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Abstract

The Monsoon Asia region is home to ten of the world’s biggest rivers, supporting the lives of 1.7 billion people who rely on

streamflow for water, energy, and food. Yet, a synoptic understanding of multi-centennial streamflow variability for this region

is lacking. To fill this gap, we produce the first large scale streamflow reconstruction over Monsoon Asia (62 stations in 16

countries, 813 years of mean annual flow). In making this reconstruction, we develop a novel, automated, climate-informed,

and dynamic reconstruction framework that is skillful over most of the region. We show that streamflow in Monsoon Asia is

spatially coherent, owing to common drivers from the Pacific, Indian, and Atlantic Oceans. We also show how these oceanic

teleconnections change over space and time. By characterizing past and present hydroclimatic variability, we provide a platform

for assessing the impact of future climatic changes and informing water management decisions.
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Abstract14

The Monsoon Asia region is home to ten of the world’s biggest rivers, supporting15

the lives of 1.7 billion people who rely on streamflow for water, energy, and food. Yet,16

a synthesized understanding of multi-centennial streamflow variability for this region is17

lacking. To fill this gap, we produce the first large scale streamflow reconstruction over18

Monsoon Asia (62 stations in 16 countries, 813 years of mean annual flow). In making19

this reconstruction, we develop a novel, automated, climate-informed, and dynamic re-20

construction framework that is skillful over most of the region. We show that stream-21

flow in Monsoon Asia is spatially coherent, owing to common drivers from the Pacific,22

Indian, and Atlantic Oceans. We also show how these oceanic teleconnections change23

over space and time. By characterizing past and present hydroclimatic variability, we24

provide a platform for assessing the impact of future climatic changes and informing wa-25

ter management decisions.26

Plain Language Summary27

Ten of the world’s biggest rivers are located entirely within the Asian Monsoon re-28

gion. They provide water, energy, and food for 1.7 billion people. To manage these crit-29

ical resources, we need a better understanding of river discharge—how does it change30

over a long time? Are there common variation patterns among rivers? To answer these31

questions, we use information derived from tree rings to reconstruct average annual river32

discharge history at 62 gauges in 16 Asian countries. Our reconstruction reveals the ri-33

parian footprint of megadroughts and large volcanic eruptions over the past eight cen-34

turies. We show that simultaneous droughts and pluvials have often occurred at adja-35

cent river basins in the past, because Asian rivers share common influences from the Pa-36

cific, Indian, and Atlantic Oceans. We also show how these oceanic teleconnections change37

over space and time. Our findings can inform big decisions made on water-dependent38

infrastructure, thus benefiting the riparian people of the Asian Monsoon region.39
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1 Introduction40

Of the world’s 30 biggest rivers, ten are located within Monsoon Asia, and two oth-41

ers originate from this region (Figure 1). These river basins are home to 1.7 billion peo-42

ple (Best, 2019). With high population densities, even smaller basins support the liveli-43

hood of millions—e.g., Chao Phraya (Thailand): 25 million, Angat (the Philippines): 1344

million, and Citarum (Indonesia): 10 million (Nguyen & Galelli, 2018; Libisch-Lehner45

et al., 2019; D’Arrigo et al., 2011). River discharge, or streamflow, provides water for do-46

mestic and industrial uses, irrigation, and hydropower. It sustains aquatic life (includ-47

ing fish yield), carries sediment and nutrients, helps prevent salinization of river deltas,48

and facilitates navigation. Streamflow is an important link in both the water-energy-food49

nexus and the ecological cycle. To manage this resource, we need a good understand-50

ing of hydrologic variability. Such understanding is often derived from streamflow mea-51

surements; however, these instrumental data span typically only a few decades, too short52

to capture long-term variability and changes in streamflow.53

When compared against instrumental data, longer streamflow records reconstructed54

from climate proxies—such as tree rings—often reveal striking insights. A reconstructed55

pre-dam variability of the Yellow River (Li et al., 2019) shows that streamflow in 1968–56

2010 was only half of what should have been; in other words, human withdrawals for agri-57

culture, industry, and municipalities reduced streamflow by half. A reconstruction of the58

Citarum River (Indonesia) (D’Arrigo et al., 2011) shows that the period 1963–2006 con-59

tained an increasing trend of low flow years but no trend in high flow years, compared60

with the previous three centuries. This finding suggests that 10 million inhabitants of61

Jakarta may be facing higher drought risks than what is perceived from the instrumen-62

tal record. The Mongolian “Breadbasket”, an agricultural region in north-central Mon-63

golia (Pederson et al., 2013), experienced an unusually wet twentieth-century, and the64

recent dry epoch is not rare in the last four centuries (Davi et al., 2006; Pederson et al.,65

2013; Davi et al., 2013). Consequently, agricultural planning cannot take the twentieth66

century to be the norm, lest history repeats the lesson of the Colorado River Basin: ob-67

servations over abnormally wet years (Stockton & Jacoby, 1976; Woodhouse et al., 2006;68

Robeson et al., 2020) led to water rights over-allocation, and the Colorado no longer reaches69

the Pacific Ocean.70

The case of the Colorado River demonstrates that streamflow reconstructions can71

improve our understanding of water resources availability. Furthermore, with longer stream-72

flow records, low frequency variations of streamflow can be revealed, the frequency and73

magnitude of floods and droughts can be better quantified, and the risks associated with74

these natural disasters can be better assessed. These benefits have been demonstrated75

in Australia (Allen et al., 2017; Tozer et al., 2018), the United States (DeRose et al., 2015;76

Stagge et al., 2018), Canada (Hart et al., 2010; Sauchyn et al., 2015) and other coun-77

tries (Lara et al., 2015; Güner et al., 2017). Streamflow reconstructions have also been78

used to generate stochastic time series for water management applications (Prairie et al.,79

2008; Sauchyn & Ilich, 2017). These benefits, if realized in Monsoon Asia, can improve80

the lives of many people, given the dense populations that inhabit river basins in this81

region.82
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Compelling evidence calls for more streamflow reconstructions in Monsoon Asia.83

Tremendous efforts, particularly in the last four years (Figure S1), have partly addressed84

this need, but the hydrological knowledge gained was limited to individual catchments,85

more than half of which are in China (Figure S1 and Table S1). A regional, synthesized86

understanding is lacking. Here, we produce the first large-scale streamflow reconstruc-87

tion for Monsoon Asia, covering 62 stations in 16 countries, unraveling eight centuries88

of annual streamflow variability. To achieve this task, we develop a novel automated frame-89

work with three main components: (1) a climate-informed proxy selection procedure, (2)90

a dynamic state-space reconstruction model, and (3) a rigorous cross-validation routine91

for parameter tuning to achieve optimal skills. We also use the Monsoon Asia Drought92

Atlas version 2 as the paleoclimatic proxy instead of a tree ring network, as the former93

offers computational advantages (supported with strong physical and statistical foun-94

dations) for this large-scale reconstruction. With this work, 58 stations are reconstructed95

for the first time while the other four (Citarum, Yeruu, Ping, and Indus Rivers) are ex-96

tended back in time compared to previous works (D’Arrigo et al., 2011; Pederson et al.,97

2013; Nguyen & Galelli, 2018; Rao et al., 2018). This data set allows us to assess both98

local historical water availability and regional streamflow patterns, revealing the spatial99

coherence of streamflow and its links to the oceans. This understanding may improve100

the management of river basins and other water-dependent resources.101

2 Data102

2.1 Streamflow Data103

Our reconstruction target is the mean annual flow, and we used the calendar year104

(January to December) as there is not a common water year across Monsoon Asia (Knoben105

et al., 2018). We obtained streamflow data from the Global Streamflow Indices and Meta-106

data Archive (GSIM) (Do et al., 2018; Gudmundsson et al., 2018), using stations hav-107

ing at least 41 years of data, and with less than 3% missing daily values. We also received108

streamflow data from our colleagues for some countries where public streamflow records109

are not available (see Acknowledgment). Small catchments may be influenced by local110

conditions more than by broad climate inputs that are captured in the regional paleo-111

climate proxies (Strange et al., 2019). Therefore, we used only stations where the mean112

annual flow over the whole time series is at least 50 m3/s; this threshold is heuristic, and113

somewhat arbitrary. Details of this initial selection step are provided in Text S2 and in114

the code repository for this paper (ntthung.github.com/paleo-asia, DOI: 10.5281/115

zenodo.3818117.)116

Many stations in our collection have upstream reservoirs that may interfere with117

the proxy-streamflow relationship. This interference is stronger for seasonal streamflow118

than annual streamflow: reservoirs transfer water from the wet season to the dry sea-119

son, but not all reservoirs retain water from year to year. Reservoirs that are filled and120

emptied within a year do not change the annual water budget downstream. To minimize121

reservoir interference, we reconstructed annual streamflow, and we removed stations that122

have upstream retention times longer than a year. We identified upstream reservoirs by123
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Figure 1. a) The Monsoon Asia region (Cook et al., 2010); river basins involved in this study

are highlighted by sub-region, rivers belonging to the world’s 30 biggest (Best, 2019) shown

with blue names. b) Upstream retention time of the 42 stations that have upstream reservoirs.

