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Abstract

The Monsoon Asia region is home to ten of the world’s biggest rivers, supporting the lives of 1.7 billion people who rely on

streamflow for water, energy, and food. Yet, a synoptic understanding of multi-centennial streamflow variability for this region

is lacking. To fill this gap, we produce the first large scale streamflow reconstruction over Monsoon Asia (62 stations in 16

countries, 813 years of mean annual flow). In making this reconstruction, we develop a novel, automated, climate-informed,

and dynamic reconstruction framework that is skillful over most of the region. We show that streamflow in Monsoon Asia is

spatially coherent, owing to common drivers from the Pacific, Indian, and Atlantic Oceans. We also show how these oceanic

teleconnections change over space and time. By characterizing past and present hydroclimatic variability, we provide a platform

for assessing the impact of future climatic changes and informing water management decisions.
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Abstract14

The Monsoon Asia region is home to ten of the worlds biggest rivers, supporting15

the lives of 1.7 billion people who rely on streamflow for water, energy, and food. Yet,16

a synoptic understanding of multi-centennial streamflow variability for this region is lack-17

ing. To fill this gap, we produce the first large scale streamflow reconstruction over Mon-18

soon Asia (62 stations in 16 countries, 813 years of mean annual flow). In making this19

reconstruction, we develop a novel, automated, climate-informed, and dynamic recon-20

struction framework that is skillful over most of the region. We show that streamflow21

in Monsoon Asia is spatially coherent, owing to common drivers from the Pacific, Indian,22

and Atlantic Oceans. We also show how these oceanic teleconnections change over space23

and time. By characterizing past and present hydroclimatic variability, we provide a plat-24

form for assessing the impact of future climatic changes and informing water manage-25

ment decisions.26

Plain Language Summary27

Ten of the world’s biggest rivers are located entirely within the Asian Monsoon re-28

gion. They provide water, energy, and food for 1.7 billion people. To manage these crit-29

ical resources, we need a better understanding of river discharge—how does it change30

over a long time? Are there common variation patterns among rivers? To answer these31

questions, we use information derived from tree rings to reconstruct average annual river32

discharge history at 62 gauges in 16 Asian countries. Our reconstruction reveals the ri-33

parian footprint of megadroughts and large volcanic eruptions over the past eight cen-34

turies. We show that simultaneous droughts and pluvials have often occurred at adja-35

cent river basins in the past, because Asian rivers share common influences from the Pa-36

cific, Indian, and Atlantic Oceans. We also show how these oceanic teleconnections change37

over space and time. Our findings can inform big decisions made on water-dependent38

infrastructure, thus benefiting the riparian people of the Asian Monsoon region.39
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1 Introduction40

Of the world’s 30 biggest rivers, ten are located within Monsoon Asia, and two oth-41

ers originate from this region (Figure 1). These river basins are home to 1.7 billion peo-42

ple (Best, 2019). With high population densities, even smaller basins support the liveli-43

hood of millions—e.g., Chao Phraya (Thailand): 25 million, Angat (the Philippines): 1344

million, and Citarum (Indonesia): 10 million (Nguyen & Galelli, 2018; Libisch-Lehner45

et al., 2019; D’Arrigo et al., 2011). River discharge, or streamflow, provides water for do-46

mestic and industrial uses, irrigation, and hydropower. It sustains aquatic life (includ-47

ing fish yield), carries sediment and nutrients, and helps prevent salinization of river deltas.48

Streamflow is an important link in both the water-energy-food nexus and the ecologi-49

cal cycle. To manage this resource, we need a good understanding of hydrologic variabil-50

ity. Such understanding is often derived from streamflow measurements; however, these51

instrumental data span typically only a few decades, too short to capture long-term vari-52

ability and changes in streamflow.53

When compared against instrumental data, longer streamflow records reconstructed54

from climate proxies—such as tree rings—often reveal striking insights. A reconstructed55

pre-dam variability of the Yellow River (Li et al., 2019) shows that streamflow in 1968–56

