable to reaction times and the uptake length is short compared to the reach length (i.e., 67 

the RSF is large). These authors found that the smallest scales of hyporheic exchange are the 68 

most important for nutrient processing in streams, with RSFs consistently larger for vertical 69 

exchange over submerged ripples and dunes (length-scales of the order of 100 m) compared to 70 

lateral exchange over larger geomorphic features such as river bars and meandering banks 71 

(length-scales of the order of 102 to 103 m). This conclusion, which is based on physical 72 

arguments, is reinforced by findings that microbial biomass and nitrification and denitrification 73 

potential tend to be concentrated in the upper 5 cm of the streambed, a region of the hyporheic 74 

zone known as the “benthic biolayer” (Tomasek et al., 2018; Knapp et al., 2017; Caruso et al., 75 

2017). Collectively, these results underscore the importance of elucidating physical mechanisms 76 

responsible for hyporheic exchange at the scale where nutrient transformations primarily occur; 77 

that is, in the benthic biolayer. 78 
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At the scale of the benthic biolayer one important driver of hyporheic exchange is 79 

bedform pumping, which occurs when dynamic and static pressure variations over the surface of 80 

bedforms (e.g., ripples and dunes) drive flow across the sediment-water interface (SWI) in 81 

spatially isolated upwelling and downwelling zones (Azizian et al., 2015; Azizian et al., 2017; 82 

Grant et al., 2012; Grant et al., 2014; Fleckenstein et al., 2010; Cardenas et al., 2008; Elliot and 83 

Brooks, 1997a,b; Thibodeaux and Boyle, 1987) (Figure 1a). Since its discovery in 1987 84 

(Thibodeaux and Boyle, 1987), a number of analytical models have been proposed to describe 85 

bedform pumping and its influence on stream water quality (reviewed in Boano et al., 2014). 86 

Generally, these models can be grouped depending on whether they conceptualize bedform 87 

pumping as an advective or diffusive process. Advective models are notable for their relatively 88 

faithful representation of the laminar flow fields generated by bedform pumping (Elliott and 89 

Brooks 1997a,b). An advantage of diffusive models is their ability to incorporate multiple 90 

mechanisms for mass transport across the SWI (i.e., not just bedform pumping) including 91 

molecular diffusion, turbulent diffusion and dispersion (Voermans et al., 2017; Voermans et al., 92 

2018; Grant et al., 2018a; Grant et al., 2018b; Grant et al., in review).  93 

As commonly implemented, both types of analytical models rely on multiple assumptions 94 

that limit their practical utility: (1) solute concentration in the overlying water column is assumed 95 

constant in time; (2) two-way coupling across the SWI—whereby mass transfer out of the 96 

streambed alters mass concentration in the overlying water column which, in turn, alters mass 97 

transfer into the streambed, and so on—is not accounted for; (3) diffusive mixing in the 98 

streambed is constant in depth, while the interstitial flow field generated by bedform pumping 99 
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decays exponentially (Elliott and Brooks, 1997a); and (4) some published diffusive models fail  100 

to account for the finite porosity of the streambed, a violation of mass balance that can bias 101 

estimates of the diffusivity downwards by a factor of ten (Grant et al., 2012).  102 

 
 

Figure 1. (a) Conceptual diagram of hyporheic exchange induced by advective flow across 

stationary bedforms. Shown are bedform morphology, streamlines through the sediment, 

pressure variation over the surface of the SWI, and upwelling and downwelling zones 

(upward and downward facing arrows). (b) A simplified analytical model of this process, 

the bedform pumping model (BPM), assumes a sinusoidal pressure head variation over a flat 

SWI. Streamlines through the sediment consist of repeating identical (or mirror image) unit 

cells (a single unit cell is indicated by the two red vertical dotted lines). (c) Blow-up of the 

unit cell extending from  to . Each streamline in the unit cell is uniquely 

identified by where it enters the sediment at , . Shown are the solute 

concentrations at the entrance, , and exit, , points of a single streamline, 

where  is the residence time of the streamline that enters the sediment at .  
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In this paper we derive two parallel analytical frameworks, one advective and the other 103 

diffusive, that collectively address the model limitations noted above. The paper is organized as 104 

follows. In Section 2 we review a canonical analytical model for advective bedform pumping 105 

originally developed by Elliott and Brooks (1997a,b) (Section 2.1), show that its residence time 106 

distribution closely follows the extreme value Fréchet distribution (Section 2.2), and derive from 107 

this result a set of fully coupled solutions for the evolution of solute concentration in the water 108 

and sediment columns of a closed system (Section 2.3). In Section 3 we derive a parallel 109 

diffusive analytical framework for bedform pumping (Section 3.1), show how the choice of a 110 

diffusivity profile (constant or exponentially declining) leads to different Green’s function (Leij 111 

et al., 2000) representations of mass transport in the streambed (Section 3.2), and then derive 112 

from these Green’s functions a set of fully coupled solutions for the evolution of solute 113 

concentration in the water and sediment columns of a closed system (Section 3.3). We test these 114 

models against previously published measurements of unsteady solute transport across artificial 115 

and natural bedforms in a recirculating flume (Section 4). Discussion of these results are 116 

presented in Section 5 and conclusions in Section 6. 117 

2. Advective Bedform Pumping Model (BPM) 118 

2.1 Canonical Solution by Elliott and Brooks (EB)  119 

A canonical advective model of bedform pumping (originally solved by Vaux (1968) and 120 

expanded on by Elliott and Brooks (1997a,b)), hereafter referred to as the bedform pumping 121 

model (BPM), assumes that hyporheic exchange is driven by a sinusoidal variation of pressure 122 

head over a flat SWI (Figure 1b). The wavelength  [L] of the pressure wave corresponds to the 123 

wavelength of the bedform, and the trough and peak of the pressure wave correspond to where 124 

the velocity boundary layer detaches (at the bedform crest) and reattaches (on the lee side of the 125 

λ
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bedform), respectively (Cardenas and Wilson, 2007a,b; Sawyer and Cardenas, 2009). If the 126 

hydraulic conductivity  [L T-1] and porosity  of the streambed are constant, Darcy’s Law and 127 

the continuity equation can be jointly solved to yield the BPM’s well-known formulae for the 128 

two-dimensional pressure head distribution and velocity field in the interstitial pores of the 129 

hyporheic zone (equations (R1) - (R5), Figure 1b) (Elliot and Brooks 1997a,b).  130 

 As documented in Supplemental Information (Text S1), if the sediment bed is initially 131 

solute free (at ) and the solute in question is conservative (i.e., inert and does not adsorb to 132 

sediments) the average interfacial flux,  [M L-2 T-1], of mass into the streambed can be 133 

represented as a convolution over all past water column concentrations,  [M L-3]: 134 

        (1a) 135 

         (1b) 136 

           (1c) 137 

The function  [-] is the probability density function (PDF) form of the BPM’s residence 138 

time distribution (RTD), defined such that the quantity  is the fraction of water 139 

circulating through the hyporheic zone with dimensionless residence times in the range  to 140 

. The variable  appearing on the right hand side of equation (1a) is the maximum Darcy 141 

flux of water across the SWI, and time and residence time (  and  , respectively) 142 

have been scaled by a characteristic timescale for the transport of solute through a bedform: 143 

 (all BPM variables defined in Figure 1).  144 

Kh θ
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2.2. The Fréchet Distribution and the BPM’s Residence Time Distribution (RTD) 145 

For any choice of the dimensionless residence time , numerical evaluation of the BPM’s RTD 146 

requires two steps. First, the dimensionless starting position,  [-], of the streamline in the 147 

unit cell with dimensionless time  (see Figure 1c) is obtained by numerically solving the 148 

implicit expression for  (equation (1c)). This estimate of  is then substituted into the 149 

RTD formula (equation (1b)) to obtain the fraction of flow leaving the hyporheic zone with that 150 

dimensionless residence time. Because hyporheic zone residence times vary over many orders of 151 

magnitude, it is convenient to divide the unit area under the RTD into evenly spaced logarithmic 152 

increments of dimensionless residence time (Azizian et al., 2017): 153 

        (2a) 154 

          (2b) 155 

The cumulative distribution function (CDF) form of the RTD appearing in equation (2b),  156 

[-], is defined as the fraction of water circulating through the hyporheic zone with dimensionless 157 

residence time of  or younger; the PDF and CDF forms of the RTD are related in the usual 158 

way: . As demonstrated in the Supplemental Information (Text S2), our 159 

definition of  is mathematically consistent with the one derived by Elliott and Brooks 160 

