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Abstract

The fire plume height (smoke injection height) is an important parameter for calculating the transport and lifetime of smoke

particles, which can significantly affect regional and global air quality and atmospheric radiation budget. To develop an

observation-based global fire plume-rise dataset, a modified one-dimensional plume-rise model was used with observation-based

fire size and Maximum Fire Radiative Power (MFRP) data, which are derived from satellite fire hotspot measurements. The

resulting dataset captured well the observed plume height distribution derived from the Multi-angle Imaging SpectroRadiometer

(MISR) measurements. The fraction of fire plumes penetrating above the boundary layer is relatively low at 20% at the time of

MISR observation (10:30 am LT) but increases to an average of ˜55% in the late afternoon implying a sampling bias in MISR

measurements, which requires corrections through dynamic modeling or parameterization of fire plume height as a function

of meteorological and fire conditions when the dataset is applied in climate model simulations. We conducted sensitivity

simulations using the Community Atmospheric Models version 5 (CAM5). Model results show that the incorporation of fire

plume rise in the model tends to significantly increase fire aerosol impacted regions. We applied the offline plume rise data to

develop an online fire plume height parameterization, allowing for simulating the feedbacks of climate/weather on fire plume

rise in climate models.
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Abstract 14 

The fire plume height (smoke injection height) is an important parameter for calculating 15 

the transport and lifetime of smoke particles, which can significantly affect regional and global 16 

air quality and atmospheric radiation budget. To develop an observation-based global fire plume-17 

rise dataset, a modified one-dimensional plume-rise model was used with observation-based fire 18 

size and Maximum Fire Radiative Power (MFRP) data, which are derived from satellite fire 19 

hotspot measurements. The resulting dataset captured well the observed plume height 20 

distribution derived from the Multi-angle Imaging SpectroRadiometer (MISR) measurements. 21 

The fraction of fire plumes penetrating above the boundary layer is relatively low at 20% at the 22 

time of MISR observation (10:30 am LT) but increases to an average of ~55% in the late 23 

afternoon implying a sampling bias in MISR measurements, which requires corrections through 24 

dynamic modeling or parameterization of fire plume height as a function of meteorological and 25 

fire conditions when the dataset is applied in climate model simulations. We conducted 26 

sensitivity simulations using the Community Atmospheric Models version 5 (CAM5). Model 27 

results show that the incorporation of fire plume rise in the model tends to significantly increase 28 

fire aerosol impacted regions. We applied the offline plume rise data to develop an online fire 29 

plume height parameterization, allowing for simulating the feedbacks of climate/weather on fire 30 

plume rise in climate models.  31 

1 Introduction 32 

Wildfires release large amounts of greenhouse gases, carbonaceous aerosols, and other 33 

pollutants, therefore having complex impacts on the earth climate, local weather, and air quality. 34 

CO2 released from fires (2-4 Pg C yr-1) is up to half of that from fossil-fuel combustion (7 Pg C 35 

yr-1) (e.g., Browman et al., 2009; van der Werf et al., 2006). In addition to greenhouse gases, 36 



carbonaceous aerosols (organic and black carbon) released from fires modulate atmospheric 37 

radiative balance directly through scattering and absorbing solar radiation and indirectly through 38 

changing cloud properties (e.g., Bauer & Menon, 2012; Boucher et al., 2013; Jiang et al., 2016). 39 

Climate model experiments indicated that organic carbonaceous aerosols generally increase the 40 

Aerosol Optical Depth (AOD) and reduce surface temperature, while black carbon aerosols 41 

enhance heat absorption in the troposphere and increase air temperature; the resulting 42 

atmospheric stability changes could potentially suppress atmospheric convection and 43 

subsequently affect atmospheric circulations (e.g., Liu, 2005a and b; Bauer and Menon, 2012; 44 

Tosca et al., 2013a). In the tropics, previous studies highlighted the role of black carbon in 45 

changing the Hadley circulation and precipitation patterns (Allen et al., 2012; Hodnebrog et al., 46 

2016; Tosca et al., 2015). At the middle to high latitudes, previous studies indicated potential 47 

impacts of smoke emissions on regional climate and weather patterns (e.g., Grell et al., 2011; 48 

Liu, 2004; Madden et al., 2015), and severe weather evens (Saide et al., 2016). Additionally,  49 

evidence was found for the effects of high latitude wildfires on the Arctic air quality  during 50 

spring and summer (Evangeliou et al., 2016; Monks et al., 2012; Winiger et al., 2016) and for 51 

potential impacts on Greenland ice shelves melting (Keegan et al., 2014).     52 

In order to accurately simulate the impacts of wildfire emissions, a crucial parameter is 53 

fire plume height or injection height, defined as the highest altitude in the atmosphere the smoke 54 

can reach. This parameter affects the transport of smoke particles and thereby influences climate 55 

and air quality in the downwind regions. Generally, if the plume heights are above the 56 

Atmospheric Boundary Layer (ABL), the smoke particles  can be transported far away  from a 57 

fire site  because of higher wind speed in the free troposphere than the ABL. In contrast,  the 58 



impacts of smoke particles within the ABL are restricted to smaller regions (e.g., Liu et al., 2014; 59 

Paugam et al., 2016).  60 

The reported fire plume heights range from completely within the ABL (Trentmann et al., 61 

2002), to the free troposphere (de Gouw et al., 2006), even the stratosphere (Dirksen et al., 2009; 62 

Ditas et al., 2018; Yu et al., 2019). The fire plume heights derived from the Multi-angle Imaging 63 

SpectroRadiometer (MISR) stereo imaging developed by Kahn et al. (2007) were widely used to 64 

evaluate model simulated plume height data (e.g., Kahn et al., 2008; Tosca et al., 2011; val 65 

Martin et al., 2009) with a resolution of 500 m in the vertical  and 1.1 km in the horizontal (Kahn 66 

et al., 2007). The global MISR wildfire plume height dataset is available at https://www-67 

misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/.  68 

A somewhat surprising result of the MISR fire plume height data is that the fraction of 69 

fire plume height above the ABL is relatively low, ~10% over North America (Kahn et al., 2008; 70 

val Martin et al., 2009) and only 4% in Southeast Asia (Tosca et al., 2011). However, the MISR 71 

instrument is onboard the sun-synchronous Terra satellite; its local equatorial crossing time is 72 

approximately 10:30 a.m. Hence MISR data only represented fire plume heights in the late 73 

morning and likely missed the daily maximum fire plume heights that would occur in the late 74 

afternoon due to the diurnal variation of wildfires intensity (Ellicott et al., 2009) and unstable 75 

ABL conditions (Sofiev et al., 2012). Therefore, a fire plume height dataset that captures the 76 

diurnal variation on a global scale is needed in order to improve the understanding of the 77 

temporal and spatial variability of fire plume heights and their impacts. In the same vein, a 78 

dynamic model or online parameterization is required to simulate the feedbacks of 79 

climate/weather on fire intensity and atmospheric stability and their effects on fire plume rise in 80 

climate models.   81 



val Martin et al. (2012) applied 1-D plume-rise model, which is a physics based dynamic 82 

model developed by Freitas et al. (2007, 2010), with Moderate Resolution Imaging 83 

Spectroradiometer (MODIS) Fire Radiative Power (FRP) and assimilated GEOS meteorology 84 

data to calculate the wildfire plume heights over North America for the 2002 and 2004-2007 fire 85 

seasons, and compared the results with the MISR plume heights. They suggested that the plume-86 

rise model tends to underestimate the observed plume heights, but did not account for the diurnal 87 

variation of wildfire plume heights. The relatively coarse spatial (2ox2.5o) and temporal (6 hrs) 88 

resolutions of meteorological data may have contributed to the estimated model biases due to the 89 

sensitivity of wildfire plume height to ambient meteorological conditions (Sofiev et al., 2012). 90 

