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Abstract

Ocean swell plays an important role in the transport of energy across the ocean, yet its evolution is still not well understood.

In the late 1960s, the nonlinear Schr{\”o}dinger (NLS) equation was derived as a model for the propagation of ocean swell

over large distances. More recently, a number of dissipative generalizations of the NLS equation based on a simple dissipation

assumption have been proposed. These models have been shown to accurately model wave evolution in the laboratory setting,

but their validity in modeling ocean swell has not previously been examined. We study the efficacy of the NLS equation and

four of its generalizations in modeling the evolution of swell in the ocean. The dissipative generalizations perform significantly

better than conservative models and are overall reasonable models for swell amplitudes, indicating dissipation is an important

physical effect in ocean swell evolution. The nonlinear models did not out-perform their linearizations, indicating linear models

may be sufficient in modeling ocean swell evolution.
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Key Points:5
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Abstract11

Ocean swell plays an important role in the transport of energy across the ocean, yet its12

evolution is still not well understood. In the late 1960s, the nonlinear Schrödinger (NLS)13

equation was derived as a model for the propagation of ocean swell over large distances.14

More recently, a number of dissipative generalizations of the NLS equation based on a15

simple dissipation assumption have been proposed. These models have been shown to16

accurately model wave evolution in the laboratory setting, but their validity in model-17

ing ocean swell has not previously been examined. We study the efficacy of the NLS equa-18

tion and four of its generalizations in modeling the evolution of swell in the ocean. The19

dissipative generalizations perform significantly better than conservative models and are20

overall reasonable models for swell amplitudes, indicating dissipation is an important phys-21

ical effect in ocean swell evolution. The nonlinear models did not out-perform their lin-22

earizations, indicating linear models may be sufficient in modeling ocean swell evolution.23

1 Introduction24

Swell in the ocean is composed of slowly modulated surface wave trains with rel-25

atively long periods. It is typically formed after waves created by distant storms have26

had a chance to disperse. Swell can travel thousands of kilometers, see for example, Snod-27

grass et al. (1966) and Collard et al. (2009). This coherence over long distances might28

suggest that there is a simple underlying model that governs the evolution of swell. How-29

ever, Rogers (2002) and Rascle et al. (2008) show that swell amplitudes are relatively30

poorly predicted. Although Snodgrass et al. (1966) neglected dissipative effects, more31

recent work suggests that dissipation may play an important role in swell evolution, see32

for example, Collard et al. (2009), Ardhuin et al. (2009), Henderson & Segur (2013), and33

Young et al. (2013).34

1.1 Model Equations35

The dimensionless cubic nonlinear Schrödinger (NLS) equation,

iuχ + uξξ + 4|u|2u = 0, (1)

is an approximate model for the slow evolution of a nearly monochromatic wave train
of gravity waves on deep water (i.e. swell propagating over large distances). Here u =
u(ξ, χ) is a dimensionless complex-valued function that describes the evolution of the en-
velope of the oscillations of a carrier wave, χ represents dimensionless distance across
the ocean, and ξ represents dimensionless time. The leading-order approximation to the
dimensional surface displacement, η(x, t), can be obtained from an NLS solution, u(ξ, χ),
via the relation

η(x, t) =
ε

k0

(
u(ξ, χ)eiω0t−ik0x + u∗(ξ, χ)e−iω0t+ik0x

)
+O(ε2), (2)

where η, x, and t are dimensional variables and u∗ represents complex conjugate of u.
Here ω0, k0, and a0 are parameters that represent the dimensional frequency, wavenum-
ber, and amplitude of the carrier wave respectively, and ε = 2a0k0 is a measure of wave
steepness/nonlinearity. The dimensionless and dimensional independent variables are re-
lated by

ξ = εω0t− 2εk0x, χ = ε2k0x. (3)