(hereafter, EB) in their original publication of the BPM (Elliott and Brooks, 1997a).   161 

The BPM’s RTD spans a thousand-fold change in dimensionless residence times, from 162 

 to  (black curves in Figures 2a and 2b). It is well described by both the Fréchet 163 

and Pareto distributions, reasonably well described by the Log-Normal distribution, and poorly 164 

described by the Gamma and Exponential distributions (colored curves in the figure). The 165 

τ

x0 τ( )

τ

x0 τ( ) x0 τ( )

fRTD log10τ( )= dFRTD
d log10τ

=2.303τ fRTD τ( )

FRTD τ( )=1−cos x0 τ( )⎡
⎣

⎤
⎦

FRTD τ( )

τ

fRTD τ( )= dFRTD τ( ) dτ

FRTD τ( )

t <0.1 t >100
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remarkable similarity between the BPM’s RTD and the Fréchet distribution—a heavy-tailed 166 

extreme value distribution (Kotz and Nadarajah, 2000)—has not, to our knowledge, been noted 167 

in the literature. More commonly, the power-law or Pareto distribution is adopted to represent 168 

hyporheic exchange (Bottacin-Busolin and Marion, 2010). However, the three-parameter version 169 

of the Pareto distribution was required to obtain a reasonable match to the BPM’s RTD and, even 170 

then, the Pareto distribution ranked second behind the (two-parameter) Fréchet distribution (see 171 

Kolmogorov-Smirnov ranking in Table 1). The log-normal distribution, which is sometimes 172 

used to model residence times in the hyporheic zone (e.g., Wörman et al., 2002; Azizian et al., 173 

 
Figure 2. (a) CDF representation of the BPM’s RTD (thin black curve) plotted against 

log-transformed dimensionless residence time. Optimized CDFs for five other probability 

distributions are shown. These five distributions were optimized by randomly sampling the 

BPM’s RTD 10,000 times and employing maximum likelihood estimation to infer 

distribution parameter values from these realizations. (b) The PDF form of the same 

distributions shown in (a). The vertical axis represents the change in probability density 

per (base 10) logarithmic change in dimensionless residence time,  (see 

equation (2a) and discussion thereof). The mathematical definition of these distributions 

and their inferred parameter values are summarized in Table 1.  
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2017), underpredicts the RTD’s heavy tail but is otherwise comparable to the BPM’s RTD 174 

(compare green and black curves, Figure 2b). The Gamma distribution has been used to 175 

represent the RTD of water parcels moving through hillslopes (Kirchner et al., 2000; Leray et al., 176 

2016) while the Exponential RTD underpins the Transient Storage Model, a popular hyporheic 177 

exchange modeling framework (Knapp and Kelleher, 2020)). Based on the results in Figure 2 178 

these last two distributions should not be used to represent the BPM’s RTD. For the analysis that 179 

follows we adopted the optimized Fréchet distribution in place of the BPM’s RTD for three 180 

reasons: (1) the Fréchet distribution is parsimonious and closely matches the BPM’s actual RTD 181 

(Table 1 and Figure 2); (2) this approach side steps the numerical challenges associated with the 182 

two-step process required to solve the BPM’s RTD (see equation (1b) and discussion thereof); 183 

and, (3) the Laplace Transform of the Fréchet distribution can be computed analytically, which 184 

simplifies the mass balance analysis described next. 185 

2.3 Unsteady Solute Concentration in the Water Column of a Closed System 186 

An example of bedform pumping in a closed system is the recirculating flume set-up illustrated 187 

in Figure 3a. A mass  of a conservative solute is added to the water column of a solute-free  188 

recirculating flume at time . After a short mixing period, the concentration in the water 189 

column is approximately where  is the volume of water above the sediment bed and 190 

in the recirculating pipes. At this point in time, the second term on the right hand side of equation 191 

(1a) is negligible (because no solute has yet passed through the hyporheic zone and returned to 192 

the stream) and therefore the BPM predicts that the initial flux of solute into the bed should be: 193 

. With increasing elapsed time ( ) the solute concentration in the overlying water 194 

column declines (Figure 3b), the integral term in equation (1a) becomes progressively larger in 195 

magnitude (as solute in the streambed begins to return to the stream), and the net flux across the 196 

M

t =0

C0 =M Vw Vw

J0 =C0um π t >0
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SWI asymptotically approaches zero (Figure 3c). In practice, if the experiment runs long 197 

enough, the water column solute concentration will approach an equilibrium value,  [M L-3],  198 

reflecting a well-mixed final state in which the solute concentration is the same everywhere in 199 

the overlying water column and the interstitial fluids of the sediment bed: 200 

         (3) 201 

Ceq

Ceq =Ceq C0 =1 dbθ hw +1( )

 
Figure 3. (a) A conceptual diagram of a recirculating flume experiment, in which 

streamflow over the top of stationary bedforms induces bedform pumping and hyporheic 

exchange. The water column has an “effective depth”  equal to the total volume  of 

water above the SWI and in the recirculation pipes divided by the area of the SWI . (b) 

In a typical step-change experiment, the concentration of a conservative solute in the 

overlying water column  is increased suddenly to  at time , and is everywhere 

equal to zero for . Mixing across the SWI causes  to decline toward an 

equilibrium value. (c) Mass flux across the SWI  also increases to a maximum of   at 

time , and then declines toward zero over time. 
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New variables in equation (3) include the effective water depth  [L] (equal to the volume of 202 

water  [M L-3] in the overlying water column and recirculating pipes divided by the surface 203 

area  [L2] of the bed, ), sediment bed depth  [L] and porosity  [-]. As the BPM 204 

assumes the streambed is infinitely deep, this analytical model never achieves equilibrium. 205 

One challenge associated with deriving a solution for the recirculating flume problem 206 

illustrated in Figure 3a is the two-way coupling of solute concentrations above and below the 207 

SWI. This two-way coupling is evident when mass balance is performed over the recirculating 208 

flume’s water column:  209 

        (4) 210 

Here, the water column concentration has been scaled by its initial concentration at  (211 

) and the variable  represents a characteristic timescale for all water in the 212 

overlying water column and recirculating pipes to undergo hyporheic exchange. Two-way 213 

coupling manifests mathematically as a dependence of the time rate of change of the water 214 

column solute concentration (left hand side of equation (4)) on the entire past history of water 215 

column solute concentration filtered through the hyporheic zone’s RTD (convolution integral on 216 

the right hand side of equation (4)). In addition to providing an elegant interpretation of two-way 217 

coupling, the convolution representation of hyporheic exchange flux permits an analytical 218 

solution to the overall mass balance problem. This is because the Laplace Transform of a 219 

convolution of two variables is equal to the product of their respective Laplace Transforms 220 

(Graff, 2004). Thus, after applying the Laplace Transform to equation (4), solving for the solute 221 

concentration in the water column becomes a simple algebraic exercise: 222 

hw

Vw

Ab hw =Vw A
b

db θ

T
tT

dCw
d t

= −Cw t( )+ Cw t −τ( ) fRTD τ( )dτ
0

t

∫

t =0

C =C C0 T = hwπ um
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        (5a) 223 

Here, the variable  is a dimensionless timescale for hyporheic zone processing of water 224 

above the streambed,  is a dimensionless form of the Laplace transform variable and the 225 

symbol  denotes the inverse Laplace Transform which, in practice, is solved numerically 226 

(see Section 4.1). The Laplace Transform of the Fréchet distribution can be computed 227 

analytically by applying the Right Shift rule (Graf, 2004) where  is the modified Bessel 228 

function of the second kind and  is a dummy integration variable: 229 

      (5b) 230 

Because the Fréchet distribution parameters ( , ) are known (see Table 1), we can infer from 231 

equation (5a) that  depends on a single dimensionless parameter, . The two 232 

timescales appearing in this dimensionless parameter depend on physical characteristics of the 233 

recirculating flume as follows: 234 

           (6a) 235 

           (6b) 236 

Therefore, implementation of this analytical solution requires knowledge of the bedform 237 

wavelength , streambed porosity , streambed hydraulic conductivity , the effective depth of 238 

the water column (taking into account the water in the recirculating system for the system 239 

illustrated in Figure 3a) , and the half-amplitude of the pressure head variation . With the 240 
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⎡
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exception of , these parameters are readily measured or predicted (e.g., the hydraulic 241 

conductivity can be estimated from the median grain diameter of unconsolidated sediments, for 242 

example using the Kozeny-Carman equation (McCabe et al. 2010)). To estimate , the widely 243 

cited empirical formula proposed by EB (based on pressure measurements over a triangular 244 

bedform reported by Fehlman (1985)) can be employed: 245 

           (7) 246 

The variables  [L T-1] and  [L] represent, respectively, the average velocity and depth of the 247 

overlying stream,  [L] is bedform height, and the empirical exponent is taken as either  248 