 91 

In this work, we attempt to develop a  global hourly smoke plume height dataset based on 92 

observations, and formulate a corresponding online parameterization for use in climate model 93 

applications based on  the 1-D plume-rise model by Freitas et al. (2007, 2010). Using assimilated 94 

high-resolution meteorological reanalysis and satellite observations, we improved upon previous 95 

studies to develop an observation-based (offline) global fire plume height dataset from 2002 to 96 

2010 that account for diurnal variability in wildfire intensity and meteorological data. This 97 

dataset is then applied to formulate an online parameterization of fire plume height for use in 98 

climate model simulations. The observation and assimilated meteorological data, modifications 99 

and application of the 1-D dynamic fire plume height model, the online parameterization of fire 100 

plume height, and climate simulations are described in section 2. The evaluation of the global 101 

fire plume height dataset with observations and climate model simulations and evaluations using 102 

the prescribed global fire plume height dataset or the online fire plume height parameterization 103 

are discussed in section 3. Conclusions are given in section 4. 104 



2 Data, Models, and Methods 105 

2.1 Offline global fire plume height calculation and evaluation 106 

In this study, we calculated hourly global smoke plume heights from 2002 to 2010 on the 107 

basis of available observation data.  Several The input data for simulating smoke plume rise 108 

using the 1-D model by Freitas et al. (2007, 2010) are descriebd in Fig. 1. To improve the 109 

accuracy of the calculations, we made use of satellite observations and assimilated 110 

meteorological data to provide the model input data. We describe the methods for data 111 

processing in the following sections, including (1) meteorological data, fire region, and plant 112 

function type (PFT), (2) computing the total fire energy and the fire size data, (3) the 1-D fire 113 

plume-rise model modifications, and (4) fire plume height diurnal variation. We then describe 114 

the MISR fire plume height and MODIS AOD data for model evaluations.  115 

2.1.1 Meteorology data, fire regions, and plant functional types (PFTs) 116 

The meteorology fields from 2002 to 2010 were obtained from the Climate Forecast 117 

System Reanalysis (CFSR) hourly forecast data, with a 0.5o x 0.5o horizontal resolution and 37 118 

vertical layers (Saha et al., 2014). We used four meteorology variables, the temperature, 119 

geopotential height, specific humidity and wind, from land surface to the top of troposphere. The 120 

hourly and high spatial resolution assimilated CSFR meteorological data are needed for the fire 121 

plume height modeling  due to the high sensitivity of fire plume rise to atmospheric conditions 122 

(Sofiev et al., 2012).  123 

To further improve the 1-D fire plume modeling, we derived fire characteristics (next 124 

section and Fig. 1) as a function of region and PFT type. Fifteen wildfire regions were used in 125 

this study (Figure S1 and Table S1 in the Supplement), same as  the 14 Global Fire Emissions 126 



Database (GFED) regions (Giglio et al., 2013) except that  the GFED Temperate North America 127 

was splitted into  two regions of  western (WTNA) and eastern (ETNA) to considering  more 128 

prevalent prescribed burning in the eastern United State (Zeng et al., 2008). Effects of different 129 

vegetation within a region on wildfires were considered through PFT data, which were derived 130 

from MODIS Landcover dataset MCD12Q1 (e.g., Channan et al., 2014). To be consistent with 131 

wildfire modeling (Zou et al., 2019), we used the same six PFT categories as the Common Land 132 

Model (Lawrence & Chase, 2007) (CLM, Lawrence and Chase, 2007), that is, needle leaf forest, 133 

broad leaf forest, shrub, grass, crop, and unvegetated, which are simplified from the 16 MODIS 134 

landcover dataset categories. The spatial PFT distribution is shown in Figure S2 in the 135 

Supplement.  136 

2.1.2 Fire size and total fire energy flux  137 

We used  the MODIS MCD14ML global monthly fire location products (Giglio, 2013) to 138 

compute the size of an observed fire. Following the approach by (val Martin et al., 2012), the fire 139 

size per grid cell (Agc in km2) was calculated, 140 

𝐴 ∆𝑟 ∗                                                                                                                    (1) 141 

where ∆𝑟 is the resolution of the detected fire (1 km2 for MODIS MCD14ML data), and FRPgc is 142 

the FRP of the fire grid cell. MFRP is define as the 99th percentile value of all detected FRPgc 143 

values for a given wildfire region, PFT type, and calendar month from 2001 to 2014. The values 144 

of MFRP are listed in Table S3. Adjacent non-zero FRPgc grid cells are aggregated to be one 145 

fire (Kahn et al., 2007; val Martin et al., 2009), i.e. the sums of Agc and the products of FRPgc 146 

and Agc of these fire grid cells are the size and FRP of this fire, respectively. 147 



Another fire parameter for the 1-D model is the total fire energy flux. Previous studies 148 

showed that the satellite detected fire radiative energy is about 10% of the total fire energy 149 

(Freeborn et al., 2008; Wooster et al., 2005). We followed the work by val Martin et al. (2012) to 150 

compute the total fire energy flux of a fire (E), 151 

𝐸 10 ∗ 𝐹𝑅𝑃                                                                                                                   (2) 152 

where FRPfire (in MW) is the FRP value of an identifiws fire. 153 

2.1.3 1-D fire plume rise model modifications 154 

The meteorology and fire data described above were fed into the 1-D plume-rise model 155 

developed by Freitas et al. (2007, 2010) to compute an offline global smoke plume height dataset 156 

(Fig. 1). This physical fire plume-rise model scheme is governed by the conservations of energy, 157 

vertical momentum, and mass. It was previously implemented in regional air quality and climate 158 

models (e.g., Grell et al., 2011; Pfister et al., 2011; Stein et al., 2009). The prognostic equation of 159 

vertical momentum (Freitas et al., 2007) is, 160 

𝑤 𝑔𝐵 𝑤 𝐾                                                                            (3) 161 

where 𝑤 is the vertical velocity, t is the time, 𝑧 is the vertical distance, g is the acceleration due 162 

to gravity, and 𝛾 is the parameter for non-hydrostatic pressure perturbations and was set to be 0.5 163 

in this study (Simpson & Wiggert, 1969). The parameter, B, is the buoyance term related to the 164 

difference of temperature between fire plume air parcel and the ambient environment. The initial 165 

velocity and temperature difference between fire plume and ambient air (T in Fig. 2)  are 166 

functions of fire size, MFRP, surface air temperature, and surface pressure (Freitas et al., 2007). 167 

The parameter, 𝛼, is the entrainment coefficient with a default value of 0.1. R is the radius of the 168 



plume air parcel. The eddy diffusion coefficient, 𝐾 , was assumed to be constant in the original 169 

model. Following the work by Myrup and Ranzieri (1976), we set the 𝐾  vertical profile as a 170 

parabolic function, increasing from the surface, reaching the peak in the middle of the boundary 171 

layer and decreasing to a small value at the top of boundary layer.  The default 𝐾  value of 500 172 

m2 s-1 was used in the tropics and subtropics (30N-30S). A lower value of 300 m2 s-1 was used 173 

for higher latitudes reflecting less solar heating than the tropics. Further details on the 1-D model 174 

is described in the Supplement.    175 

2.1.4 The diurnal variation of fire plume height 176 

The meteorological effects on the diurnal variation, such as the variation of the 177 

atmospheric stability and boundary layer height (Sofiev et al., 2012; val Martin et al., 2012) were 178 

simulated using hourly CFSR data. Another important factor is the diurnal variation of fire 179 

burning (e.g, Mu et al., 2011). We followed the work by Ellicott et al. (2009) and Vermote et al. 180 

(2009) and parameterized the FRP diurnal variation using a modified Gaussian Function on the 181 

basis of the measurements by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI): 182 

