Carbon dioxide distribution, origins, and transport along a frontal boundary during summer in mid-latitudes

Arkayan Samaddar¹, Sha Feng¹, Thomas Lauvaux², Zachary Robert Barkley¹, Sandip Pal³, and Kenneth J. Davis²

¹The Pennsylvania State University ²Pennsylvania State University ³Department of Geosciences, Atmospheric Science Division, Texas Tech University

November 30, 2022

Abstract

Synoptic weather systems are a major driver of spatial gradients in atmospheric CO2 mole fractions. During frontal passages air masses from different regions meet at the frontal boundary creating significant gradients in CO2 mole fractions. This study quantitatively describes the atmospheric transport of CO2 mole fractions during a mid-latitude cold front passage and explores the impact of various sources of CO2. We focus here on a cold front passage over Lincoln, Nebraska on August 4th, 2016 observed by aircraft during the Atmospheric Carbon and Transport (ACT)-America campaign. A band of air with elevated CO2 was located along the frontal boundary. Differences in CO2 across the front were as high as 25 ppm. Numerical simulations using WRF-Chem at cloud resolving resolutions (3km) coupled with CO2 surface fluxes and boundary conditions from CarbonTracker (CT-NRTv2017x) were performed to explore atmospheric transport at the front. Model results demonstrate that the frontal CO2 difference in the upper troposphere can be explained largely by inflow from outside of North America. This difference is modified in the atmospheric boundary layer and lower troposphere by continental surface fluxes, dominated in this case by biogenic and fossil fuel fluxes. Horizontal and vertical advection are found to be responsible for the distribution of CO2 mole fractions along the frontal boundary. This study highlights the use of high-resolution simulations in capturing CO2 transport along a frontal boundary.

Carbon dioxide distribution, origins, and transport along a frontal boundary during summer in mid-latitudes

Arkayan Samaddar¹, Sha Feng¹, Thomas Lauvaux², Zachary R. Barkley¹, Sandip Pal³, Kenneth J. Davis¹

¹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University 6 $\label{eq:Park, PA 16802, USA.} Park, PA 16802, USA. ^2 Laboratoire des Sciences du Climat et de l'Environnement, CEA, CNRS, UVSQ/IPSL, Université$ 7 8 Paris-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette CEDEX, France. ³Department of Geosciences, Mail Stop 1053, Texas Tech University, Lubbock, TX 79409, USA 9 10

Key Points:

1

2

3

4 5

11

12	• High resolution simulation of a cold front passage captures the narrow band of el-
13	evated CO_2 ahead of the cold front
14	• CO_2 inflow from the continental boundaries along with biogenic and fossil fuel fluxes
15	create the summertime frontal CO_2 distribution
16	• Horizontal and vertical advection dominate atmospheric CO ₂ transport along the
17	frontal boundary

 $Corresponding \ author: \ Arkayan \ Samaddar, \ \texttt{arkayan@psu.edu}$

18 Abstract

Synoptic weather systems are a major driver of spatial gradients in atmospheric CO_2 mole 19 fractions. During frontal passages air masses from different regions meet at the frontal 20 boundary creating significant gradients in CO_2 mole fractions. This study quantitatively 21 describes the atmospheric transport of CO_2 mole fractions during a mid-latitude cold 22 front passage and explores the impact of various sources of CO_2 . We focus here on a cold 23 front passage over Lincoln, Nebraska on August 4th, 2016 observed by aircraft during 24 the Atmospheric Carbon and Transport (ACT)-America campaign. A band of air with 25 elevated CO_2 was located along the frontal boundary. Differences in CO_2 across the front 26 were as high as 25 ppm. Numerical simulations using WRF-Chem at cloud resolving res-27 olutions (3km) coupled with CO₂ surface fluxes and boundary conditions from Carbon-28 Tracker (CT-NRTv2017x) were performed to explore atmospheric transport at the front. 29 Model results demonstrate that the frontal CO_2 difference in the upper troposphere can 30 be explained largely by inflow from outside of North America. This difference is mod-31 ified in the atmospheric boundary layer and lower troposphere by continental surface fluxes, 32 dominated in this case by biogenic and fossil fuel fluxes. Horizontal and vertical advec-33 tion are found to be responsible for the distribution of CO_2 mole fractions along the frontal 34 boundary. This study highlights the use of high-resolution simulations in capturing CO_2 35 transport along a frontal boundary. 36

37 1 Introduction

Atmospheric CO_2 mole fractions have changed from 280 ppm during the pre-industrial 38 period (circa. 1750) to present day mole fractions of 414 ppm (www.esrl.noaa.gov/gmd/ccgg/trends/). 30 Over the last decade, the rate of increase in global atmospheric CO_2 mole fractions has 40 risen from 1.8 ppm/year in 2008 to 2.4 ppm/year in 2018. These changes in atmospheric 41 CO_2 have been linked to an increase in fossil fuel usage (Edenhofer et al., 2014; Skeie 42 et al., 2011) and land use change (Houghton et al., 2012). About 55% of the CO₂ emis-43 sions are currently absorbed into oceans or terrestrial ecosystems (Le Quéré et al., 2017).In 44 order to close the budget of atmospheric CO₂, the driving mechanisms of sources and 45 sinks of CO_2 from continental surfaces and oceans need to be better quantified (Le Quéré 46 et al., 2017). Studies have shown that northern hemisphere terrestrial ecosystems are 47 a significant part of the terrestrial sink (Denning et al., 1995; Tans et al., 1990). How-48 ever, uncertainties in these estimates exist due to lack of knowledge regarding primary 49 drivers of the land sink (Huntzinger et al., 2017). Peylin et al. (2002) and Xiao et al. (2014) 50 show that one of the key uncertainties in regional carbon flux estimates comes from er-51 rors in representation of atmospheric transport. 52

Atmospheric transport models are used to determine sources and sinks of CO_2 through 53 the process of inversion - linking CO_2 mole fractions in the atmosphere to sources and 54 sinks at the surface (Enting et al., 1995). Atmospheric transport models need to be ac-55 curate and precise in order to infer CO₂ sources and sinks with accuracy (Gurney et al., 56 2002). Comparing the transport models to the measurements from the CO_2 observation 57 help determine the uncertainty in the ability of the models in reproducing the carbon 58 cycle (Friedlingstein & Prentice, 2010). While significant progress has been made in un-59 derstanding the global carbon cycle and its drivers, due to the misrepresentation of trans-60 port processes in numerical models, there are gaps in linking anthropogenic CO_2 emis-61 sions to rising atmospheric CO₂ mole fractions (Le Quéré et al., 2009). Differences in 62 the representation of transport processes within numerical models lead to biased repre-63 sentation of CO₂ at a global scale (Schuh et al., 2019). Numerical models running at syn-64 optic scale resolutions represent mesoscale and microscale weather events through pa-65 rameterizations of physical transport processes (Carvalho et al., 2014). 66

 $_{67}$ Synoptic scale events like frontal passages play an important role in the transport $_{68}$ of CO₂ (Parazoo et al., 2008). These events impact atmospheric CO₂ distributions from

regional to global scales. Models suffer from errors in representation of atmospheric trans-69 port in numerical models leading to errors in the inverse estimation of CO_2 fluxes (Lauvaux 70 & Davis, 2014; Houweling et al., 2010; Law et al., 1996). Strong gradients in CO_2 mole 71 fractions at frontal boundaries have been captured by both tower measurements (Hurwitz 72 et al., 2004) and aircraft measurements (Pal et al., 2020). Gradients in atmospheric CO_2 73 mole fractions (simulated and observed) are advected by horizontal winds over large dis-74 tances (Chan et al., 2004; Corbin & Denning, 2006; Geels et al., 2004), and are impacted 75 by spatial differences in surface fluxes (Miles et al., 2012). Lifting near the frontal bound-76 ary and mixing in the boundary layer define the vertical structure in CO_2 distributions 77 over large scales (Parazoo et al., 2008, 2011). 78

However, these studies (Parazoo et al., 2008, 2011) have been performed on an an-79 nual scale using the PCTM global model (Kawa, 2004) driven by coarse resolution weather 80 reanalysis $(1.25^{\circ} \times 1^{\circ} \text{ (longitude x latitude)})$. Multiple frontal passages were studied over 81 a year and the averaged results were reported as a climatology. We performed this study 82 at a higher resolution and is able resolve some cloud convection, which presents a more 83 resolved description of frontal transport. Pal et al. (2020) observed that there are spatial differences as large as 30 ppm (calculated as the difference between mole-fractions 85 in the warm sector and cold sector) in atmospheric CO_2 distributions across cold frontal 86 boundaries. Regional numerical weather models like WRF-Chem (Skamarock et al., 2008) 87 can be used to simulate frontal passages, their impact on CO_2 mole fractions, the causes 88 of the simulated differences in CO_2 and the impact of model resolution on the simula-89 tion. In our study, a summer cold front passing over Lincoln, NE, USA is simulated us-90 ing WRF-Chem v3.6.1. The transport of CO_2 is quantified and broken down into con-91 tributions from horizontal and vertical advection and vertical diffusion. In this study, 92 we aim to investigate atmospheric transport interactions with CO_2 mole-fractions from 93 different sources (biosphere, fossil fuel etc.,) during a cold front passage. 94

We use WRF-Chem, run at 27, 9 and 3-km resolution, to simulate a 4 August 2016 cold frontal passage that was observed during the summer 2016 ACT-America flight campaign. We compute the terms in the CO_2 transport equation at the frontal boundary to compare their importance as a function of resolution, and we evaluate the origin of the CO_2 mole fraction differences simulated at the frontal boundary. Airborne observations are used to evaluate the plausibility of the numerical results.