(if ) or  (if ). The value of the multiplicative constant (0.28) on the 249 

right hand side of equation (7) can be adjusted depending on the height-to-wavelength ratio of 250 

the bedform (Shen et al., 1990; Fox et al., 2014). 251 

2.4 Unsteady Interstitial Solute Concentration in the Sediment Column of a Closed System 252 

A corresponding analytical solution can be derived for the spatiotemporal evolution of solute 253 

concentration in the interstitial fluids of the sediment bed. The solution is premised on the idea 254 

that the interstitial concentration of a conservative solute at any dimensionless time  is equal to 255 

the concentration that was present in the water column some location-dependent dimensionless 256 

residence time ago: . New variables appearing here include the 257 

dimensionless interstitial solute concentration, , where  [M L-3] is the 258 

solute mass per unit volume of interstitial fluid (i.e., as opposed to per bulk sediment volume) 259 

and  is a dimensionless form of the location-dependent residence time function, 260 

 [T], defined as the time it takes interstitial water parcels to travel from the SWI to any 261 
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 position in the sediment bed (Azizian et al., 2015) (derivation in Supplemental 262 

Information, Text S3): 263 

, ,        (8a) 264 

The unsteady solution for the interstitial concentration of a conservative solute in the streambed 265 

directly follows from this last result, where the time-dependent solute concentration in the water 266 

column, , is given by equation (5a): 267 

, ,       (8b) 268 

It should be noted that equation (8a) is valid only within the bounds of the unit cell illustrated in 269 

Figure 1c (i.e., ). Outside of the unit cell the equation must be translated, with or 270 

without reflection, using the following substitution rule for the dimensionless horizontal 271 

coordinate: , where the integer  is given by  and the function  272 

rounds to the nearest positive or negative integer value. Finally, a solution for the location of the 273 

concentration front in the sediment bed at any dimensionless time  can be obtained by 274 

substituting  for  on the left hand side of equation (8a), and numerically solving the resulting 275 

implicit expression for  given , or vice versa. The implicit solution for the concentration 276 

front also applies to locations outside of the unit cell (i.e., for  or ) after 277 

translation with or without reflection, using the substitution rule presented above for . 278 

3. Diffusive Model of Hyporheic Exchange by Bedform Pumping 279 
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Advective models, like the BPM, are premised on the idea that pore-scale advection dominates 280 

the transport of solutes in the hyporheic zone. Over the years, researchers have also explored the 281 

possibility of employing diffusive models to describe hyporheic exchange, generally, and 282 

bedform pumping, in particular (O’Connor and Harvey (2008)). EB, for example, argued that a 283 

diffusivity for bedform pumping should take the form of a dispersion coefficient,  284 

[L2 T-1], where  is a characteristic pore-scale velocity associated with the BPM (see 285 

equation (R5) in Figure 1)) and the mixing length-scale is the bedform wavelength,  (from 286 

equation (11) in Elliott and Brooks (1997b)). Applied to mass transfer in recirculating flumes, 287 

the constant diffusivity model predicts that the water column solute concentration, and the 288 

penetration depth of solute into the streambed, should both scale with the square root of time 289 

(Elliott and Brooks (1997a,b)). In their recirculating flume experiments, EB found that mass 290 

transfer across the SWI followed the predicted square root dependence until a transition time of 291 

around, . Afterwards, measured mass transfer rates fell below those predicted by the 292 

constant diffusivity model. Similarly, Marion and Zaramella (2005) reported that constant 293 

diffusivities inferred from recirculating flume studies decline as the timescale over which 294 

hyporheic exchange is measured increases.  295 

From a mechanistic perspective, all of these problems with the constant diffusivity model 296 

can be rationalized by noting that, as time increases, mass transfer across the SWI slows 297 

dramatically as the relative contribution of deeper streamlines to bedform pumping increases 298 

(i.e., streamlines with starting positions in the range, , see Section 1 of SI). We 299 

hypothesize that this effect can be represented by requiring the dispersion coefficient to decline 300 

exponentially with depth, in keeping with the exponentially declining velocity field that 301 

underpins hyporheic exchange by bedform pumping (see equations (R2) - (R4) in Figure 1).  302 

E ≈0.04λum θ

um θ

λ

tc ≈8λθ um
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3.1. Governing Equations for Diffusive Bedform Pumping in a Closed System 303 

Bedform pumping generates concentration fields in the interstitial fluids of the sediment bed that 304 

are at least two-dimensional (e.g., for artificially shaped triangular bedforms in the laboratory) 305 

and more often three-dimensional (e.g., in natural streams). However, if the goal is to predict 306 

average rates of mass transfer over, for example, a stream reach or a recirculating flume, 307 

knowledge of the two- and three-dimensional flow and subsurface concentration fields are not 308 

required. Thus, for many applications, mass transport and mixing by bedform pumping in the 309 

benthic biolayer can be conceptualized as an unsteady one-dimensional diffusion problem, for 310 

which the horizontally averaged vertical flux,  [M L-2 T-1], of solute through the sediment 311 

is described by a flux-gradient diffusive model where the mixing coefficient, or effective 312 

diffusivity  [L2 T-1], varies with depth through the benthic biolayer: 313 

          (9a) 314 

Grant et al. (in review) demonstrated that equation (9a) is a reasonable descriptor of vertical 315 

solute transport by turbulent pumping through the benthic biolayer of a flat streambed, provided 316 

that the diffusion coefficient declines exponentially through the sediment bed. In this paper we 317 

hypothesize that a similar result applies to bedform pumping, but with the effective diffusivity 318 

replaced by an exponentially declining dispersion coefficient, . The surficial 319 

dispersion coefficient at the SWI,   [L2 T-1], and the inverse decay length-scale,  [L-1], are 320 

emergent properties of the two and three dimensional flow and concentration fields that drive 321 

bedform pumping; i.e., they are determined by spatial correlations between the time-averaged 322 

vertical component of the velocity field and the local mean solute concentration (Voermans et 323 

al., 2017). The corresponding one-dimensional mass balance equation can be written as follows: 324 

J y ,t( )

Deff y( )

J y ,t( )= −Deff y( )∂ θCs( )
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          (9b) 325 

Equation (9b) equates the accumulation of mass in a differential horizontal slice of the sediment 326 

bed (left hand side) to the vertical diffusive transport (right hand side) of a conservative (non-327 

reactive and non-adsorbing) solute (Incropera et al., 2007). The coordinate  increases with 328 

depth into the streambed and its origin (at ) is positioned at the horizontal plane of the SWI 329 

(Figure 1b).  330 

Substituting the proposed functional form for the dispersion coefficient into equation (9b 331 

and assuming streambed porosity  does not vary substantially over the vertical dimension of 332 

the benthic biolayer (ca., 5 cm) (Knapp et al., 2017), we arrive at the following mass balance 333 

equation for interstitial solute transport in the sediment bed: 334 

, ,          (9c) 335 

In equation (9c), time, , has been scaled by a characteristic timescale for dispersive mass 336 

transport through the benthic biolayer, , depth has been scaled by the inverse mixing 337 

length-scale, , and the interstitial solute concentration has been scaled by the initial 338 

concentration in the overlying water column,  (same as for the BPM, see Section 2.3). 339 

By analogy to the BPM, we also assume that the streambed is initially solute free (equation (9d)), 340 

solute concentration drops off to zero deep in the streambed (equation (9e)), and the interstitial 341 

solute concentration at the top of the streambed equals the solute concentration in the overlying 342 

water column (equation (9f)) where  [-] is the Heaviside function (included here to satisfy 343 

the requirements of Duhamel’s Theorem described later):  344 

∂
∂t

θCs( )= ∂
∂ y

E y( )∂ θCs( )
∂ y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

y

y =0

θ

∂Cs
∂t

= e− y
∂2Cs
∂ y2

−e− y
∂Cs
∂ y

y >0 t >0

t = t tE

tE =1 a2E0( )

y = ay

Cs =Cs C0

H t( )