𝐹𝑅𝑃 𝑡 𝐹𝑅𝑃 ∗ 𝑏 𝑒                                                                                       (5) 183 

where the FRP is a function of time (hour), FRPpeak is the peak FRP value during a day at time h, 184 

b is a constant FRP value at night, and 𝜎 is the standard deviation value for the Gaussian 185 

function. The values of h, b and 𝛿 were parameterized as functions of the observed Terra-to-186 

Aqua FRP ratio (r):  187 

ℎ  1.23𝑟 14.57                                                                                                              (6) 188 

𝛿 3.89𝑟 1.03                                                                                                                    (7)  189 



𝑏 0.86𝑟 0.52𝑟 0.08                                                                                                    (8) 190 

𝑟  𝐹𝑅𝑃 /𝐹𝑅𝑃                                                                                                            (9) 191 

Since the parameterizations of equations (5)-(9) for regional fires were based on hourly SEVIRI 192 

measurements, we computed the averaged regional r values using the MODIS MCD14ML 193 

products by selecting the measurements at local time 10:30 and 13:30 for Terra and Aqua 194 

satellites, respectively, from 2001 to 2014.   195 

After calculating the r, b, 𝛿 and h values for a given region, the FRPpeak value of a 196 

detected fire spot was determined by equation (10), 197 

𝐹𝑅𝑃  𝐹𝑅𝑃 / 𝑏 𝑒                                                                                        (10) 198 

where 𝐹𝑅𝑃  is the FRP value of a fire hotspot by Terra MODIS and 𝑡  is the Terra overpass 199 

time during daytime, which is given by MODIS MCD14ML products. Using equation (5), we 200 

computed the hourly FRP values. The regional parameter values of b, 𝛿 and h are listed in table 201 

S4 in the Supplement and the regional diurnal FRP variation was calculated. For illustration 202 

purposes, we computed the typical regional MFRP diurnal profiles using equation (10) (Figure 203 

S3 in the Supplement). 204 

Using equations (1) and (2) and calculated FRP data, we computed hourly fire size A(t) 205 

and total fire energy E(t). These data and CSFR meteorology fields were applied to the 1-D fire 206 

plume rise model (section 2.1.3) to calculate plume heights (Figure 1).  207 

 208 

2.1.5 MISR fire plume heights  209 



The plume height dataset from the MISR plume height project was used to evaluate 210 

offline 1-D fire plume model results (Kahn et al., 2008; val Martin et al., 2009). This dataset 211 

includes fire plumes from 2002 to 2009 over eight regions, Africa, Alaska, Canada, Indonesia, 212 

North America, Siberia, South America, and Southeast Asia (http://misr.jpl.nasa.gov/getData/ 213 

accessData/MisrMinxPlumes/). The data availability was summarized in Table S4. In this study, 214 

we only used the data with a “good” quality tag. The maximum MISR plume height of each 215 

hotspot was compared with the 1-D estimated fire plume height of the corresponding hotspot. A 216 

total of 7843 MISR plumes were included (Figure 3b). In general, the fire plume heights are 217 

higher in high latitudes and lower in low latitudes. While the MISR plume height project 2 data 218 

have been available since 2015, the “good” quality data are limited and the results are similar  219 

(Figure S3).  220 

As both MISR and MODIS are onboard the Terra satellite, we found MODIS fire 221 

hotspots corresponding to MISR data. By obtaining the fire information, including location, time, 222 

FRP, from MCD14ML product, we calculated the fire plume heights using the 1-D model and 223 

compared the results to corresponding MISR data (Figure 3).   224 

2.1.6 The AOD data 225 

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite observations (CALIPSO) 226 

provide a multiyear global dataset of lidar aerosol and cloud profiles with six identified aerosol 227 

types: clean marine, dust, polluted continental, clean continental, polluted dust, and smoke, 228 

measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument 229 

(Winker et al., 2010). Schuster et al. (2012) compared CALIPSO with AERONET AOD 230 

measurements at 147 AERONET sites and suggested a low bias of 13% in CALIPSO data due to 231 

a bias in the assumed lidar ratio. However, for biomass burning aerosols, the measurement bias is 232 



relatively low and the measurement sensitivity of the CALIOP instrument is higher than MODIS 233 

(Ma et al., 2013). In this study, we used the CALIPSO level 3 all-sky daytime monthly mean fire 234 

AOD data associated with a 2 x 5 resolution.    235 

2.2 Model experiments on the sensitivity of fire AOD distribution to plume rise 236 

In this study, we used the Community Earth System Model (CESM) version 1.2 in a 237 

configuration of the community atmosphere model version 5 (CAM5) (Neale et al., 2012) 238 

coupled with community land model version 4.5 (CLM4.5) (Oleson et al., 2010). The 3-mode 239 

Modal Aerosol Model (MAM3) is included in CAM5 to simulate the aerosol lifecycle (X. Liu et 240 

al., 2012). In MAM3, the aerosol mass and number mixing ratio were simulated in three 241 

lognormal modes: Aitken, accumulation, and coarse mode. BC and primary organic matter 242 

(POM) from wildfires and anthropogenic sources were emitted into the accumulation mode. 243 

Three model experiments were carried out to examine the effects of plume rise on fire 244 

AOD distribution: the control run without fire emissions (NO-Smk), the surface run with fire 245 

emissions released from the surface (Srf-Smk), and the fire plume run with fire emissions 246 

released at altitudes up to computed fire plume heights (Plm-Smk).  The experiments are 247 

summarized in Table 1. The wildfire emissions used in the study were from GFED4s (Randerson 248 

et al., 2012), which has a 0.5x 0.5 resolution and a 3-hour temporal resolution. The emission 249 

data are available from 1997 to present.  250 

The three model experiments were constrained by NASA GEOS-5 reanalysis data. The 251 

fire emissions were the observation-based GFED inventory. As a result, we used  offline 1-D 252 

model computed fire plume height dataset in the Plm-Smk run. The fire emissions were  253 

distributed towards the top of a fire plume with a half-Gaussian shape (Fig. S5), which gives 0 254 



emission at the surface and the maximum at the top (e.g. Simpson and Wiggert, 1969; Yanai et 255 

al., 1973; Fraitas et al., 2010; Romp, 2010).  256 

The model simulations were carried out for the period of 2006-2010 since the CALIPSO 257 

fire AOD data became available in 2006. By comparing Plm-Smk to NO-smk results, we 258 

examined the effects of fires on the global AOD distribution, which was compared to CALIPSO 259 

data. By comparing Plm-Smk to Srf-Smk results, we analyzed the effects of plume rise to fire 260 

AOD distribution.   261 

Table 1. Three model experiments to investigate fire aerosol effects 262 

Experiment  Fire Emission Plume Height
NO-Smk Off Off
Srf-Smk On Surface
Plm-Smk On Defined

 263 

2.3 Online parameterization of fire plume height in CESM 264 

The offline observation-based fire plume height database described above cannot be used 265 

in a climate model directly since the climate model is not meant to reproduce the observed day-266 

to-day weather, which strongly affects fire occurrences. Embedding the 1-D fire plume model in 267 

the climate model is computationally expensive and the results may have large systematic errors 268 

occasionally because of the biases of climate simulations. We therefore developed an online 269 

parameterization to compute fire plume height for CESM. The online REgion-Specific 270 

ecosystem feedback Fire (RESFire) model that simulates fire occurrence and burned area in 271 

CAM5 and CLM4.5 was described by (Zou et al., 2019). The fire, ecosystem, and 272 

meteorological parameters for computing fire plume height were computed by RESFire, 273 

CLM4.5, and CAM5, respectively.  The online region- and PFT-specific parameterizations were 274 

based on the offline fire plume height dataset and meteorological reanalysis data (Fig. 2). It 275 



cannot be used in online climate model simulations directly because of systematic biases in 276 

simulated meteorological variables that are important for fire plume rise; we correct the model 277 

biases using a cumulative distribution function (CDF) mapping method in the same manner as 278 

