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Abstract

Identifying the observables that warn of volcanic eruptions is a major challenge in natural hazard management. An important,

but under-investigated, observable is the release of heat through volcano surfaces, which represents a major energy source at

quiescent volcanism. However, it remains unclear whether surface heat emissions respond to pre-eruptive processes and vary

before eruption. Here we show that the last magmatic and phreatic eruptions of five different volcanoes were preceded by subtle

but significant long-term (˜years), large-scale (10s of km2), increases of their radiant heat flux (up to ˜1 of median radiant

temperature). This pre-eruptive thermal unrest is found through a new statistical analysis of satellite-based long-wavelength

(10.780–11.280 ) infrared data, and is attributed to the enhancement of underground hydrothermal activity. Large-scale thermal

unrest is detected even before eruptions that were impossible to anticipate through other geophysical/geochemical methods (e.g.,

the 2014 phreatic eruption of Ontake, Japan; the 2015 magmatic eruption of Calbuco, Chile), thus opening new horizons to

better constrain the thermal budget of volcanoes and improve eruption forecasts.
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Identifying the observables that warn of volcanic eruptions is a major challenge in natural              

hazard management. An important, but under-investigated, observable is the release of           

heat through volcano surfaces, which represents a major energy source at quiescent            

volcanism. However, it remains unclear whether surface heat emissions respond to           

pre-eruptive processes and vary before eruption. Here we show that the last magmatic and              

phreatic eruptions of five different volcanoes were preceded by subtle but significant            

long-term (~years), large-scale (10s of km2), increases of their radiant heat flux (up to ~1               

of median radiant temperature). This pre-eruptive thermal unrest is found through a℃              

new statistical analysis of satellite-based long-wavelength (10.780–11.280 ) infrared       mμ   

data, and is attributed to the enhancement of underground hydrothermal activity.           

Large-scale thermal unrest is detected even before eruptions that were impossible to            

anticipate through other geophysical/geochemical methods (e.g., the 2014 phreatic eruption          

of Ontake, Japan; the 2015 magmatic eruption of Calbuco, Chile), thus opening new             

horizons to better constrain the thermal budget of volcanoes and improve eruption            

forecasts. 
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Volcanoes are major emitters of the Earth’s internal heat. A large amount of heat is released                

diffusively through the soil, which represents a major energy source during quiescence1. For             

example, Chiodini et al.2 found that the surface heat emissions at the Solfatara crater dominate               

the energy budget of Campi Flegrei caldera (Italy), and that it is one order of magnitude greater                 

than the elastic energy released during recent seismic and deformation episodes. Mannini et al.3              

also reported that surface heat emissions account for >90% of the total heat supplied to the                

Vulcano’s Fossa fumarole field (Italy). Heat emissions, however, are not constrained to            

fumarolic fields, but they extend over large active volcanic areas, as revealed by geothermal              

gradient determinations4. For example, Corrado et al.5 found that the surface heat flux in some               

areas of Campi Flegrei (~0.149 W/m2) is about twice above regional values (~0.085 W/m2); and               

Tanaka et al.6 reported that the heat flux in southern Kyushu (Japan) increases significantly with               

decreasing distance to volcanoes (with values of up to ~0.5 W/m2). These studies stimulate the               

following question: Do the subsurface processes driving volcanic eruptions yield significant           

large-scale thermal footprints at the surface?  

 

Detection of radiant heat emissions and case studies 

This work addresses the aforementioned question by analyzing 16.5-year records (between           

04-July-2002 and 31-January-2019) of the thermal infrared radiance measured by the Moderate            

Resolution Imaging Spectroradiometers (MODIS) aboard NASA’s Terra and Aqua satellites.          

Specifically, we examine day- and night-time scenes from MODIS Band 31 (10.780-11.280            

which captures surface radiance variations with minimal effects from atmosphericm),μ           
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absorption and emissions7. MODIS is well suited for our study because it provides global              

coverage with high temporal resolution (~2 observations per day at tropical latitudes); wide             

ground swaths with simultaneous information of large areas (~2,330 km at tropical latitudes);             

and spatial resolution of ~1 km2 at nadir. Our MODIS analysis is based on the median anomaly                 

), a new statistical metric that tracks the radiant heat emitted by volcanic flanks and thatδT(                 

minimizes the effects of “outliers” in the data records due to cloud coverage, geolocation errors,               

pixel mosaicking, or overlap between scan lines7. In particular, captures the long-term (>1         δT      

year), large-scale (10s of km2), variations of the minimum spectral radiance (in units of radiant               

–or brightness- temperature for simplicity) of a volcanic edifice with respect to its surroundings              

(Supplementary Materials).  