 20 

           (9d) 345 

           (9e) 346 

,        (9f) 347 

In writing equation (9f) we have assumed that the interstitial concentration at the SWI is equal to 348 

the solute concentration in the overlying water column, which implies that mass transfer into the 349 

streambed is not rate-limited by convective mass transfer across the concentration boundary 350 

layer above the streambed; i.e., the dimensionless Biot Number—the ratio of timescales for 351 

diffusive mixing in the streambed and convective mass transfer across the turbulent boundary 352 

layer above the streambed—is much greater than unity (Incropera et al., 2007).  353 

For a closed system with a well-mixed water column, like the recirculating flume 354 

illustrated in Figure 3a, mass balance over the water column takes the following form: 355 

          (10a) 356 

In this equation, the change of solute mass in the overlying water column and recirculation 357 

system of the flume (left hand side) equals the mass transfer rate across the SWI by bedform 358 

pumping (represented here as a dispersive process, right hand side). Streambed porosity  359 

appears on the right-hand side of the equation to account for the abrupt change in area over 360 

which solute mass transport occurs above and below the SWI (Grant et al., 2012). Expressing 361 

equation (10a) using the dimensionless variables introduced above for the diffusion equation, we 362 

obtain equation (10b) where  is a scaled form of the effective water depth. 363 

          (10b) 364 
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            (10c) 365 

3.2. Duhamel’s Theorem and Green’s Functions  366 

As detailed in Grant et al. (in review), we can link the mass balance equations above (equation 367 

(10b)) and below (equation (9c)) the SWI, and thereby account for two-way coupling across the 368 

SWI, using Duhamel’s Theorem, an analytical approach for solving the diffusion equation in 369 

cases where the forcing function at one boundary is a piece-wise continuous function of time 370 

(Perez Guerrero et al., 2013). Duhamel’s Theorem allows us to express the evolution of 371 

interstitial solute concentration in the sediment bed as a convolution of the water column 372 

concentration  and a so-called auxiliary function  where  is a dummy integration 373 

variable (Perez-Guerrero et al., 2013): 374 

        (11a) 375 

The auxiliary function is a solution to the same system of equations (equations (9c), (9d), (9e), and 376 

(9f)), but with the inhomogeneous term replaced by a unit step function (compare equations (9f) 377 

and (11e)): 378 

          (11b) 379 

          (11c) 380 

           (11d) 381 

          (11e) 382 

Substituting the coordinate transformation, , into equation (11b) (Yates, 1992) and solving 383 

the resulting system of equations in the Laplace Domain, we arrive at the following analytical 384 
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solution for the auxiliary function where  is a dimensionless form of the Laplace 385 

Transform variable: 386 

         (12) 387 

Duhamel’s Theorem (equation (11a)) can also be expressed as a convolution of the 388 

dimensionless water column concentration, , and a so-called Green’s function,  [T-1], 389 

which is scaled here by the dispersive mixing timescale introduced earlier, :  390 

         (13a) 391 

           (13b) 392 

Substituting equation (12) into equation (13b) yields a Green’s function for the exponentially 393 

declining diffusivity profile: 394 

         (13c) 395 

The similarity between equation (13a) and the convolution integral derived earlier for the BPM 396 

(equation (1a)) is striking. In both cases, the water column concentration is convolved with a 397 

function (Green’s function in the case of the diffusive model and an RTD function in the case of 398 

the advective model) that captures the response of the streambed to an impulsive injection of 399 

mass into the SWI at dimensionless time , , where  [-] is the Dirac Delta.  400 

The Green’s function above (equation (13c)) is specific for the choice of an exponentially 401 

decaying diffusivity profile. For the same set of initial and boundary conditions, a second 402 

Green’s function can be derived for a constant diffusivity profile (the so-called “Signaling 403 
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Problem”, see Gorenflo and Mainardi, 404 

1988): . With 405 

these two Green’s functions we can 406 

interrogate how the choice of a diffusivity 407 

profile (i.e., exponentially declining or 408 

constant) influences the temporal scaling of 409 

mass remaining in the sediment bed 410 

following an impulsive input of mass at the 411 

SWI at time . This is because, for , 412 

the upper boundary condition for these two 413 

Green’s functions is zero, 414 

, and therefore solute 415 

mass in the sediment bed, , 416 

will diffuse back into the water column after its injection at time : 417 

         (14a) 418 

             (14b) 419 

As might be expected based on the discussion at the beginning of Section 3, the constant 420 

diffusivity model predicts solute mass remaining in the sediment bed declines inversely with the 421 

square root of time (equation (14b)). The exponentially declining diffusivity model (equation 422 

(14a)) exhibits this same  scaling initially, but falls off more rapidly after  423 
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(Figure 4). This result can be rationalized by noting that, for an exponentially declining 424 

diffusivity profile, deeper portions of the streambed are relatively inaccessible to solute injected 425 

at the SWI at  and consequently contribute little to the release of stored mass at long times. 426 

The similarity between the scaling behavior illustrated in Figure 4 and the scaling behavior 427 

described earlier for mass transfer across the SWI in recirculating flumes (see preamble to 428 

Section 3) is the first indication that our overarching hypothesis—that bedform pumping can be 429 

represented by an exponentially decaying diffusivity model—may be valid.  430 

3.3. Solute Concentration in the Water and Sediment Columns of Closed System 431 

From the results presented above, a set of explicit solutions can be derived for solute 432 

concentration in the water column and interstitial fluids of a closed system (Grant et al., in 433 

review): 434 

         (15a) 435 

        (15b)  436 

These analytical solutions are written in terms of the Laplace transform of the Green’s function 437 

and its derivative, which, in this context, are tailored to the choice of diffusivity profile. For an 438 

exponentially declining diffusivity profile, they are as follows: 439 

         (15c) 440 

           (15d) 441 
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For a constant diffusivity profile, these two functions can be computed directly from the solution 442 

to the Signaling Problem introduced earlier: 443 

           (15e) 444 

           (15f) 445 

4. Experimental Evaluation of Advective and Diffusion Models of Bedform Pumping 446 

4.1. EB’s Bedform Pumping Dataset and Model Optimization 447 

To test the parallel advective and diffusive analytical frameworks derived above, we turned to 448 

one of the first published recirculating flume experiments specifically designed, along the lines 449 

of Figure 3a, to investigate the unsteady transfer of a conservative solute across the SWI by 450 

bedform pumping (Elliott and Brooks, 1997b). EB’s experiments were conducted with stationary 451 

bedforms (either artificial triangular bedforms or natural ripples), a non-adsorbing and stable 452 

fluorescent dye (Lissamine), and under various flow velocities (8.6 to 13.2 cm s-1), water depths  453 

(1.14 to 2.54 cm) and shear velocities (1.3 to 3 cm s-1) (Experiment ID’s 8, 9, 12, 14 – 17). The 454 

sediment bed, which ranged in depth from 12.5 to 22.0 cm depending on the experiment, 455 

consisted of medium or fine-grained unconsolidated sand of hydraulic conductivity  0.11 456 

and 0.0079 cm s-1 and porosity  0.325 and 0.295, respectively (a summary of experimental 457 

conditions is included in the Supplemental Information, Table S1). Published over 20 years ago, 458 

EB’s study remains one of the few where the evolution of dye concentration is followed both 459 

above and below the SWI—a feature we will take advantage of here. 460 

Experimental evaluation of our analytical models was carried out in two steps. First, we 461 

fit the advective and diffusive models for  (equations (5a) and (15a), respectively) to EB’s 462 
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measurements of dye concentration in the water column over time. This was accomplished using 463 

the NonLinearModelFit routine in the Mathematica computing package (v.12, Wolfram 464 

Research, Inc.) implemented on UC Irvine’s High-Performance Computing Cluster. Laplace 465 

inversions were carried out by Gaussian Quadrature in the Mathematica package authored by U. 466 