2010 was only half of what should have been; in other words, human withdrawals for agri-57

culture, industry, and municipalities reduced streamflow by half! A reconstruction of the58

Citarum River (Indonesia) (D’Arrigo et al., 2011) shows that the period 1963–2006 con-59

tained an increasing trend of low flow years but no trend in high flow years, compared60

with the previous three centuries. This finding suggests that 10 million inhabitants of61

Jakarta may be facing higher drought risks than what is perceived from the instrumen-62

tal record. The Mongolian “Breadbasket”, an agricultural region in north-central Mon-63

golia (Pederson et al., 2013), experienced an unusually wet twentieth-century, and the64

recent dry epoch is not rare in the last four centuries (Davi et al., 2006; Pederson et al.,65

2013; Davi et al., 2013). Consequently, agricultural planning cannot take the twentieth66

century to be the norm, lest history repeats the lesson of the Colorado River Basin: ob-67

servations over abnormally wet years (Stockton & Jacoby, 1976; Woodhouse et al., 2006;68

Robeson et al., 2020) led to water rights over-allocation, and the Colorado no longer reaches69

the Pacific Ocean.70

The case of the Colorado River demonstrates that streamflow reconstructions can71

improve our understanding of water resources availability. Furthermore, with longer stream-72

flow records, low frequency variations of streamflow can be revealed, the frequency and73

magnitude of floods and droughts can be better quantified, and the risks associated with74

these natural disasters can be better assessed—these benefits have been demonstrated75

in Australia (Allen et al., 2017; Tozer et al., 2018), the United States (DeRose et al., 2015;76

Stagge et al., 2018), Canada (Hart et al., 2010; Sauchyn et al., 2015) and other coun-77

tries (Lara et al., 2015; Güner et al., 2017). Streamflow reconstructions have also been78

used to generate stochastic time series for water management applications (Prairie et al.,79

2008; Sauchyn & Ilich, 2017). These benefits, if realized in Monsoon Asia, can improve80

the lives of many people, given the dense populations of river basins in this region.81
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Compelling evidence calls for more streamflow reconstructions in Monsoon Asia.82

Tremendous efforts, particularly in the last four years (Figure S1), have partly addressed83

this need, but the hydrological knowledge gained was limited to individual catchments,84

more than half of which are in China (Figure S1 and Table S1). A synoptic understand-85

ing is lacking. Here, we produce the first large-scale streamflow reconstruction for Mon-86

soon Asia, covering 62 stations in 16 countries, unraveling eight centuries of annual stream-87

flow variability. To achieve this task, we develop a novel automated framework with three88

main components: (1) a climate-informed proxy selection procedure, (2) a dynamic state-89

space reconstruction model, and (3) a rigorous cross-validation routine for parameter tun-90

ing to achieve optimal skills. We also use the Monsoon Asia Drought Atlas version 2 as91

the paleoclimatic proxy instead of a tree ring network, as the former offers computational92

advantages (supported with strong physical and statistical foundations) for this large-93

scale reconstruction. With this work, 58 stations are reconstructed for the first time while94

the other four (Citarum, Yeruu, Ping, and Indus Rivers) are extended back in time com-95

pared to previous works (D’Arrigo et al., 2011; Pederson et al., 2013; Nguyen & Galelli,96

2018; Rao et al., 2018). This data set allows us to assess both local historical water avail-97

ability and regional streamflow patterns, revealing the spatial coherence of streamflow98

and its links to the oceans. This understanding may improve the management of river99

basins and other water-dependent resources.100

2 Data101

2.1 Streamflow Data102

Our reconstruction target is the mean annual flow, and we used the calendar year103