Zakharov (1968) derived the NLS equation as a model for the propagation of ocean36

swell over large distances. See Johnson (1997) for a more detailed and modern deriva-37

tion, but note that both of these derivations rely on an ansatz that is slightly different38

than the one given in equation (2). In deriving the NLS equation (and the generaliza-39

tions presented below), one assumes that the surface displacement is small, that the spec-40

trum is narrow banded, and that the spectrum is centered about the carrier wave. The41
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NLS equation has been studied extensively from a mathematical perspective, see for ex-42

ample, Sulem & Sulem (1999), as well as from a physical perspective. The NLS equa-43

tion has also been shown to favorably predict measurements from laboratory experiments44

when the waves have small amplitude and steepness (i.e. ε < 0.1), see for example, Lo45

& Mei (1985).46

In order to weaken the NLS equation’s narrow-bandedness restriction, Dysthe (1979)
extended the NLS derivation asymptotics one additional order and derived the equation
that now bears his name

iuχ + uξξ + 4|u|2u+ ε
(
− 8iu2u∗ξ − 32i|u|2uξ − 8iu

(
H(|u|2)

)
ξ

)
= 0. (4)

Here H represents the Hilbert transform, which is defined by

H (f(ξ)) =

∞∑
k=−∞

−isgn(k)f̂(k)e2πikξ/L, (5)

where f̂(k) is the Fourier transform of the function f(ξ) and is defined by

f̂(k) =
1

L

∫ L

0

f(ξ)e−2πikξ/Ldξ, (6)

and L is the ξ-period of the measurements. Lo & Mei (1985) showed that the Dysthe47

equation accurately predicts laboratory experimental measurements for a wider range48

of wave amplitude and steepness values than does the NLS equation.49

Neither the NLS equation nor the Dysthe equation include terms that account for
dissipative effects. In other words, both are conservative partial differential equations
(PDEs). In order to address this limitation, a number of dissipative generalizations of
the NLS equation have been proposed and studied. In this work, we focus on three dis-
sipative generalizations of the NLS equation. Segur et al. (2005) and Wu et al. (2006)
showed that predictions obtained from the dissipative nonlinear Schrödinger (dNLS) equa-
tion

iuχ + uξξ + 4|u|2u+ iδu = 0, (7)

where δ is a nonnegative constant representing dissipative effects, compared favorably50

with a range of laboratory experiments. In this dissipative model and those included be-51

low, dissipative effects from all sources are accounted for by the single, constant param-52

eter δ. This is simplest dissipative generalization of the NLS equation as the dissipation53

is constant and frequency independent. While Young et al. (2013) showed that the ocean54

swell decay rate is proportional to the wavenumber squared, since the ocean data we ex-55

amine is narrow banded and the models rely on a narrow-bandedness assumption, it is56

a reasonable first-order assumption that the dissipation rate is wave-number indepen-57

dent. The dNLS equation is the most common dissipative generalization of the NLS equa-58

tion. Henderson & Segur (2013) use the dNLS equation as a basis for a comparison of59

dissipation rates, frequency downshift, and evolution of swell in laboratory experiments60

and in the ocean using the Snodgrass et al. (1966) data.61

Recently, following the work of Dysthe (1979) and Dias et al. (2008), Carter & Go-
van (2016) derived the viscous Dysthe (vDysthe) equation

iuχ + uξξ + 4|u|2u+ iδu+ ε
(
− 8iu2u∗ξ − 32i|u|2uξ − 8iu

(
H(|u|2)

)
ξ

+ 5δuξ
)

= 0, (8)

from the dissipative generalization of the water-wave problem presented by Wu et al. (2006).62

Additionally, they showed that the vDysthe equation accurately predicts the evolution63

of slowly-modulated wave trains from two series of experiments. In this model, the dis-64

sipation rate depends linearly on the wavenumber. A flaw arises in the vDysthe equa-65

tion because of this linear dissipation rate: Any lower sideband with frequency further66
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than 1/(5ε) from the carrier wave will grow exponentially. This is obviously not phys-67

ical. The flaw results from limitations associated with the narrow-bandwidth assump-68

tion used in the derivation of the vDysthe equation. See Section 2.2 of Carter et al. (2019)69

for more details.70

Motivated by the work of Gramstad & Trulsen (2011), Carter et al. (2019) showed
that the ad-hoc dissipative Gramstad-Trulsen (dGT) equation,

iuχ + uξξ + 4|u|2u+ iδu+ ε
(
− 32i|u|2uξ − 8u

(
H(|u|2)