This study is structured as follows – the data and methods section describe the numerical model and the tools and analysis methods used for this study. The results section characterizes the capabilities of the numerical modeling system and describes the CO_2 distribution along the frontal boundary and its evolution with time. Transport of CO_2 is broken out by terms in the conservation equation, including the impact of model grid-resolution on the representation of CO_2 transport. The final section highlights the implications of this study to the broader scientific community.

108

 $\mathbf{2}$

Data and Numerical Framework

109

2.1 ACT-America Aircraft Measurements

The Atmospheric Carbon and Transport (ACT)-America mission is a NASA Earth 110 Venture Suborbital mission designed to improve atmospheric inverse estimates of Green-111 house Gas (GHG) fluxes. One objective is to quantify and reduce atmospheric GHG trans-112 port uncertainties (Davis et al., 2020). Two aircraft, a NASA Wallops C-130 Hercules 113 and a NASA Langley B200 King Air collected remote and in-situ measurements in the 114 boundary layer and free troposphere. During frontal passages, flight paths were designed 115 to make measurements in both the warm and cold sectors by crossing frontal systems 116 at multiple levels. Multiple vertical profiles were also collected on both sides of the front. 117 In situ CO_2 measurements from the B200 and C-130 aircraft were collected using a PI-118

Figure 1. Synoptic map over continental U.S. on August 4th, 2016 at 18Z. The cold front studied is highlighted in the black dashed circle and the green line shows the approximate flight path for the ACT-America aircraft. Courtesy: NOAA/National Weather Service

CARRO 2401-m spectrometer (Digangi et al., 2018) along with atmospheric state variables. Data sets and management are described by Davis et al. (2018). In this study, the performance of the numerical model used was evaluated using in-situ measurements from the ACT-America aircraft on August 4th, 2016.

¹²³ 2.2 Cold front passage on August 4th, 2016

The summer 2016 flight campaign was in the Midwest region of the U.S. from Au-124 gust 1st to August 17th. A cold front crossed south-eastern Nebraska, Iowa and north-125 ern Kansas (located within the 3km simulation domain) from August 4th 18Z to August 126 5th 12 Z. Figure 1 shows the synoptic map for the frontal passage with the flight track 127 overlay. The low-pressure center of the front was located over Manitoba in Canada. The 128 cold front passage was characterized by a 170° change in wind directions at the frontal 129 boundary - northerly winds to southerly winds. The Lincoln airport station (KLNK) recorded 130 that the daytime mean temperature dropped by 12 K between the 4th and 5th of Au-131 gust. The change in the airmass over the station was also accompanied by a 10% decrease 132 in relative humidity and a 10 hPa drop in surface pressure. To capture the gradients in 133 CO_2 mole fractions across the frontal boundary, the aircraft crossed the front at mul-134 tiple altitudes (300 m, 3 km, 5 km and 8 km MSL) on August 4th between 16Z and 21Z. 135 Vertical profiles were also taken at multiple locations in the warm and cold sector. The 136 aircraft recorded a 25 ppm change in CO_2 while crossing the frontal boundary in the at-137 mospheric boundary layer (ABL) (Pal et al., 2020). 138

Figure 2. Domains used for the WRF-Chem model simulations, shown with contours of terrain height in meters above sea level. The map shows the 27 km resolution domain (D01), the black inner box shows the 9 km domain (D02) and the innermost red box shows the 3 km domain (D03).

2.3 Model Description

139

156

For this study, we use the Weather Research and Forecasting Model with Chem-140 istry - WRF-Chem ver. 3.6.1 (Skamarock et al., 2008). The model was run with one-141 way nesting via three nested domains with spatial grid resolutions of 27 km, 9 km, and 142 3 km respectively, using WRF-Chem with a modification to include CO_2 as a passive 143 tracer (Lauvaux et al., 2012). Figure 2 shows the arrangement of the nested domains as 144 used in WRF-Chem. Vertical grid resolution has been kept constant across the domains 145 with 51 terrain-following et a levels from the surface to the top of the atmosphere (at 100hPa). 146 The vertical grids are staggered with 29 levels forming a higher density grid under 2km 147 AGL (above ground level), with greater spacing above. The first vertical level has an el-148 evation of 8 m above ground level. 149

The simulations were initialized with meteorological driver data from 6-hourly ERA-Interim (Dee et al., 2011) outputs with a reduced Gaussian grid with approximately uniform 79 km spacing for surface and other grid-point fields (Berrisford et al., 2011) and NCEP high-resolution SST data. Model physics are summarized in Table 1. We output WRF-Chem hourly for the period from July to August 2016, in which the model was reinitialized every 5 days and with 12-hour meteorological spin-up.

2.4 CO₂ Simulations

WRF-Chem transport was coupled with CO₂ fluxes from the CarbonTracker Near
 Real Time v2017 (CT-NRT.v2017) (Peters et al., 2007), hereafter referred to as Carbon Tracker. CO₂ is simulated as a passive tracer in this study – similar to setups described
 in prior studies (Butler et al., 2019; Feng, Lauvaux, Keller, et al., 2019; Feng, Lauvaux,
 Davis, et al., 2019). CarbonTracker provided surface fluxes as well as lateral boundary

Option	Parameter
Microphysics	Thompson (Thompson et al., 2008)
PBL Scheme	MYNN2 (Nakanishi & Niino, 2006)
Longwave Radiation	RRTMG longwave scheme (Iacono et al., 2008)
Shortwave Radiation	RRTMG shortwave scheme (Iacono et al., 2008)
Land Surface	Unified Noah land-surface model (Chen & Dudhia, 2001)
Cumulus	Kain-Fritsch (new Eta) scheme (Kain, 2004),
Parameterization	for the 27 km and 9 km resolution domains

Table 1. Parameter	terization	options	used	for	WRF-Cl	hem simı	ilations
----------------------------	------------	---------	------	-----	--------	----------	----------

conditions. Within the WRF-Chem framework, these surface fluxes are tracked as in-162 dividual tracers simulating fossil fuel emissions, biogenic fluxes, oceanic fluxes, and biomass 163 burning emissions. CO_2 inflow from CarbonTracker to the boundaries of the WRF-Chem 164 domains are tracked separately as lateral boundary condition tracers with the consid-165 eration of CO_2 mass conservation. Horizontal and vertical interpolations were applied 166 using weights based on the pressure level differences between the two models. More de-167 tails can be found in Butler et al. (2019). Thus, by considering the sum of all the indi-168 vidually traced tracers, the total atmospheric CO_2 mole fractions are determined. The 169 lateral boundary conditions have a $3^{\circ} \times 2^{\circ}$ spatial resolution and the set of surface fluxes 170 have a $1^{\circ} \times 1^{\circ}$ resolution over the study domain. Temporally, all the fluxes are intro-171 duced as 3-hourly mean values. The simulation is initialized with an atmosphere free of 172 CO_2 . Lateral boundary conditions along with surface fluxes populate the domain with 173 CO_2 while WRF-Chem transport moves it within the domain. WRF-Chem was run for 174 a month prior to the campaign period (July 2016) to ensure realistic CO_2 mole fractions 175 (approximately 410 ppm) in the domain atmosphere before simulating the study period 176 (August 2016). 177

178

2.5 Breakdown of CO₂ mole fractions into components

Within the WRF-Chem framework, the simulated atmospheric CO_2 mole fractions 179 are calculated as the sum of components from CarbonTracker, which are related to the 180 various surface fluxes of CO_2 along with the lateral boundary conditions. By tracking 181 the individual tracers, it is possible to show the interaction between atmospheric trans-182 port features created due to the cold front passage and CO₂ emitted from these various 183 sources and the boundary conditions. In this study, the CO_2 from the boundary con-184 ditions represent inflow from outside the simulation domains. These interactions can high-185 light which CO_2 tracer is impacted the most by the frontal passage. Further, a footprint 186 analysis has also been performed to trace the origins of the airmasses at the frontal bound-187 ary. Thus, by combining these two analyses it is possible to determine which sources of 188 CO_2 were responsible for the atmospheric distribution during the period of frontal pas-189 sage. 190

¹⁹¹ WRF-Chem was configured to simulate CO_2 originating from fossil fuel, biogenic, ¹⁹² oceanic, and fire surface fluxes, and boundary conditions as separate tracers. Due to neg-¹⁹³ ligible impacts of oceanic and fire sources on CO_2 during the study period (< 1 ppm), ¹⁹⁴ we focus only on fossil fuel, biogenic and boundary condition tracers to investigate how ¹⁹⁵ the transport impacts them individually and quantify their contribution to specific fea-¹⁹⁶ tures such as the band of elevated CO_2 mole fractions along the frontal boundary.