(January to December) as there is not a common water year across Monsoon Asia (Knoben104

et al., 2018). We obtained streamflow data from the Global Streamflow Indices and Meta-105

data Archive (GSIM) (Do et al., 2018; Gudmundsson et al., 2018), using stations hav-106

ing at least 41 years of data, and with less than 3% missing daily values. We also received107

streamflow data from our colleagues for some countries where public streamflow records108

are not available (see Acknowledgment). Small catchments may be influenced by local109

conditions more than by broad climate inputs that are captured in the regional paleo-110

climate proxies (Strange et al., 2019). Therefore, we used only stations where the mean111

annual flow over the whole time series is at least 50 m3/s; this threshold is heuristic, and112

somewhat arbitrary. Details of this initial selection step are provided in Text S2 and in113

the code repository for this paper (ntthung.github.com/paleo-asia, DOI: 10.5281/114

zenodo.3818117.)115

Many stations in our collection have upstream reservoirs that may interfere with116

the proxy-streamflow relationship. This interference is stronger for seasonal streamflow117

than annual streamflow: reservoirs transfer water from the wet season to the dry sea-118

son, but not all reservoirs retain water from year to year. Reservoirs that are filled and119

emptied within a year do not change the annual water budget downstream. To minimize120

reservoir interference, we reconstructed annual streamflow, and we removed stations that121

have upstream retention times longer than a year. We identified upstream reservoirs by122
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Figure 1. a) The Monsoon Asia region (Cook et al., 2010); river basins involved in this study

are highlighted by sub-region, rivers belonging to the world’s 30 biggest (Best, 2019) shown

with blue names. b) Upstream retention time of the 42 stations that have upstream reservoirs.

The bar colours denote the regions according to a). The first two letters of each station’s code

indicates the country it is in. Refer to Table S2 for station details.
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overlaying the Global Reservoirs and Dams (GRanD) data (Lehner et al., 2011) on the123

river network (Lehner & Grill, 2013; Barbarossa et al., 2018). The upstream retention124

time was calculated as the total upstream reservoir capacity (million m3) divided by the125

mean annual flow volume (million m3/year). For stations having over-year reservoirs con-126

structed towards the end of their records, we also truncated the corresponding years, keep-127

ing only the streamflow data before dam construction.128

Our collection and quality control effort resulted in an annual streamflow data set129

of 62 stations in 16 countries. Our records span across Monsoon Asia, covering the fol-130

lowing sub-regions: Central Asia (CA), East Asia (EA), eastern China (CN), West Asia131

(WA), Southeast Asia (SEA), and South Asia (SA). The stations’ locations and upstream132

retention times (for those having upstream reservoirs) are shown in Figure 1.133

2.2 Proxy Data134

Our paleoclimate proxy is the Monsoon Asia Drought Atlas version 2 (MADA v2)135

(Cook, 2015), built upon the original MADA of Cook et al. (2010). The MADA is a grid-136

ded data set of the Palmer Drought Severity Index (PDSI) (W. C. Palmer, 1965) over137

the Asian monsoon region; each grid cell contains an annual time series of the mean June-138

July-August PDSI, reconstructed from tree rings, and calibrated with the instrumental139

data set of Dai et al. (2004). The MADA proves to be a reliable long-term record of mon-140

soon strength, having revealed the spatiotemporal extents of the four Asian megadroughts141

in the last millennium, and linking variations in monsoon strength to sea surface tem-142

perature patterns. MADA v2 improves over its predecessor by incorporating more tree143

ring chronologies (453 versus 327), and targeting the self-calibrating PDSI (scPDSI), which144

addresses several limitations of the standard PDSI (Wells et al., 2004; van der Schrier145

et al., 2013). We use the MADA v2 portion between 1200–2012 as this is the common146

period of most grid points in the atlas (Figure S4), and is also the stable portion with147

sufficient number of tree ring chronologies in the source tree ring network.148

Drought atlases reconstructed from tree rings have been shown to be practical pa-149

leoclimate proxies for streamflow reconstruction. Earlier experiments used individual grid150

points to reconstruct streamflow, either in combination with ring widths (Coulthard et151

al., 2016) or on their own (Graham & Hughes, 2007; Adams et al., 2015). Ho et al. (2016,152

2017), and Nguyen and Galelli (2018) then formalized the methodology and provided the-153

oretical considerations. They reasoned that since both streamflow and PDSI can be mod-154

eled as functions of ring width, one can also build a model to relate streamflow to PDSI.155