 

This study explores the temporal evolution of for five volcanoes that are representative of       δT         

many volcanoes around the world, cover a broad range of behaviors and characteristics, and have               

erupted/exploded over the past two decades (Ontake, Japan; Ruapehu, New Zealand; Calbuco,            

Chile; Redoubt, Alaska; and Pico do Fogo, Cape Verde). In particular, these volcanic systems              

cover different: (a) Eruption type (phreatic/magmatic) and magnitude (Volcanic Explosivity          

Index or VEI=0-4); (b) Evolution; (c) Degree of hydrothermal activity at the surface; (d) Levels               

of pre-eruptive unrest and post-eruptive behavior; (e) Ground covers (permanent glaciers or            

snow, seasonal snow, crater lake, arid areas, forest and rainforest); (f) Latitude (from ~ to ~             °8   

); and (g) Tectonic setting. The only requirement imposed in the choice of the volcanoes is0°6                 

that our statistical algorithm must be applicable. This implies that the volcanoes: (i) Must have               

erupted only once or twice over the last two decades because our algorithm does not capture                
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short-term (<1 year) thermal processes. (ii) Must not be located in very small islands because our                

algorithm requires a sufficient number of pixels for the statistical analysis to be robust. (iii) Must                

have significant topography, such that volcano summits are colder than the surroundings due to              

an altitude effect; this is used by our algorithm to automatically identify cloud-free scenes. 

 

Pre-eruptive thermal unrest  

Our analysis reveals that the eruptions/explosions of our test cases occurred around the highest              

values of the median anomaly , and that they were preceded by a subtle but significant     δT            

long-term ( 1 year) increase of radiant temperature (~ ) whose uncertainty is >       .1 .0 ℃0 − 1     

smaller (<40%) for large events (Fig. 1; Table 1). In addition, decreases right after small           δT      

eruptions (VEI<3), or a few months after large (VEI ) eruptions, probably due to the materials        3≥        

deposited around the vent. Below, we describe the results obtained for each volcano. 

 

Ontake featured two unexpected events, a small (VEI=0) gas explosion in March 2007 and a               

large (VEI=3) phreatic eruption in September 2014 (which killed around 60 hikers8 and became              

the worst volcanic disaster in Japan since 1926) (Fig. 1a). The median anomaly increased by             δT    

~0.20 between January 2004 and March 2007, when the small gas explosion occurred. After℃              

this explosion, decreased gradually at an average rate of ~ , until reaching the  δT         .14 ℃/year0     

minimum value of the time series in mid-2012. Then, increased by for about         δT    .72±0.21 ℃0    

two years, reaching by the time of the large 2014 phreatic eruption8. The   .85±0.15 ℃  δT = 0           

~2-year precursory thermal unrest of the 2014 eruption is apparently linked neither to long-term              
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seismic and geodetic observations around the volcano8 nor to helium anomalies9. No other             

well-defined long-term warning sign has been detected so far for the 2014 eruption. 

 

Ruapehu featured two unheralded events, a small (VEI=1) gas explosion in October 2006 and a               

larger phreatomagmatic eruption (VEI=1) in September 2007 (in which a climber suffered            

serious injuries10) (Fig. 1b). The median anomaly increased by during, at       δT    .65±0.23 ℃0    

least, the 3-to-4 years preceding the 2006 explosion and the 2007 eruption. This pre-eruptive              

thermal unrest coincides with the enhancement of seismic attenuation11, and partially with the             

tidal modulation of the shallow seismicity12. Since the 2007 eruption, the thermal anomaly has              

remained at high levels ( ) compared to 2004 ( ), concomitant    ∼0.6 .8 ℃δT − 0     ∼0.2 .3 ℃δT − 0   

with several unrest episodes. It is worth highlighting a decrease of from the end of 2011 to           δT        

mid-2015, coinciding in part with a sustained period of low lake temperatures (from mid-2012 to               

mid-2013); and a small upturn of ~0.15 between 2014-2017, coinciding with strong tremor       ℃        

levels, anomalous earthquakes, and high degassing rates and lake temperatures12.  