Zou et al. (2019). An alternative is to use climate model meteorological data directly with the 279 

offline fire plume height dataset. We chose not to do it for two reasons: (1) the weather data 280 

simulated by the climate model do not correspond to the observed fires in the offline dataset; (2) 281 

any change of the climate model will require the construction of new online parameterizations.  282 

2.3.1 Online fire plume height parameterization 283 

The online region-specific fire plume-rise height parameterization is based on the 284 

statistical relationship between meteorological variables and the fire plume height dataset (Fig. 285 

2) for the same 15 wildfire regions used to compute the dataset (Figs. S1). We used only MODIS 286 

detected hotspots with a confidence level of >95% from 2002 to 2010. The important parameters 287 

for fire plume height include the initial fire plume velocity and the temperature difference 288 

between fire and ambient air (Latham, 1994; Turner, 1979; Freitas et al., 2007, 2010). As in 1-D 289 

modeling, we calculated the initial velocity and temperature difference between fire and ambient 290 

air as functions of fire size, MFRP, surface air temperature, and surface pressure following 291 

Freitas et al. (2007). We found that fire plume initial velocity is better correlated with MISR 292 

observed fire plume height than FRP (Fig. S6), which was used previous studies (e.g., Doherty et 293 

al., 2013; Sofiev et al., 2012; val Martin et al., 2012). In the parameterization, we also considered 294 

other 25 meteorological parameters: the boundary layer height (1 parameter), the vertically 295 

potential temperature difference at an interval of 500 m from the surface to 6 km in altitude (12 296 

parameters), the horizontal wind speed at an interval of 500 m from surface to 3 km (6 297 

parameters), and the specific humidity for the same layers as wind speed (6 parameters). 298 



Including the constant term, a total of 28 terms were used in the linear regression process for a 299 

given fire region and PFT. By using the interactive stepwise multilinear regression function in 300 

MATLAB with a 0.01 threshold, the number of effective parameters was reduced from 28 to < 301 

12. As plume heights has diurnal, seasonal, and regional variations, the parameterizations were 302 

developed to capture the hourly, monthly, and regional variations. The selected parameters and 303 

regression coefficients are listed in supplementary materials (selected_terms.txt and 304 

coefficients.txt), respectively. More details are in supplementary materials (ST2).  305 

2.3.2 CDF mapping     306 

Zou et al. (2019) discussed the large biases in estimated fires due to the systematic biases 307 

of the climate model simulations when the fire model was developed using the observations. The 308 

fire plume height parameterization developed here is based on MODIS fire hotspot observations 309 

and CSFR reanalysis meteorology data. We expected that direct application of this 310 

parameterization with CAM5 and CLM4.5 simulation results could lead to large biases in fire 311 

plume height estimates due in part to the biases in the fire parameters simulated by the climate 312 

model. As in Zou et al. (2019), we applied the CDF mapping method to correct the simulation 313 

biases (Piani et al., 2010; Teutschbein and Seibert, 2012). The CDFs of model simulated data 314 

were linearly mapped to those of the observation-reanalysis data such that the statistical 315 

distributions of mapped model data are the same as the observation-reanalysis data. In this 316 

manner, we reduced the mean biases of model data while maintaining the simulated dynamic 317 

variability. See Zou et al. (2019) for  more details about the application of mapping to reduce 318 

biases.   319 

Figure 2 illustrates the application of the CDF mapping in the online fire plume height 320 

parameterization. Since large diurnal variation of fire height was expected, hourly CDF mapping 321 



of meteorology data was applied. An example is shown for Boreal North America (BONA) in 322 

Fig. S7 in the supplement. In addition to meteorological variables, we also needed to compute 323 

the initial velocity and temperature difference between fire and ambient air functions of fire size, 324 

MFRP, surface air temperature, and surface pressure (Freitas et al., 2007). MFRP data were 325 

obtained from Terra MODIS observations with prescribed diurnal variations based on Terra and 326 

Aqua MODIS data described in sections 2.1.3 and 2.1.4. Therefore, no CDF mapping is 327 

necessary. Hourly fire FRP data were estimated using the RESFire model (Zou et al., 2019) and 328 

we applied the CDF mapping of RESFire model FRP data to MODIS FRP data described in 329 

section 2.1.1. Then we computed fire size by scaling CDF mapped FRP to MFRP of the grid cell 330 

(section 2.1.2). The resulted fire size and MFRP were used to calculate the initial fire plume 331 

velocity and temperature difference, as described in section 2.1.2 and 2.1.3. Since FRP was 332 

based on model data, we applied the CDF mapping of fire size to the observation based fire size 333 

dataset described in section 2.1.2.  An example of the FRP CDF of BONA is shown in Fig. S8 in 334 

the supplement. The resulting online plume height data were evaluated with the MISR 335 

observations with the results provided in the following section.  336 

3 Results and discussion 337 

3.1 Evaluation of observation-constrained fire plume height simulations 338 

The MISR fire plume heights are shown in Figure 3a. The MISR plume height dataset 339 

has a higher sampling density over North America and Siberia, and a lower sampling density 340 

over tropical region. In general, the average fire plumes are > 1800 m over Alaska and Canada 341 

and > 1300 m over Siberia, while the fire plume heights are largely < 1200 m over South 342 

America and Africa. This pattern can be summarized as low in low latitudes and high in high 343 

latitudes. The offline 1-D model simulated fire plume heights (Fig.3b) largely agree with this 344 



latitudinal pattern, which is a major improvement compared to previous studies (e.g., Sofiev et 345 

al., 2012, 2013; val Martin et al., 2012). Since the tropical regions including South America, 346 

Africa and Southeast Asia are most frequently burned regions over the world, the agreement with 347 

the MISR observations over these regions is important for accurately simulating the impacts of 348 

wildfire emissions on climate and pollution. Previous studies tend to greatly overestimate the fire 349 

plume heights in the tropics but underestimate in high latitudes (e.g., Sofiev et al., 2012, 2013). 350 

The overestimation in the tropics could lead to a high bias on the effects of black carbon on the 351 

Hadley circulation (Tosca et al., 2013b, 2015). The underestimation of fire plume heights in high 352 

latitudes could affect transport of black carbon from the mid latitudes to the Arctic and the 353 

consequent snow and ice melting in the region (Keegan et al., 2014).   354 

The points-to-point comparison between MISR and 1-D fire plume heights are shown in 355 

Figure 3c. The uncertainty level of the MISR data is 500 m (refs); we therefore consider model 356 

simulations within 500 m of MISR data “good” quality. About two-thirds of model data fall in 357 

this range, much better than the previous study by Sofiev et al. (2012). While the systematic low 358 

bias from the previous study was corrected, our results still have a low bias when MISR fire 359 

plume heights are > 3 km, probably due to the insufficient latent heat release in the 1-D plume-360 

rise model. The low bias for high-altitude fire plumes is also shown in the histogram comparison 361 

(Figure 3d). The simulated distribution shows that globally fire plume height occurrence 362 

frequency peaks at  1 km and decreases rapidly with increasing altitude, which is in good 363 

agreement with MISR observations. Overall, the 1-D model results captured the observed spatial 364 

and histogram distributions of fire plume height.              365 

The diurnal variations of fire plume height are  shown in Figure 4. As shown in Figure 3, 366 

the simulated average CSFR plume height is in good agreement with the MISR data. The 367 



simulated diurnal variation of plume rise, constrained by Terra and Aqua FRP observations, is 368 

similar to that of the PBL height. The average plume height value at 14:00, around the Aqua 369 

satellite overpass time, is 2041 m, almost double the mean MISR derived plume height of 1300 370 

m. 371 

Figure 4 also shows the average fraction of fire plumes above the PBL observed by 372 