The bar colours denote the regions according to a). The first two letters of each station’s code

indicates the country it is in. Refer to Table S2 for station details.
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overlaying the Global Reservoirs and Dams (GRanD) data (Lehner et al., 2011) on the124

river network (Lehner & Grill, 2013; Barbarossa et al., 2018). The upstream retention125

time was calculated as the total upstream reservoir capacity (million m3) divided by the126

mean annual flow volume (million m3/year). For stations having over-year reservoirs con-127

structed towards the end of their records, we also truncated the corresponding years, keep-128

ing only the streamflow data before dam construction.129

Our collection and quality control effort resulted in an annual streamflow data set130

of 62 stations in 16 countries. Our records span across Monsoon Asia, covering the fol-131

lowing sub-regions: Central Asia (CA), East Asia (EA), eastern China (CN), West Asia132

(WA), Southeast Asia (SEA), and South Asia (SA). The stations’ locations and upstream133

retention times (for those having upstream reservoirs) are shown in Figure 1.134

2.2 Proxy Data135

Our paleoclimate proxy is the Monsoon Asia Drought Atlas version 2 (MADA v2)136

(Cook, 2015), built upon the original MADA of Cook et al. (2010). The MADA is a grid-137

ded data set of the Palmer Drought Severity Index (PDSI) (W. C. Palmer, 1965) over138

the Asian monsoon region; each grid cell contains an annual time series of the mean June-139

July-August PDSI, reconstructed from tree rings, and calibrated with the instrumental140

data set of Dai et al. (2004). The MADA proves to be a reliable long-term record of mon-141

soon strength, having revealed the spatiotemporal extents of the four Asian megadroughts142

in the last millennium, and linking variations in monsoon strength to sea surface tem-143

perature patterns. MADA v2 improves over its predecessor by incorporating more tree144

ring chronologies (453 versus 327), and targeting the self-calibrating PDSI (scPDSI), which145

addresses several limitations of the standard PDSI (Wells et al., 2004; van der Schrier146

et al., 2013). We use the MADA v2 portion between 1200–2012 as this is the common147

period of most grid points in the atlas (Figure S4), and is also the stable portion with148

sufficient number of tree ring chronologies in the source tree ring network.149

Drought atlases reconstructed from tree rings have been shown to be practical pa-150

leoclimate proxies for streamflow reconstruction. Earlier experiments used individual grid151

points to reconstruct streamflow, either in combination with ring widths (Coulthard et152

al., 2016) or on their own (Graham & Hughes, 2007; Adams et al., 2015). Ho et al. (2016,153

2017), and Nguyen and Galelli (2018) then formalized the methodology and provided the-154

oretical considerations. They reasoned that since both streamflow and PDSI can be mod-155

eled as functions of ring width, one can also build a model to relate streamflow to PDSI.156

Moreover, drought atlases enhance the spatial expression of the underlying tree ring data—157

by incorporating the modern PDSI field in its calibration—and are also more uniform158

in space and time than the tree ring network itself (see Cook et al., 2010, Figure 1), mak-159

ing them better suited to large-scale studies. We now elaborate these points as we de-160

scribe the reconstruction framework.161

–6–
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3 Reconstruction Framework162

3.1 Using a Drought Atlas as Paleoclimate Proxy163

3.1.1 Physical basis164

The main physical processes that involve climate and tree growth are depicted in165

Figure 2a. The climate at a given location can be characterized by precipitation and tem-166

perature, among others. These climatic inputs control soil moisture on land. Except for167

losses (such as groundwater recharge, evaporation, and surface runoff), the net soil mois-168

ture storage then follows two main paths: one goes out of the catchment as streamflow,169

the other is taken up by the trees and transpired back into the atmosphere, influencing170

tree growth along the way. Thus, tree growth and streamflow are connected via land-171

atmosphere interactions—this is the basis for streamflow reconstruction from tree rings172

(cf. Rao et al., 2018; Li et al., 2019). Note, however, that tree growth does not directly173

control streamflow, and neither does streamflow control tree growth; we can infer a re-174

lationship between them only because they are both influenced by soil moisture. On the175

other hand, soil moisture directly controls streamflow and is, in principle, a reasonable176

predictor for streamflow.177

It would thus be ideal to have a “natural” soil moisture proxy record, but of course178

that is not the case. We can instead rely on a surrogate—a soil moisture record recon-179

structed from tree rings, such as the MADA.180

3.1.2 Statistical basis181

The physical discussion above yields three types of paleoclimate reconstruction: stream-182

flow from tree rings, soil moisture from streamflow, and streamflow from soil moisture.183

We now derive mathematically the relationships between these reconstruction types.184

Each reconstruction is a conditional distribution of one variable (e.g. streamflow)185

given that we have observed another variable (e.g. soil moisture), and given the histor-186

ical climate. We represent these conditional distributions with a probabilistic graphical187

model (Koller & Friedman, 2009) as shown in Figure 2b. There are four random vari-188

ables involved: climate (C), soil moisture (S), ring width (R), and streamflow (Q). Each189

of these variables can be multivariate, i.e., C includes precipitation and temperature, among190

others, and all variables can include multiple sites or grid points. As a convention, let191

fX(x) be the probability density function (PDF) of the random variable X, fXY (x, y)192

be the joint PDF of X and Y , and fX|Y (x|y) be the conditional PDF of X given that193

Y = y.194

Reconstructing streamflow from tree rings is essentially deriving the distribution195

of Q given R and C, i.e, fQ|R,C(q|r, c), where r is the measured ring width index, and196

c is the historical climate. We can decompose this distribution as follows:197

fQ|R,C(q|r, c) =

∫
fQ,S|R,C(q, s|r, c) ds

=

∫
fQ|S,R,C(q|s, r, c)fS|R,C(s|r, c) ds.

(1)198
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Figure 2. a) Relationships between hydroclimatic variables and tree growth. b) A probabilis-

tic graphical model representing the relationships in a), where C is a vector of climate variables,

S the soil moisture, R the ring width index, and Q streamflow. The arrows represent the condi-

tional dependence among variables.

The first equality comes from the relationship between marginal and joint distributions.199

The second equality comes from Bayes’ theorem. Now, Q is independent of R given S200

and C (Figure 2b), so fQ|S,R,C(q|s, r, c) = fQ|S,C(q|s, c). Consequently,201

fQ|R,C(q|r, c) =

∫
fQ|S,C(q|s, c)fS|R,C(s|r, c) ds. (2)202

Observe that fQ|S,C is the streamflow reconstruction from the MADA, and fS|R,C203

is the MADA reconstruction from tree rings. Thus we have established mathematically204

the reasoning that tree-ring-based streamflow reconstruction is possible based on the link205

through soil moisture. fQ|R,C is the marginal distribution without observing the soil mois-206

ture. Instead of constructing fQ|R,C , we can infer S from R, then Q from S, by construct-207

ing fS|R,C and fQ|S,C .208

3.1.3 Computational advantages of using the MADA, and caveats209

The construction of the MADA can be thought of as a transformation from the tree210

ring network, irregular in both space and time, to a regular grid with homogeneous tem-211

poral coverage—analogous to transforming meteorological station data to gridded tem-212

perature and precipitation products. This transformation brings several advantages to213

reconstructing streamflow using the MADA, compared to using the underlying tree ring214

network.215

First, in a typical reconstruction study, one must detrend and standardize the tree216

ring data to remove non-climate signals (cf. Cook & Kairiukstis, 1990). For a large scale217

study like ours, such a task is complex. Instead, we can leverage the effort that has been218

–8–
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devoted to detrending and standardizing the chronologies in making the MADA, and use219

the MADA as proxy, having built the physical and statistical foundations to do so.220

Second, the tree ring sites often cluster, with vast empty space between clusters221

(see e.g. Cook et al. (2010), Figure 1). When taking a subset of them for reconstruction222

at a station, there can be cases where none or very few sites are within a search radius.223

The MADA helps “bridging” the space, bringing climate signals from further-away tree224

sites to grid points nearer to the station. The high resolution grid (1◦×1◦ for version225