 
Calbuco featured a large but unheralded magmatic eruption13 (VEI=4) in April-May 2015 (Fig.             

1c). The median anomaly rose slowly by between 2008 and 2012; then, it       .32±0.13 ℃0        

remained roughly constant until the onset of the 2015 magmatic eruption. After the eruption,              δT  

increased at much larger rates until reaching by the end of 2015; and since 2017,       ∼0.52 ℃δT          

has been decreasing quickly. The pre-eruptive increase of suggests that the quick (<4δT          δT       

days) ascent of magma13,14 expelled during the 2015 event was indeed preceded by a much               

longer-term build-up process (e.g., slow accumulation of magma or gases in the shallow crust)              
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that initiated about seven years earlier leaving a detectable thermal signature at the surface. A               

subtle long-term slow build-up to eruption may explain why no deformation was detected prior              

to the 2015 eruption13. 

 
Redoubt had a prominent (VEI=3) magmatic eruption15 in March 2009 (Fig. 1d). The median              

anomaly increased by from mid-2006 to the 2009 magmatic eruption (~0.17   .47±0.17 ℃0          

on average); about one year after the event, started to decrease at accelerated rates/year℃          δT        

for about five years. Since 2014, has remained at low levels ( ), slightly above the      δT       0.3 ℃≲     

values found years before the 2009 eruption. Interestingly, began to increase ~1 year earlier        δT        

than other precursory signals, including glacier melting, sulfur odors, increased gas emissions,            

deep seismicity, and deformation15. 

 
Pico do Fogo is a hotspot volcano that erupted magma (VEI=3) between November 2014 and               

February 2015 (Fig. 1e), and has been found to release diffuse magmatic CO2 over extensive               

areas16. This eruption, which displaced more than 1,000 people and destroyed hectares of             

agricultural land17, was preceded by an increase of the median anomaly of since            .82±0.23 ℃0   

mid-2010 ( on average). increased quickly after the eruption and decreased a 0.20 ℃/year∼    δT          

few months afterwards; in addition, thermal unrest initiated much earlier than other warning             

signs were detected (e.g., increasing diffuse CO2 was detected only a few months before the               

event17). Our analysis also reveals a less prominent but significant thermal unrest between 2004              

and 2008. However, there is limited information between the 1995 and the 2014-2015 eruptions              

to assess whether this thermal unrest was concomitant with other geophysical/geochemical           

warning signs or whether it culminated in some type of undetected activity at the surface.  
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Enhancement of underground hydrothermal activity 

Below, we discuss four possible explanations for the pre-eruptive long-term ( 1 year) variations          >    

of the median anomaly ( ) detected at the target volcanoes. First, the variations of the median    δT             

anomaly are spurious signals produced by low signal-to-noise ratios. This is not feasible because              

the probability of obtaining the observed amplitudes of by chance is 2.1% at most (for        δT         

Calbuco), and is 0.01% for Ontake and Redoubt (Fig. 2f). Hence, our results represent actual   ≤             

variations of the thermal radiant flux beyond the 95% confidence level. Second, the variations of               

are dominated by a combination of atmospheric, MODIS sensor stability, or fire processes.δT               

Although these processes may affect the median anomaly, the systematic increase of prior to            δT    

eruption suggests that it is dominated by subsurface volcanic processes. Third, the pre-eruptive             

variations of reflect the emergence of small-scale (< 1 km2) volcano-related hotspots (i.e.,  δT             

lava domes or fumaroles). This is not feasible because gradual, long-term, variations reflect           δT    

gradual shifts of the radiant temperature distribution of the ground. The emergence of small-scale              

volcano-related hotspots can produce step variations of the median of the distribution but not              

gradual long-term changes, unless they emerge gradually over the large areas explored, which is              

not realistic. Fourth, increases before eruptions because subsurface pre-eruptive processes   δT        

change the radiant characteristics of the surface (i.e., skin temperature and/or emissivity) over             

extensive areas (~10s of km2) around the eruptive vents. The latest is the most realistic               

explanation for our results.  