MISR at around 19%, same  as val Martin et al. (2012). The model simulated a somewhat higher 373 

above-PBL fraction of 25%. This fraction keeps on increasing till reaching a maximum of 53% 374 

at 15:00-16:00 in late afternoon. This also can be seen in the increasing overlap between the 375 

ranges of plume rise and PBL heights from 11:00 to 16:00 (Fig. 4a). Accounting for the large 376 

increase of fire plume rise above the PBL in the afternoon, when most of the wildfire burning 377 

occurs based on satellite FRP observations  (Ellicott et al., 2009; Vermote et al., 2009), implies 378 

that a higher fraction of wildfire plume reached the free troposphere than the fraction of ~20% 379 

estimated using MISR observations by val Martin et al. (2012) and the resulting fire emissions of 380 

aerosols and gases underwent faster free tropospheric transport than the boundary layer affecting 381 

larger geographical regions. 382 

The observation-based 1-D model simulated plume rise height distributions are shown in 383 

Figure 5. At the overpass time of Terra (11:00 am LT), the results fill the gaps in MISR 384 

observations (Figure 3) and show a general pattern of higher fire plume rise at high latitudes than 385 

the tropics. Fire plume rise heights at Alaska, Canada, western United States, and Siberia reach 386 

1500 to 3000 m in comparison to 500 to 1200 m in the tropical regions.  387 

At 14:00 in January, fire plume heights are much higher in the Southern Hemisphere 388 

(SH), where most fires occur, than the Northern Hemisphere (NH). The SH fire plumes can reach 389 

3000 m in most regions whereas the NH plumes are largely < 1000 m due to a more unstable 390 



atmosphere and strong burning intensity in the SH. At 14:00 in July, wildfires over Alaska, 391 

Canada, and western United States have highest fire plumes in the NH. The fire plume heights in 392 

Siberia are moderate. In the SH, tropical burning over the central South America and Africa has 393 

high fire plumes but not reaching the maxima of January burning in the regions. The 394 

observation-based distributions are in better agreement with limited MISR observations than 395 

(Sofiev et al., 2012). More global observations of fire plume heights, preferably in the afternoon, 396 

are necessary to improve model simulations. 397 

The zonal mean cumulative vertical distribution of fire emission at 14:00 LT, when is the 398 

peak emission time in the GFED hourly emission data (Mu et al., 2011), is shown in Figures 6 399 

and 7 for January and July, respectively. In January, as shown in Fig. 5, most burning takes place 400 

in the tropical grass-savanna (PFT4) and forest (PFT2) (Giglio et al., 2013). Most fire emissions 401 

are released between 0~20o N, where the median fire plume heights for PFT2 and PFT4 are at 402 

1500 ~ 2000 m and the 75th percentile values reach 3000 m (Fig. 6), which are much higher in 403 

altitude than the 0 ~1000 m distribution setting in AeroCom protocol (Dentener et al., 2006). 404 

Due in part to solar heating, fire plume heights in the southern tropics are higher than the 405 

northern tropics.  406 

July is the month of most burning globally over 8 fire regions: Boreal North America, 407 

Boreal Asia, West Temperate North America, Europe, Middle East, Central Asia, South 408 

Hemisphere South America and South Hemisphere Africa (Giglio et al., 2013). Over the tropical 409 

SH (SHSA and SHAF) with frequent burning, the median fire plume heights of PFT2 and PFT4 410 

are at 1500 to 2500 m and the 75th percentile heights reach the range of 2500 to 3000 m (Fig. 7), 411 

much higher than the range of 0 ~ 1000 m in AeroCom protocol (Dentener et al., 2006). In the 412 

NH temperate regions, the median fire plume heights of forests (PFT1 and PFT2) are at 2000 to 413 



2500 m and the 75th percentile heights reach 3500 to 4000 m, while the median heights of grass-414 

savanna (PFT4) burning are at 2500 to 3000 m and the 75 percentile height is up to 4000 m. In 415 

comparison, the fire emission is released at 0 to 2000 m in these regions in the AeroCom 416 

protocol (Dentener et al., 2006). 417 

3.2 Effects of plume rise on fire AOD simulations 418 

Zhang et al., (2019) evaluated model simulated fire AOD with MODIS observations, 419 

using the observation-constrained fire plume height data described here, over fire burning 420 

regions. There was a general agreement but the GFED fire aerosol emissions appeared to have a 421 

low bias. In this study, we compare model simulated fire AOD with CALIPSO smoke AOD data 422 

(Omar et al., 2009), which are more specific for fire aerosols but also have relatively large 423 

uncertainties (Tackett et al., 2018). We calculated the fire AOD distributions by subtracting the 424 

control run results (without fire emissions) from the simulation results with GFED4s fire 425 

emissions and the observation-based fire plume rise dataset.  426 

Observed and the corresponding model results for January and July during the period of 427 

2006 to 2010 are shown in Figure 8.  While observed and simulated data have similar spatial 428 

patterns, differences in details can be identified.  The satellite smoke aerosol observation data 429 

tend to show high concentrations over industrialized regions, such as India and China in January, 430 

and China, western Europe, and eastern United States in July, where the model results show 431 

insignificant wildfire emissions. Over North America, the model shows high amounts of fire 432 

emissions over Alaska and Canada in July in contrast to higher smoke AOD data over eastern 433 

than western United States and Canada. It appears that satellite smoke retrievals over 434 

industrialized regions may have a high bias.     435 



Over the tropical burning region, model simulated fire AOD data tend to be higher than 436 

the satellite observations. In January, simulated African fire AOD data are higher than CALIPSO 437 

retrievals but lower in the northern South America. In July, simulated fire AOD data are higher 438 

over South America, but lower over Africa. Decreasing fire emissions may help improve the 439 

comparison with CALIPSO retrievals in the model. However, the model evaluations by Zhang et 440 

al. (2019) suggested that the model fire aerosol emissions have a low bias in general.  441 

Some of the model and satellite retrieval differences may be related to uncertainties in 442 

fire plume rise simulated in the model. We examine the effects of plume rise on fire AOD 443 

distribution by examining the AOD difference between the model simulation results with plume 444 

rise to those in which fire emissions were released in the surface layer. Figure 4 shows that fire 445 

plume rise above the top of the boundary usually occur in daytime. Therefore, the differences of 446 

AOD distribution between the two model simulations are due to daytime mixing. Fire aerosols 447 

released in the surface layer can be easily mixed into the boundary layer. Therefore, we selected 448 

three typical summer months in Figure 9 to show that the largest changes of fire AOD occurred 449 

in the region with large wind shear between the boundary layer and free troposphere. Fire AOD 450 

tends to increase in the downwind regions of free-tropospheric transport and decrease in the 451 

downwind regions of boundary-layer transport. Although the relative changes can be as large as 452 

20-50% in some regions where background AOD is low and fire impact is large. However, the 453 

fire-induced absolute AOD changes are small relative to the differences between observed and 454 

simulated AOD data (Zhang et al., 2019). 455 

3.3 On-line fire plume-rise implementation 456 

The comparison between MISR observations and the online parameterization results are 457 

shown in Figure 10. The input data used for online parameterizations are the same as the 1-D fire 458 



plume-rise dataset. The general distribution features are similar. For example, tropical fire 459 

plume-rise heights are lower than at northern mid and high latitudes, in agreement with MISR 460 

observations (Figure 3), improving upon the previous studies (e.g., Sofiev et al., 2012, 2013). 461 

However, the low biases over Canada, western U.S., and Siberia, where fire plumes are often 462 

higher than 2-3 km, are worse than the 1-D fire plume-rise dataset (Figure 3), similar to the 463 

results by Sofiev et al. (2012, 2013). The larger biases of the online parameterizations, in which 464 

linear regression of fire plume-rise height with fire and meteorological parameters are 465 

considered, than the 1-D dynamic model results reflect the importance of nonlinear 466 

meteorological processes [e.g., Eq. (3)). Incorporating nonlinear dynamic processes will likely be 467 

a useful pathway to improve the online parameterizations of fire plume rise.   468 