2) makes automated grid point selection easier. (The automated grid point selection pro-226

cedure is described in Section 3.2.1.)227

Third, when reconstructing streamflow from tree rings, nested models are often nec-228

essary because tree ring chronologies have different time spans. One starts with the short-229

est nest, using the common time span of all chronologies to build a model, then drop-230

ping the shortest chronology to build a second model with longer time span but less ex-231

plained variance than the first, and repeating the process, dropping more chronologies232

to achieve longer time spans until the final nest with the longest time span, but with the233

lowest explained variance. The nests’ outputs are then corrected for their variance and234

averaged to obtain the final reconstruction (see e.g. D’Arrigo et al., 2011). This nest-235

ing step was carried out for the MADA, such that most grid points have the same time236

span (Figure S4). This lets us use a single common period (1200-2012), and eliminates237

our need to build nested models back in time. This is particularly desirable for our dy-238

namic state-space reconstruction model, as averaging the nests breaks the link between239

the catchment state and streamflow. (The reconstruction model is described in Section240

3.2.2.)241

The computational advantages of using the MADA are thus threefold: (1) no de-242

trending and standardization, (2) easier grid point selection, and (3) no nesting. How-243

ever, these come with some costs, the most important of which is uncertainty. When re-244

constructing streamflow from the MADA, we treat the MADA (i.e., the model input)245

as constant. But in fact, the MADA is a regression product and has its own uncertainty.246

Furthermore, this uncertainty increases back in time as the number of available chronolo-247

gies decreases. One way to quantify the uncertainty is by bootstrapping: streamflow re-248

constructions can be built using bootstrap replicates of the MADA, and the range of the249

bootstrap ensemble indicates the uncertainty of the reconstruction. An appropriate boot-250

strapping scheme must be considered, given that the uncertainty is nonstationary, and251

that dimensionality is a challenge: the MADA has 813 years × 2716 grid points. In this252

regard, the added benefit of our reconstruction framework is that it runs for each sta-253

tion individually (see Section 3.2), so one need not reconstruct the whole network in or-254

der to quantify uncertainties at specific stations of interest.255

As a gridded regression product, the MADA smooths out local variability. This can256

be alleviated by carefully selecting and processing the grid points to retain as much vari-257

ance as possible (Section 3.2.1), and by using sufficiently large catchments (Section 2.1).258

Finally, we note that the computational advantages we described here are only ap-259

plicable to large-scale studies, where an automated framework is needed. For individ-260

–9–
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ual sites, we urge researchers to consider all available proxies, rather than being attracted261

by the convenience offered by the drought atlases.262

3.2 Point-by-Point, Climate-informed, Dynamic Streamflow Reconstruc-263

tion264

When reconstructing a climate field, such as a PDSI grid or a streamflow station265

network, it is desirable to preserve the field covariance structure. However, building a266

large-scale spatial regression model is challenging. Instead, one can reconstruct each point267

in the field independently, and rely on the proxy network to capture the spatial patterns.268

This is the premise of the Point-by-Point Regression (PPR) method (Cook et al., 1999),269

which has been used to reconstruct drought atlases of Europe (Cook et al., 2015, 2020),270

the Americas (Cook et al., 1999; Stahle et al., 2016; Morales et al., 2020), Oceania (J. G. Palmer271

et al., 2015), and Asia (Cook et al., 2010). These drought atlases demonstrate that PPR272

captures well the spatial patterns of climate variability (see e.g. Cook et al. (1999), Fig-273

ures 8 and 9). Like these drought atlases, our streamflow network covers a large spatial274

domain with varying climates; therefore, we adopted the PPR principle, and reconstructed275

our stations individually. While some aspects of our reconstruction framework followed276

the PPR procedure, we have innovated many steps of the workflow.277

Overall, the framework involves three main stages: (1) input selection (Section 3.2.1),278

(2) model calibration (Section 3.2.2), and (3) cross-validation (Section 3.2.3). In Stage279

1, we selected a subregion of the MADA that is hydroclimatically similar to the stream-280

flow station of interest, and extracted from this subregion a parsimonious subset of prin-281

cipal components, using weighted Principal Component Analysis (PCA). This stage in-282

volves two tuning parameters: the hydroclimate similarity threshold, and the PCA weight.283

For each combination of these parameters, we calibrated a reconstruction model in Stage284

2, thus producing an ensemble of models. Finally, in Stage 3, we cross-validated the mod-285

els to choose the best one, and used that for the final reconstruction.286

3.2.1 Climate-informed Input Selection287

A regional paleoclimate proxy record, such as the MADA or its underlying tree ring288

network, is rich with information, but not all of such information is relevant to the stream-289

flow target. A proper input selection is necessary to filter noise and retain only the most290

relevant signal. A common way is to use proxy sites within a search radius; and PPR291

does the same. But, given that geographical proximity does not necessarily imply hy-292

droclimatic similarity, we selected our proxies (MADA grid points) by hydroclimatic sim-293

ilarity directly. The hydroclimate at location i (a MADA grid point or a streamflow sta-294

tion) is characterized by three indices: aridity ai, moisture seasonality si, and snow frac-295

tion fi, following Knoben, Woods, and Freer, who proposed this hydroclimate charac-296

terization and calculated the indices for a global 0.5◦×0.5◦ grid (Knoben et al., 2018).297

The hydroclimatic similarity between two locations i and j is then defined as their Eu-298

clidean distance in the hydroclimate space. This distance is termed the KWF distance299

–10–
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and its mathematical definition is300

dKWF (i, j) =
√

(ai − aj)2 + (si − sj)2 + (fi − fj)2. (3)301

By calculating the KWF distance between each MADA grid point and each stream-302

flow station, we can screen out MADA grid points that are geographically close to the303

station of interest but hydroclimatically different—a climate-informed grid point selec-304

tion scheme. Whereas previous PPR implementations varied the search radius, we fixed305

the radius to 2,500 km—the scale of regional weather systems (Boers et al., 2019)—and306

varied the KWF distance between 0.1 and 0.3 in 0.05 increments. For reference, the max-307

imum KWF distance between any two points in Monsoon Asia is 1.424. Each KWF dis-308

tance yielded a search region encompassing a set of MADA grid points surrounding the309

streamflow station of interest. In our search regions, PDSI often correlates significantly310

and positively with streamflow (Figure 3); indeed hydroclimatic similarity is a physical311

basis for correlation.312

Next, we performed weighted PCA to remove multicollinearity among the MADA313

grid points. Following PPR, we weighted each grid point by its correlation with the tar-314

get streamflow, using equation (4):315

zi = gir
p
i . (4)316

Here, gi is grid point i’s scPDSI time series, ri the correlation between gi and the tar-317

get streamflow, p the weight exponent, and zi the weighted version of gi. We used p =318

0, 0.5, 2/3, 1, 1.5, and 2, the same as those used by Cook et al. (2010). We then performed319

PCA on zi’s, and retained only those principal components (PCs) having eigenvalue at320

least 1.0 (Hidalgo et al., 2000). From the retained PCs (typically about 20–40 per sta-321

tion), we selected a parsimonious subset that is most relevant to the streamflow target322

using the VSURF (Variable Selection Using Random Forest) algorithm (Genuer et al.,323

2010). So, for each combination of KWF distance and PCA weight, we arrived at a sub-324

set of PCs for reconstruction. Each streamflow station has an ensemble of 30 such sub-325

sets, the best of which was identified using cross-validation (Section 3.2.3) and used for326

the final reconstruction.327

3.2.2 Linear Dynamical System328

Having obtained the climatic inputs, the next step was to model the relationship329

between these inputs and the catchment output (streamflow). Here, this relationship was330

not modeled with linear regression (as with original PPR, and as typical with previous331

reconstruction studies), but as a linear dynamical system (LDS), following equations (5)332

and (6):333

xt+1 = Axt +But + wt (5)334

yt = Cxt +Dut + vt (6)335

where t is the time step (year), y the catchment output (streamflow), u the climatic in-336

put (an ensemble member from the climate-informed grid point selection), w and v white337

noise, and x the hidden system state, which can be interpreted as the catchment’s flow338
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regime, i.e, wet or dry (Nguyen & Galelli, 2018). By modeling the flow regime and its339

transition, the LDS model accounts for both regime shifts (Turner & Galelli, 2016) and340

catchment memory (Pelletier & Turcotte, 1997). These behaviors are not modeled in lin-341

ear regression.342

The LDS model assumes that the initial state and the noise processes are normally343

distributed:344

wt ∼ N (0, Q) (7)345

vt ∼ N (0, R) (8)346

x1 ∼ N (µ1, V1). (9)347

It follows that the catchment state and output are also normally distributed. But some348

of our streamflow records are skewed. These were log-transformed to reduce skewness349