Graf (Graf, 2004). This fitting exercise yielded, for each of EB’s experiments, inferred values for 467 

the half-amplitude of the pressure head variation and effective water depth (  and , advective 468 

model) and the surficial dispersion coefficient and inverse mixing length-scale (  and , 469 

diffusive model), together with the standard deviation of each parameter and the model’s 470 

coefficient of variation ( ). For consistency,  values inferred from the advective model were 471 

applied to the diffusive model; all other parameters ( , , , and ) were reported by EB for  472 

each experiment (see Table S1). In the second step, parameter values inferred from the water 473 

column studies were used to predict the movement of dye through the interstitial fluids of the 474 

streambed over time (equations (8b) and (15b)). These model predictions were compared to 475 

observations of the dye front in the sediment bed, which EB recorded by periodically marking 476 

the location of the leading edge of the dye plume on the side of their flume (the wall of the flume 477 

was transparent, and dye was visualized with a hand-held UV light).  478 

4.2. Evaluation of Model-Predicted Water Column Solute Concentrations 479 

Across all seven experiments, the advective model (equation (5a)) and diffusive model (with an 480 

exponentially declining diffusivity profile, equation (15a)) closely conform to EB’s time series 481 

measurements of dye concentration in the water column (  0.9998 for both models, Figure 482 

5a,b, also see Tables S2 and S3 in the Supplemental Information). For comparison, water 483 

column concentrations for Experiment #17 were also simulated with the constant diffusivity 484 

model; this involved substituting equation (15f) into equation (15a) and adopting the superficial 485 

hm hw
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diffusivity, , inferred from fitting the exponentially declining diffusivity model to the same 486 

dataset (Table S3). The constant diffusivity model also conforms to measurements of the water 487 

E0

Figure 5. Advective (a) and diffusive (b) models of bedform pumping (solid black curves) 

conform equally well to EB’s measurements of dye concentration over time (symbols), 

provided that the diffusive model’s dispersion coefficient decays exponentially with depth. 

For comparison, the constant diffusivity model’s prediction for Experiment #17 is shown 

(blue curve). (c) Surficial diffusivities inferred from the diffusive model (vertical axis) 

correlate strongly with surficial diffusivities estimated by substituting values of  inferred 

from the advective model into EB’s dispersion coefficient formula before (open circles) or 

after (blue triangles, equation (16a)) bias correction. (d) Inverse decay length scales 

inferred from the diffusive model (vertical axis) correlate strongly with the inverse of the 

average bedform wavelength (bottom axis, equation (16b). 
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column concentration until around  min1/2; thereafter, the constant diffusivity model 488 

seriously underpredicts observed concentration measurements (blue curve, Figure 5b). Water  489 

column concentrations predicted by the constant diffusivity model decline approximately linearly 490 

when plotted against , consistent with EB’s observations about the constant diffusivity model 491 

(see preamble to Section 3) and the -scaling of the constant diffusivity’s Green’s function 492 

(see equation (14b) and Figure 4).  493 

We can also evaluate the advective and diffusive models based on how well their inferred 494 

parameter values reproduce values expected based on theory or measurements. For example, 495 

values of the half-amplitude pressure head inferred from the advective model (ranging from  496 

0.04 to 0.57 mm) are similar (roughly factor of two or better) to values estimated from EB’s 497 

empirical formula (equation (7)) (ranging from  0.09 to 0.31 mm, Table S2). Likewise, 498 

values of the effective water depth inferred from the advective model (ranging from  8.8 to 499 

16.7 cm) are similar (roughly factor of two or better) to values estimated from reported flume 500 

water volume (excluding interstitial fluid) and streambed area ( 11.3 to 12.5 cm) 501 

(Table S2). Deviations between inferred and predicted (or measured) values of  and  do not 502 

necessarily imply that the model-generated values are incorrect. For example, the half-amplitude 503 

head values predicted by equation (7) are only approximately correct (Shen et al., 1990; Fox et 504 

al., 2014). Measurement errors associated with flume water volume and bed surface area (which 505 

may be difficult to define, given the undulatory nature of the SWI with bedforms) also contribute 506 

uncertainty and bias to experimental estimates of . 507 

A more rigorous assessment of the inferred parameter values can be framed as follows: 508 

Can parameter values inferred from the advective model be translated directly into parameter 509 
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values for the diffusion model and vice versa? To answer this question, we equated EB’s 510 

proposed formula for a bedform pumping dispersion coefficient to the diffusivity model’s 511 

surficial dispersion coefficient: . Substituting the BPM’s solution for the 512 

maximum Darcy flux ( , equation (R5) in Figure 1), this formula predicts that the diffusive 513 

model’s surficial dispersion coefficient is directly proportional to the advective model’s half-514 

amplitude pressure head, . When values of  inferred from the advective 515 

model are substituted into this formula, the predicted values of  are highly correlated with 516 

values of  inferred from the diffusion model (Pearson’s Correlation coefficient, ) 517 

(open black circles, Figure 5c). Adjusting the equation’s pre-factor to correct the bias evident in 518 

the figure, we arrive at the following relationship between the advective and dispersive 519 

descriptions of bedform pumping (blue filled triangles, Figure 5c): 520 

,  , ,   (16a) 521 

Likewise, the inverse decay length-scale, , inferred from the diffusion model is highly 522 

correlated ( ) with the inverse of the average bedform wavelength (Figure 5d): 523 

,         (16b) 524 

Equations (16a) and (16b) provide a direct link between our advective and diffusive descriptions 525 

of bedform pumping, such that a parameter set for one can be directly translated into a parameter 526 

set for the other. The implication is that these two descriptions of bedform pumping are, in fact, 527 

functionally equivalent, provided that the limitations with existing analytical models outlined 528 

earlier (water column concentration constant in time, diffusivity is constant in depth, two-way 529 

coupling across the SWI neglected, and the sediment bed’s finite porosity neglected) are properly 530 

addressed, as they have been in this study. Because equations (16a) and (16b) are calibrated with 531 

E0 ≈0.04λum θ

um

E0 ≈0.08πKhhm θ hm

E0

E0 R =0.99

E0 ≈0.133πKhhm θ 0.08≤Kh mms
−1⎡⎣ ⎤⎦ ≤1.1 0.042≤hm mm⎡⎣ ⎤⎦ ≤0.11 0.295≤θ ≤0.325

a

R2 =0.95

a cm−1⎡⎣ ⎤⎦ =5.28 λ cm⎡⎣ ⎤⎦−0.0882 8.8≤ λ cm⎡⎣ ⎤⎦ ≤30
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data from EB’s study alone, they are per force restricted to a limited range of flow and streambed 532 

conditions (indicated by the inequalities above). A meta-analysis is underway to evaluate the 533 

predictive power of these equations beyond the set of experiments analyzed here.    534 

4.3. Evaluation of Model-Predicted Interstitial Solute Concentrations 535 

We can also evaluate the advective and diffusive models relative to their ability to predict the 536 

unsteady transport of dye plumes through the interstitial fluids of the sediment bed.  The 537 

progression of one such plume beneath an artificial triangular ripple (EB’s Experiment #9) is 538 

reproduced in Figures 6a - d (thick dashed curves). The dye plume penetrated to a depth of 539 

about 8 cm in the first 75 minutes, but required an additional 575 minutes to progress downward 540 

another 4 cm. To compare these observations with the advective model solution, the BPM’s 541 

coordinate system must first be aligned with EB’s triangular ripple. To this end we used the  542 

parameter values estimated from the water column optimization study of Experiment #9 (see  543 

Table S2) to predict (with equation (8b)) the interstitial dye concentration in the sediment bed at 544 

 minutes, coinciding with EB’s first dye front measurement. The model’s horizontal 545 

coordinate was adjusted to align the left and right edges of the observed and predicted dye fronts. 546 

Finally, the model’s vertical coordinate was adjusted so that the top of the (flat) model domain is 547 

equidistant between the crest and trough of the triangular bedform (final alignment is shown in 548 

Figure 6a). After making these adjustments, the advective model’s predictions for the downward 549 

migration of the dye plume over time closely agree with EB’s observations of the dye front at  550 

150, 320, and 650 minutes (Figures 6b - 6d).  551 

Two-way coupling is also evident in the model-predicted interstitial concentration field. 552 

Predicted dye concentrations are elevated along the front of the plume because water parcels at 553 

the front moved into the sediment bed near time  when dye concentration in the water 554 

t =75

t =

t =0
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column was near its initial (maximum) value, . As time progresses, dye concentration in 555 

the water column declines and the trailing edge of the dye plume, which consists of younger 556 

water parcels, becomes less concentrated. This pattern—high dye concentration along the 557 

plume’s front and low concentration along the plume’s trailing edge—is particularly striking for 558 

the simulation at  (Figure 6b). Eventually the plume’s concentration field takes on a 559 

Cw =C0

t =150

 