)
ξ

+ 5δuξ
)
− 10iε2δuξξ = 0, (9)

accurately predicts the evolution of slowly-modulated wave trains from four series of lab-71

oratory experiments. In this model, the dissipation rate depends quadratically on the72

wavenumber, which is at least qualitatively similar with the observations of Young et al.73

(2013). Although the accuracy of the vDysthe and dGT equations were similar for the74

experiments examined, it is important to note that the dGT equation does not have the75

same non-physical growth flaw as the vDysthe equation because of the addition of the76

ε2δuξξ term. The main goal of this paper is to test the accuracy of these equations as mod-77

els for swell traveling across the Pacific Ocean.78

1.2 Frequency Downshift79

Frequency downshift (FD) is said to occur when the carrier wave loses a significant80

amount of energy to its lower sidebands. FD was first observed in wave tank experiments81

conducted by Lake et al. (1977) and Lake & Yuen (1977). Using a wave maker located82

at one end of the tank, they created a wave train with a particular frequency. As the waves83

traveled down the tank, they experienced the growth of the Benjamin & Feir (1967) in-84

stability and disintegrated. Further down the tank, the waves regained coherence and85

coalesced into a wave train with a lower frequency than the one created by the wave maker.86

There are two common metrics used to quantify FD: a monotonic decrease in the
wave’s spectral peak or a monotonic decrease in the wave’s spectral mean. FD is said
to be temporary if an initial decrease in either the spectral peak or mean is followed by
an increase. The spectral peak, ωp, is defined to be the frequency with maximal ampli-
tude. The spectral mean, ωm, is defined by

ωm =
P
M

, (10)

where P describes the “linear momentum” of the wave and is given by

P =
i

2L

∫ L

0

(uu∗ξ − uξu∗)dξ, (11)

and M describes the “mass” of the wave and is given by

M =
1

L

∫ L

0

|u|2dξ, (12)

where L is the period of the ξ measurement. Since ωp is a “local” frequency measure-87

ment and ωm is a “global” frequency measurement, it is possible for a particular wave88

train to exhibit FD in neither, either, or both senses. The experiments of Lake et al. (1977)89

and Lake & Yuen (1977) provide a clear demonstration of FD in the spectral peak sense.90

Their experiments also likely exhibited FD in the spectral mean sense, but neither P nor91

ωm was measured, so a definitive statement regarding FD in the spectral mean sense can-92

not be made. Most physical explanations for FD rely on wind and wave breaking, see93

for example Trulsen & Dysthe (1990), Hara & Mei (1991), and Brunetti et al. (2014).94

However, the laboratory experiments examined by Segur et al. (2005) exhibited FD in95

both senses without wind or wave breaking. Thus, there must be a mechanism for this96

phenomenon which does not rely on these effects. The dGT and vDysthe equations, which97
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predict FD in the spectral mean sense without relying on wind or wave breaking, were98

proposed as models for this phenomenon.99

The ocean swell data collected on the Pacific Ocean by Snodgrass et al. (1966) dis-100

plays evidence of FD in both senses. We examine this data in detail below. Understand-101

ing the mechanisms for FD will contribute to knowledge about how energy propagates102

across the ocean, with the potential to improve predictive abilities as swell nears the shore,103

impacting fields from shipping to surfing. A secondary goal of this paper is to examine104

frequency downshift in ocean swell data and in these models.105

1.3 Model Properties106

Unfortunately, there is no mathematical theory that governs the evolution of the107

spectral peak over large distances for any of the equations under consideration. How-108

ever, the theory for the evolution of the spectral mean for these equations is well known.109