(Text S3 and Figure S3).350

The LDS model is trained using a variant of the Expectation-Maximization algo-351

rithm. In the E-step, we fix the model parameters and learn the hidden state. In the M-352

step, we fix the hidden state and learn the model parameters. Iterations are repeated353

between the E- and M-steps until convergence. The reconstruction algorithm is imple-354

mented in the R package ldsr (Nguyen, 2020).355

3.2.3 Cross-validation356

Consistent with the literature, we assessed reconstruction performance using the357

metrics Reduction of Error (RE) and Nash-Sutcliffe Coefficient of Efficiency (CE or NSE)358

(Nash & Sutcliffe, 1970; Fritts, 1976). Mathematically,359

RE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄c)
2

(10)360

CE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄v)2
(11)361

where t is the time step, V the validation set, Q the observed streamflow, Q̂ the recon-362

structed streamflow, Q̄c the calibration period mean, and Q̄v the verification period mean.363

Both RE and CE are based on squared error; they can be sensitive to outliers, es-364

pecially the CE. To address this limitation, Gupta et al. (2009) proposed another met-365

ric, which assesses a model output based on its correlation with observation, as well as366

its bias and variability (equation (12)):367

KGE = 1−

√
(ρ− 1)2 +

(
µ̂

µ
− 1

)2

+

(
σ̂

σ
− 1

)2

. (12)368

Here, ρ is the correlation between model output and observation, µ̂ and µ the modeled369

and observed mean of the streamflow time series, and σ̂ and σ the modeled and observed370
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standard deviation of the streamflow time series. This metric is now known as the Kling-371

Gupta Efficiency (KGE). The KGE complements RE and CE, and we included the KGE372

in model assessment.373

Conventionally, reconstruction skills are often calculated in a split-sample (i.e., two-374

fold) cross-validation scheme: the model is calibrated with the first half of the data and375

validated with the second half, then calibrated with the second half and validated with376

the first half (see e.g. D’Arrigo et al., 2011). The contiguous halves aim to test a model’s377

ability to capture a regime shift (Briffa et al., 1988). Unfortunately, this scheme is not378

practical for many stations in our record, where it would leave us only 20–25 data points379

for calibration (Figure S2). In addition, a two-fold cross-validation scheme provides only380

two point estimates for each skill score, and they may be notably different (for exam-381

ple, D’Arrigo et al. (2011) reported CE values of 0.21 and 0.73 for the two folds.) As a382

result, the mean skill score may not be robust. A number of recent works have instead383

used the leave-k-out cross-validation scheme (e.g., Gallant & Gergis, 2011; Ho et al., 2016;384

Li et al., 2019). In this scheme, a random chunk of k data points is withheld for valida-385

tion while the model is calibrated with the remaining data points, then calibration and386

validation are repeated over as many as 100 chunks of k. This scheme provides a more387

robust estimate of the mean skill score, but it may not correctly assess the model’s abil-388

ity to capture a regime shift, because the withheld points are not contiguous like in the389

split-sample scheme.390

We sought a balanced approach. In each cross-validation run for each station, we391

withheld a contiguous chunk of 25% of the data points for validation and trained the model392

on the remaining 75%. This way, we maintain the goal of the split-sample scheme while393

still having enough data for calibration and getting distributions of skill scores, which394

yield a reasonably robust mean skill estimate for each metric. Having distributions of395

skill scores has another benefit: we can now make probabilistic statements about skill.396

For example, we can calculate the probability that CE < 0, and if that probability is397

less than a threshold α, say 0.1, then we consider the reconstruction statistically skill-398

ful with respect to CE at α = 0.1. While not doing formal statistical tests, we can make399

analogous statements about the significance of the skills scores.400

When the hold-out chunks are contiguous, there are not as many chunks as when401

they are random, so we repeated the procedure 30 times instead of 100, and calculated402

the mean RE, CE and KGE over these 30 runs. When calculating the mean scores, we403

used the Tukey’s biweight robust mean (Mosteller & Tukey, 1977) instead of the arith-404

metic mean, to limit the effect of outliers. The robust mean is commonly used by den-405

drochronologists to derive the mean chronology from tree ring samples (Cook & Kair-406

iukstis, 1990), and we have extended its use here. After cross-validating all ensemble mem-407

bers (Section 3.2.1), we selected one member for each station based on the robust mean408

CE and KGE (RE is similar to CE and is omitted). The ideal score for both CE and KGE409

is 1; therefore, we calculated for each ensemble member the Euclidean distance between410

the tuple (CE, KGE) and the point (1, 1). For each station, the ensemble member near-411

est to the ideal score was used for the final reconstruction.412
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4 Results and Discussion413

4.1 Reconstruction Skills414

Reduction of Error (RE) is positive at all stations (Figure 4a and b); Coefficient415

of Efficiency (CE) is positive at all but one: Kachora in the Indus (Pakistan), where CE ≈416

−0.06 (Figures 4c and d). At α = 0.1, 30 stations are statistically skillful with respect417

to RE, and 23 are with CE (Figure S9). Comparing the histograms of RE and CE (Fig-418

ures 4b and d), we observe that CE is slightly lower—this is expected as CE is a more419

stringent metric than RE (Cook & Kairiukstis, 1990). Much lower CE than RE implies420

overfitting; we do not observe that here.421

When using the Kling-Gupta Efficiency (KGE), if one wishes to benchmark a model422

against the verification period mean (as is with the CE), the threshold value is 1−
√

2 ≈423

−0.41, i.e, KGE > −0.41 is analogous to CE > 0 (Knoben et al., 2019). Our KGE424

ranges from 0.22 to 0.68 (Figure 4e and f), far higher than the threshold. Furthermore,425

all 62 stations are statistically skillful with respect to KGE at α = 0.1 (Figure S9). These426

results indicate that our reconstruction model performs well in terms of key character-427

istics: correlation, bias, and variability.428
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All three metrics have similar spatial distributions (Figure 4a, c, and e). As expected,429

lower skills are seen in most of Central Asia, Japan, and West Asia, which lie outside the430

core monsoon area. An exception is the upper reach of the Selenge River, upstream of431

Lake Baikal, where model skill is high, owing to high quality tree ring records from Mon-432

golia (Davi et al., 2006; Pederson et al., 2013; Davi et al., 2013; Pederson et al., 2014).433

In all other regions, model skill is homogeneous. The consistent performance of our model434

suggests that the MADA is a good proxy for streamflow reconstruction in Asia, and our435

climate-informed dynamic reconstruction is skillful. More validation exercises (Figures436

S5 to S8) further support the reliability of the reconstruction.437

4.2 Spatiotemporal Variability of Monsoon Asia’s Streamflow438

Having obtained reliable skill scores, we now present eight centuries of spatiotem-439

poral streamflow variability in Monsoon Asia, in terms of standardized streamflow (z-440

score of mean annual flow) (Figure 5a). This reconstructed history captures the ripar-441

ian footprint of major historical events—large volcanic eruptions and megadroughts (Fig-442

ure 5b). We first discuss the impact of the three largest eruptions of the past eight cen-443

turies (Sigl et al., 2015): Samalas (1257) (Lavigne et al., 2013), Kuwae (1452-53) (Gao444

et al., 2006), and Tambora (1815) (Stothers, 1984).445

Assuming that Kuwae erupted in 1452 (consistent with tree ring records, see e.g.446

Briffa et al. (1998)), these three eruptions saw similar streamflow patterns (Figure 5b,447

panels 1, 4, and 8). In the eruption year t (t = 1257, 1452, 1815), large positive stream-448

flow anomalies were observed in Southeast and East Asia. The magnitude of the pos-449

itive anomalies were largest with Samalas, followed by Kuwae, and then Tambora. The450

global radiative forcings of the Samalas, Kuwae, and Tambora events are -32.8, -20.5,451

and -17.1 W/m2, respectively (Sigl et al., 2015). Thus, we observe a correspondence be-452

tween the magnitude of positive streamflow anomalies and the magnitude of radiative453

forcings. This correspondence is also seen clearly from the distributions of streamflow454

anomalies in the three events (Figure S10a). These results suggest an influence of vol-455

canic eruptions on streamflow in Southeast and East Asia.456

Unlike East and Southeast Asia, South Asia’s streamflow remained around the nor-457

mal level in years t and t+1 in all three eruptions, suggesting little volcanic influence.458