Figure 6 (a) – (d) The downward migration of a dye plume in the sediment bed beneath an 

artificial triangular ripple during EB’s Experiment #9 (shape of the ripple indicated at the top 

of each panel). Thick black dashed curves denote the observed location of the dye front at the 

elapsed times indicated (adapted from Figure 2 of Elliott and Brooks (1997b)). Green color 

scale indicates the interstitial dye concentration predicted by equation (8b) after adjusting the 

model’s vertical and horizontal coordinates (see text). (e) Dimensionless concentration depth 

profiles at the same elapsed times predicted by the diffusive model (dashed curves) and 

horizontally averaged advective model (solid curves). 
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more uniform appearance as older water parcels (with higher dye concentrations) return to the 560 

stream along slow moving streamlines (Figure 6d). 561 

Thus far we have found little difference between our advective and diffusive models of 562 

bedform pumping. One aspect where these two models differ substantially is their respective 563 

concentration depth profiles (Figure 6e). The diffusivity model’s depth profiles are convex in 564 

shape and characterized by a diffuse concentration front that becomes increasingly smeared out 565 

over the vertical extent of the streambed with increasing time. By contrast, the advective 566 

concentration depth profiles (generated by horizontally averaging the two-dimensional 567 

concentration fields appearing in Figures 6a – 6d) are convex and characterized by persistent 568 

and very sharp concentration fronts. These contrasting shapes, which reflect the purely advective 569 

and diffusive transport mechanisms underlying the two modeling frameworks, could lead to very 570 

different predictions for the transport of reactive solutes through the benthic biolayer. This begs 571 

the question: which of these two profiles is more representative of natural systems? 572 

 To answer this question, we turned to recirculating flume experiments EB conducted 573 

with stationary natural ripples. These experiments entailed operating the flume under high flow 574 

conditions (to induce sediment transport and ripple formation) and then lowering the flow 575 

velocity (to immobilize the bedforms and conduct the dye exchange experiments). Not 576 

surprisingly, dye plumes generated by natural ripples are variable with respect to their horizontal 577 

extent and the depth to which dye penetrates the streambed (Figure 7a). This variability, which 578 

arises from variations in bedform geometry (i.e.,  height  and wavelength ) and the three-579 

dimensional nature of natural ripples, can be formally analyzed using spectral methods (e.g., 580 

Stonedahl et al. (2010)). However, if the goal is to obtain bulk estimates for the downward 581 

H λ
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progression of solute through the benthic biolayer over time, both the advective and diffusive 582 

analytical solutions derived in this study perform remarkably well (compare Figures 7a – 7c). 583 

The sharp dye fronts predicted by the advective model are comparable to patterns of dye 584 

penetration beneath “average” bedforms; e.g., the two dye plumes located 10 to 40 cm along the 585 

horizontal axis (Figure 7a). The smeared-out dye fronts predicted by the diffusive model, on the 586 

other hand, may be more representative of the concentration profile one would obtain by 587 

horizontally averaging the interstitial concentration field across all bedforms (this hypothesis 588 

could not be tested with EB’s dataset because these authors recorded the time evolution of 589 

concentration fronts, not concentration fields). What these results imply for reactive solute 590 

transport through the benthic biolayer is an interesting topic for future study.  591 

5. Discussion 592 

 
Figure 7. The downward movement of dye fronts in the sediment beneath natural ripples 

during EB’s Experiment #17: (a) dye fronts observed at the various elapsed times 

indicated (adapted from Figure 3b of Elliott and Brooks (1997b)), (b) dye fronts 

predicted by the advective model of bedform pumping, (c) concentration depth profiles 

predicted by the diffusive model of bedform pumping. The depth of the sediment bed 

reflects actual experimental conditions for this experiment ( 22.5 cm, see Table S1). 
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The functional equivalence of the analytical advective and diffusive frameworks derived here 593 

implies that their application can be tailored to the problem at hand. The advective model is a 594 

relatively faithful representation of the two-dimensional interstitial flow fields associated with 595 

bedform pumping. Consequently, this framework will be useful in cases where knowledge of 596 

flow paths through the benthic biolayer, and their associated Darcy fluxes and residence times, is 597 

required. The removal of stream borne particles in the benthic biolayer by deep bed filtration, for 598 

example, requires detailed information about the interstitial flow field. This is because, as 599 

particles move through the streambed, their filtration rate depends on the local flow velocity 600 

(through the contact efficiency  [-], see Tufenkji and Elimelech (2004)) which varies 601 

continuously along a streamline (see equations (R1)-(R5) in Figure 1). Another example is the 602 

spatial zonation of interstitial oxygen concentration beneath bedforms, including the formation of 603 

so-called “anoxic chimneys” in upwelling zones (Kessler et al., 2012; Kessler et al., 2013; 604 

Azizian et al., 2015). This biogeochemical zonation, which arises from the coupling between in-605 

bed redox reactions and bedform pumping of electron donors and acceptors, can impose 606 

significant constraints on important streambed functions, such as coupled nitrification-607 

denitrification (Kessler et al., 2013). Because the advective model’s flow field is quantitatively 608 

linked to bedform geometry and stream flow (i.e., bedform height and wavelength, as well as 609 

stream depth and velocity, see equation (7)), physicochemical (e.g., particle filtration) and 610 

biogeochemical (e.g., nutrient transformation) functions of the benthic biolayer can be tied 611 

directly to geomorphic processes, such as the adjustment of bedform morphology to changes in 612 

land use and flow regime, for example as a result of urbanization (Harvey et al., 2012).  613 

On the other hand, a strength of the diffusive model is its ability to combine multiple 614 

mechanisms for mass transport across the SWI. As noted earlier, mixing across a flat SWI can be 615 

η0
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characterized by an effective diffusivity,  , that incorporates three transport mechanisms 616 

(Richardson and Parr, 1988; O’Connor and Harvey, 2008; Grant et al., 2012; Voermans et al., 617 

2018): (1) tortuosity-modified molecular diffusion (  [L2 T-1]); (2) dispersion (  [L2 T-1]); and 618 

(3) turbulent diffusion (  [L2 T-1]). The turbulent and dispersive diffusivities increase with the 619 

Permeability Reynolds Number,  [-], a dimensionless ratio of a permeability length 620 

scale (  [L]) and the viscous length scale that governs turbulence at the surface of the 621 

streambed (ratio of the kinematic viscosity of water   [L2 T-1] and the shear velocity  [L T-1]) 622 

(Voermans et al., 2017; Voermans et al., 2018). For turbulent mass transfer across a flat SWI, and 623 

accounting for the exponential decay of diffusivity with depth, the surficial effective diffusivity 624 

exhibits different Permeability Reynolds Number scaling behavior in the dispersive ( ,625 

) and turbulent diffusive ( , ) regimes (Grant et al., in review). Our 626 

formula linking advective and dispersive descriptions of bedform pumping (equation (16a)) 627 

implies that dispersive mixing by bedform pumping also increases with the Permeability 628 

Reynold Number, . This last result can be demonstrated by substituting into equation 629 

(16a) definitions for the Darcy-Weisbach friction factor,  [-] (Sabersky and Acosta, 630 

1989) and the streambed permeability,  [L2] (McCabe et al., 2010), and noting that the 631 

friction factor will likely scale with the fraction of the water depth taken up by a bedform, 632 

. Thus, the one-dimensional diffusive framework potentially solute mixing through the 633 

benthic biolayer by molecular diffusion, turbulent dispersion, turbulent diffusion, and bedform 634 

pumping. 635 
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Another advantage of the diffusive model is that it can be readily modified to account for 636 

groundwater recharge or discharge (through the addition of an advective term to equation (9a)) 637 

and the inclusion of biogeochemical reaction networks, such as the Monod kinetic expressions 638 

associated with nitrogen cycling in streambeds (respiration, ammonification, nitrification, and 639 

denitrification (Azizian et al., 2017)). While surface water-groundwater exchange can be factored 640 

into the BPM’s flow field as well (c.f., Boano et al., 2008) doing so invalidates a key requirement 641 

of the advective model’s predictions for solute transport; namely, that the -component of the 642 

velocity is everywhere constant along a streamline (see Text S1 in Supplemental Information). 643 