¹⁹⁷ 3 Methods

198

3.1 Model-Data Comparison

During the ACT-America flight campaign, CO_2 mole fractions along with standard 199 atmospheric variables (potential temperature, water vapor mole fraction etc.) were mea-200 sured on both aircraft (Davis et al., 2018). Similarly, simulated values of potential tem-201 perature and CO₂ mole fractions were extracted from WRF-Chem simulation atmosphere 202 along the flight tracks to evaluate model performance. A limitation in this approach arose 203 from the different time and spatial resolution of the products used. The modeled poten-204 tial temperature and CO_2 mole fraction values were extracted from nearest points to the 205 observations. The aircraft data are archived with a time resolution of 5 seconds (Davis 206 et al., 2018), while the WRF-Chem setup used has been configured with hourly output. 207 For this evaluation, measurements taken within 30 minutes of a WRF-Chem output were 208 used. In order to compare aircraft measurements along constant altitude flight legs, hor-209 izontal maps were extracted from WRF-Chem at the same altitude. A transect drawn 210 almost parallel to the flight path was used to compare the vertical features of the front 211 as described by WRF-Chem and the aircraft measurements. 212

3.2 Calculating CO₂ transport terms

As mentioned in section 2.4, CO_2 is simulated in WRF-Chem as a passive tracer. The transport of CO_2 is driven by the simulated atmospheric dynamics. Previous studies (Bakwin et al., 2004; Parazoo et al., 2008) have used the scalar conservation equation:

218

2

$$\underbrace{\frac{\partial C}{\partial t}}_{i} + \underbrace{\frac{RT}{p}}_{ii} \underbrace{\frac{F_c}{z_1}}_{iii} + \underbrace{K_m \frac{\partial^2 C}{\partial z^2}}_{iii} + \underbrace{w \frac{\partial c}{\partial z}}_{iv} + \underbrace{\overrightarrow{V_H} \cdot \nabla_H C}_{v} + \underbrace{g \frac{M \partial C}{\partial p}}_{vi} = 0 \tag{1}$$

to quantify CO₂ transport in the atmosphere where C is the CO₂ mole fractions in ppm, F_c is the surface flux of CO₂, z_1 is the lowest model level, R is the gas constant, T is temperature, p is pressure, K_m is the vertical eddy diffusivity coefficient, w is vertical velocity, $\overrightarrow{V_H}$ is horizontal velocity, g is gravity and M is the parameterized convective mass transport.

The individual terms represent the tendency in CO₂ mole fractions (i), influence of surface fluxes (ii), and transport by vertical diffusion (iii), vertical advection (iv), horizontal advection (v), and cloud convection (vi).

Term (ii) acts only on the lowest model layer. The cloud convective transport term is suitable for a model with parameterized convection. In the 3-km simulation, the convective transport is not separable from the grid-scale vertical advection and thus, in eq. 2, the term (vii) includes the vertical transport due to convection (vi) and vertical advection (iv) in eq. 1. We use lower-case c to indicate the differences. We continue to refer to term (vii) as vertical advection for simplicity Thus, at elevated model level (above the first level), the equation for high resolution models can be further reduced to:

$$\underbrace{\frac{\partial C}{\partial t}}_{i} + \underbrace{K_m \frac{\partial^2 C}{\partial z^2}}_{iii} + \underbrace{w \frac{\partial c}{\partial z}}_{vii} + \underbrace{\overrightarrow{V_H} \cdot \nabla_H C}_{v} = 0$$
(2)

In our study, we consider horizontal advection, vertical advection and vertical diffusion are the transport terms representing change in CO_2 mole fractions in the atmosphere. We study the impact of these terms on the distribution of CO_2 along a frontal

Figure 3. Comparisons of aircraft measurements to the high-resolution (3km) WRF-Chem simulation (at 548 m AGL) of potential temperature on August 4th, 2016 at 18Z. The aircraft measurements are shown as circles. Panel (a) shows simulated potential temperature overlaid with aircraft observations from approximately the same altitude, and (b) shows the vertical cross-section across the frontal boundary along the path traced by the aircraft transects. To match times with WRF-Chem outputs, aircraft measurements within \pm 30 minutes of 18Z are shown.

boundary. Terms from eq. (2) were calculated using 3D velocities, CO₂ mole fractions
 and eddy diffusivity from WRF-Chem hourly outputs.

240 4 Results

241

4.1 Comparison to ACT-America Aircraft Measurements

WRF-Chem simulated a cold front with thermal features that are consistent with 242 the aircraft measurements. Figure 3 shows the horizontal map and vertical cross-section 243 of potential temperature from WRF-Chem and aircraft measurements. In figure 3(a) it 244 can be seen that there is a region of warm air located in the south-west of the domain 245 and a cold air mass to the north-west of the domain. Figure 3(b) shows the variability 246 in potential temperature in a vertical cross-section across the frontal boundary. The warm 247 and cold air masses meet at -97° longitude at the surface. The vertical distribution of 248 potential temperature shows that there is a band of warm air ($\theta > 307K$) extending 249 from -97° to -94° longitude. This warm air mass was also present in the aircraft mea-250 surements. 251

Similar to potential temperature, WRF-Chem simulates wind speed and wind di-252 rection across the front that are largely consistent with the ACT-America aircraft ob-253 servations. Figure 4(a) shows that in the ABL along the frontal boundary there is a de-254 crease in wind at the frontal boundary as seen in the aircraft measurements and WRF-255 Chem; the feature is most prominent between -97° and -96° longitude and 40° and 41° 256 latitude. In the cold sector, towards the northwest region of the domain, the higher wind 257 speeds $(>9 \text{ ms}^{-1})$ measured by the aircraft were also captured by WRF-Chem. Southerly 258 winds in the warm sector have lower wind speeds $(<9 \text{ ms}^{-1})$ in WRF-Chem as well as 259 the aircraft measurements. WRF-Chem simulated wind speeds were found to be higher 260 than the aircraft observations. Figure 4(b) shows that the simulated wind shift from north-261 westerly winds in the cold sector to southerly winds in the warm sector at the frontal 262 boundary matches the wind shift measured by the aircraft. In the south-eastern end of 263 the flight track, there is a region of relatively calm winds $(<2 \text{ ms}^{-1})$ where there is a mis-264 match in wind direction between model and observations. However, this region is rel-265

Figure 4. Comparisons of aircraft measurements to the high-resolution (3km) WRF-Chem simulation of horizontal winds on August 4th, 2016 at 18Z at an altitude of 548 m AGL. The aircraft measurements are shown as circles. Panel (a) shows the wind speed (ms-1) comparison with the WRF-Chem map overlaid with aircraft observations and panel (b) shows the wind direction (degrees) comparison with the WRF-Chem map overlaid with aircraft observations. The white triangles show the locations for the aircraft vertical profiles used to evaluate the boundary layer depth. The arrows show the wind vectors on both figures for reference.

atively far from the frontal boundary, and wind speeds are low in both the model andthe observations.

Figure 3 shows the locations of the aircraft vertical profiles along the flight track where observed virtual potential temperature profiles were used to derive ABL depth and compare to the WRF-Chem diagnosed ABL depth. The WRF-Chem ABL depth was higher in the warm sector and lower in the cold sector. Table 2 summarizes the modeldata differences in the warm and cold sectors. Studies conducted using similar WRF-Chem parameters have also reported values of the same order (Díaz-Isaac et al., 2018; Feng et al., 2016).

Figure 5 shows that WRF-Chem was able to represent the observed large-scale fea-275 tures in CO_2 mole fraction. Figure 5(a) shows simulated cross-frontal differences as high 276 as 25 ppm. The observed frontal difference was smaller at this location. WRF-Chem did 277 simulate the lower CO_2 mole fractions observed in the cold sector north of 41° latitude. 278 The horizontal extent of elevated CO_2 mole fractions in the warm sector is narrower in 279 the model as compared to the aircraft measurements. This is specifically noticeable in 280 figure 5(b) – in WRF-Chem, the elevated concentrations extend from -96.5° to -94° lon-281 gitude but in the aircraft measurements it extends from -97.7° to -93° longitude. This 282 could be caused by a small error in the simulated location (Fig. 5(a)) of the high CO₂ 283 region found in the model at approximately -95° longitude and 39° latitude. 284

There is a small region of elevated CO_2 mole fractions west of the frontal bound-285 ary into the cold sector between -98° to -97° longitude. This was seen in both aircraft 286 measurements and WRF-Chem. Overall, WRF-Chem was able to capture the large-scale 287 features of the CO_2 distribution at frontal boundary, including the correct sign and ap-288 proximate amplitude of the cross-frontal difference. Table 2 shows the quantified statis-289 tics comparing WRF-Chem and aircraft measurements along the flight track. The dis-290 tribution of CO_2 in the simulated atmosphere is determined by interactions between at-291 mospheric transport and the surface fluxes. The misalignment of the CO_2 distribution 292 between WRF-Chem and aircrafts can arise from errors either in transport or fluxes and 293 detangling them to determine the cause is beyond the scope of this study. Even though 294 the CO_2 distribution was not exactly represented as measured by the aircraft, WRF-Chem's 295

Figure 5. Comparisons of aircraft measurements to the high-resolution (3km) WRF-Chem simulation of potential temperature on August 4th, 2016 at 18Z at an altitude of 548 m AGL. The aircraft measurements are shown as circles. Panel (a) shows the horizontal map overlaid with aircraft observations. The white line shows the transect for the cross-section. Panel (b) shows the vertical cross-section across the frontal boundary highlighting the vertical features as seen by WRF-Chem and the aircraft measurements.

 Table 2.
 Evaluation of WRF-Chem using aircraft measurements in the boundary layer. Cross

 frontal differences were calculated as the difference between warm sector and cold sector values

Variable	Units	Warm Sector		Cold Sector		Cross-Frontal Difference	
		WRF	Aircraft	WRF	Aircraft	WRF	Aircraft
Potential Temperature	К	313.2	311.7	305.4	307.2	7.8	4.5
Wind Speed	ms^{-1}	6.4	5.92	12.1	10.05	-5.7	-4.13
Wind Direction	degrees	242.9	259.96	310.75	308.71	-67.85	-48.75
PBL Depth	m AGL	836.4	770	692.6	705	143.8	65
CO_2 Mole Fraction	ppm	409.6	406.4	395.9	394.7	13.8	11.7

performance in simulating the large-scale CO₂ features during the frontal passage as well
 as meteorological variability allows it to qualify as a platform to study CO₂ transport.