The NLS equation preserves both M and P and therefore the NLS equation cannot pre-110

dict FD in the spectral mean sense. The Dysthe equation preserves M, but does not nec-111

essarily preserve P. Since the sign in the change of P depends on the solution under con-112

sideration, the Dysthe equation predicts FD for some waves, frequency upshift for other113

waves, and constant spectral mean for other waves. The dNLS equation does not pre-114

serve M, nor does it preserve P. However, the dNLS equation preserves ωm, so it can-115

not exhibit FD in the spectral mean sense. This result is related to the fact that dissi-116

pation in the dNLS equation is frequency independent. The vDysthe equation does not117

preserve M or P. The sign in the change of P is indefinite for the vDysthe equation just118

as it is for the Dysthe equation. Therefore, the vDysthe equation can exhibit frequency119

downshift or upshift depending on the solution under consideration. Finally, the dGT120

equation predicts FD in the spectral mean sense for all nontrivial wave trains.121

In the remainder of this paper, we compare the efficacy of these generalizations of122

the NLS equation at modeling the evolution of ocean swell as it travels across the Pa-123

cific Ocean. In order to test the accuracy of these models, we focus on two questions:124

(i) how important are dissipative effects? and (ii) how important are nonlinear effects?125

These questions have been addressed using laboratory data, but to our knowledge, have126

not be addressed using ocean data.127

The remainder of the paper is outlined as follows. Section 2 contains a description128

of the Snodgrass et al. (1966) ocean data and how we processed it. Section 3 contains129

the results of comparisons between the model predictions and] the ocean data. Finally,130

Section 4 summarizes our observations and results.131

2 Ocean Data132

2.1 Description of Data133

During the southern hemisphere winter of 1963, a team of researchers led by Frank134

E. Snodgrass and Walter Munk from the University of California Institute of Geophysics135

and Planetary Physics set out to measure the evolution of swell across the Pacific Ocean.136

In order to track waves originating from storms in the southern hemisphere propagat-137

ing northwards, the team manned six stations along a great circle. The locations included:138

Cape Palliser in New Zealand, Tutuila in American Samoa, Palmyra Atoll, Honolulu in139

Hawaii, the vessel FLIP in the north Pacific, and Yakutat in Alaska. However, the Cape140

Palliser and FLIP locations did not produce data included in this work. Due to disper-141

sion, the ocean swell was recorded at any particular station for up to one week. Three142

hours of time series pressure data was collected twice daily and converted to surface wave143

spectra. Taking a ridge cut of these narrow-banded spectra at each station resulted in144

a composite spectrum removing the effects of dispersion. Snodgrass et al. (1966) presented145

–5–



manuscript submitted to JGR: Oceans

this data in the form of a power density spectrum, C(f), with units of energy density146

(dB above 1 cm2/mHz) per frequency (mHz) on a logarithmic scale. They corrected the147

data to account for geometric spreading and island shadowing. In addition, they deter-148

mined the impact of effects such as instrument placement, refraction, oblateness of the149

earth, and wave-wave interactions, including scattering and wave breaking.150

Overall, swells from twelve storms were observed, but detailed ridge spectra were151

only provided for five swells. In this study, we focus on the swells named August 1.9, Au-152

gust 13.7, and July 23.2. The spectra corresponding to these swells are included in Fig-153

ure 1. The swells of August 13.7 and July 23.2 exhibit FD in the spectral mean sense,154

while only the swell of August 13.7 definitively exhibits FD in the spectral peak sense.155

The swell of August 1.9 exhibits only temporary FD in the spectral mean sense, and its156

momentum, P, increases as the waves propagate.157

Additionally, a narrow-bandedness assumption is reasonable for these three swell.158

The second-to-last column of Table 1 contains a measure of each swell’s narrow-bandedness,159

∆ω/ω0 at the first gauge using half-width-half-max to determine ∆ω. The values for the160