While outside of the scope of this paper, it is also interesting to note that, at sufficiently high 644 

celerity, bedform migration tends to reduce the complexity of the interstitial concentration fields, 645 

in effect transforming the complex two- and three-dimensional concentration fields associated 646 

with bedform pumping across stationary bedforms into simple one-dimensional vertical 647 

concentration gradients (e.g., of interstitial oxygen concentrations, Wolke et al., 2020) that may 648 

also be amenable to analysis with a diffusive modeling framework. 649 

A benefit of analytical models (compared to numerical simulations) is the relative ease 650 

with which they can be implemented, and the physical insights afforded by expressing the 651 

quantity of interest (e.g., interstitial solute concentration or mass flux across the SWI) as an 652 

explicit function of key system variables. An obvious limitation is that their derivation often 653 

entails simplifying assumptions that may not be valid in practice. Key assumptions associated 654 

with the advective and diffusive modeling frameworks derived here include: (1) the interstitial 655 

flow field underlying bedform pumping is steady-state, although solute concentrations in the 656 

water column and interstitial fluids of the streambed may vary with time while fully accounting 657 

for two-way coupling across the SWI; (2) the solutions are specific to closed systems (such as 658 

x
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recirculating flumes) while most hyporheic exchange problems of practical interest are open 659 

systems (such as streams and coastal sediments); (3) the transport properties of the benthic 660 

biolayer (such as porosity and hydraulic conductivity) are assumed homogeneous and invariant 661 

with time while a previous study found that these assumptions can be invalidated by bioclogging 662 

(Caruso et al., 2017); and (4) as already noted, our results assume the solute in question is 663 

conservative (i.e., non-reactive and does not absorb to the porous matrix) while most hyporheic 664 

exchange problems of practical interest involve reactive solutes or particles. These limitations 665 

can be addressed, to varying degrees, within the context of our analytical framework, and efforts 666 

to do so are currently underway.  667 

6. Conclusions  668 
In this paper we derived two parallel analytical frameworks, one advective and the other 669 

diffusive, that together relax many of the assumptions that limit the practical utility of presently 670 

available analytical models for bedform pumping. Both frameworks allow the water column 671 

concentration to vary with time while accounting for the two-way coupling of solute 672 

concentrations above and below the SWI; the diffusive framework additionally allows the 673 

mixing rate, or diffusivity, to vary with depth through the sediment bed. When applied to 674 

previously published measurements of bedform pumping in a recirculating flume (Elliott and 675 

Brooks, 1997a), we find that both analytical frameworks closely reproduce average patterns and 676 

rates of hyporheic exchange, provided that the diffusion model’s diffusivity declines 677 

exponentially with depth. Practical application of these two frameworks can be tailored to the 678 

problem at hand, depending on whether detailed knowledge of the interstitial flow fields and 679 

associated Darcy fluxes and residence times is required (advective model) or solute transport 680 

across the SWI is subject to multiple transport mechanisms, not just bedform pumping (diffusive 681 

model). Because the advective framework is grounded in a physical description of bedform 682 
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pumping, it explicitly accounts for how changes in stream flow and sediment transport (e.g., 683 

associated with urbanization) influence bedform geometry (wavelength and height), the half-684 

amplitude of the pressure head variation, and the hydraulic conductivity of the sediment bed. The 685 

exponentially declining diffusivity framework, on the hand, lumps these geomorphic processes 686 

into a surficial dispersion coefficient and an inverse decay length-scale that can be directly 687 

calculated from the aforementioned advective model parameters (see equation (16a,b)). The 688 

latter formula also predicts that the surficial dispersion coefficient for bedform pumping 689 

increases with the dimensionless Permeability Reynolds Number, consistent with diffusivities 690 

measured for turbulent exchange across flat streambeds (Voermans et al., 2018; Grant et al., in 691 

review) and streambeds with bedforms (O’Connor and Harvey, 2008; Grant et al., 2012; Grant et 692 

al., 2018). Efforts are currently underway to extend these analytical solutions to open systems 693 

(e.g., stream networks), bedform turnover, unsteady flows, and the non-linear reactions that drive 694 

nutrient cycling in the benthic biolayer of streams. 695 
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Table 1. A summary of the probability distributions trialed as potential descriptors of the 853 

Bedform Pumping Model’s residence time distribution and their inferred parameter values. 854 

Distribution 
Name 

PDF for the BPM’s 
dimensionless residence time, 

 

Inferred 
Parameter 
Values 

Kolmogorov 
Smirnov Test 

Statistic Rank 

Fréchet 
 

,   0.00881 1 

Pareto 
 

, 
, 
  

0.01088 2 

Log Normal 

 

, 
  

0.05547 3 

Gamma 
 

, 
  

0.30746 4 

Exponential    0.62029 5 
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Introduction. This Supplemental Information includes tables summarizing the experimental conditions 

used for each of the Elliott and Brooks experiments included in this study (Table S1), and inferred 

parameter values obtained by fitting the advective (Tables S2) and diffusive (Table 3) models to these 

data.  
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    Bedform Geometry Stream Conditions 

Exp 
ID 

Bedform 
Type 

Sand1 Bed 
Depth  
( ,m) 

Wavelength 
( , m) 

Height  
( , m) 

Depth  
( , m) 

Velocity  
( , m s-1) 

Shear Velocity 
( , m s-1) 

8 natural 
ripples 

M 0.13 0.3 0.0114 0.0645 0.132 0.0159 

9 triangular 
ripples 

M 0.135 0.178 0.0254 0.0645 0.132 0.02439 

12 triangular 
ripples 

M 0.126 0.088 0.0127 0.0648 0.132 0.01953 

14 triangular 
ripples 

M 0.22 0.088 0.0127 0.0648 0.086 0.01286 

15 triangular 
ripples 

M 0.22 0.178 0.0254 0.0648 0.087 0.01426 

16 triangular 
ripples 

M 0.22 0.24 0.0189 0.0648 0.107 0.0171 

17 natural 
ripples 

F 0.225 0.14 0.012 0.0645 0.087 0.014 

1Streambed consisted of medium-grained (“M”, mm,  mm, ,  1.1 

mm s-1) or fine-grained (“F”,  mm,  mm, ,  0.079 mm s-1) sand 

 
Table S1. Experimental Conditions for EB’s experiments included in this study.  

db

λ H d V u*

dg =0.47 σ g =0.0013 θ =0.325 Kh =

dg =0.13 σ g =0.0013 θ =0.295 Kh =



  4 

 
Exp 
ID 

  (mm) (s.d.)1  (cm) (s.d.)1 

 R2 Inferred Predicted2 Inferred Experimental Estimate3 

8 >0.9999 0.57 (0.11) 0.20 (0.04) 16.7 (1.0) 11.6 (1.2) 

9 >0.9999 0.29 (0.03) 0.31 (0.09) 12.4 (0.4) 11.3 (1.1) 

12 >0.9999 0.12 (0.01) 0.20 (0.04) 9.4 (0.3) 11.5 (1.2) 

14 >0.9998 0.042 (0.008) 0.086 (0.02) 8.8 (0.5) 11.9 (1.2) 

15 >0.9999 0.24 (0.02) 0.13 (0.04) 14.4 (0.3) 12.5 (1.3) 

16 >0.9999 0.32 (0.03) 0.15 (0.03) 12.5 (0.4) 12.5 (1.3) 

17 >0.9999 0.11 (.01) 0.086 (0.02) 10.6 (0.4) 12.5 (1.3) 
1Standard Deviation generated during the model fitting step (inferred values) or calculated from 
the Variance Formula assuming a CV for all parameters of 10% (predicted values). 
2Predicted with equation (7) 
3Estimated from the ratio of reported volume of water in the flume (excluding pore volume) and 
reported bed surface area  
 
Table S2. Advective model fitting results.  

hm hw =Vw A
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Exp 
ID 

  (m2 s-1) (s.d.)1  (m-1) (s.d.)1 

 R2 Inferred Predicted2 Inferred Predicted3 

8 >0.9999 5.87 (0.80) 8.12 (1.66) 7.6 (2.1) 8.77 (7.6) 

9 >0.9998 3.76 (0.82) 4.09 (0.72) 19.6 (5.4) 20.8 (19.6) 

12 >0.9999 2.1 (0.2) 1.71 (0.31) 56 (2.81) 51.2 (56)  

14 >0.9999 0.60 (0.065) 0.60 (0.12) 49.9 (3) 51.2 (50)  

15 >0.9998 4.17 (0.59) 3.39 (0.60) 27.8 (1.9) 20.8 (27.8)  

16 >0.9998 3.7 (0.47) 4.53 (0.79) 13.5 (2.0) 13.2 (13.5)  

17 >0.9999 0.107 (0.0092) 0.122 (0.023) 24.1 (1.5) 28.9 (24.1) 
1Standard Deviation generated during the model fitting step (inferred values) or calculated from 
the Variance Formula assuming a CV for all parameters of 10% (predicted values). 
2Equation (16a) 
3Equation (16b) 
Table S3. Diffusive model fitting results. 
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Introduction. This Supplemental Information includes mathematical derivations (Text S1 through S3) 

related to the bedform pumping model presented in the main text.  