 

Pre-eruptive variations of the radiant characteristics of volcano surfaces probably reflect           
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subsurface hydrothermal activity (Fig. 2), which in turn may be enhanced by diffuse degassing              

(i.e., the permeable transport of hot magmatic gases through the crust). Diffuse degassing             

operates over extensive areas, increases with volcanic activity, is known to control soil heating in               

fumarolic fields, and is controlled by magma ascent, magma reservoir dynamics, and crust             

permeability1,16,18-20. For example, diffuse degassing could facilitate the upflow of underground           

waters, the elevation of the water table, and the circulation of hydrothermal cells that modify the                

near-surface geothermal gradient and slightly warm the soil and snow cover over extensive areas              

of the volcanic flanks21,22. This possibility is supported by the fact that long-term (~years) surface               

temperature is highly coupled with groundwater temperature at several tens of meters depth23.             

Diffuse degassing could also trigger boiling of underground water, thus leading to the transport              

of massive amounts of steam towards the surface, condensation beneath the ground, and        OH2       

release of latent heat that is then transported diffusively to the uppermost part of the soil1,2,19,24.                

Alternatively, an increasing supply of fluids to the shallow subsurface may produce long-term             

subtle changes in soil moisture and vegetation, thus gradually increasing the ground emissivity             

with time over large areas25-27. Either of these processes, or a combination of them, is likely                

responsible for the pre-eruptive increases in radiant energy recorded by the median anomaly .δT   

 

This work shows that volcanoes can experiment thermal unrest for several years before eruption.              

This thermal unrest is dominated by a large-scale phenomenon operating over extensive areas of              

volcanic edifices, can be an early indicator of volcanic reactivation, can increase prior to              

different types of eruption, and can be tracked through a statistical analysis of little processed               

(i.e., radiance or radiant temperature) satellite-based remote sensing data with high temporal            
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resolution. Our findings can open new horizons to better constrain magma-hydrothermal           

interaction processes, to explore the thermal budget of volcanoes, and to improve the forecast of               

eruptions that are very difficult to anticipate through other geophysical/geochemical methods. 
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METHODS 

1) Data retrieval 

Data from 04-July-2002 to 31-January-2019 are retrieved from the MODIS instruments aboard            

the Terra and Aqua satellites, launched in December 1999 and May 2002, respectively. MODIS              

products are a major component of NASA’s Earth Observing System, and their strengths include              

global coverage, high sampling rate (from ~1 to ~4 swaths per day per satellite, depending on                

latitude), high radiometric resolution, suitable dynamic range, and accurate calibration7. In           

particular, we investigate the thermal evolution of volcanic surfaces by using two products             

(https://earthdata.nasa.gov/): MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath        

1km V006 (MOD021KM/MYD021KM) and MODIS Terra/Aqua Geolocation Fields 5-Min         

Level-1A Swath 1km V006 (MOD03/MYD03). The Level-1B Radiance product provides          

accurate values of radiance, which have little or no long-term drift28, are radiometrically             

calibrated, and are corrected for instrumental effects; the Level-1A Geolocation product provides            

the geographical coordinates of each pixel of the Level-1B scenes. Altogether, we analyze             

>300,000 MODIS files (52,554 for Ontake; 57,078 for Ruapehu; 60,676 for Calbuco; 93,792 for              

Redoubt; and 44,008 for Pico do Fogo), which correspond to >30 TB of memory. MODIS               

acquires radiance at spatial resolution of at nadir in 16 thermal bands of the      1 km∼ 2          

electromagnetic spectrum, but this study focuses only on band 31 (10.780-11.280 ) because           mμ   

is more sensitive to surface temperature variations7. Note, however, that we use the Level-1B              

Radiance product, instead of Land Surface Temperature (LST) products29, because we want to             
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explore the heat flux radiated by volcanic surfaces using data with little previous processing, and               

thus minimizing the potential uncertainties as much as possible.  

2) Data Analysis 

We implement a new statistical strategy to capture the long-term (~years) radiant (or brightness)              

temperature evolution of the coldest areas ( on average) of the volcanic flanks. This      20 km∼ 2         

approach contrasts with previous algorithms aimed at detecting the emergence of hotspots30-36            

(i.e., pixels that are hotter than the surrounding pixels) associated with magma exposure at the               

surface or fumarolic activity. Our algorithm consists of six main steps, which are detailed below               

(Supplementary Fig. 1). 

 

2.1) Choice of exploration areas 

We choose latitude-longitude quadrangles (0.30° latitude by 0.48° longitude) centered at the            

geographical coordinates of the volcanoes under study (as provided by the Smithsonian            

Institution’s Global Volcanism Program database; https://volcano.si.edu/). These quadrangles        

cover the volcanic edifices and their surroundings, and represent surface areas on the order of           At      

and a number of pixels at nadir in the range , depending on900 , 00 km∼ − 1 7 2            ≈ 900 , 00N − 1 7    

the latitude of the volcanoes (Supplementary Fig. 1a, 1b).  