August 13.7 and July 23.2 are both quite small, while value for August 1.9 is reasonably161

small. We do not consider the other two swells presented by Snodgrass et al. (1966). be-162

cause their spectra have are not narrow banded or have multiple peaks, rendering them163

outside of the range of validity of the mathematical models considered herein.164

There are aspects of the swell data that limited our work. First, for the swells con-165

sidered in this study, data is only provided at four gauges. As we used the data at the166

first gauge to determine the initial conditions for our simulations, there were only three167

gauges to compare the simulation results against. This limited our ability to make strong168

conclusions. Additionally, in the July 23.2 spectra, the energy at the third gauge is higher169

than the energy at the second gauge, which is evidence of uncertainty in the data. Fur-170

thermore, the data collection and processing techniques used by Snodgrass et al. (1966)171

resulted in a loss of phase data, which is necessary to produce the physical surface dis-172

placement time series realizations required by the PDE models presented above. Finally,173

the domain of frequencies present in each spectra varies across gauges. We accounted174

for this in our measurements of model accuracy (see below).175

2.2 Data Processing176

Given the power density spectra presented in Snodgrass et al. (1966) for a swell,177

to create initial conditions for our models, we created realizations of surface displace-178

ment time series at each gauge. To do this, the data was digitized and interpolated to179

create a continuous spectrum. (We did not have access to the original data.) We then180

converted from decibels to units of energy density, cm2/mHz, by taking Φ(f) = 10C(f)/10.181

Next, we discretized the continuous data into bands of width ∆f , where ∆f = 1/L,182

with L representing the collection period of three hours, and computed the Fourier am-183

plitudes, a = 0.01
√

Φ(f)∆f, which have units of meters. We created a discretization184

grid around the spectral peak at the first gauge and ensured that each subsequent gauge185

maintained the same grid. To compensate for the lack of phase data, each Fourier mode186

was assigned a random phase, preserving the magnitude of each amplitude. Assigning187

random phases is appropriate when the phase data is missing, see for example, Holthui-188

jsen (2007). We then generated a two-sided Hermitian spectrum and took an inverse dis-189

crete Fourier transform to find a realization of the surface displacement time series at190

each gauge.191
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Figure 1. The power density spectra for the swells of August 1.9, August 13.7, and July 23.2.
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Figure 2. Plots of the dimensional mass, M, versus the distance along the great circle. The

dots represent the physical measurements and the curve represents the best exponential fit. From

left to right, the dots refer to the stations in Tutuila, Palmyra, Honolulu, and Yakutat.

3 Model Comparisons192

3.1 Computation of Parameters193

There are two dimensionless parameters that appear in the models examined in this194

work. The wave-steepness/nonlinearity parameter, ε, is defined by ε = 2a0k0 where a0195

and k0 are the amplitude and wavenumber of the carrier wave. The values of ω0, the fre-196

quency of the carrier wave, and a0 were obtained directly from the spectrum at the first197

gauge. The value of k0 was determined using the deep-water linear dispersion relation,198

ω2
0 = gk0. Table 1 contains the values of these parameters. We note that our ε values199

are different than those in Henderson & Segur (2013) because we used a different def-200

inition for ε. However, this is irrelevant because the results we present below are inde-201

pendent of the value of ε due to an invariance of the PDEs. The dissipation parameter,202

δ, was determined empirically by best-fitting an exponential through the decay of M with203

respect to the dimensionless distance χ, along the great circle. Figure 2 contains plots204

of dimensional M and the best exponential fit for each of the three swells. The values205

of δ for each swell are included in Table 1.206

3.2 Simulation Methods207

All model PDEs were solved numerically in dimensionless form by assuming pe-208

riodic boundary conditions in ξ and using the sixth-order operator splitting algorithm209

developed by Yoshida (1990) in χ in Python. The linear parts of the PDEs were solved210

exactly in Fourier space using the fast Fourier transform (FFT). The nonlinear parts of211

the PDEs were either solved exactly (NLS, dNLS) or using fourth-order Runge-Kutta212