More patterns were also observed: mixed wet and dry conditions in Central Asia, and459

normal to wet conditions in eastern China and West Asia (cf. Figure S10a). Thus, the460

influence of volcanic eruptions on Monsoon Asia’s streamflow varies spatially, ranging461

from strong positive, mixed, to little. The mechanisms underlying this spatial variabil-462

ity are yet to be elucidated.463

Our results are mostly consistent with Anchukaitis et al. (2010), who used Super-464

posed Epoch Analysis to analyze PDSI anomalies in the eruption years. The key differ-465

ence is in eastern China, where Anchukaitis et al. (2010) showed negative PDSI in year466

t, while we observed normal to positive streamflow anomalies in year t, and negative stream-467

flow anomalies in year t + 1 (see also Figure S10b). The discrepancies may be due to468

the different eruption data sets (Anchukaitis et al. (2010) demonstrated this with three469
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sets of events) and the analytical methods. It could also be because they analyzed PDSI470

while we analyzed streamflow. That we observed negative streamflow anomalies in year471

t+ 1 instead of t could be due to the lagged response of streamflow in this region.472

As a drought/pluvial indicator, streamflow may differ from PDSI in individual years473

for some regions, as discussed above, but on longer terms, our reconstructed streamflow474

agrees well with reconstructed PDSI. For example, our record fully captures the Angkor475

Droughts (1345–1374 and 1401–1425) (Buckley et al., 2010, 2014) with prolonged low476

flow throughout Southeast Asia, and extended as far as India (Figure 5b, panels 2 and477

3), in agreement with speleothem records from Dandak and Jhuma Caves (Sinha et al.,478

2007, 2011). Heavy monsoon rain interrupted these megadroughts; such abrupt alter-479

ations to the flow regime proved difficult for the ancient city of Angkor (Buckley et al.,480

2014). The city once thrived thanks to an extensive network of hydraulic infrastructure481

(Lieberman & Buckley, 2012). After the first Angkor Drought, the inflow/outflow func-482

tions of the barays (reservoirs) were altered in an attempt to preserve water. Heavy rains483

and flooding subsequently destroyed the reduced-capacity hydraulic infrastructure. This484

flood likely occurred in 1375 (Figure 5b, event 2). By the second Angkor Drought, the485

“hydraulic city” (Groslier, 1979; Lustig & Pottier, 2007) had insufficient water storage486

and could not recover.487

Four more megadroughts that severely affected Asian societies (Cook et al., 2010)488

are also captured in our reconstruction (Figure 5b, panels 5, 6, 7, and 9), along with other489

major droughts and pluvials. For example, Central Asia observed a six-decade drought490

between 1260–1320, and sustained pluvials during 1740–1769. Most notably, Southeast491

Asia suffered a drought between 1225–1255 that was comparable in length to Angkor Drought492

I, but more severe in magnitude. Following this drought was a multi-decadal pluvial in493

1271–1307. The drought is prominent in the speleothem record of J. K. Wang et al. (2019),494

and the pluvial can also be traced from there.495

4.3 Links to Oceanic Drivers496

To exemplify the spatial variation of how the oceans influence streamflow, we se-497

lected four river basins from west to east: Godavari, Chao Phraya, Mekong, and Yangtze,498

and selected one station from each basin. The selected stations are in the main stream499

and their reconstructions are statistically skillful.500

We calculated the correlation between reconstructed annual streamflow at each sta-501

tion and the seasonal averages of global sea surface temperature (SST) for the period502

1856–2012. The season definitions are: December to February (DJF), March to May (MAM),503

June to August (JJA), and September to November (SON). We also included JJA and504

SON of the prior year (JJA (−1) and SON (−1)). Correlation patterns vary both sea-505

sonally and spatially, with differences among rivers and among oceans (Figure 6).506
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4.3.1 Pacific Ocean507

Tropical Pacific SST correlates significantly with streamflow at all four basins, but508

the correlation patterns vary. For the Godavari, moderate positive correlations are seen509

from JJA (−1) to DJF, and strong negative correlations are seen from JJA to SON. For510

the Yangtze, the pattern is completely opposite: strong positive correlations from JJA511

(−1) to DJF, and moderate negative correlations in JJA and SON. The location of the512

strongest correlations suggests links to the El Niño-Southern Oscillation (ENSO, cf. McPhaden513

et al. (2006)). We find it interesting that ENSO seems to influence the Godavari and Yangtze514

in contrasting ways.515

Unlike the Godavari and Yangtze, the Chao Phraya and Mekong’s streamflow cor-516

relates significantly with SST over most of the Pacific Ocean, and the correlation per-517

sists across all seasons. The correlation pattern is negative in the tropical Pacific, and518

positive in the northern and southern Pacific. This pattern and its lack of seasonality519

suggest that, beside ENSO, there are influences from a driver at longer time scales, likely520

the Pacific Decadal Variability (PDV)—decadal variations of Pacific SST resulted from521

complex tropical-extratropical ocean-atmosphere interactions (Henley, 2017). The North522

Pacific component of PDV is known as the Pacific Decadal Oscillation (PDO) (Mantua523

& Hare, 2002), its southern counterpart the South Pacific Decadal Oscillation (Shakun524

& Shaman, 2009); basin-wide SST variation patterns have also been termed Interdecadal525

Pacific Oscillation (Folland et al., 1999). These modes are closely related (Henley, 2017).526

The PDV has been shown to influence hydroclimatic variability in Monsoon Asia, in con-527

junction with ENSO (Yu et al., 2018). Specifically for the Chao Phraya, PDV also mod-528

ulates ENSO’s influence on peak flow (Xu et al., 2019).529

4.3.2 Indian Ocean530

Correlation patterns are less prominent in the Indian Ocean compared to the Pa-531

cific. We observe basin-wide correlations in DJF for the Godavari and Yangtze; corre-532

lations bear the same sign as that in the Pacific. This is consistent with the Indo-Pacific533

coupling: an ENSO event in the Pacific leads to SST anomalies of the same sign in the534

Indian Ocean (Saji et al., 1999). The Godavari and Yangtze also exhibit another cor-535

relation pattern in SON (with small areas of significance): correlations bear opposite signs536

between the tropical western Indian Ocean near the Horn of Africa and the southeast-537

ern Indian Ocean around Sumartra. This pattern and its timing suggest links to the In-538

dian Ocean Dipole (IOD) (Saji et al., 1999; Ummenhofer et al., 2017). The IOD accounts539

for about 12% of Indian Ocean SST variability, much less than the basin-wide coupling540

mode (30%) (Saji et al., 1999); this explains the weaker correlations of the IOD. Pos-541

itive IOD events have also been linked to droughts in Southeast Asia, but this relation-542

ship is not robust (Ummenhofer et al., 2013). In our analysis, the link between IOD and543

Southeast Asian streamflow is not visible. Our interpretation is that ENSO and PDV544

are the main drivers here, and they dominate any links that the IOD might have.545
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Figure 6. Correlation between reconstructed mean annual streamflow at four river

basins (this work) and seasonal averages of global sea surface temperature (SST) from the

NOAA ERSST v5 data set (Huang et al., 2017) for the period 1856–2012; significant correla-

tions (α = 0.05) enclosed in black boundaries. The locations of the stations are shown in the

catchment maps; these are the same stations shown in Figure 3. Seasons are marked by the year

in which they end. “(-1)” denotes previous year.

4.3.3 Atlantic Ocean546

The Chao Phraya and Mekong streamflow correlates positively with tropical and547

northern Atlantic SST. Significant and consistent correlations are observed throughout548

the seasons for the Mekong, but less consistent for the Chao Phraya. The link between549

tropical Atlantic SST and Southeast Asian hydroclimate was also found in a Laotian cave550
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speleothem record (J. K. Wang et al., 2019). To explain this relationship, J. K. Wang551

et al. (2019) examined SST, atmospheric pressure, and zonal moisture transport from552

climate model simulations, and proposed the following mechanism: increased tropical553

Atlantic SST leads to changes in zonal moisture transport, causing depression over trop-554

ical Indian Ocean, reducing rainout over the basin, leaving more moisture available to555

be transported to mainland Southeast Asia, ultimately strengthening Indian Monsoon556

rain over the region.557

We repeated the correlation analysis above for other stations in the Godavari, Mekong,558

and Yangtze, where additional stations with statistically skillful results are available on559

the main stream. Results for those stations are consistent with what we report here (Fig-560

ures S11 to S13).561

4.3.4 Temporal variability of teleconnections562

The correlation analysis of Figure 6 shows the spatial variation of the streamflow–563

SST teleconnection in Monsoon Asia. This analysis was done for the common period of564

SST and streamflow data (1856–2012). To explore whether and how the teleconnection565

patterns changed through time, we repeated the correlation analysis using a sliding 50-566

year window with 10-year increments. We show in Figure 7 three non-overlapping win-567

dows, and present all windows in Movie S1. Results show that all correlation patterns568

changed through time, echoing previous works that found non-stationarities in oceanic569

teleconnection (e.g., Krishna Kumar et al. (1999); Singhrattna et al. (2005)). Correla-570

tions were much weaker in the period 1911–1960 compared to the preceding and sub-571

sequent five decades (Figure 7). Some patterns are more transient than others. The Yangtze’s572