298

4.2 Synoptic-scale weather and CO_2 distributions on August 4^{th}

In this study, WRF-Chem simulation of CO₂ distributions during the cold front passage show the presence of a narrow band of elevated mole fractions aligned with frontal boundary.

Figure 6 shows the distribution of equivalent potential temperature (θ_e) within the 302 innermost simulation domain at an elevation of 548m AGL at 00Z on August 5th. The 303 frontal location was determined by the maximum gradient in θ_e in the innermost high-304 resolution domain (Pauluis et al., 2008). In figure 6(a), based on the contours of θ_e we 305 can see that the cold front extends from the border of Minnesota and Wisconsin in the 306 north to Kansas in the south. The maximum gradient is located between -94° longitude 307 and -97° longitude between the 41° latitude and 42° latitude. Based on the gradients 308 in θ_e across the domain, we defined the frontal boundary as the contour line correspond-309 ing to a θ_e value of 355 K, which is highlighted in figure 6(b) as the single black contour 310 line. In addition to θ_e , the locations of the warm and cold sectors of the front are fur-311 ther confirmed by the changing wind directions as seen in figures 6(a) and 6(b). The cold 312

Figure 6. Map of equivalent potential temperature (θ_e) at an elevation of 548m (AGL) at 00Z on Aug 5th as simulated by WRF-Chem. Panel (a) shows the equivalent potential temperature distribution with contours used to determine the threshold value. Panel (b) shows the contour of equivalent potential temperature threshold value ($\theta_e = 355K$) highlighting the location of the front. The white line shows the transect used to study features across the frontal boundary in the warm and cold sector of the front. The star shows the location of the reference point chosen for analysis in this study.

sector has predominantly north-westerly flow covering most of Nebraska, including Lincoln, while Missouri and parts of Kansas and Iowa experience southerly winds in the warm
sector. Figure 6(b) also shows a pin-wheel shape in the wind vectors at about 39° latitude, -97.5° longitude, suggestive of a convective storm located over that region.

The response of simulated CO_2 mole fractions to the cold front over continental 317 North America can be seen in Figure 7(a). The continental scale distribution of CO_2 shows 318 the strong gradient along the frontal boundary. In the cold sector, air with lower CO_2 319 mole-fractions (390 ppm) are introduced with northwesterly winds coming in from Canada. 320 The warm sector of the front is characterized with southerly flow bringing in air with 321 higher CO_2 mole fractions (405-410 ppm). Figure 7(b), the high-resolution simulation, 322 shows a "zoomed-in" view of the front and associated CO_2 distribution. An elongated 323 band of air with higher CO_2 mole fractions can be seen extending along the frontal bound-324 ary. This band has a maximum width of approximately 200 km and extends from north-325 eastern Kansas to northeastern Iowa spanning over 800 km. The white box delimits the 326 boundaries of the innermost domain (Figure 7(b)). 327

We select the line extending across the front into the warm and cold sectors and 328 a fixed-point location, referred hereafter as our reference point, where the frontal bound-329 ary passes at 00Z (see Figure 6b) to study the vertical structure of the atmospheric CO_2 330 and its evolution responding to this summertime cold front (Figure 8). Figure 8(a) shows 331 the impact of the cold front passage on CO_2 contribution at a given time across the frontal 332 boundary. In Figure 8(a), we see the slanted structure of the front in the cold sector (west-333 ern region, lower altitudes) identified by air with much lower CO_2 mole fractions (380 334 - 395 ppm). The CO₂ distribution is largely correlated with the alignment of θ_e contours 335 shown as the black contours. In comparison, the warm sector has elevated CO_2 mole frac-336 tions $(-94^{\circ} \text{ to } -95^{\circ} \text{ longitude})$ which extend from the surface to approximately 3.5 km 337 MSL near the frontal boundary - identified as the band of high CO₂ along the frontal 338 boundary. 339

Figure 7. Maps of simulated CO₂ mole fraction on August 5th at 00Z from the outermost coarse (27km-resolution) simulation domain on the left panel (a) and the 3km grid high resolution domain on the right panel (b). The green lines show contours of equivalent potential temperature ($\theta_e = 355K$) highlighting the location of the front. Results from both domains are from 548m AGL.

Figure 8. Vertical distribution of CO_2 during a cold front passage. (a) Vertical distribution (MSL) of CO_2 along the transect (white line in Figure 6b) shown in figure 6 highlighting the warm and cold sector of the front on August 5th at 00Z. The bold black line shows the the slanted structure of the front in the cold sector with lower CO_2 mole fractions. (b) Time evolution of CO_2 mole fractions over the reference point (white star in Figure 6b) in Nebraska from Aug 3rd to Aug 7th 00Z. The gray regions show the terrain. The vertical black lines in panel (b) show the period of frontal influence from Aug 5th 04Z to Aug 6th 09Z over the reference location.

In order to track the influence of the cold front passage on local CO_2 distribution, 340 a time-series of vertical distribution at the reference point is shown in figure 8(b). The 341 location experiences elevated CO_2 mole fractions between August 5th at 00Z and 18Z 342 when the cold front passes. We also see that there are repeated periods of low CO_2 mole 343 fractions that are centered around 00Z – these are caused by the daily cycle of ecosys-344 tem fluxes and ABL mixing. Between 00Z Aug 5th and 00Z Aug 6th, there is a period 345 of elevated CO_2 mole fractions that is relatively uniform in the vertical, extending above 346 6km MSL. During this period, air mass with pre-existing gradients are being advected 347 over the location - these gradients do not represent downward movement of air from higher 348 up in the atmosphere. From Aug 5th 00Z, air mass over the reference location has low 349 CO_2 mole fractions in the vertical (< 390ppm). This continues for a few more hours till 350 04Z when there is a sharp change in the vertical distribution of CO_2 , with elevated CO_2 351 mole fractions (> 400 ppm) extending from the surface till 6km MSL. The change in the 352 vertical distribution of CO_2 corresponds to the change in air mass due to the frontal bound-353 ary passing over the location. The air mass with elevated CO_2 concentrations correspond 354 to the warm sector of the front, lasting until Aug 6th 05Z. The warm sector air mass is 355 followed by the cold sector air mass over the location with lower CO_2 mole fractions (< 356 390ppm). This can be seen in figure 8(b) between Aug 6th 00Z and 09Z. The impact of 357 the frontal passage over the location disrupts the repeated diurnal variation features (seen 358 prior to Aug 5th 00Z). The components of CO_2 as well as the transport mechanisms re-359 sponsible for these features are described in greater detail in sections 4.3 and 4.4 respec-360 tively. 361

362

4.3 CO_2 transport from various sources

We find that CO_2 introduced into the domain via boundary conditions along with 363 influences from biogenic and fossil fuel components within the domain determine the dis-364 tribution of CO₂ along the frontal boundary. The cross-frontal difference (calculated near 365 the surface at -95° longitude on August 5th at 00Z in figure 8(a)) in CO₂ mole fractions 366 is similarly influenced by these components. Figure 9 shows the distribution and time-367 evolution of CO_2 mole fractions for each separate component from different perspectives. 368 Based on the horizontal maps, at 00Z on Aug 5th, strong negative biogenic CO_2 fluxes 369 (approximately -10 ppm) between -97° and -95° longitude and 40° and 42° latitude are 370 co-located with the cold sector air mass with low CO_2 mole fractions as seen previously 371 in figure 7(b). In the warm sector (between -96° and -94° longitude and 41° and 39° lat-372 itude), biogenic fluxes have near zero magnitudes and are aligned with air mass with el-373 evated CO_2 mole fractions in figure 7(b). Figure 9 shows fossil fuel fluxes have elevated 374 mole fraction in the eastern half (between -92° and -90° longitude) of the domain. The 375 presence of stronger negative biogenic fluxes over the same region cancels out the im-376 pact of the elevated fossil fuel mole fractions. The frontal difference is visible in the hor-377 izontal map of boundary inflow CO_2 . However the magnitude of the difference is lower 378 (2-3 ppm) when compared to the total CO₂ distribution (20-25 ppm). Biogenic fluxes 379 show a frontal difference of 13 ppm while the fossil fuel fluxes show a frontal difference 380 of 4 ppm. These features are further discussed and differentiated by Pal et al. (2020). 381

The cross-frontal difference in CO_2 mole fractions is shown in figure 9 (panels (d) 382 to (e)). The slanted vertical structure of the cold front seen in figure 8(a) is highly cor-383 related with boundary condition CO_2 mole fractions. The cross-frontal CO_2 difference caused by boundary conditions was around 5 ppm near the surface. The boundary in-385 flow does not contribute to the elevated band of CO_2 along the frontal boundary. The 386 narrow band of elevated CO_2 (2-6 ppm increase) is located near the frontal boundary 387 from the surface to 3.5 km MSL, and between -96° and -95° longitude. This band of el-388 evated CO_2 , as well as the relatively lower near surface CO_2 mole fractions between -389 93° and -91° longitude are primarily influenced by biogenic CO₂ mole fractions. In fig-390 ure 9(e), we see that fossil fuel has a positive contribution (2-4 ppm) near the frontal bound-391 ary (between -96° and -94° longitude), and that fossil CO₂ emissions are counteracted 392

Figure 9. Distribution of CO_2 from various sources in WRF-Chem for the August 4th cold front passage. Panels (a) to (c) show a map of CO_2 from fossil fuel emissions within the domain, biospheric fluxes within the domain, and inflow of CO_2 from the domain boundaries on August 5th 00Z at an altitude of 548m AGL. Panels (d) to (f) show the vertical cross-sections along the transect (white line in panels (a) through (d)) on August 5th at 00Z. Panels (g) to (i) show the time-evolution of CO_2 from various sources over Lincoln, NE from August 3rd to August 7th at 00 UTC. The black contours of total CO_2 mole fractions are shown in panels (a) to (f).