Moreover, drought atlases enhance the spatial expression of the underlying tree ring data—156

by incorporating the modern PDSI field in its calibration—and are also more uniform157

in space and time than the tree ring network itself (see Cook et al., 2010, Figure 1), mak-158

ing them better suited to large-scale studies. We now elaborate these points as we de-159

scribe the reconstruction framework.160

–6–
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3 Reconstruction Framework161

3.1 Using a Drought Atlas as Paleoclimate Proxy162

3.1.1 Physical basis163

The main physical processes that involve climate and tree growth are depicted in164

Figure 2a. The climate at a given location can be characterized by precipitation and tem-165

perature, among others. These climatic inputs control soil moisture on land. Except for166

losses (such as groundwater recharge, evaporation, and surface runoff), the net soil mois-167

ture storage then follows two main paths: one goes out of the catchment as streamflow,168

the other is taken up by the trees and transpired back into the atmosphere, influencing169

tree growth along the way. Thus, tree growth and streamflow are connected via land-170

atmosphere interactions—this is the basis for streamflow reconstruction from tree rings171

(cf. Rao et al., 2018; Li et al., 2019). Note, however, that tree growth does not directly172

control streamflow, and neither does streamflow control tree growth; we can infer a re-173

lationship between them only because they are both influenced by soil moisture. On the174

other hand, soil moisture directly controls streamflow and is, in principle, a reasonable175

predictor for streamflow.176

It would thus be ideal to have a “natural” soil moisture proxy record, but of course177

that is not the case. We can instead rely on a surrogate—a soil moisture record recon-178

structed from tree rings, such as the MADA.179

3.1.2 Statistical basis180

The physical discussion above yields three types of paleoclimate reconstruction: stream-181

flow from tree rings, soil moisture from streamflow, and streamflow from soil moisture.182

We now derive mathematically the relationships between these reconstruction types.183

Each reconstruction is a conditional distribution of one variable (e.g. streamflow)184

given that we have observed another variable (e.g. soil moisture), and given the histor-185

ical climate. We represent these conditional distributions with a probabilistic graphical186

model (Koller & Friedman, 2009) as shown in Figure 2b. There are four random vari-187

ables involved: climate (C), soil moisture (S), ring width (R), and streamflow (Q). Each188

of these variables can be multivariate, i.e., C includes precipitation and temperature, among189

others, and all variables can include multiple sites or grid points. As a convention, let190

fX(x) be the probability density function (PDF) of the random variable X, fXY (x, y)191

be the joint PDF of X and Y , and fX|Y (x|y) be the conditional PDF of X given that192

Y = y.193

Reconstructing streamflow from tree rings is essentially deriving the distribution194

of Q given R and C, i.e, fQ|R,C(q|r, c), where r is the measured ring width index, and195

c is the historical climate. We can decompose this distribution as follows:196

fQ|R,C(q|r, c) =

∫
fQ,S|R,C(q, s|r, c) ds

=

∫
fQ|S,R,C(q|s, r, c)fS|R,C(s|r, c) ds.

(1)197

–7–
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Figure 2. a) Relationships between hydroclimatic variables and tree growth. b) A probabilis-

tic graphical model representing the relationships in a), where C is a vector of climate variables,

S the soil moisture, R the ring width index, and Q streamflow. The arrows represent the condi-

tional dependence among variables.

The first equality comes from the relationship between marginal and joint distributions.198

The second equality comes from Bayes’ theorem. Now, Q is independent of R given S199

and C (Figure 2b), so fQ|S,R,C(q|s, r, c) = fQ|S,C(q|s, c). Consequently,200

fQ|R,C(q|r, c) =

∫
fQ|S,C(q|s, c)fS|R,C(s|r, c) ds. (2)201

Observe that fQ|S,C is the streamflow reconstruction from the MADA, and fS|R,C202

is the MADA reconstruction from tree rings. Thus we have established mathematically203

the reasoning that tree-ring-based streamflow reconstruction is possible based on the link204

through soil moisture. fQ|R,C is the marginal distribution without observing the soil mois-205

ture. Instead of constructing fQ|R,C , we can infer S from R, then Q from S, by construct-206