JJA-SON pattern of negative correlations with tropical Pacific was only strong in 1921–573

1980 (Movie S1). On the other hand, the Chao Phraya’s SON positive correlations with574

tropical Pacific persisted throughout all periods. In 1901–1950, when ENSO teleconnec-575

tion was the weakest for all rivers, tropical and northern Atlantic SST became the strongest576

teleconnection for the Chao Phraya and Mekong (Movie S1).577

5 Conclusions578

In this work, we produce the first large-scale and long-term record of streamflow579

variability for Monsoon Asia, covering 62 stations in 16 countries. In making this record,580

we also develop a novel automated, climate-informed, and dynamic streamflow recon-581

struction framework that leverages the computational advantages offered by our climate582

proxy—the Monsoon Asia Drought Atlas (MADA) version 2. Our framework achieves583

good skills for most of Monsoon Asia, and skill distribution is spatially homogeneous.584

Our results provide a regional, synthesized understanding of Monsoon Asia’s streamflow585

variability over the past eight centuries, and reveal how the teleconnection between stream-586

flow and its oceanic drivers varied over space and time.587

From our reconstruction, streamflow in Monsoon Asia appears coherent: high and588

low flows often occur simultaneously at nearby stations and adjacent basins. This co-589
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Figure 7. Temporal variability of the streamflow–sea surface temperature correlations. The

analysis here is the same as that carried out in Figure 6, but split into three 50-year periods.
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herence is attributed to common oceanic drivers—the El Niño–Southern Oscillation (ENSO),590

the Pacific Decadal Variability (PDV), and sea surface temperature variations in the In-591

dian and Atlantic Oceans. Coherence emerges even though we reconstructed each sta-592

tion individually, demonstrating the merits of Point-by-Point Regression. More impor-593

tantly, this coherence implies that large-scale infrastructure transferring water, or other594

water-reliant commodities, across river basins could accidentally expose riparian people595

to unforeseen risks. For example, Thailand is increasingly purchasing Mekong-generated596

hydropower from Laos, and when that is insufficient, complements its energy needs with597

thermal power from plants that use water from the Chao Phraya for cooling. Thailand’s598

energy system is more vulnerable when a prolonged drought occurs at both rivers (Chowdhury599

et al., 2020)—our record shows such events have happened several times in the past.600

We showed that the Pacific, Indian, and Atlantic Oceans influence streamflow vari-601

ability, and that the strength and spatial footprint of these teleconnections varied over602

time. This result suggests that our understanding of how water-dependent infrastruc-603

ture could perform may be narrow, especially in South and Southeast Asia, where we604

observe alternating periods of strong and weak teleconnections. A narrow characteriza-605

tion of climate-induced risks is likely to misguide climate change assessments, an impor-606

tant source of information for many major infrastructural decisions. Stakes are partic-607

ularly high in Monsoon Asia, where river basins will experience further pressure in the608

coming decades (Satoh et al., 2017; Y. Wang et al., 2019). If we can develop method-609

ologies for viewing future changes in streamflow in the context of past and present cli-610

mate, we then have a pathway for making more informed and robust decisions. The re-611

constructions developed in our study offer a first step in this direction.612

Acknowledgments613

Hung Nguyen is supported by the President’s Graduate Fellowship from the Singapore614

University of Technology and Design. We thank Edward Cook, Caroline Ummenhofer,615

Nerilie Abram, Nathalie Goodkin, Xun Sun, Murray Peel, Rory Nathan, and Robert Was-616

son for insightful comments. We are indebted to Michelle Ho, Justin Maxwell, Valerie617

Trouet, two anonymous reviewers, and the Associate Editor for their constructive reviews.618

We are grateful to Thanh Dang, Mukund Rao, Christoph Libisch-Lehner, Rosanne D’Arrigo,619

Donghoon Lee, and Caroline Leland for streamflow data of the Mekong, Brahmaputra,620

Angat, Citarum, Han, and Yeruu Rivers. Chao Phraya River data were obtained from621

the Thai Royal Irrigation Department at www.hydro-1.net, Indus River from Rao et622

al. (2018, Supporting Information), other streamflow data from GSIM (Do et al., 2018;623

Gudmundsson et al., 2018), reservoir data from GRanD v1.3 (Lehner et al., 2011), MADA624

v2 data from Marvel et al. (2019) at www.dropbox.com/s/n2lo99h9qn17prg/madaV2.nc,625

river network data from FLO1K (Barbarossa et al., 2018) with help postprocessing by626

Valerio Barbarossa, basin boundary data from HydroSHEDS (Lehner & Grill, 2013) at627

hydrosheds.org, SST data from NOAA ERSST v5 (Huang et al., 2017) provided by628

the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at www.esrl.noaa.gov/psd/.629

This work was conducted with open-source software: analysis and visualization performed630

in R (R Core Team, 2019), maps made in QGIS, and manuscript written in LaTeX. We631

thank the open-source software community, especially the R package creators and main-632

–23–



manuscript submitted to Water Resources Research

tainers, for their contributions to open science. We provide all data, documented code,633

and results at https://github.com/ntthung/paleo-asia (DOI: 10.5281/zenodo.3818117);634

exceptions are instrumental data of the Mekong, Yangtze, and Pearl Rivers due to re-635

strictions. Lamont contribution number XXXX.636

References637

Adams, K. D., Negrini, R. M., Cook, E. R., & Rajagopal, S. (2015, dec). Annually638

resolved late Holocene paleohydrology of the southern Sierra Nevada and Tu-639

lare Lake, California. Water Resources Research, 51 (12), 9708–9724. DOI:640

10.1002/2015WR017850641

Allen, K. J., Nichols, S. C., Evans, R., Allie, S., Carson, G., Ling, F., . . . Baker,642

P. J. (2017, jan). A 277 year cool season dam inflow reconstruction for Tasma-643

nia, southeastern Australia. Water Resources Research, 53 (1), 400–414. DOI:644

10.1002/2016WR018906645

Anchukaitis, K. J., Buckley, B. M., Cook, E. R., Cook, B. I., D’Arrigo, R. D., &646

Ammann, C. M. (2010). Influence of volcanic eruptions on the climate of647

the Asian monsoon region. Geophysical Research Letters, 37 (22), 1–5. DOI:648

10.1029/2010GL044843649

Barbarossa, V., Huijbregts, M. A., Beusen, A. H., Beck, H. E., King, H., & Schipper,650

A. M. (2018, mar). FLO1K, global maps of mean, maximum and minimum651

annual streamflow at 1 km resolution from 1960 through 2015. Scientific Data,652

5 (October 2017), 180052. DOI: 10.1038/sdata.2018.52653

Best, J. (2019). Anthropogenic stresses on the world’s big rivers. Nature Geoscience,654

12 (1), 7–21. DOI: 10.1038/s41561-018-0262-x655

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., & Kurths,656

J. (2019, jan). Complex networks reveal global pattern of extreme-rainfall657

teleconnections. Nature. DOI: 10.1038/s41586-018-0872-x658

Briffa, K. R., Jones, P. D., Pilcher, J. R., & Hughes, M. K. (1988, nov). Recon-659

structing Summer Temperatures in Northern Fennoscandinavia Back to A.D.660

1700 Using Tree-Ring Data from Scots Pine. Arctic and Alpine Research,661

20 (4), 385. DOI: 10.2307/1551336662

Briffa, K. R., Jones’, P. D., Schweingruber, F. H., & Osborn, T. J. (1998). Influence663

of volcanic eruptions on Northern Hemisphere summer temperature over the664

past 600 years. Nature, 393 (6684), 450–455. DOI: 10.1038/30943665

Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M.,666

. . . Hong, T. M. (2010, apr). Climate as a contributing factor in the demise of667

Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107 (15),668

6748–6752. DOI: 10.1073/pnas.0910827107669

Buckley, B. M., Fletcher, R., Wang, S. Y. S., Zottoli, B., & Pottier, C. (2014).670