(Dysthe, vDysthe, dGT) in physical space. The evolution of the quantities M and P was213

compared against model predictions and was found to be consistent, indicating that the214

implemented numerical methods correctly solved each PDE.215
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The (dimensionless) initial conditions were generated by factoring the carrier wave
out of the nondimensionalized one-sided processed spectrum at the first gauge (Tutu-
ila), choosing random phases for each mode, and taking an inverse DFT. Similarly, the
time series of the modulating envelope was the computed at each of the three remain-
ing gauges. These results were re-dimensionalized and compared with the ocean swell
measurements using the error norm

E =

4∑
n=2

Jn∑
j=−Jn

1

3Mn

∣∣∣∣∣∣B̂sim
n (j)

∣∣− ∣∣B̂data
n (j)

∣∣∣∣∣∣2, (13)

n represents the gauge number, where Jn is the number of nonzero Fourier modes at gauge216

n, Mn is the value of M at the nth gauge, and B̂n(j) is the jth nonzero Fourier ampli-217

tude at the nth gauge from the numerical simulation (sim) or the ocean swell data (data).218

This process was repeated 100 times with different random phases for each swell. The219

mean of the results is reported to account for random effects. Additionally, to compare220

nonlinear and linear theories, solutions to both the full (nonlinear) PDEs and their lin-221

earizations were computed. Note that phase does not affect the linear results, so only222

one random phase simulation was computed for each linearized PDE for each swell.223

3.3 Results224

Figure 3 shows plots comparing the ocean data with the numerical predictions for225

the carrier wave and six sidebands for the August 13.7 swell. The plots for the August226

1.9 and July 23.2 swells are similar. The sidebands shown represent a broad range of the227

swell’s spectrum and demonstrate the nonphysical exponential growth predicted by the228

vDysthe equation in the (far) lower sidebands. Quantitative comparisons between the229

ocean data and simulations of the full PDEs using the error norm given in equation (13)230

are reported in Table 2. Quantitative comparisons between the ocean data and simu-231

lations of the linearized PDEs are reported in Table 3. Note that the linearizations of232

the NLS and Dysthe equations result in the same linear PDE. For all three swells, the233

dissipative models (dNLS, vDysthe, dGT) performed between one to two orders of mag-234

nitude better than the conservative models (NLS, Dysthe). This result is predictable be-235

cause the spectra shown in Figure 1 show that the swells generally lose energy as they236

traveled northwards. These results demonstrate that including dissipation is necessary237

to accurately model the evolution of swell as it travels across the Pacific Ocean.238

Considering only the nonlinear PDEs, dNLS produced the smallest error for the239

August 1.9 swell; vDysthe produced the smallest error for the August 13.7 swell; and dGT240

produced the smallest error for the July 23.2 swell, though vDysthe produced a very sim-241

ilar result. Although the differences between the linear and nonlinear results were small,242

the linearized dNLS equation performed best for the swell of August 1.9 and the linearized243

vDysthe equation performed best for the swells of August 13.7 and July 23.2. These re-244

sults suggest that including nonlinear effects is not necessary to accurately model the245

evolution of swell across the Pacific. However, because nonlinear effects occur over short246

distances, we hypothesize that the linear models sometimes appear more effective than247

the nonlinear models due the low spatial resolution in the data. Ideally, we would com-248

pare our models against data with more resolution to resolve the nonlinear behavior.249

Other observations:250

• The swell of August 13.7 had the most energy, while the swell of July 23.2 had the251

least. The fact that the linear models provided the best predictions in both of these252

cases suggests either that a swell needs to have even more energy than the Au-253

gust 13.7 swell for nonlinearity to be important or that there is not a simple re-254

lationship between energy and the importance of nonlinearity.255
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Figure 3. Plots of seven Fourier amplitudes versus distanced traveled comparing the PDE

predictions (curves) with the August 13.7 swell data (dots). The top plot is of the carrier wave

amplitude. The left column contains plots of three lower sideband amplitudes and the right

column contains plots of three upper sideband amplitudes.