ing fS|R,C and fQ|S,C .207

3.1.3 Computational advantages of using the MADA, and caveats208

The MADA can be thought of as a transformation from the tree ring network, ir-209

regular in both space and time, to a regular grid with homogeneous temporal coverage—210

analogous to transforming meteorological station data to gridded temperature and pre-211

cipitation products. This transformation brings several advantages to reconstructing stream-212

flow using the MADA, compared to using the underlying tree ring network.213

First, in a typical reconstruction study, one must detrend and standardize the tree214

ring data to remove non-climate signals (cf. Cook & Kairiukstis, 1990). For a large scale215

study like ours, such a task is complex. Instead, we can leverage the effort that has been216
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devoted to detrending and standardizing the chronologies in making the MADA, and use217

the MADA as proxy, having built the physical and statistical foundations to do so.218

Second, the tree ring sites often cluster, with vast empty space between clusters219

(see e.g. Cook et al. (2010), Figure 1). When taking a subset of them for reconstruction220

at a station, there can be cases where none or very few sites are within a search radius.221

The MADA helps “bridging” the space, bringing climate signals from further-away tree222

sites to grid points nearer to the station. The high resolution grid (1◦×1◦ for version223

2) makes automated grid point selection easier. (The automated grid point selection pro-224

cedure is described in Section 3.2.1.)225

Third, when reconstructing streamflow from tree rings, nested models are often nec-226

essary because tree ring chronologies have different time spans. One starts with the short-227

est nest, using the common time span of all chronologies to build a model, then drop-228

ping the shortest chronology to build a second model with longer time span but less ex-229

plained variance than the first, and repeating the process, dropping more chronologies230

to achieve longer time spans until the final nest with the longest time span, but with the231

lowest explained variance. The nests’ outputs are then corrected for their variance and232

averaged to obtain the final reconstruction (see e.g. D’Arrigo et al., 2011). This nest-233

ing step was carried out for the MADA, such that most grid points have the same time234

span (Figure S4). This lets us use a single common period (1200-2012), and eliminates235

our need to build nested models back in time. This is particularly desirable for our dy-236

namic state-space reconstruction model, as averaging the nests breaks the link between237

the catchment state and streamflow. (The reconstruction model is described in Section238

3.2.2.)239

The computational advantages of using the MADA are thus threefold: (1) no de-240

trending and standardization, (2) easier grid point selection, and (3) no nesting. How-241

ever, these come with some costs, the most important of which is uncertainty. When re-242

constructing streamflow from the MADA, we treat the MADA (i.e., the model input)243

as constant. But in fact, the MADA is a regression product and has its own uncertainty.244

One way to quantify this uncertainty is by bootstrapping: streamflow reconstructions245

can be built using bootstrap replicates of the MADA, and the range of the bootstrap en-246

semble indicates the uncertainty of the reconstruction. An appropriate bootstrapping247

scheme must be considered, given that dimensionality is the main challenge: the MADA248

has 813 years × 2716 grid points. The flip side is that the reconstruction framework runs249

for each station individually (see Section 3.2), so one need not reconstruct the whole net-250

work in order to quantify uncertainties at some stations of interest.251

As a gridded regression product, the MADA may also smooth out local variabil-252

ities. This can be aleviated by carefully selecting and processing the grid points to re-253

tain as much variance as possible (Section 3.2.1), and by using sufficiently large catch-254

ments (Section 2.1).255

Finally, we note that the computational advantages we described here are only ap-256

plicable to large-scale studies, where an automated framework is needed. For individ-257

–9–
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ual sites, we urge researchers to consider all available proxies, rather than being attracted258

by the convenience offered by the drought atlases.259

3.2 Point-by-Point, Climate-informed, Dynamic Streamflow Reconstruc-260

tion261

When reconstructing a climate field, such as a PDSI grid or a streamflow station262

network, it is desirable to preserve the field covariance structure. However, building a263

large-scale spatial regression model is challenging. Instead, one can reconstruct each point264

in the field independently, and rely on the proxy network to capture the spatial patterns.265