Monsoon extremes and society over the past millennium on main-671

land Southeast Asia. Quaternary Science Reviews, 95 , 1–19. DOI:672

10.1016/j.quascirev.2014.04.022673

Chen, F., He, Q., Bakytbek, E., Yu, S., & Zhang, R. (2017, nov). Reconstruc-674

–24–



manuscript submitted to Water Resources Research

tion of a long streamflow record using tree rings in the upper Kurshab River675

(Pamir-Alai Mountains) and its application to water resources management.676

International Journal of Water Resources Development , 33 (6), 976–986. DOI:677

10.1080/07900627.2016.1238347678

Chen, F., Shang, H., Panyushkina, I., Meko, D., Li, J., Yuan, Y., . . . Luo, X. (2019,679

aug). 500-year tree-ring reconstruction of Salween River streamflow related to680

the history of water supply in Southeast Asia. Climate Dynamics(0123456789).681

DOI: 10.1007/s00382-019-04948-1682

Chen, F., Shang, H., Panyushkina, I. P., Meko, D. M., Yu, S., Yuan, Y., & Chen, F.683

(2019, may). Tree-ring reconstruction of Lhasa River streamflow reveals 472684

years of hydrologic change on southern Tibetan Plateau. Journal of Hydrology ,685

572 , 169–178. DOI: 10.1016/j.jhydrol.2019.02.054686

Chen, F., Yuan, Y., Davi, N. K., & Zhang, T. (2016, dec). Upper Irtysh River687

flow since AD 1500 as reconstructed by tree rings, reveals the hydrocli-688

matic signal of inner Asia. Climatic Change, 139 (3-4), 651–665. DOI:689

10.1007/s10584-016-1814-y690

Chen, F., & Yuan, Y.-j. (2016, jul). Streamflow reconstruction for the Guxi-691

ang River, eastern Tien Shan (China): linkages to the surrounding rivers692

of Central Asia. Environmental Earth Sciences, 75 (13), 1049. DOI:693

10.1007/s12665-016-5849-1694

Chen, F., Yuan, Y.-j., Zhang, R.-b., Wang, H.-q., Shang, H.-m., Zhang, T.-w., . . .695

Fan, Z.-a. (2016, jun). Shiyang River streamflow since AD 1765, reconstructed696

by tree rings, contains far-reaching hydro-climatic signals over and beyond697

the mid-latitude Asian continent. Hydrological Processes, 30 (13), 2211–2222.698

DOI: 10.1002/hyp.10788699

Chowdhury, A. F. M., Dang, T. D., Bagchi, A., & Galelli, S. (2020). Expected700

benefits of Laos’ hydropower development curbed by hydro-climatic variability701

and limited transmission capacity—opportunities to reform. Journal of Water702

Resources Planning and Management .703

Cook, E. R. (2015). Developing MADAv2 Using The Point-704

By-Point Regression Climate Field Reconstruction Method.705

Kyoto, Japan: 4th Asia 2k Workshop. Retrieved from706

http://pastglobalchanges.org/download/docs/working{\ }groups/asia2k/4thAsia2k/Cook.ppsx707

708

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C.,709

& Wright, W. E. (2010, apr). Asian Monsoon Failure and Megadrought710

During the Last Millennium. Science, 328 (5977), 486–489. DOI:711

10.1126/science.1185188712

Cook, E. R., & Kairiukstis, L. A. (1990). Methods of dendrochronology. Applications713

in the Environmental Sciences (E. R. Cook & L. A. Kairiukstis, Eds.). Kluwer714

Academic Publishers.715

Cook, E. R., Meko, D. M., Stahle, D. W., & Cleaveland, M. K.716

(1999). Drought Reconstructuions for the continental United717

States. Journal of Climate, 12 (APRIL), 1145–1162. DOI:718

–25–



manuscript submitted to Water Resources Research

10.1175/1520-0442(1999)012〈1145:DRFTCU〉2.0.CO;2719

Cook, E. R., Palmer, J. G., Ahmed, M., Woodhouse, C. A., Fenwick, P., Zafar,720

M. U., . . . Khan, N. (2013). Five centuries of Upper Indus River flow721

from tree rings. Journal of Hydrology , 486 (August 2018), 365–375. DOI:722

10.1016/j.jhydrol.2013.02.004723

Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., . . .724
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Groslier, B. P. (1979). La cité hydraulique angkorienne: exploitation ou surexploita-786

tion du sol ? Bulletin de l’Ecole française d’Extrême-Orient , 66 (1), 161–202.787

DOI: 10.3406/befeo.1979.4014788

Gudmundsson, L., Do, H. X., Leonard, M., & Westra, S. (2018, apr). The Global789

Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control,790

time-series indices and homogeneity assessment. Earth System Science Data,791

10 (2), 787–804. DOI: 10.5194/essd-10-787-2018792
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Ummenhofer, C. C., Biastoch, A., & Böning, C. W. (2017). Multidecadal indian991

ocean variability linked to the pacific and implications for preconditioning992

indian ocean dipole events. Journal of Climate, 30 (5), 1739–1751. DOI:993

10.1175/JCLI-D-16-0200.1994

Ummenhofer, C. C., D’Arrigo, R. D., Anchukaitis, K. J., Buckley, B. M., & Cook,995

E. R. (2013, mar). Links between Indo-Pacific climate variability and drought996

in the Monsoon Asia Drought Atlas. Climate Dynamics, 40 (5-6), 1319–1334.997

DOI: 10.1007/s00382-012-1458-1998

van der Schrier, G., Barichivich, J., Briffa, K. R., & Jones, P. D. (2013, may).999

A scPDSI-based global data set of dry and wet spells for 1901-2009. Jour-1000

nal of Geophysical Research: Atmospheres, 118 (10), 4025–4048. DOI:1001

10.1002/jgrd.503551002

Wang, J. K., Johnson, K. R., Borsato, A., Amaya, D. J., Griffiths, M. L., Henderson,1003

G. M., . . . Mason, A. (2019). Hydroclimatic variability in Southeast Asia over1004

the past two millennia. Earth and Planetary Science Letters, 525 , 115737.1005

DOI: 10.1016/j.epsl.2019.1157371006

Wang, Y., Byers, E., Parkinson, S., Wanders, N., Wada, Y., Mao, J., & Bielicki,1007

J. M. (2019, oct). Vulnerability of existing and planned coal-fired power1008

plants in Developing Asia to changes in climate and water resources. Energy &1009

Environmental Science, 12 (10), 3164–3181. DOI: 10.1039/C9EE02058F1010

Wells, N., Goddard, S., & Hayes, M. J. (2004, jun). A Self-Calibrating Palmer1011

Drought Severity Index. Journal of Climate, 17 (12), 2335–2351. DOI:1012

10.1175/1520-0442(2004)017〈2335:ASPDSI〉2.0.CO;21013

Woodhouse, C. A., Gray, S. T., & Meko, D. M. (2006). Updated streamflow re-1014

constructions for the Upper Colorado River Basin. Water Resources Research,1015

42 (5), 1–16. DOI: 10.1029/2005WR0044551016

Xu, C., Buckley, B. M., Promchote, P., Wang, S. S., Pumijumnong, N., An, W.,1017

. . . Guo, Z. (2019). Increased Variability of Thailand’s Chao Phraya River1018

Peak Season Flow and Its Association With ENSO Variability: Evidence From1019

Tree Ring δ 18 O. Geophysical Research Letters, 46 (9), 4863–4872. DOI:1020

10.1029/2018GL0814581021

Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., & Li, Z. (2015). A tree-ring1022

cellulose δ18O-based July-October precipitation reconstruction since AD1023

1828, northwest Thailand. Journal of Hydrology , 529 (P2), 433–441. DOI:1024

10.1016/j.jhydrol.2015.02.0371025

Yang, B., Chen, X., He, Y., Wang, J., & Lai, C. (2019). Reconstruction of1026

–32–



manuscript submitted to Water Resources Research

annual runoff since CE 1557 using tree-ring chronologies in the upper1027

Lancang-Mekong River basin. Journal of Hydrology , 569 , 771–781. DOI:1028

10.1016/j.jhydrol.2018.12.0341029

Yang, B., Qin, C., Shi, F., & Sonechkin, D. M. (2012). Tree ring-based annual1030

streamflow reconstruction for the Heihe River in arid northwestern China from1031

ad 575 and its implications for water resource management. Holocene, 22 (7),1032

773–784. DOI: 10.1177/09596836114304111033

Yu, E., King, M. P., Sobolowski, S., Otter̊a, O. H., & Gao, Y. (2018, jun). Asian1034

droughts in the last millennium: a search for robust impacts of Pacific Ocean1035

surface temperature variabilities. Climate Dynamics, 50 (11-12), 4671–4689.1036

DOI: 10.1007/s00382-017-3897-11037

Yuan, Y., Shao, X., Wei, W., Yu, S., Gong, Y., & Trouet, V. (2007, dec). The1038

Potential to Reconstruct Manasi River Streamflow in the Northern Tien1039

Shan Mountains (NW China). Tree-Ring Research, 63 (2), 81–93. DOI:1040

10.3959/1536-1098-63.2.811041

Zhang, D., Zhang, Q., Werner, A. D., & Liu, X. (2016). GRACE-Based Hydrological1042