³⁹³ by the strong biogenic CO_2 drawdown in the lower atmosphere between -93° and -91° ³⁹⁴ longitude - further confirming that the elevated CO_2 mole fractions from fossil fuel are ³⁹⁵ not a major driver of frontal CO_2 gradients.

The time-evolution analysis of various components of CO_2 shows that during the 396 period of frontal passage, there are changes in the near surface CO_2 mole fractions driven 397 by biogenic sources followed by fossil fuel sources acting on CO₂ advected in by bound-398 ary inflow. Variability in the vertical profile of total CO_2 mole fractions are shown in fig-399 ure 9(g). Diurnal net photosynthesis and deep ABL mixing can be seen as the repeat-400 ing low CO_2 mole fractions extending into the lower troposphere, coupled with noctur-401 nal respiration causing high CO_2 mole fractions near the surface. This pattern is disrupted 402 on August 5th at 00Z, as elevated CO_2 mole fractions are present in the atmosphere above 403 the reference point. The difference in near surface CO_2 mole fractions between the pre-404 frontal and frontal periods is 25 ppm. The elevated CO_2 mole fractions persist over the 405 region for a day followed by a shorter period of depleted CO_2 mole fractions. The di-406 urnal pattern resumes around 10Z on August 6th. This disruption to the diurnal pat-407 tern and the consequent change in the vertical distribution of CO_2 over the location is 408 attributed to the cold front passage. From the fossil fuel mole fractions shown in figure 409 9(h), the only significant positive influence (between 4 ppm to 6 ppm) in mole fractions 410

exists between Aug 5th 00Z to Aug 6th 00Z contributing to 20% of the total near sur-411 face change in CO_2 mole fractions. These positive modulations in fossil fuel CO_2 mole 412 fractions reduce sharply towards the end of the frontal passage period after Aug 6th 09Z. 413 The biogenic CO_2 mole fractions are responsible for the diurnal patterns (figure 9(i)) as 414 they represent the uptake of CO_2 by photosynthesis during the day and accumulation 415 due to respiration at night. On Aug 5th at 04Z we see that biogenic CO_2 mole fractions 416 shift from -10 ppm to 4 ppm, coinciding with a different air-mass advected in by the frontal 417 boundary passing over the location. 418

We find that boundary inflow CO_2 is responsible for roughly 20% of the pre-frontal and frontal near surface difference in CO_2 at this location. During the frontal passage, boundary CO_2 is relatively homogenous in the vertical, with mole fractions similar to upper free tropospheric values throughout the column. Boundary CO_2 also explains a roughly 3 ppm drop in lower free troposphere and ABL CO_2 after frontal passage. The primary driver of the frontal gradient is biogenic CO_2 , as it explains about 60% of the total change in CO_2 within the ABL between pre-frontal and frontal conditions.

We further explore the components of CO₂ within WRF-Chem with a footprint anal-426 ysis (Figure 10 (c) and (d)) showing the air mass history across the frontal gradient. Sim-427 ulated particles were released at 300 m above Lincoln, NE on Aug 4th, 20Z (pre-frontal 428 crossing) and Aug 5th, 03Z (post-frontal crossing). These particles were tracked back-429 wards for 5 days using a Lagrangian particle dispersion model (Uliasz, 1994) and their 430 interactions with the surface were summed to create an influence function of the air mea-431 sured above Lincoln before and after the frontal crossing. From figure 10(c), we see that 432 the cold sector ABL air at this time and location originated in the southwestern Canada, 433 while the warm sector (figure 10(d)) air came from the south-central region to the south. 434 The biogenic surface fluxes in figure 10(a) are averaged over 5 days and do not quanti-435 tatively reflect the impact of the diel variations in fluxes. Qualitatively, there is not a 436 large difference in the net biological fluxes in these two upwind areas; neither back tra-437 jectory comes from the region of strong net uptake to the north and northeast of the flight 438 path. This result is likely to be specific to this frontal case. Since fossil fuel fluxes do not 439 have as strong a diel variability as do biogenic fluxes, the 5-day average better represents 440 the distribution and magnitude of fluxes. 441

442

4.4 Mechanism of CO₂ transport along the frontal boundary

Horizontal and vertical advection are the primary transport terms that drive the 443 distribution of CO_2 at the frontal boundary. We compare the three terms driving CO_2 444 mole fraction gradients in both vertical and horizontal directions (cf. section 2.5) as de-445 scribed in equation (3), which are (i) horizontal advection, (ii) vertical advection and 446 (iii) vertical diffusion. Figure 11 shows the transport terms along the transect shown 447 in figure 6(b). Since this figure represents a snapshot in time, the sign of the transport 448 term does not reflect its influence for the period of frontal passage. Overall, horizontal 449 advection is strongest near the frontal boundary and has a strong negative influence in 450 the cold sector and a weaker positive influence in the warm sector. The magnitude of 451 horizontal advection is greatest at the frontal boundary, where the CO_2 mole fraction 452 gradient is the strongest. As seen in figure 11(a), horizontal advection has high magni-453 tude (~ 10 ppm/hr) in the ABL at the frontal boundary. At the frontal boundary (-95.5° 454 longitude), near surface values of horizontal advection have postive values in the warm 455 sector and negative values of similar magnitude in the cold sector. Alternating negative 456 and positive values can be interpreted as transport of CO_2 from a depleted region fol-457 lowed by an elevated CO_2 region due to changes in the direction of the CO_2 flow as the 458 cold front propagates. Further into the warm sector (Figure 6b) of the front, there is a 459 region of depletion caused by horizontal advection between -95° and -94° longitude fol-460 lowed by accumulation between -94° and -93° longitude. However, the magnitudes are 461 not as high as those near the frontal boundary. 462

Figure 10. Footprint analysis of airmass along the frontal boundary showing the surface fluxes from CarbonTracker (CT-NRTv2017x) and regions of influence. Panel(a) has biogenic CO_2 surface fluxes and panel (b) shows fossil fuel CO_2 surface fluxes. The surface flux maps have been averaged over 5 days. Panel (c) shows the airmass history for the warm air mass ahead of the front and panel (c) shows the airmass history for the cold air mass behind the front. The flight path is shows as yellow circles.

The influence of vertical advection on the distribution of CO_2 across the front is 463 generally restricted to the region close to the frontal boundary (between -96° and -95° 464 longitude) as seen in figure 11(b). However, unlike horizontal advection the magnitude 465 of vertical advection drops sharply on moving away from the frontal boundary. Verti-466 cal diffusion has a lower magnitude as well as region of influence compared to the other 467 terms. As shown in figure 11(c), maximum values are located at the frontal boundary 468 (at -95.5° longitude). Vertical diffusion is responsible for some near surface accumula-469 tion around the frontal boundary and depletion in the cold sector. Thus, for this cold 470 front passage, horizontal and vertical advection play the dominant role. It is also notable 471 that only the vertical advection term at the frontal boundary has a magnitude similar 472 to those found in the ABL. Horizontal advection is present throughout the lower free tro-473 posphere, but reduced in magnitude when compared to the ABL. 474

Evolution of the vertical distribution of transport budget terms over a location shows 475 that the terms have the greatest magnitude at the beginning of frontal influence and at 476 the frontal boundary between the warm and cold sectors. In figure 12(a), the vertical 477 distribution of horizontal advection over the reference location is shown from August 3rd 478 to August 7th 00Z. At the start of the frontal influence around Aug 5th 04Z, there is a 479 sharp increase in the magnitude of horizontal advection with negative influence in the 480 boundary layer (-10 ppm/hr). Between 2 km to 3 km MSL there is a positive (10 ppm/hr) 481 region. The abrupt change in signs near Aug 5th 04Z can be attributed to the change 482 in air masses due to introduction of the warm sector (Figure (11c)) over the region. Si-483 multaneously, the distribution of vertical advection is shown in figure 12(b). Unlike hor-484 izontal advection, vertical advection does not show near surface influences during the pre-485 frontal period (apart from the nocturnal buildup). During the initial period of frontal 486 influence, vertical advection has minimal influence under 1km MSL. The distribution above 487 1km MSL is similar to horizontal advection with the opposite sign. The frontal bound-488 ary separating the warm and cold sectors passes over the location around Aug 5th 12 489 Z and vertical and horizontal advection have similar structures with opposing signs. In 490 these overlap regions as seen in figure 12 (a) and (b), horizontal advection has a strong 491 depleting influence while vertical advection is resposible for the accumulation of CO_2 mole 492 fractions. The evolution of CO_2 mole fractions in the atmosphere are shown in figure 8(b). 493 The vertical distribution of horizontal advection and vertical advection are co-located - the warm sector of the front experiences predominantly positive influence from verti-495 cal advection over the reference location. This also corresponds to regions of elevated 496 CO₂ mole fractions as seen in figure 8(b). Dynamically speaking, vertical advection lifts 497 air mass with elevated CO_2 to regions with lower CO_2 mole fractions, thereby causing 498 accumulation in the vertical. Horizontal advection carries this air mass with increased 499 CO_2 mole fractions into air with lower mole fractions and depletes the combined CO_2 500 mole fractions. As the frontal boundary passes over the location (between 08Z and 12Z 501 on Aug 5th), horizontal advection has a positive influence accumulating CO_2 near the 502 surface. Vertical advection has a positive influence immediately after this, while hori-503 zontal advection has a negative influence. The accumulation of CO_2 near the surface is 504 now redistributed vertically by advection into regions with depleted mole fractions (hence 505 the positive influence). This vertical redistribution lowers the CO_2 mole fractions in the 506 air mass to its surroundings (in the horizontal only) causing horizontal advection to have 507 a depleting impact. This causes the opposing signs for horizontal and vertical advection. 508 This coupled transport between horizontal and vertical advection is clearly seen during 509 the period of frontal transport. 510

Vertical diffusion shows a repeated pattern throughout the period from Aug 3rd 00Z to Aug 7th 00Z. From figure 12(c) we see that there is a strong positive influence at the surface corresponding to night-time accumulation of CO_2 due to a shallow boundary layer (extending from 00Z to 09Z each day). Also, there is a large couplet of diffusion at the residual ABL top that is attributed to turbulence acting on the residual gradient in CO_2 . This is then followed by depletion during the daytime (10Z to 19 or 20

Figure 11. Transport processes impacting CO_2 distribution across the frontal boundary on August 5th at 04Z along the transect shown in figure 6(b). The colored contours show the transport terms while the black contour lines represent the corresponding CO_2 mole fractions. Panel (a) shows horizontal advection, panel (b) shows vertical advection and panel (c) shows vertical diffusion.