 

2.2) Automatic discarding of useless scenes 

We observe that, in cloud-free scenes, the pixels with lowest spectral radiance in the target area                

lie at the highest levels of the volcanic edifices because the ground is colder (and thus emitsAt                   
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less radiance) due to altitude. This fact is used to automatically identify cloud-free scenes as               

follows (Supplementary Fig. 1c-1e): We calculate different statistical estimators in the target            

areas , including the minimum spectral radiance, defined as the median spectral radiance of At              

the pixels with lowest spectral radiance ( ); and the median spectral radiance of the M       Lc,M         K  

pixels with largest spectral radiance ( ). The median is the statistical estimator chosen     Lh,K         

because it minimizes the effect of outliers (e.g., due to cloud coverage, pixel mosaicking,              

geolocation errors, or overlap of scan lines7). (ii) For each of the MODIS scenes, we plot the                 

location of the pixel with spectral radiance . (iii) We create an auxiliary area that       Lc,11        Aaux   

covers, for each volcano, the region with the highest concentration of pixels with median spectral               

radiance (Supplementary Fig. 1c). (iv) We discard scenes whose pixel with median spectral Lc,11              

radiance is outside and/or whose pixel with median spectral radiance is Lc,11    Aaux         Lh,N−101   

inside the subarea (where represents the total number of pixels within the target   Aaux   01N − 1           

area  except the 101 pixels with lowest radiance).At   

 

This approach yields a percentage of scenes discarded between ~62% for Ruapehu and ~84% for               

Calbuco. In the worst-case scenario (Calbuco), this implies 4,956 useful scenes for the 16.5-year              

period analyzed and thus 300 useful scenes per year on average. It is worth noting that our                 

algorithm allows us to discard scenes with high levels of cloudiness, but also scenes captured               

during post-eruptive periods (if hot magmatic products cover large areas of the volcanic flanks)              

and during days with temperature inversion (i.e., if the mountain is warmer than the surroundings               

due to atmospheric conditions). Our algorithm therefore standardizes the scenes explored, and            

allows us to minimize the level of noise by identifying useless scenes and discarding them. It is                 
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worth noting that our approach is robust because results are not highly sensitive to the choice of                 

the auxiliary area . In fact, if enlarging or dwarfing the subareas by 10%, we obtain   Aaux          Aaux      

essentially the same results; and, even if cloudy scenes are not discarded, low-pass filtering (see               

subsection 2.5) allows retrieving pre-eruptive thermal unrest in three of the five volcanoes             

(Ontake, Ruapehu, Redoubt) (Supplementary Fig. 2).  

 

2.3) Thermal contrast between coldest areas and regional background  

For the scenes that are not discarded, we calculate the thermal contrast between a volcano and its                 

surroundings using the parameters and . The parameter is an estimator of the    Lc,M   Lh,K    Lc,M       

minimum spectral radiance (calculated as the median spectral radiance of the M coldest pixels)              

of the volcanic flanks, whereas is an estimator of the median spectral radiance of the     Lh,K            

regional background. In particular, we use pixels ( , on average, for the      1M = 1   18 2 km∼ − 2 2      

target volcanoes) and pixels (with the total number of pixels within the target   01K = N − 1    N          

area ) (Supplementary Table 1), but our overall conclusions remain unchanged for a broad At              

range of values of ( ) and . Once the statistical estimators    M  1, 31= 2     (= 1,  N 01)K N − 5  − 2      

and are calculated, we convert them to brightness temperature for simplicity (Lc,M   Lh,K            T c,M  

and , respectively) using the Planck’s function:T h,K  

         ,     (M1)  T x = C2

λ ln 1+( C1
λ L5 x)

  

where represents or ; represents the median radiant temperatures or Lx   Lc,M   Lh,K  T x       T c,M   

; ; ; and is the central wavelength of band 31T h,K  .19·10  m  WC1 = 1 −16 2  .44·10  m KC2 = 1 −2   λ         
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( ). Then, we calculate the difference (Supplementary Fig. 1f).1.03 μm1       ∆T M ,K = T c,M − T h,K     

Calculating the contrast of radiant temperature between a volcano and its surroundings pursues             

three following goals: (i) To highlight any variation of radiant temperature occurring in the              

coldest parts of the volcanic flanks and not occurring in the area surrounding the volcano. (ii) To                 

minimize any local/regional atmospheric effect, as well as the possible artifacts of jointly             

combining daytime/nighttime scenes. (iii) To minimize the possible artifacts associated with the            

use of different sensors (MODIS/Terra and MODIS/Aqua). 