The on-line parameterizations must deal with various biases of the climate model 469 

simulations. We made use of the CDF mapping method (Section 2 (Zou et al., 2019)). To 470 

evaluate the performance of the online plume-rise parameterizations, we ran the coupled CAM-471 

CLM for one full year. As a fully coupled simulation, it is not possible to reproduce the 472 

meteorology conditions exactly like the conditions of MISR measurements. Therefore, we used 473 

the monthly mean plume-rise heights in the evaluation. The results are shown in Figure 11. Since 474 

fire burned areas are simulated using the RESFire model by Zou et al. (2019), the locations of 475 

simulated fires do not necessary overlap with the time periods of MISR-derived fire plume-rise 476 

height data. As a result, the pattern of fire distribution in Figure 11 differs from Figure 10. The 477 

general pattern of coupled plumes is similar to MISR data (Figure 3): higher fire plumes in mid 478 

and high latitudes and lower fire plumes in the tropics. The quality of fire plume-rise simulation 479 

is similar to using off-line data (Figure 10). The averaged diurnal cycle of fire plume-rise height 480 

in July is shown in Figure 12. The diurnal cycle resembles that of the observation-constrained 1-481 



D model computed dataset (Figure 4), peaking at 14:00 local time with a maximum height at 482 

around 2 km.    483 

4 Conclusions 484 

We developed an observation-based global fire plume-rise dataset for 2002-2012, using a 485 

modified 1-D plume-rise model on the basis of observed fire size and MFRP data as a function 486 

of plant functional type (PFT) for different regions. This study developed long-term plume 487 

height dataset through using modified 1-D plume-rise model and region- and PFT-specific 488 

MFRP and fire size data as inputs, as well as CFSR meteorology variables. Compared to 489 

corresponding MISR data in the morning, the observed general geographical distribution feature 490 

is well captured: lower in the tropics and higher at northern mid and high latitudes, improving 491 

over the previous results of higher fire plume-rise heights in the tropics than mid and high 492 

latitudes (Sofiev et al., 2012, 2013).  493 

The diurnal variations of fire plume rise due to the changes of fire size and FRP and 494 

boundary-layer mixing were assessed. The key parameter for the impacts of fire emissions is the 495 

fraction of fire plumes penetrating above the boundary layer, which tends to increase during the 496 

day as the boundary-layer is destabilized and fires intensify.  While at the time of MISR 497 

observation (10:30 am LT) it is relatively low at 20%, the fraction increases to an average of 498 

~55% in the late afternoon. The resulting fire emission vertical distributions show much more 499 

fire emissions at higher altitudes in the tropical and temperate regions than the zonal-mean 500 

emission distributions specified by the AeroCom Protocol (Dentener et al., 2006), which is 501 

widely used in the climate model simulations. Comparing model simulations using observation-502 

based global fire plume-rise dataset to those assuming surface emissions only, we found 20 to 503 



50% fire caused monthly AOD increases globally, suggesting larger effects of fire emitted 504 

aerosols in downwind regions on air quality and radiative and cloud forcing.     505 

Using the 2002-2012 observation-based dataset, we developed online fire plume-rise 506 

height parameterizations for 15 global wildfire regions using up to 28 parameters for use in 507 

climate model simulations. While the general geographical distribution of the computed fire 508 

plume-rise height is reasonable, the parameterization has a considerably larger low bias than the 509 

1-D model computed data when compared to MISR observations. The low biases are similar in 510 

magnitude to the previous results by Sofiev et al. (2012, 2013). The low biases are likely due to 511 

the use of linear regression in our study; the nonlinear dynamics of fire plumes could be 512 

represented better using the 1-D modeling approach (Frietas et al., 2007; 2010). We recommend 513 

investigating computationally efficient nonlinear regression-based parameterizations in future 514 

studies to improve the representation of fire plume rise in climate models. Furthermore,  MISR-515 

like global observations of fire plume heights, particularly in the afternoon, are necessary to 516 

improve our understanding of fire plume rise processes, model simulations, and climate model 517 

parameterizations. 518 

 519 

Acknowledgements 520 

This work was supported by the National Science Foundation (NSF) through grant 521 

1243220. We would like to acknowledge high-performance computing support from 522 

Yellowstone (ark:/85065/d7w3xhc) and Cheyenne (doi:10.5065/D6RX99HX) supper computers 523 

provided by NCAR’s CISL, sponsored by the National Science Foundation.  Data used in this 524 

study are available from the following locations:  525 



 526 

CFSR meteorology hourly data: 527 

https://rda.ucar.edu/datasets/ds094.2/ 528 

 529 

MODIS MCD14DL (fire hotspot) data: 530 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms 531 

 532 

MISR plume heights data: 533 

https://misr.jpl.nasa.gov/getData/accessData/MISRPlumeHeight/ 534 

 535 

CESM-CAM5: 536 

http://www.cesm.ucar.edu/models/ 537 

 538 

CALIPSO data: 539 

http://www.cesm.ucar.edu/models/ 540 

 541 

The data and source code produced by this study: 542 

https://doi.org/10.18738/T8/68P70B   543 



 544 

 545 

References 546 

Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. (2012). Recent Northern Hemisphere 547 

tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 548 

485(7398), 350–354. https://doi.org/10.1038/nature11097 549 

Bauer, S. E., & Menon, S. (2012). Aerosol direct, indirect, semidirect, and surface albedo effects 550 

from sector contributions based on the IPCC AR5 emissions for preindustrial and present-551 

day conditions. Journal of Geophysical Research Atmospheres, 117(1), 1–15. 552 

https://doi.org/10.1029/2011JD016816 553 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. (2013). 554 

IPCC AR5 Clouds and Aerosols. Climate Change 2013: The Physical Science Basis. 555 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 556 

Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324.016 557 

Browman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., et 558 

al. (2009). Fire in the Earth System. Science, 324(5926), 481–484. 559 

https://doi.org/10.1126/science.1163886 560 

Channan, S., Collins, K., & Emanuel, W. R. (2014). Global mosaics of the standard MODIS land 561 

cover type data. University of Maryland and the Pacific Northwest National Laboratory, 562 

College Park, Maryland, USA, 30. 563 

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., et al. (2006). Emissions 564 



of primary aerosol and precursor gases in the years 2000 and 1750, prescribed data-sets for 565 

AeroCom. Atmospheric Chemistry and Physics Discussions, 6(2), 2703–2763. 566 

https://doi.org/10.5194/acpd-6-2703-2006 567 

Dirksen, R. J., Folkert Boersma, K., De Laat, J., Stammes, P., Van Der Werf, G. R., Martin, M. 568 

V., & Kelder, H. M. (2009). An aerosol boomerang: Rapid around-the-world transport of 569 

smoke from the December 2006 Australian forest fires observed from space. Journal of 570 

Geophysical Research Atmospheres, 114(21), 1–15. https://doi.org/10.1029/2009JD012360 571 

Ditas, J., Ma, N., Zhang, Y., Assmann, D., Neumaier, M., Riede, H., et al. (2018). Strong impact 572 

of wildfires on the abundance and aging of black carbon in the lowermost stratosphere. 573 

Proceedings of the National Academy of Sciences of the United States of America, 115(50), 574 

E11595–E11603. https://doi.org/10.1073/pnas.1806868115 575 

Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R. R., Warren, S. G., Ames, R. B., et al. (2013). 576 

Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part 577 

II): sensitivity studies. Atmospheric Chemistry and Physics, 6(4), 5261–5277. 578 

https://doi.org/10.5194/acpd-6-6081-2006 579 

Ellicott, E., Vermote, E., Giglio, L., & Roberts, G. (2009). Estimating biomass consumed from 580 

fire using MODIS FRE. Geophysical Research Letters, 36(13), 1–5. 581 

https://doi.org/10.1029/2009GL038581 582 

Evangeliou, N., Balkanski, Y., Hao, W. M., Petkov, A., Silverstein, R. P., Corley, R., et al. 583 