Z). During the passage of the frontal boundary over the location (bold lines on figure 12(c)), there are small periods of influence between 2km MSL and 4km MSL between 04Z and 12 Z on Aug 5th.

In summary, advective transport terms have a greater response to the frontal pas-520 sage compared to the diffusion term. For horizontal advection and vertical advection, 521 the impact during frontal passages differ from non-frontal periods. In comparison, ver-522 tical diffusion is not affected by the cold front passage. Based on the sign of the terms 523 as well the region and period of influence, horizontal and vertical advection show a cou-524 pled transport impact during the frontal passage period. Vertical diffusion shows a di-525 urnal pattern that is not modified by the frontal transport. However, it is responsible 526 for accumulation and depletion in the ABL. 527

Figure 12. Evolutions of transport terms impacting CO_2 distribution across the frontal boundary from August 3rd to August 7th at 00Z over the reference location in Nebraska as shown in figure 6(b). The vertical black lines show the period of frontal influence from Aug 5th 04Z to Aug 6th 07 Z over the reference point. Panel (a) shows horizontal advection, panel (b) shows vertical advection and panel (c) shows vertical diffusion.

4.5 Discussion and conclusions

In order to understand the distribution of atmospheric CO_2 along a frontal bound-529 ary, we need to decompose the atmospheric concentrations into various sources (biogenic, 530 fossil fuel etc.) and identify the transport mechanisms responsible. This study consisted 531 of numerical simulations of a summer cold front passage on August 4th and 5th, 2016 532 over Lincoln, NE using WRF-Chem coupled with CO₂ tracers from CarbonTracker. Air-533 craft measurements from the NASA ACT-America 2016 campaign identified the pres-534 ence of the frontal boundary and a strong gradient in CO_2 (30 ppm) near the frontal 535 boundary. 536

Previous studies have also studied the impacts of frontal passages on atmospheric 537 CO_2 distribution. Chan et al. (2004) has shown that mesoscale processes can cause vari-538 ations in atmospheric CO_2 mole fractions in the range of 5 ppm to 10 ppm over the course 539 of a day. They also reported that horizontal and vertical CO_2 transport processes in-540 fluence CO_2 distributions to a similar extent as local biospheric sources. In our study, 541 we were able to confirm these findings for the cold front passage on Aug 4th. By decom-542 posing the CO_2 mole fractions in the atmosphere into biogenic, fossil fuel and bound-543 ary inflow contributions, we were able to highlight how local biogenic sources combined 544 with boundary inflow were the dominant drivers. The transport equation quantified the 545 impact of horizontal and vertical advection on CO₂ distribution along the frontal bound-546 ary. The relationship between synoptic scale horizontal transport and local vertical mix-547 ing of CO_2 has been explored in Geels et al. (2004) and the authors suggested that these 548 motions should be resolved in numerical models. Similarly, numerical simulations with 549 high horizontal and vertical resolution have been recommended by Geels et al. (2007) 550 in order to capture the vertical mixing of CO_2 in the boundary layer. We use WRF-Chem 551 with a maximum horizontal grid resolution of 3km over the target region as shown in 552 Figure 2, and the first model level above surface is 8m AGL. Thus, the setup of WRF-553 Chem used is capable of capturing horizontal and vertical transport of CO_2 near the frontal 554 boundary. By applying the CO_2 transport equation (eq. 1) Parazoo et al. (2008) have 555 shown that for mid-latitudes, the regional gradients in atmospheric CO_2 mole fractions 556 are caused by the horizontal advection of pre-existing upstream gradients. We were able 557 to show the importance of horizontal advection in shaping atmospheric CO_2 mole frac-558 tions for a single cold front passage. The magnitude of the transport terms were found 559 to be greater in our study especially near the frontal boundary (5 - 10 times). 560

Based on the previous paragraph, our study was able to confirm the hypothesis of previous studies. Further, we highlight the main conclusions and recommendations for future studies from our study on CO₂ distribution, origins, and transport along a frontal boundary for the August 4th cold front passage as follows:

565	1.	An elongated band of elevated $(> 390 \text{ ppm}) \text{ CO}_2$ mole fractions along the frontal
566		boundary has been shown using high-resolution WRF-Chem simulations. This band
567		has not been highlighted in previous studies. This band was captured in aircraft
568		measurements as a part of the ACT-America flight campaign as well (Pal et al.,
569		2020; Davis et al., 2018). Future work can expand on the role of this feature in
570		determining the continental scale transport of CO_2
571	2.	Through the use of a Lagrangian particle dispersion model, the footprint analy-
572		sis showed that the air-mass corresponding to warm sector of the Aug 4th front
573		originated over Gulf of Mexico and Texas. Similarly, the air-mass over the cold
574		sector originated over the northwestern forests of North America. Further work
575		can be performed by applying similar techniques to the elongated band of CO_2 .
576	3.	We found that CO_2 introduced into our domain by horizontal advection as bound-
577		ary inflow had pre-existing horizontal and vertical gradients along the frontal bound-
578		ary. These gradients were weaker than those observed near the frontal boundary.

Our study quantitatively showed that combining local biogenic and fossil fuel CO_2 579 mole fractions to the boundary CO_2 resulted in gradients similar to observations. 580 4. At a cloud-resolving resolution of 3km, our study was able to capture the verti-581 cal transport of CO_2 at the frontal boundary in greater detail compared to pre-582 vious studies. Near the frontal boundary, where the gradients in CO_2 are strongest, 583 horizontal and vertical advection have comparable magnitudes. We found coupled 584 transport of CO_2 that is present only during the period frontal passage, which were 585 quantified using the CO_2 transport equation. 586

A caveat of this study was that it was limited to only one frontal passage event and thus, a general theory on the impact of fronts cannot be established. Future work should be able to incorporate multiple frontal passages over a region. The presence of the elongated band of CO_2 along the frontal boundary can be tested for multiple events. Repeatable patterns of horizontal and vertical transport as seen in this case can be tested and quantified.

593 Acknowledgments

Primary funding for this research was provided by NASA's Earth Sciences Divi-594 sion as part of the Atmospheric Carbon and Transport (ACT)-America Earth Venture 595 Suborbital mission (grant NNX15AG76G to Penn State). ACT-America aircraft datasets 596 for this research are available at Oak Ridge National Laboratory DAAC (Davis et al., 597 2018). We thank M. P. Butler at the Pennsylvania State University for generating the 598 codes that incorporate the global modeled CO_2 mole fractions into the regional model 599 with the conservation of mass (Lauvaux, 2020). CarbonTracker (CT-NRTv2017x) results 600 were provided by NOAA ESRL, Boulder, Colorado, United States, from the website at 601 http://carbontracker.noaa.gov. 602

Computing resources were provided by the NASA High-End Computing (HEC) Pro gram through the NASA Advanced Supercomputing (NAS) Division at Ames Research
 Center. The WRF-Chem model output used for this study is available at datacommons.psu.edu.