Text S1: Derivation of the Convolution Representation of Flux Across the SWI. In this section we 

derive from the BPM the convolution representation of advective flux across the SWI (equation (1a) in 

the main text). A striking feature of the BPM’s two-dimensional velocity field is that, along any 

streamline, the -component of the velocity is constant and equal to , where  is the 

dimensionless location along the SWI where the streamline first enters the streambed (see proof in the SI 

of Grant et al., 2014); because streamlines in a unit cell are symmetric, the same streamline exits the 

sediment bed at  (see expanded view in Figure 1c in the main text). We can utilize these two 

features of the BPM’s flow field to solve for the unsteady mass flux across the SWI, in the case where the 

water column concentration is a function of time. Letting  [L] represent the width of the stream, the 

rate at which mass flows into the streambed across a differential area, , is: 

 where  is the concentration of the solute in the overlying 

water column at time  (assumed not to vary over the length of a single unit cell) and  is 

the vertical velocity of water parcels crossing into the sediment from the stream. Likewise, if  

represents the final solute concentration at time  on the streamline that entered the streambed at , 

the rate at which mass flows out of the streambed is: . Taking 

the difference of these two mass flow rates, substituting equation (R2) in Figure 1 (main text) for the -

velocity at the SWI, integrating over all streamlines in the unit cell, and dividing by the unit cell’s 

interfacial area, we arrive at equation (S1) for the average flux of solute across the SWI at any time . 

         (S1) 

As written, equation (S1) is not particularly useful, because the integral on the right-hand side is 

expressed in terms of an unknown final concentration, . However, if the solute is conservative, 

the final concentration at time  must equal the concentration in the overlying water column at time, 

, where  is the streamline-dependent residence time; i.e., the time a solute spends traveling 

along a streamline from its starting position, , to its ending position, : . 

x ux x0( ) x = x0

x = −x0

W

Wdx0

d !min x0 ,t( )=Cw t( )uy x = x0 , y =0( )dx0W Cw t( )
t uy x = x0 , y =0( )

C f t ;x0( )
t x = x0

d !mout x0 ,t( )=C f t ;x0( )uy x = −x0 , y =0( )dx0W
y

t

J t( )= umπ Cw t( )− C f t ;x0( )sinx0dx0
0

π 2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

C f t ;x0( )
t

t −τ x0( ) τ x0( )
x = x0 x = −x0 C f t ;x0( )=Cw t −τ x0( )( )
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The constant nature of the BPM’s -velocity along any streamline implies that the streamline’s residence 

time can be estimated from the -distance a water parcel travels along the streamline divided by the fixed 

-component of the velocity associated with that streamline where  is streambed porosity: 

         (S2) 

From these results, the flux across the SWI can be expressed solely as a function of the overlying water 

column concentration: 

       (S3) 

Following the addition of solute to the water column, streamlines in the unit cell shown in Figure 1c 

(main text) can be divided into two groups: (1) those for which solute has already transported the full 

length of the streamline (i.e. the solute has “broken through” the streamline and is returning to the 

stream); and (2) those for which solute has not yet broken through. At the boundary is a critical 

streamline, denoted by its starting -position at the SWI ( ), that separates the former ( ) 

from the latter ( ) (Elliott and Brooks, 1997a). Because the solute concentration is zero at the 

terminus of stream lines in the second group (i.e.,  for ), the upper limit of the 

integral in equation (S3) can be adjusted downward: 

       (S4) 

Performing a change integration variable from  to  (utilizing the relationship between these two 

variables, see equation (S2)) we obtain the convolution representation of the BPM’s residence time 

distribution presented in the main text (equation (1a)). 

Text S2: Coherence of Our and EB’s Definition of the BPM’s RTD. Our definition of the RTD’s CDF 

(equation (2b)) is superficially different from the one derived for the BPM by Elliott and Brooks 

(hereafter, EB) (Elliott and Brooks, 1997a). Here, we adopted the standard definition for the CDF of an 

RTD, , as the fraction of solute entering the sediment bed in a short time near  and exiting the 

bed by time  (Fogler, 2016). EB, on the other hand, defined their RTD function, , as “the fraction 

of solute which entered the bed in a short time near  and remains in the bed at time ” (Elliott and 

Brooks, 1997a). For a conservative solute that enters the sediment near , by time  the solute is 

either still in the bed or has exited the bed; i.e., there is no other place it could be. Thus, our two RTD 

x

x

x θ

τ =
−2x0

ux x0( ) θ
=

λx0
πumcosx0 θ

J t( )= umπ Cw t( )− Cw t −
λx0θ

πumcosx0
⎛

⎝⎜
⎞

⎠⎟
sinx0dx0

0

π 2

∫
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⎣
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⎢

⎤

⎦
⎥
⎥
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πumcosx0
⎛

⎝⎜
⎞

⎠⎟
sinx0dx0

0

x0c

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x0 τ

FRTD τ( ) t =0

τ R τ( )
t =0 τ

t =0 t = τ



 
 

  4 

definitions must sum to unity: . Subsituting equation (2b) and rearranging, we arrive at 

EB’s solution for their RTD,  (see equation (21c) in Elliott and Brooks (1997a)), 

where our dimensionless time  is equivalent to EB’s  and . Hence, our RTD is 

mathematically coherent with EB’s RTD. 

Text S3. Derivation of the BPM’s Residence Time Function. In this section we derive equation (8a) in 

the main text, which represents the time  a water parcel requires to travel from the point where it 

enters the bed at the SWI to any location  in the sediment. We begin by defining a stream function 

 for the BPM (Sabersky and Acosta, 1989): 

         (S5a) 

         (S5b) 

In these equations  and  represent the BPM’s Darcy fluxes in the - and -directions, respectively. 

Substituting the BPM velocity components  and  (see Figure 1 in the 

main text, where  is the maximum Darcy flux across the SWI) and integrating the resulting differential 

equations we arrive at the following stream function for the BPM: 

         (S6) 

Streamlines are obtained by setting the stream function equal to a constant, . The difference 

between any two stream function constants  represents the volumetric flow rate per unit 

width of sediment bed [ ] flowing between the streamlines represented by  and 

. In the case of the BPM’s flow field, a stream function’s constant can be written in terms of 

the dimensionless horizontal position ( ) where the streamline in question first crosses the sediment-

water interface (at ) in the downwelling zone: 

,         (S7) 

Combining equations (S6) and (S7), we arrive at the following implicit equation for the streamline that 

intersects the sediment-water interface in the downwelling zone at : 

,         (S8) 

R τ( )+F τ( )=1
τ = cos−1 R τ( )⎡

⎣
⎤
⎦ R τ( )

τ t * 2θ t * = 2πum λ( )t

τ x , y( )

x , y( )

ψ x , y( )
ux = − ∂ψ

∂y

uy =
∂ψ
∂x

ux uy x y

ux = −umcosxe− y uy =umsinxe− y

um

ψ x , y( )= − λum2π cosxe− y

ψ x , y( ) = C1
Δψ = C2 −C1

m3m-1s-1 ψ x , y( ) = C1
ψ x , y( ) = C2

x = x0

y = 0

C = −
λum
2π cosx0 0< x0 <π 2

x = x0

cosx0 = cosxe− y 0< x0 <π 2
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For the unit cell  (see Figure 1c in the main text), each streamline begins and ends at  

and , respectively. Thus, the age of a water parcel at any position  can be calculated from the ratio 

of the distance traveled, , and the constant -component of the water parcel’s velocity 

 (see discussion of the BPM’s flow field in Text S1) where  denotes sediment porosity: 

       (S9) 

The notation  denotes the age of a water parcel located at position  along the streamline that 

enters the streambed at position . We would like to eliminate the starting position of the streamline, 

, from equation (S9). To that end, an expression for  can be obtained by rearranging the equation 

for a streamline (equation (S8)): 

        (S10) 

Substituting equations (S10) and (R3) (Figure 1) into equation (S9) we obtain equation (8a) in the main 

text: 
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−x0 x

x − x − x0( )λ 2π x
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