 

2.4) Daily median brightness temperature difference  

We compute the daily median brightness temperature difference ( , where is time),        (t)∆T M ,K   t    

i.e., the daily median of the statistical estimator (Supplementary Fig. 1g). This approach        ∆T M ,K       

pursues the following goals: (i) To produce a regular and continuous sampling rate (i.e., 1               

sample/day), which facilitates signal processing; and (ii) to minimize possible outliers associated            

with daytime/nighttime scenes. We use daytime and nighttime scenes to increase the sample             

population, and thus yield a more reliable statistical analysis (although the patterns obtained are              

essentially the same when using only daytime or nighttime scenes; see Supplementary Fig. 3).              

The resulting time series ( ) contains a seasonal component, noise, and gaps (produced    (t)∆T M ,K          

by the discarding of useless scenes; section 2.2) that are filled through linear interpolation. In the                

worst-case scenario (Calbuco), we find 55% gaps in , with a largest gap of 20 days,        (t)∆T M ,K         

and 165 days per year (on average) with useful data (Supplementary Table 1). Although the large                
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number of daily gaps hinders the detection of short-term (~days) anomalies through this method,              

the number of valid scenes per year is suitable to detect long-term (~years) trends. 

 

2.5) Low-pass filtering   

After interpolation, the time series contains a well-defined seasonal component and     (t)∆T M ,K        

noise; our aim is to bring out any long-term (~years) trend that may be contained in                (t)∆T M ,K  

(Supplementary Fig. 1h). To this outcome, we have designed an efficient low-pass filtering             

technique through >100,000 Monte Carlo experiments with synthetic time series . The          ∆T SY N (t)   

details of our numerical experiments are provided below:  

 

1. We generate synthetic time series ( ) combining a long-term trend ( ), a      (t)∆T SY N      T∆ SY N
trend (t)   

seasonal component ( ), and a zero-mean Gaussian noise ( ) with standard  sin  As ( 2πt
365)       R (0, )σd    

deviation :σd  

 

T sin         .        (M2)  ∆T SY N (t) = ∆ SY N
trend (t) + As ( 2πt

365) + R (0, )σd   

 

We use and , where , , and are an  00As = σd = 1   T (t) cos  ∆ SY N
trend = αimp ( T imp

2π(t−τ )imp )   αimp  T imp   τ imp    

imposed amplitude, period, and time lag, respectively (Supplementary Fig. 4a-4d).  

 

2. For a given combination of , , and , we filter the resulting time series      αimp  T imp   τ imp        ∆T SY N (t)  

through 480 different low-pass filtering methods (i.e., 24 filtering techniques that are applied             
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iteratively up to times; Supplementary Table 2) aiming to retrieve the imposed trend   0k = 2            

. Iterative filtering methods are commonly used to improve the performance of noiseT∆ SY N
trend (t)              

reduction techniques37. The filtering methods explored include a combination of trailing moving            

mean, trailing moving median, MODWT (maximal overlap discrete wavelet transform), DWT           

(discrete wavelet transform), and Savitzky-Golay filters. The goodness of every denoising           

technique is assessed by computing the sinusoidal curve that best fits the filtered time series               

(with the non-linear least squares method), and then by calculating the coefficient of             

determination , amplitude , period , and time lag of the best fit curve. The R2   αret   T ret     τ ret        

values of , , , and are retrieved for 100 computer-generated synthetic time series  R2 α ret  T ret   τ ret          

with the same imposed values of , , and , which are then used to(t)∆T SY N        αimp  T imp   τ imp       

calculate the mean coefficient of determination ( ), mean retrieved amplitude ( ), mean      R2     αret   

retrieved period ( ), mean retrieved time lag ( ), and their uncertainties (standard  T ret      τ ret      

deviation). Finally, the values of , , , , and their uncertainties are calculated for     R2  αret  T ret  τ ret        

different combinations of imposed amplitude, period, and time lag in the range ,            0αimp = 2 − 9  

years, . Under this configuration, the signal-to-noise ratio ( ; defined0T imp = 5 − 2   τ imp = 0        NRS   

here as the variance of over the variance of ) varies in the range     T∆ SY N
trend (t)      ∆T SY N (t)      