606 References

607	Bakwin, P. S., Davis, K. J., Yi, C., Wofsy, S. C., Munger, J. W., Haszpra, L., &
608	Barcza, Z. (2004, 1). Regional carbon dioxide fluxes from mixing ratio data.
609	Tellus B: Chemical and Physical Meteorology, 56(4), 301–311. Retrieved from
610	https://www.tandfonline.com/doi/full/10.3402/tellusb.v56i4.16446
611	doi: 10.3402/tellusb.v56i4.16446
612	Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J.,
613	Sato, H. (2011). Atmospheric conservation properties in ERA-Interim.
614	Quarterly Journal of the Royal Meteorological Society, 137(659), 1381–1399.
615	Retrieved from http://dx.doi.org/10.1002/qj.864 doi: 10.1002/qj.864
616	Butler, M. P., Feng, S., Bowman, K. W., Liu, J., Davis, K. J., & Lauvaux, T.
617	(2019). Mass-conserving coupling of total column CO ₂
618	(XCO ₂) from global to mesoscale models: Case study
619	with CMS-Flux inversion system and WRF-Chem (v3.6.1). Geoscientific Model
620	Development Discussions, 2(February), 1–35. doi: 10.5194/gmd-2018-342
621	Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Silva Santos, C. (2014). Compari-
622	son of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with
623	buoy data along the Iberian Peninsula coast. Remote Sensing of Environment,
624	152, 480–492. doi: 10.1016/j.rse.2014.07.017
625	Chan, D., Yuen, C. W., Higuchi, K., Shashkov, A., Liu, J., Chen, J., & Wor-
626	thy, D. (2004, 1). On the CO 2 exchange between the atmosphere and
627	the biosphere: the role of synoptic and mesoscale processes. Tellus B:

628	Chemical and Physical Meteorology, 56(3), 194–212. Retrieved from
629	https://www.tandfonline.com/doi/full/10.3402/tellusb.v56i3.16424
630	doi: 10.3402/tellusb.v56i3.16424
631	Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology
632	Model with the Penn State–NCAR MM5 Modeling System. Part I: Model
633	Implementation and Sensitivity. Monthly Weather Review, 129(4), 569–585.
634	Retrieved from http://dx.doi.org/10.1175/1520-0493(2001)129%3C0569:
635	CAALSH%3E2.0.C0%5Cn2 doi: $10.1175/1520-0493(2001)129(0569:CAALSH)2.0$
636	.CO;2
637	Corbin, K. D., & Denning, A. S. (2006). Using continuous data to estimate clear-sky
638	errors in inversions of satellite Co2 measurements. Geophysical Research Let-
639	ters, 33(12), 4–7. doi: 10.1029/2006GL025910
640	Davis, K. J., Obland, M. D., Lin, B., Lauvaux, T., O'Dell, C. W., Meadows,
641	B., Nehrir, A. R. (2018). ACT-America: L3 Merged In Situ Atmo-
642	spheric Trace Gases and Flask Data, Eastern USA. ORNL Distributed Ac-
643	tive Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/
644	dsviewer.pl?ds_id=1593 doi: 10.3334/ORNLDAAC/1593
645	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
646	S., Vitart, F. (2011, 4). The ERA-Interim reanalysis: configura-
647	tion and performance of the data assimilation system. Quarterly Journal
648	of the Royal Meteorological Society, 137(656), 553–597. Retrieved from
649	http://doi.wiley.com/10.1002/qj.828 doi: 10.1002/qj.828
650	Denning, a. S., Fung, I. Y., & Randall, D. (1995). Latitudinal gradient of atmo-
651	spheric CO2 due to seasonal exchange with land biota (Vol. 376) (No. 6537).
652	doi: 10.1038/376240a0
653	Díaz-Isaac, L. I., Lauvaux, T., & Davis, K. J. (2018, 10). Impact of phys-
654	ical parameterizations and initial conditions on simulated atmospheric
655	transport and CO $jsub_i 2j/sub_i$ mole fractions in the US Midwest. At-
656	mospheric Chemistry and Physics, 18(20), 14813–14835. Retrieved from
657	https://www.atmos-chem-phys.net/18/14813/2018/ doi: 10.5194/
658	acp-18-14813-2018
	acp 10 11010 =010
659	Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018).
659 660	Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen-
659 660 661	Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). <i>ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen-</i> <i>trations, Eastern USA.</i> ORNL Distributed Active Archive Center. doi:
659 660 661 662	Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). <i>ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen-</i> <i>trations, Eastern USA.</i> ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556
659 660 661 662 663	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S.,
659 660 661 662 663 664	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change.
659 660 661 662 663 664 665	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter-
659 660 661 662 663 664 665 666	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge
659 660 661 662 663 664 665 666 666	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/
659 660 661 662 663 664 665 666 666 667	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http://
659 660 661 662 663 664 665 666 666 666 668 669	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416
659 660 661 662 663 664 665 666 666 666 668 669 670	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416
659 660 661 662 663 664 665 666 666 669 670 671	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416http:// Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion
659 660 661 662 663 664 665 666 667 668 669 670 671 672	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35-
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concen- trations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the inter- governmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %0Ahttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416 doi: 10.1017/ CBO9781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35– 52. doi: 10.1034/j.1600-0889.47.issue1.5.x
 659 660 661 663 666 666 668 669 670 671 672 673 674 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http://ebooks.cambridge.org/ref/id/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker,
659 660 661 662 663 664 665 666 666 667 668 669 670 671 672 673 674 675	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http://ebooks.cambridge.org/ref/id/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic
 659 660 661 662 663 666 666 667 668 669 670 671 672 673 674 675 676 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416 doi: 10.1017/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2
 659 660 661 662 663 666 667 668 669 670 671 672 673 674 675 676 677 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http://ebooks.cambridge.org/ref/id/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2 Simulations Over North America. Journal of Geophysical Research: Atmo-
 659 660 661 662 663 665 666 667 668 669 670 671 672 673 674 675 676 677 678 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416 doi: 10.1017/ CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35– 52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2 Simulations Over North America. Journal of Geophysical Research: Atmo- spheres, 124(24), 14325-14346. Retrieved from https://doi.org/10.1029/
 659 660 661 662 663 666 666 667 671 673 674 675 676 677 678 679 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%0Ahttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35-52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2 Simulations Over North America. Journal of Geophysical Research: Atmospheres, 124(24), 14325-14346. Retrieved from https://doi.org/10.1029/2019JD031165
 659 660 661 663 666 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/ %OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http:// ebooks.cambridge.org/ref/id/CB09781107415416 doi: 10.1017/ CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2 Simulations Over North America. Journal of Geophysical Research: Atmospheres, 124 (24), 14325–14346. Retrieved from https://doi.org/10.1029/2019JD031165 Feng, S., Lauvaux, T., Keller, K., Davis, K. J., Rayner, P., Oda, T., & Gurney,
 659 660 661 662 663 666 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 	 Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1556 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Zwickel, T. (2014). Climate Change 2014 Mitigation of Climate Change. In Working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change (p. 1454). Cambridge: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg3/%OAhttp://ebooks.cambridge.org/ref/id/CB09781107415416http://ebooks.cambridge.org/ref/id/CB09781107415416 doi: 10.1017/CB09781107415416 Enting, I. G., Trudinger, C. M., & Francey, R. J. (1995, 2). A synthesis inversion of the concentration and delta13 C of atmospheric CO2. Tellus B, 47(1-2), 35–52. doi: 10.1034/j.1600-0889.47.issue1.5.x Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Baker, I. (2019, 12). Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO2 Simulations Over North America. Journal of Geophysical Research: Atmospheres, 124 (24), 14325–14346. Retrieved from https://doi.org/10.1029/2019JD031165 Feng, S., Lauvaux, T., Keller, K., Davis, K. J., Rayner, P., Oda, T., & Gurney, K. R. (2019, 11). A Road Map for Improving the Treatment of Uncertain-

683	<i>Research Letters</i> , 46(22), 13461–13469. Retrieved from https://doi.org/
684	Fond S. Lauraux T. Nouman S. Bao P. Ahmadoy P. Dong A. Vung
685	V I (2016) I A Magacity: a High Bosolution Land Atmosphere Mod
686	alling System for Urban COldtsubligt: 21/21/subligt: Emissions
600	mosnheric Chemistry and Physics Discussions (March) 1–56 Retrieved
680	from http://www.atmos-chem-phys-discuss.net/acp-2016-143/ doi:
600	10 5194/acp-2016-143
601	Friedlingstein P & Prentice I (2010–10) Carbon-climate feedbacks: a re-
692	view of model and observation based estimates Current Oninion in En-
603	view of model and observation based estimates. Current Opticity of the Liver view of model and observation based estimates. Retrieved from http://www.
694	.sciencedirect.com/science/article/pii/S1877343510000473https://
695	linkinghub.elsevier.com/retrieve/pii/S1877343510000473 doi:
696	10.1016/j.cosust.2010.06.002
697	Geels, C., Doney, S. C., Dargaville, R., Brandt, J., & Christensen, J. H. (2004, 1).
698	Investigating the sources of synoptic variability in atmospheric CO 2 mea-
699	surements over the Northern Hemisphere continents: a regional model study.
700	Tellus B: Chemical and Physical Meteorology, 56(1), 35–50. Retrieved from
701	https://www.tandfonline.com/doi/full/10.3402/tellusb.v56i1.16399
702	doi: 10.3402/tellusb.v56i1.16399
703	Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., San-
704	taguida, R. (2007, 7). Comparing atmospheric transport models for future
705	regional inversions over Europe – Part 1: mapping the atmospheric
706	COjsub¿2j/sub¿ signals. Atmospheric Chemistry and Physics, 7(13), 3461–
707	3479. Retrieved from http://www.atmos-chem-phys.net/7/3461/2007/ doi:
708	10.5194/acp-7-3461-2007
709	Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet,
710	P., Yuen, CW. (2002, 2). Towards robust regional estimates of CO2
711	sources and sinks using atmospheric transport models. Nature, $415(6872)$,
712	626-630. Retrieved from https://doi.org/10.1038/415626ahttps://
713	www.nature.com/articles/415626a#supplementary-informationhttp://
714	www.nature.com/articles/415626a doi: 10.1038/415626a
715	Houghton, R. A., House, J. I., Pongratz, J., van der Wert, G. R., DeFries, R. S.,
716	Hansen, M. C., Ramankutty, N. (2012, 12). Carbon emissions from
717	triand use and land-cover change. Biogeosciences, 9(12), 5125–5142. Re-
718	trieved from https://www.blogeosciences.net/9/5125/2012/ doi: $10.5104/br = 0.5125/2012$
719	10.5194/0g-9-5125-2012 Houweling S. Ahan J. Prean F. M. Chauellier F. Doutscher N. Engelen P.
720	Sorrar S (2010) The importance of transport model uncertainties for the es
721	1 series 1 series
722	Chemistry and Physics $10(20)$ 9981–9992 doi: 10.5104/200-10-9081-2010
723	Huntzinger D N Michalak A M Schwalm C Ciais P King A W Fang V
724	Zhao F (2017–12) Uncertainty in the response of terrestrial carbon
725	sink to environmental drivers undermines carbon-climate feedback predictions
720	Sink to environmental drivers undermines carbon-enmate recuback predictions. Scientific Reports $\gamma(1)$ 4765 Retrieved from http://www.nature.com/
728	articles/s41598-017-03818-2 doi: 10.1038/s41598-017-03818-2
720	Hurwitz M D Bicciuto D M Bakwin P S Davis K J Wang W Yi C
730	& Butler, M. P. (2004). Transport of Carbon Dioxide in the Presence of
731	Storm Systems over a Northern Wisconsin Forest. Journal of the Atmo-
732	spheric Sciences, $61(5)$, $607-618$. doi: $10.1175/1520-0469(2004)061(0607)$:
733	TOCDIT)2.0.CO;2
734	Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
735	& Collins, W. D. (2008). Radiative forcing by long-lived greenhouse
736	gases: Calculations with the AER radiative transfer models. Journal of
737	Geophysical Research: Atmospheres, 113(D13), n/a-n/a. Retrieved from