• All of the swells had comparable carrier wave frequencies, and the slight variations256

do not appear to strongly affect the simulation predictions.257

• All of the swells were relatively narrow banded and the degree of narrow-bandedness258

does not appear to strongly affect the accuracy of the simulation predictions.259

• Swell exhibiting FD in the spectral mean sense are best predicted by the vDys-260

the or dGT equations, which can both predict this phenomena, though these mod-261

els were not significantly better than the dNLS equation. There is no clear pat-262

tern regarding the effect of spectral peak FD on the simulation results. However,263

none of the models accurately qualitatively model the evolution of the spectral mean264

or peak, either underestimating the amount of the spectral mean decreases or pre-265

dicting too much variation in the spectral peak.266

• The vDysthe equation predicts nonphysical exponential growth in lower sidebands267

that are further than 5/(εk0) away from the carrier wave, see the lower left plot268

in Figure 3. The amplitudes of these modes was small enough that their exponen-269

tial growth did not greatly increase the value of the error, E .270

• According to Snodgrass et al. (1966), the swell of July 23.2 had more energy in271

Honolulu than in Palmyra. This means that energy did not decay monotonically272

as the swell propagated northwards. Switching the order of the data from these273

two gauges (so that the energy decays monotonically) does not have a large im-274

pact on the qualitative results. However, switching the order causes the accuracy275

of the vDysthe and dGT equations to increase significantly.276

• We attempted to test the accuracy of the Islas & Schober (2011) model. However,277

we found that the optimal value of their free parameter β was negative, violat-278

ing the model’s assumptions. Thus, this is not a good model for this ocean swell279

data.280
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Model August 1.9 August 13.7 July 23.2

NLS 0.0910 ± 4e-4 0.0142 ± 2e-4 0.0173 ± 1e-4
Dysthe 0.0908 ± 5e-4 0.0140 ± 2e-4 0.0172 ± 1e-4
dNLS 0.000731 ± 1e-4 0.00314 ± 9e-5 0.00229 ± 2e-5

vDysthe 0.0117 ± 9e-5 0.00173 ± 9e-5 0.00173 ± 2e-5
dGT 0.00401 ± 9e-5 0.00198 ± 9e-5 0.00172 ± 2e-5

Table 2. Averaged error results for ensembles of 100 simulations of the full PDEs using the

error norm defined in equation (13).

Model August 1.9 August 13.7 July 23.2

Linearized NLS/Dysthe 0.08743 0.01288 0.01711
Linearized dNLS 0.00040 0.00278 0.00225

Linearized vDysthe 0.01143 0.00139 0.00169
Linearized dGT 0.00379 0.00166 0.00170

Table 3. Error results for simulations of the linearized PDEs using the error norm defined in

equation (13). Note that the linearized versions of the NLS and Dysthe equations are the same.

4 Conclusions281

We compared the ocean swell data collected by Snodgrass et al. (1966) with pre-282

dictions from the nonlinear Schrödinger, Dysthe, dissipative nonlinear Schrödinger, vis-283

cous Dysthe, and dissipative Gramstad-Trulsen equations. As only amplitude data was284

provided, we made the random phase assumption, ran 100 simulations with different ran-285

dom phases, and averaged the error between the ocean measurements and PDE predic-286

tions. We found that the dissipative models (dNLS, vDysthe, dGT) performed orders287

of magnitude better than the conservative models (NLS, Dysthe), suggesting that dis-288

sipation is a physically important effect for swell propagating across the Pacific Ocean.289

Additionally, for swells exhibiting frequency downshift in the spectral mean sense, mod-290

els that can predict this behavior (vDysthe, dGT) performed the best. The dissipative291

models, which are based upon a simple dissipation ansatz, provided good predictions for292

the swells as they propagated across the ocean. We also found that the linear models293

performed slightly better than the nonlinear models. This suggests that (dissipative) lin-294

ear models may be sufficient for modeling the evolution of swell across the Pacific.295
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