.NR≈10 .2S −4 − 0   

 

3. We assess which of the 480 low-pass filtering methods are the most appropriate to retrieve the                 

imposed long-term (~years) trends (i.e., ) from the time series . Our     T∆ SY N
trend (t)      ∆T SY N (t)   

numerical experiments reveal that one of the most suitable methods is Technique 11 with              0k = 1  
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iterations (Supplementary Table 2), i.e., the combination of 10 MODWT filters (at level 10 and               

using symlets-8 wavelets, Donoho and Johnstone’s universal soft thresholding, and          

level-dependent estimation of the noise) + 1 trailing moving median filter (of order 2 years)               

(Supplementary Fig. 5–8). For a vast combination of and , this method provides the        αimp   T imp      

highest values of the coefficient of determination, produces mean retrieved amplitudes ( ) and           αret   

periods ( ) that are compatible with the imposed values, and generates a mean time lag ( ) T ret               τ ret  

on the order of ~1 year in the filtered signal that can be easily corrected. The filtering process,                  

however, has several limitations that need to be taken into account: (a) If the signal-to-noise ratio                

is too low, our filtering process is not able to accurately retrieve hidden long-term trends from                

the time series. For example, for years, it is met that , ∆T SY N (t)       5T imp = 1       ≳0.85R2  T ret ≈ T imp

, , and when only (Supplementary Fig. 9a-9d). (b) For αret ≈ αimp    yearτ ret ≈ 1   NR≳0.001S        

decreasing values of the imposed periods , our method yields and      T imp     αret < αimp    yearτ ret < 1

. For example, for years, it is met that and when ,    T imp = 7       ≳0.85R2   T ret ≈ T imp   NR≳0.004S  

although and days (Supplementary Fig. 9e-9h). (c) For imposed periods ≈0.8 ααret imp   ∼320τ ret          

years, our filtering method cannot accurately retrieve long-term trends,≲6T imp − 7           

independently of the signal-to-noise ratio (Supplementary Fig. 9i-9l). (d) When our filtering            

process is applied to a synthetic signal without an imposed trend (or with very low               

signal-to-noise ratio), a spurious trend can be retrieved (Supplementary Fig. 4e-4f). In subsection             

2.6, we present a methodology to discern between actual hidden long-term trends and spurious              

signals associated with high levels of noise. 

 

17 



 

4. We apply the efficient low-pass filtering technique (Technique 11 with iterations) to           0k = 1    

the daily median brightness temperature difference ( ) obtained for the five target      (t)∆T M ,K       

volcanoes. This yields the so-called median anomaly or , which is then 1-year time-shifted to        δT        

account for the delay produced by the filtering process (Supplementary Fig. 1h). Note that              

(because ), has units of temperature, captures the long-term (~years)δT < 0   T c,M < T h,K          

variations of median radiant temperature of the coldest parts of volcanoes with respect to the               

regional background, and its amplitude of variation must be considered a minimum estimate             

because part of it may be missed during the filtering process (Supplementary Fig. 9g, 9k). It is                 

also worth highlighting that is calculated using radiant temperatures as measurement    δT         

variable (instead of real temperatures) because it is sufficient to detect radiant heat flux              

variations of the surface. In addition, calculating the median anomaly in terms of real              

temperatures requires accurate estimations of the pixel emissivity as well; this could lead to              

significant uncertainties in our analysis that may be critical to detect the subtle variations              

observed.  

 

2.6) Uncertainty analysis 

Allocating uncertainties is crucial to assess the significance of the variations of the median              

anomaly time series ( ). The major source of uncertainty in , associated with the   (t)δT        (t)δT     

filtering process, is assessed through Monte Carlo experiments (shaded bands of Fig. 1a-2e): 

1. We generate synthetic time series with a bootstrapping method (commonly used in seismic              

data processing11) consisting of resampling the daily median brightness temperature difference           
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time series . In particular, each element j of the synthetic time series is selected  (t)∆T M ,K              

randomly from the elements j-1, j, j+1 of (the values of the first and last elements of        (t)∆T M ,K           

the synthetic time series are chosen to be equal to the values of the second and penultimate                 

values, respectively). This technique yields synthetic time series with the same mean and             

standard deviation as .(t)∆T M ,K   

2. We apply the best denoising technique designed in section 2.5 to the aforementioned synthetic               

time series. The result yields , which is then compared with by calculating the     (t)δT *       (t)δT     

difference between each data point of the time series.  