Drought Evaluation of the Yangtze River Basin, China. Journal of Hydromete-1043

orology , 17 (3), 811–828. DOI: 10.1175/JHM-D-15-0084.11044

Zhang, T., Yuan, Y., Chen, F., Yu, S., Zhang, R., Qin, L., & Jiang, S. (2018, feb).1045

Reconstruction of hydrological changes based on tree-ring data of the Haba1046

River, northwestern China. Journal of Arid Land , 10 (1), 53–67. DOI:1047

10.1007/s40333-017-0034-21048

–33–



WATER RESOURCES RESEARCH

Supporting Information for “Coherent streamflow

variability in Monsoon Asia over the past eight

centuries—links to oceanic drivers”

DOI: 10.1002/xxxx.xxxx

Hung T.T. Nguyen1, Sean W.D. Turner2, Brendan M. Buckley3, and Stefano

Galelli1

1Pillar of Engineering Systems and Design, Singapore University of Technology and Design, Singapore

2Pacific Northwest National Laboratory, Washington, USA

3Lamont-Doherty Earth Observatory, Columbia University, New York, USA

Contents of this file

1. Texts S1 to S3

2. Figures S1 to S13

3. Tables S1 to S2

4. Movie S1

Corresponding author: Hung Nguyen, Pillar of Engineering Systems and Design, Singapore

University of Technology and Design, Singapore (tanthaihung nguyen@mymail.sutd.edu.sg)

July 21, 2020, 9:43am



X - 2 NGUYEN ET AL.: MONSOON ASIA STREAMFLOW RECONSTRUCTION

Introduction

In this Supporting Information, we provide some information on previous reconstruc-

tion works in Monsoon Asia, and more details on data: streamflow station metadata,

streamflow preprocessing, and MADA’s starting year. We also provide a comparison of

spatial coherence in the modern period, and a more in-depth analysis of the streamflow–

SST teleconnection. Finally we provide additional results to support the findings in the

main text.

Text S1. Previous streamflow reconstructions in Monsoon Asia

The first streamflow reconstruction in Monsoon Asia was by Davi et al. (2006). Since

then, 27 reconstruction studies have appeared, more than half of which were published in

the last four years (Figure S1). Each of these works studied a specific river; most of them

focused on China (Table S1).

Text S2. Station selection

We obtained most of our mean annual flow data from the Global Streamflow Indices

and Metadata (GSIM) Archive (Do et al., 2018; Gudmundsson et al., 2018). The GSIM

authors ignored missing data when calculating mean annual flow, but provided for each

station the fraction of missing days for the whole record length, and the number of missing

days for each year. We first selected stations with no more than 3% of missing days over

the whole record length. Then, for each of these stations, we looked at each year’s number

of missing days, and if this number was greater than 30, we considered that year’s data as

missing. We adopted these criteria to avoid the situation where the mean annual flow was

calculated from too many missing data. After this second step, we counted the number

of non-missing years for each station, and retain only those having at least 41 years.
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For the Chao Phraya, we obtained monthly flow from the Thai Royal Irrigation De-

partment (hydro-1.net, in Thai) for stations P.1, N.1, and C.2, and calculated the mean

annual flow from the monthly flow. If there were more than one month missing for any

year, that year was considered missing as well (similar to what we did with the GSIM

stations).

For Mekong, Yangtze, Citarum, and Brahmaputra data, we obtained annual flow di-

rectly from our colleagues, and we did not have any information on the degree of miss-

ingness.

There were no missing data in South Korea, but the longest record was only 39 years.

We wanted to have a station for this country, so we made an exception for the 41-year

criterion. Similarly, we made an exception to the Yeruu River: the mean annual flow here

is 49.8 m3/s, slightly less than the 50 m3/s threshold, but we retain this record so as to

have a station in Mongolia.

Text S3. Streamflow data preprocessing

We determined the degree of asymmetry of the streamflow data using the Hinkley’s D

statistic (Hinkley, 1977), formulated according to equation (1)

D =
m− µ
q

(1)

where m is the sample median, µ the sample mean, and q the sample inter-quartile range.

If log-transforming reduces the absolute value of D for a station, then we will use the

log-transformed flow as reconstruction target; otherwise we use the untransformed flow.

We also check the densities of the transformed and untransformed flow visually (Figure

S3), and found that the densities are similar for most stations.
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Figure S1. Number of Monsoon Asia streamflow reconstruction papers published each year

till September 2019. The publications are listed in Table S1.
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Figure S3. Densities of the transformed and untransformed flow at each station. The densities

are centralized and rescaled for comparison.
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Figure S5. Comparing the reconstructed spatiotemporal variability of streamflow in the

period 1950–2012 with instrumental streamflow data. Gray areas denote no data; color scale and

annotations are the same as Figure 5 in the main text. The reconstruction captures well the

spatial coherence and the extreme events in this period.
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Figure S6. Comparing reconstructions and observations for the instrumental period at four

representative stations (those used in Figures 3 and 6 of the main text).
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Figure S7. Full reconstruction time series for the same four stations shown in Figure S6.

Vertical shaded areas show the megadroughts of Figure 5 in the main text (from left to right:

Angkor Drought I, Angkor Drought II, Ming Dynasty Drought, Strange Parallels Drought, East

India Drought, and Victorian Great Drought).
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Figure S8. Composite correlation matrix of streamflow. The top half shows the correlations in

the instrumental data; the bottom half the reconstruction. Stations are grouped by their region

(according to Figure 1 of the main text) and follows the same order as in Figure 5 of the main

text. This composite correlation matrix is close to symmetry about its diagonal; in other words,

the reconstruction captures the correlation structure of the streamflow network.
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Figure S9. Distribution of performance scores. As explained in Section 3.2.3 of the main text,

the reconstruction is considered statistically skillful at level α with respect to a metric if the

probability of that metric being worse than the benchmark is less than α. Here we used α = 0.1.

The benchmark, shown as maroon horizontal line, equals zero for RE and CE, and equals 1−
√

2

for KGE. “Robust mean” refers to the Tukey’s biweight robust mean (Mosteller & Tukey, 1977;

Cook & Kairiukstis, 1990).
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Figure S10. Distribution of standardized streamflow index in three volcanic eruptions. The

widths of the box plots are proportional to their sample sizes.
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Figure S11. Same as Figure 6 in the main text, but for the Godavari River.
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Figure S12. Same as Figure 6 in the main text, but for the Mekong River.
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Figure S13. Same as Figure 6 in the main text, but for the Yangtze River.
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Table S1. List of Monsoon Asia streamflow reconstruction papers

Reference Proxy River Country

Davi et al. (2006) Tree ring Selenge Mongolia
Yuan et al. (2007) Tree ring Manasi China
X. Gou et al. (2007) Tree ring Yellow China
Liu et al. (2010) Tree ring Heihe China
X. H. Gou et al. (2010) Tree ring Yellow China
D’Arrigo et al. (2011) Tree ring Citarum Indonesia
Yang et al. (2012) Tree ring Heihe China
Cook et al. (2013) Tree ring Indus Pakistan
Davi et al. (2013) Tree ring Kherlen Mongolia
Pederson et al. (2013) Tree ring Yeruu Mongolia
Xu et al. (2015) Stalagmite δ18O Jialingjiang China
Chen, Yuan, Davi, and Zhang (2016) Tree ring Irtysh China
Chen and Yuan (2016) Tree ring Guxiang China
Chen, Yuan, Zhang, et al. (2016) Tree ring Shiyang China
D. Zhang et al. (2016) Tree ring Aksu China
R. Zhang et al. (2016) Tree ring Tuoshigan China
Chen et al. (2017) Tree ring Kurshab Kyrgyzstan
Panyushkina et al. (2018) Tree ring Ili Kazakhstan
T. Zhang et al. (2018) Tree ring Haba China
Rao et al. (2018) Tree ring Indus Pakistan
Nguyen and Galelli (2018) MADAa Ping Thailand
Li et al. (2018) Tree ring Yangtze China
Chen, Shang, Panyushkina, Meko, Yu, et al. (2019) Tree ring Lhasa China
Chen, Shang, Panyushkina, Meko, Li, et al. (2019) Tree ring Salween China
Yang et al. (2019) Tree ring Lancang China
Li et al. (2019) Tree ring Yellow China
Xu et al. (2019) Tree ring δ18O Chao Phraya Thailand

a Monsoon Asia Drought Atlas (Cook et al., 2010)

Table S2. Metadata of the streamflow stations used. This large table is uploaded separately

as “table S2.csv”
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