738	http://dx.doi.org/10.1029/2008JD009944 doi: 10.1029/2008JD009944
739	Kain, J. S. (2004). The Kain–Fritsch Convective Parameterization: An Up-
740	date. Journal of Applied Meteorology, $43(1)$, 170–181. Retrieved from
741	http://journals.ametsoc.org/doi/abs/10.1175/1520-0450(2004)
742	043%3C0170:TKCPAU%3E2.0.CO;2 doi: 10.1175/1520-0450(2004)043(0170:
743	TKCPAU $2.0.CO;2$
744	Kawa, S. R. (2004). Global CO 2 transport simulations using meteorological
745	data from the NASA data assimilation system. Journal of Geophysical Re-
746	search, 109(D18), D18312. Retrieved from http://doi.wiley.com/10.1029/
747	2004JD004554 doi: 10.1029/2004JD004554
748	Lauvaux, T. (2020, 5). psu-inversion/WRF_boundary_coupling: WRF Boundary
749	Coupling (Tracer mode - Chemistry). Retrieved from https://zenodo.org/
750	record/3832214 doi: 10.5281/ZENODO.3832214
751	Lauvaux, T., & Davis, K. J. (2014, 1). Planetary boundary layer errors in mesoscale
752	inversions of column-integrated CO 2 measurements. Journal of Geophysical
753	Research: Atmospheres, 119(2), 490–508. Retrieved from http://doi.wilev
754	.com/10.1002/2013JD020175 doi: 10.1002/2013JD020175
755	Lauvaux T Schuh A E Uliasz M Bichardson S Miles N An-
756	drews A E Davis K J (2012 1) Constraining the
757	CO&:lt:sub&:gt:2&:lt:/sub&:gt: budget of the corn belt:
758	exploring uncertainties from the assumptions in a mesoscale inverse system.
759	Atmospheric Chemistry and Physics, 12(1), 337–354. Retrieved from https://
760	www.atmos-chem-phys.net/12/337/2012/ doi: 10.5194/acp-12-337-2012
761	Law, R. M., Ravner, P. J., Denning, A. S., Erickson, D., Fung, I. Y., Heimann, M.,
762	Watterson, I. G. (1996). Variations in modeled atmospheric transport of
763	carbon dioxide and the consequences for $CO 2$ inversions (Vol. 10) (No. 4).
764	doi: 10.1029/96GB01892
765	Le Quéré C. Andrew B. M. Friedlingstein P. Sitch S. Pongratz J. Manning
765	A C Zhu D (2017) Global Carbon Budget 2017 (pre-print) Earth
767	Sustem Science Data Discussions are print(November) 1–79 Retrieved from
768	https://www.earth-syst-sci-data-discuss.net/essd-2017-123/ doi:
760	10 5194/essd-2017-123
770	Le Quéré C. Baupach M. R. Canadell, J. G. Marland, G. Le Quéré, C. Bau-
771	pach M B Woodward F I (2009 12) Trends in the sources and sinks
772	of carbon dioxide Nature Geoscience 2(12) 831-836 Betrieved from http://
773	dx_doi_org/10.1038/ngeo689http://www.nature.com/articles/ngeo689
774	doj: 10.1038/ngeo689
775	Miles N L Richardson S J Davis K J Lauvaux T Andrews A E West
776	T O Crosson E B (2012 3) Large amplitude spatial and temporal
777	gradients in atmospheric boundary layer CO2mole fractions detected with a
778	tower-based network in the U.S. upper Midwest. Journal of Geonhusical Re-
779	search: Biogeosciences, 117(G1). Retrieved from https://doi.org/10.1029/
780	2011JG001781 doi: 10.1029/2011JG001781
781	Nakanishi M & Niino H (2006) An improved Mellor-Yamada Level-3
782	model: Its numerical stability and application to a regional prediction
783	of advection for Boundary-Layer Meteorology, 119(2), 397–407. doi:
784	10.1007/s10546-005-9030-8
785	Pal S Davis K J Lauvaux T Browell E V Gaudet B J Stauffer D B
786	Zhang, F. (2020, 3). Observations of Greenhouse Gas Changes Across
787	Summer Frontal Boundaries in the Eastern United States Journal of Geo-
788	physical Research: Atmospheres, 125(5), e2019. JD030526. Retrieved from
789	https://doi.org/10.1029/2019JD030526https://onlinelibrary.wilev
790	.com/doi/abs/10.1029/2019JD030526 doi: 10.1029/2019JD030526
791	Parazoo, N. C., Denning, A. S., Berry, J. A., Wolf, A., Randall, D. A., Kawa, S. R
792	Doney, S. C. (2011). Moist synoptic transport of CO:inf: 2:/inf: along
	,

793	the mid-latitude storm track. Geophysical Research Letters, 38(9), 1–6. doi:
794	10.1029/2011GL047238
795	Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S., &
796	Baker, I. T. (2008). Mechanisms for synoptic variations of atmospheric CO2
797	in North America, South America and Europe. <i>Atmospheric Chemistry and</i>
798	Physics, 8(23), 7239-7254. Retrieved from http://www.atmos-chem-phys
799	.net/8/7239/2008/ doi: 10.5194/acp-8-7239-2008
800	Pauluis, O., Czaja, A., & Korty, R. (2008, 8). The Global Atmospheric Circula-
801	tion on Moist Isentropes. Science, $321(5892)$, 1075–1078. doi: 10.1126/science
802	.1159649
803	Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie,
804	K., Tans, P. P. (2007, 11). An atmospheric perspective on North American
805	carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy
806	of Sciences, 104(48), 18925-18930. Retrieved from http://www.pnas.org/
807	content/104/48/18925.abstract doi: 10.1073/pnas.0708986104
808	Peylin, P., Baker, D., Sarmiento, J., Ciais, P., & Bousquets, P. (2002). Influence
809	of transport uncertainty on annual mean and seasonal inversions of atmo-
810	spheric CO2 data. Journal of Geophysical Research Atmospheres, 107(19),
811	4385. Retrieved from http://doi.wiley.com/10.1029/2001JD000857 doi:
812	10.1029/2001 JD000857
813	Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K.,
814	Palmer, P. I. (2019, 4). Quantifying the Impact of Atmospheric Transport
815	Uncertainty on CO 2 Surface Flux Estimates. Global Biogeochemical Cycles,
816	33(4), 484-500. doi: $10.1029/2018$ GB006086
817	Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Powers, J.
818	(2008). A Description of the Advanced Research WRF Version 3. Technical
819	Report(June), 113. doi: 10.5065/D6DZ069T
820	Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevåg, M. M., & Hoyle,
821	C. R. (2011, 11). Anthropogenic radiative forcing time series from pre-
822	industrial times until 2010. $Atmospheric Chemistry and Physics, 11(22),$
823	11827-11857. Retrieved from https://www.atmos-chem-phys.net/11/11827/
824	2011 / doi: 10.5194/acp-11-11827-2011
825	Tans, P. P., Fung, I. Y., & Takahashi, T. (1990, 3). Observational Contrains on the
826	Global Atmospheric Co ₂ Budget. Science, 247(4949),
827	1431 LP - 1438. Retrieved from http://science.sciencemag.org/content/
828	247/4949/1431.abstract doi: 10.1126/science.247.4949.1431
829	Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit Fore-
830	casts of Winter Precipitation Using an Improved Bulk Microphysics Scheme.
831	Part II: Implementation of a New Snow Parameterization. Monthly Weather
832	<i>Review</i> , 136(12), 5095-5115. Retrieved from http://dx.doi.org/10.1175/
833	2008MWR2387.1 doi: $10.1175/2008MWR2387.1$
834	Uliasz, M. (1994). Lagrangian particle dispersion modeling in mesoscale applica-
835	tions. In <i>Smr</i> (Vol. 760, p. 23).
836	Xiao, J., Davis, K. J., Urban, N. M., & Keller, K. (2014, 6). Uncertainty in
837	model parameters and regional carbon fluxes: A model-data fusion ap-
838	proach. Agricultural and Forest Meteorology, 189-190, 175–186. Retrieved
839	from http://dx.doi.org/10.1016/j.agrformet.2014.01.022https://
840	linkinghub.elsevier.com/retrieve/pii/S0168192314000318 doi:
841	10.1016/j.agrformet.2014.01.022