(2016). Wildfires in Northern Eurasia affect the budget of black carbon in the Arctic. A 12-584 

year retrospective synopsis (2002–2013). Atmospheric Chemistry and Physics Discussions, 585 

(February), 1–41. https://doi.org/10.5194/acp-2015-994 586 



Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., & 587 

Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace gas an 588 

aerosol emissions during laboratory biomass fires. Journal of Geophysical Research 589 

Atmospheres, 113(1), 1–17. https://doi.org/10.1029/2007JD008679 590 

Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. a. F., Andreae, M. O., et 591 

al. (2006). Including the sub-grid scale plume rise of vegetation fires in low resolution 592 

atmospheric transport models. Atmospheric Chemistry and Physics Discussions, 6(6), 593 

11521–11559. https://doi.org/10.5194/acpd-6-11521-2006 594 

Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. a. F., Andreae, M. O., et 595 

al. (2007). Including the sub-grid scale plume rise of vegetation fires in low resolution 596 

atmospheric transport models. Atmospheric Chemistry and Physics Discussions, 7(7), 3385–597 

3398. https://doi.org/10.5194/acpd-6-11521-2006 598 

Freitas, S. R., Longo, K. M., Trentmann, J., & Latham, D. (2010). Technical Note: Sensitivity of 599 

1-D smoke plume rise models to the inclusion of environmental wind drag. Atmospheric 600 

Chemistry and Physics, 10(2), 585–594. https://doi.org/10.5194/acp-10-585-2010 601 

Giglio, L. (2013). MODIS collection 5 active fire product user’s guide version 2.4. University of 602 

Maryland: College Park, MD. Retrieved from 603 

http://198.118.255.205/sites/default/files/field/document/MODIS_Fire_users_Guide_2.4.pd604 

f 605 

Giglio, L., Randerson, J. T., & Van Der Werf, G. R. (2013). Analysis of daily, monthly, and 606 

annual burned area using the fourth-generation global fire emissions database (GFED4). 607 

Journal of Geophysical Research: Biogeosciences, 118(1), 317–328. 608 



https://doi.org/10.1002/jgrg.20042 609 

de Gouw, J. A., Warneke, C., Stohl, A., Wollny, A. G., Brock, C. A., Cooper, O. R., et al. 610 

(2006). Volatile organic compounds composition of merged and aged forest fire plumes 611 

from Alaska and western Canada. Journal of Geophysical Research Atmospheres, 111(10), 612 

1–20. https://doi.org/10.1029/2005JD006175 613 

Grell, G., Freitas, S. R., Stuefer, M., & Fast, J. (2011). Inclusion of biomass burning in WRF-614 

Chem: Impact of wildfires on weather forecasts. Atmospheric Chemistry and Physics, 615 

11(11), 5289–5303. https://doi.org/10.5194/acp-11-5289-2011 616 

Hodnebrog, Ø., Myhre, G., Forster, P. M., Sillmann, J., & Samset, B. H. (2016). Local biomass 617 

burning is a dominant cause of the observed precipitation reduction in southern Africa. 618 

Nature Communications, 7, 11236. https://doi.org/10.1038/ncomms11236 619 

Jiang, Y., Lu, Z., Liu, X., Qian, Y., Zhang, K., Wang, Y., & Yang, X. Q. (2016). Impacts of 620 

global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated 621 

with CAM5. Atmospheric Chemistry and Physics, 16(23), 14805–14824. 622 

https://doi.org/10.5194/acp-16-14805-2016 623 

Kahn, R. A., Li, W. H., Moroney, C., Diner, D. J., Martonchik, J. V., & Fishbein, E. (2007). 624 

Aerosol source plume physical characteristics from space-based multiangle imaging. 625 

Journal of Geophysical Research Atmospheres, 112(11), 1–20. 626 

https://doi.org/10.1029/2006JD007647 627 

Kahn, R. A., Chen, Y., Nelson, D. L., Leung, F. Y., Li, Q., Diner, D. J., & Logan, J. A. (2008). 628 

Wildfire smoke injection heights: Two perspectives from space. Geophysical Research 629 

Letters, 35(4), 18–21. https://doi.org/10.1029/2007GL032165 630 



Keegan, K. M., Albert, M. R., McConnell, J. R., & Baker, I. (2014). Climate change and forest 631 

fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proceedings 632 

of the National Academy of Sciences of the United States of America, 111(22), 7964–7. 633 

https://doi.org/10.1073/pnas.1405397111 634 

Latham, D. (1994). PLUMP: A one-dimensional plume predictor and cloud model for fire and 635 

smoke managers. General Technical Report INT-GTR-314, Intermountain Research 636 

Station, USDA Forest Service, 11526, 11528–11529. 637 

Lawrence, P. J., & Chase, T. N. (2007). Representing a new MODIS consistent land surface in 638 

the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences, 639 

112(1). https://doi.org/10.1029/2006JG000168 640 

Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. (2012). Toward a minimal 641 

representation of aerosols in climate models: Description and evaluation in the Community 642 

Atmosphere Model CAM5. Geoscientific Model Development, 5(3), 709–739. 643 

https://doi.org/10.5194/gmd-5-709-2012 644 

Liu, Y. (2004). Variability of wildland fire emissions across the contiguous United States. 645 

Atmospheric Environment, 38(21), 3489–3499. 646 

https://doi.org/10.1016/j.atmosenv.2004.02.004 647 

Liu, Y., Goodrick, S., & Heilman, W. (2014). Wildland fire emissions, carbon, and climate: 648 

Wildfire-climate interactions. Forest Ecology and Management, 317, 80–96. 649 

https://doi.org/10.1016/j.foreco.2013.02.020 650 

Ma, X., Bartlett, K., Harmon, K., & Yu, F. (2013). Comparison of AOD between CALIPSO and 651 

MODIS: Significant differences over major dust and biomass burning regions. Atmospheric 652 



Measurement Techniques, 6(9), 2391–2401. https://doi.org/10.5194/amt-6-2391-2013 653 

Madden, J. M., Mölders, N., & Sassen, K. (2015). Assessment of WRF / Chem Simulated 654 

Vertical Distributions of Particulate Matter from the 2009 Minto Flats South Wildfire in 655 

Interior Alaska by CALIPSO Total Backscatter and Depolarization Measurements. Open 656 

Journal of Air Pollution, 4(September), 119–138. Retrieved from 657 

http://www.scirp.org/journal/ojap 658 

http://dx.doi.org/10.4236/ojap.2015.43012%5CnAssessment 659 

Monks, S. A., Arnold, S. R., & Chipperfield, M. P. (2012). Evidence for El Niño-Southern 660 

Oscillation (ENSO) influence on Arctic CO interannual variability through biomass burning 661 

emissions. Geophysical Research Letters, 39(14), 1–6. 662 

https://doi.org/10.1029/2012GL052512 663 

Mu, M., Randerson, J. T., Van Der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., et al. 664 

(2011). Daily and 3-hourly variability in global fire emissions and consequences for 665 

atmospheric model predictions of carbon monoxide. Journal of Geophysical Research 666 

Atmospheres, 116(24), 1–19. https://doi.org/10.1029/2011JD016245 667 

Neale, R. B., Gettelman, A., Park, S., Chen, C., Lauritzen, P. H., Williamson, D. L., et al. (2012). 668 

Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical 669 

Notes. National Center for Atmospheric Research, 214. https://doi.org/10.5065/D6N877R0. 670 

Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., et al. (2010). 671 

Technical Description of version 4 . 0 of the Community Land Model ( CLM ). NCAR 672 

Technical Note. 673 

Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y., et al. (2009). The 674 



CALIPSO automated aerosol classification and lidar ratio selection algorithm. Journal of 675 