3. We repeat 1,000 times the steps 1-to-2. This provides 1,000 values of the difference               

for each data point j, which is then used to determine the y-axis uncertainty of(t)δT (t) − δT *                 

at the 95% confidence interval (Supplementary Fig. 1g). Note that this approach alsoδT (t)               

captures the uncertainty associated with the time lag produced by the filtering process.  

4. For simplicity, we rescale  (with its uncertainty), so it is always .δT 0≥   

On the other hand, a spurious trend may appear in the filtered time series as a consequence of the                   

high levels of noise (see section 2.5 and Supplementary Fig. 4e-4f). The probability that the               

observed trends are spurious is assessed in terms of the maximum amplitude of variation of               δT  

(Fig. 1f): 

1. We design a synthetic time series composed of a random noise with the same probability                

density function as the daily median brightness temperature difference time series (           (t)∆T M ,K

).  
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2. We apply the best denoising technique designed in section 2.5 to the aforementioned synthetic               

signal.  

3. We repeat 10,000 times the steps 1-to-2. This is used to calculate the probability of obtaining                 

by chance a spurious trend with the same amplitude or larger than the amplitude of the median                 

anomaly time series .δT   

 

 

 

 

Data availability. Data (MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 1km           

V006 and MODIS Terra/Aqua Geolocation Fields 5-Min Level-1A Swath 1km V006) are            

available fully, openly, and without restrictions at https://earthdata.nasa.gov/.  

Code availability. Two Matlab scripts for data processing and analysis are available (contact the              

corresponding author for further details). 
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Figure 1. Temporal variations of the median anomaly at the target volcanoes. (a-e) Results        δT        

for Ontake, Ruapehu, Calbuco, Redoubt, and Pico do Fogo. The solid red line is the median                

anomaly; the shaded bands represent its uncertainty (95% confidence interval); and the black             

vertical lines represent the onset of magmatic or phreatic eruptions. (f) Probability of obtaining              

the observed amplitudes by chance. 
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Figure 2. Conceptual model of the large-scale (10s of km2) thermal unrest detected at the target                

volcanoes. We propose that the long-term (~years) pre-eruptive variations of the median            

anomaly reflect subsurface magmatic-hydrothermal fluid interactions, which in turn may be           

enhanced by diffuse degassing. In particular, magmatic gases escape from shallow magma            

reservoirs through the crust via permeable flow (grey arrows) and enhance circulation and/or             

boiling of underground aquifers (blue). The coupling between surface and groundwater           

temperature, the condensation of steam at shallow levels beneath the surface and consequent             

release of latent heat (red line), and/or variations in soil properties and emissivity changes could               

lead to the pre-eruptive increase of radiance (or radiant temperature) detected.  
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Table 1. Pre-eruptive changes of radiant temperature calculated from the median anomaly. 

Volcano Eruption start date Type of eruption  δT (t) − δT (t )0   
( ) *1 ℃  

Ontake 
(Japan) 

2007 March 24 (  7 days)±  Gas explosion (VEI=0) .20 (0.02 .38)  0 − 0  
2014 September 27 Phreatic (VEI=3) .72 (0.51 .93)  0 − 0  

Ruapehu 
(New Zealand) 

2006 October 4 – 
2007 September 25 *2 Gas explosion –phreatomagmatic (VEI=1)  *3.65  0 (0.42 .88)− 0  

Calbuco 
(Chile) 2015 April 22 Magmatic (VEI=4) .32 (0.19 .45)  0 − 0  

Redoubt 
(Alaska, USA) 2009 March 15 Magmatic (VEI=3) .47 (0.30 .64)  0 − 0  

Pico do Fogo 
(Cape Verde) 2014 November 23 Magmatic (VEI=3) .82 (0.59 .05)  0 − 1  

*1Pre-eruptive warming, i.e., median anomaly difference between the onset of an eruption ( ) and the onset of             δT (t)      
the pre-eruptive warming phase ( ). *2Our method does not allow us to distinguish different events occurring     δT (t )0             
over such a short time. *3These are minimum estimates because the eruptions did occur at the beginning of the time                    
series and thus part of the pre-eruptive increase may have been missed.  
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