Atmospheric and Oceanic Technology, 26(10), 1994–2014. 676 

https://doi.org/10.1175/2009JTECHA1231.1 677 

Pablo E. Saide, Thompson, G., Eidhammer, T., Silva, A. M. da, Pierce, R. B., & Carmichael, G. 678 

R. (2016). Assessment of biomass burning smoke influence on environmental conditions for 679 

multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission 680 

constraints, (121), 10294–10311. https://doi.org/10.1002/2015JD024524.Received 681 

Paugam, R., Wooster, M., Freitas, S., & Val Martin, M. (2016). A review of approaches to 682 

estimate wildfire plume injection height within large-scale atmospheric chemical transport 683 

models. Atmospheric Chemistry and Physics, 16(2), 907–925. https://doi.org/10.5194/acp-684 

16-907-2016 685 

Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K., Diskin, G. D., et al. 686 

(2011). CO source contribution analysis for California during ARCTAS-CARB. 687 

Atmospheric Chemistry and Physics, 11(15), 7515–7532. https://doi.org/10.5194/acp-11-688 

7515-2011 689 

Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global 690 

burned area and biomass burning emissions from small fires. Journal of Geophysical 691 

Research: Biogeosciences, 117(4). https://doi.org/10.1029/2012JG002128 692 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al. (2014). The NCEP climate 693 

forecast system version 2. Journal of Climate, 27(6), 2185–2208. 694 

https://doi.org/10.1175/JCLI-D-12-00823.1 695 

Schuster, G. L., Vaughan, M., MacDonnell, D., Su, W., Winker, D., Dubovik, O., et al. (2012). 696 



Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and 697 

a climatology for the lidar ratio of dust. Atmospheric Chemistry and Physics, 12(16), 7431–698 

7452. https://doi.org/10.5194/acp-12-7431-2012 699 

Simpson, J., & Wiggert, V. (1969). models of percipitating cumulus towers. Monthly Weather 700 

Review, 97(7), 471–489. https://doi.org/10.1126/science.27.693.594 701 

Sofiev, M., Ermakova, T., & Vankevich, R. (2012). Evaluation of the smoke-injection height 702 

from wild-land fires using remote-sensing data. Atmospheric Chemistry and Physics, 12(4), 703 

1995–2006. https://doi.org/10.5194/acp-12-1995-2012 704 

Sofiev, M., Vankevich, R., Ermakova, T., & Hakkarainen, J. (2013). Global mapping of 705 

maximum emission heights and resulting vertical profiles of wildfire emissions. 706 

Atmospheric Chemistry and Physics, 13(14), 7039–7052. https://doi.org/10.5194/acp-13-707 

7039-2013 708 

Stein, A. F., Rolph, G. D., Draxler, R. R., Stunder, B., & Ruminski, M. (2009). Verification of 709 

the NOAA Smoke Forecasting System: Model Sensitivity to the Injection Height. Weather 710 

and Forecasting, 24(2), 379–394. https://doi.org/10.1175/2008WAF2222166.1 711 

Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., & Kar, J. (2018). 712 

CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmospheric 713 

Measurement Techniques, 11(7), 4129–4152. https://doi.org/10.5194/amt-11-4129-2018 714 

Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., & Logan, J. A. (2011). 715 

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in 716 

Indonesia. Journal of Geophysical Research Atmospheres, 116(8), 1–14. 717 

https://doi.org/10.1029/2010JD015148 718 



Tosca, M. G., Randerson, J. T., & Zender, C. S. (2013a). Global impact of smoke aerosols from 719 

landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 720 

13(10), 5227–5241. https://doi.org/10.5194/acp-13-5227-2013 721 

Tosca, M. G., Randerson, J. T., & Zender, C. S. (2013b). Global impact of smoke aerosols from 722 

landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 723 

13(10), 5227–5241. https://doi.org/10.5194/acp-13-5227-2013 724 

Tosca, M. G., Diner, D. J., Garay, M. J., & Kalashnikova, O. V. (2015). Human-caused fires 725 

limit convection in tropical Africa: First temporal observations and attribution. Geophysical 726 

Research Letters, 42(15), 6492–6501. https://doi.org/10.1002/2015GL065063 727 

Trentmann, J., Andreae, M. O., Graf, H.-F., Hobbs, P. V. V, Ottmar, R. D. D., & Trautmann, T. 728 

(2002). Simulation of a biomass-burning plume: Comparison of model results with 729 

observations. Journal of Geophysical Research, 107(D2), 4013. 730 

https://doi.org/10.1029/2001JD000410 731 

Turner, J. S. (1979). Buoyancy effects in fluids. Cambridge University Press. 732 

Val Martin, M., Logan, J. a., Kahn, D., Leung, F. Y., Nelson, D., & Diner, D. (2009). Smoke 733 

injection heights from fires in North America: analysis of 5 years of satellite observations. 734 

Atmospheric Chemistry and Physics Discussions, 9(5), 20515–20566. 735 

https://doi.org/10.5194/acpd-9-20515-2009 736 

Val Martin, Maria, Kahn, R. A., Logan, J. A., Paugam, R., Wooster, M., & Ichoku, C. (2012). 737 

Space-based observational constraints for 1-D fire smoke plume-rise models. Journal of 738 

Geophysical Research Atmospheres, 117(22), 1–18. https://doi.org/10.1029/2012JD018370 739 



Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., & Roberts, G. J. 740 

(2009). An approach to estimate global biomass burning emissions of organic and black 741 

carbon from MODIS fire radiative power. Journal of Geophysical Research Atmospheres, 742 

114(18), 1–22. https://doi.org/10.1029/2008JD011188 743 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano, A. 744 

F., J. (2006). Interannual variability in global biomass burning emissions from 1997 to 745 

2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. https://doi.org/10.5194/acpd-746 

6-3175-2006 747 

Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., & Gustafsson, Ö. (2016). The sources of 748 

atmospheric black carbon at a European gateway to the Arctic. Nature Communications, 7, 749 

12776. https://doi.org/10.1038/ncomms12776 750 

Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., et al. 751 

(2010). The Calipso Mission: A Global 3D View of Aerosols and Clouds. Bulletin of the 752 

American Meteorological Society, 91(9), 1211–1229. 753 

https://doi.org/10.1175/2010BAMS3009.1 754 

Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass 755 

combustion rates and totals from fire radiative power observations: FRP derivation and 756 

calibration relationships between biomass consumption and fire radiative energy release. 757 

Journal of Geophysical Research Atmospheres, 110(24), 1–24. 758 

https://doi.org/10.1029/2005JD006318 759 

Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W., et al. (2019). 760 

Persistent Plume, 590(August), 587–590. 761 



Zeng, T., Wang, Y., Yoshida, Y., Tian, D., Russell, A. G., & Barnard, W. R. (2008). Impacts of 762 

prescribed fires on air quality over the Southeastern United States in spring based on 763 

modeling and ground/satellite measurements. Environmental Science and Technology, 764 

42(22), 8401–8406. https://doi.org/10.1021/es800363d 765 

Zhang, A., Wang, Y., Zhang, Y., Weber, R. J., Song, Y., Ke, Z., & Zou, Y. (2019). Modeling 766 

global radiative effect of brown carbon: A larger heating source in the tropical free 767 

troposphere than black carbon. Atmospheric Chemistry and Physics Discussions, (July), 1–768 

36. https://doi.org/10.5194/acp-2019-594 769 

Zou, Y., Wang, Y., Ke, Z., Tian, H., Yang, J., & Liu, Y. (2019). Development of a REgion-770 

Specific ecosystem feedback Fire (RESFire) model in the Community Earth System Model. 771 

Journal of Advances in Modeling Earth Systems, 11, 417–445. 772 

https://doi.org/10.1029/2018ms001368 773 

 774 

 775 