This is the premise of the Point-by-Point Regression (PPR) method (Cook et al., 1999),266

which has been used to reconstruct drought atlases of Europe (Cook et al., 2015, 2020),267

the Americas (Cook et al., 1999; Stahle et al., 2016; Morales et al., 2020), Oceania (J. G. Palmer268

et al., 2015), and Asia (Cook et al., 2010). These drought atlases demonstrate that PPR269

captures well the spatial patterns of climate variability (see e.g. Cook et al. (1999), Fig-270

ures 8 and 9). Like these drought atlases, our streamflow network covers a large spatial271

domain with varying climates; therefore, we adopted the PPR principle, and reconstructed272

our stations individually. While some aspects of our reconstruction framework followed273

the PPR procedure, we have innovated many steps of the workflow.274

In a nutshell, the framework involves three main stages: (1) input selection (Sec-275

tion 3.2.1), (2) model calibration (Section 3.2.2), and (3) cross-validation (Section 3.2.3).276

In Stage 1, we selected a subregion of the MADA that is hydroclimatically similar to the277

streamflow station of interest, and extracted from this subregion a parsimonious subset278

of principal components, using weighted Principal Component Analysis (PCA). This stage279

involves two tuning parameters: the hydroclimate similarity threshold, and the PCA weight.280

For each combination of these parameters, we calibrated a reconstruction model in Stage281

2, thus producing an ensemble of models. Finally, in Stage 3, we cross-validated the mod-282

els to choose the best one, and used that for the final reconstruction.283

3.2.1 Climate-informed Input Selection284

A regional paleoclimate proxy record, such as the MADA or its underlying tree ring285

network, is rich with information, but not all of such information is relevant to the stream-286

flow target. A proper input selection is necessary to filter noise and retain only the most287

relevant signal. A common way is to use proxy sites within a search radius; and PPR288

does the same. But, given that geographical proximity does not necessarily imply hy-289

droclimatic similarity, we selected our proxies (MADA grid points) by hydroclimatic sim-290

ilarity directly. The hydroclimate at location i (a MADA grid point or a streamflow sta-291

tion) is characterized by three indices: aridity ai, moisture seasonality si, and snow frac-292

tion fi, following Knoben, Woods, and Freer, who proposed this hydroclimate charac-293

terization and calculated the indices for a global 0.5◦×0.5◦ grid (Knoben et al., 2018).294

The hydroclimatic similarity between two locations i and j is then defined as their Eu-295

clidean distance in the hydroclimate space. This distance is termed the KWF distance296

–10–
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and its mathematical definition is297

dKWF (i, j) =
√

(ai − aj)2 + (si − sj)2 + (fi − fj)2. (3)298

By calculating the KWF distance between each MADA grid point and each stream-299

flow station, we can screen out MADA grid points that are geographically close to the300

station of interest but hydroclimatically different—a climate-informed grid point selec-301

tion scheme. Whereas previous PPR implementations varied the search radius, we fixed302

the radius to 2,500 km—the scale of regional weather systems (Boers et al., 2019)—and303

varied the KWF distance between 0.1 and 0.3 in 0.05 increments. For reference, the max-304

imum KWF distance between any two points in Monsoon Asia is 1.424. Each KWF dis-305

tance yielded a search region encompassing a set of MADA grid points surrounding the306

streamflow station of interest. In our search regions, PDSI often correlates significantly307

and positively with streamflow (Figure 3); indeed hydroclimatic similarity is a physical308

basis for correlation.309

Next, we performed weighted PCA to remove multicollinearity among the MADA310

grid points. Following PPR, we weighted each grid point by its correlation with the tar-311

get streamflow, using equation (4):312

zi = gir
p
i . (4)313

Here, gi is grid point i’s scPDSI time series, ri the correlation between gi and the tar-314

get streamflow, p the weight exponent, and zi the weighted version of gi. We used p =315

0, 0.5, 2/3, 1, 1.5, and 2, the same as those used by Cook et al. (2010). We then performed316

PCA on zi’s, and retained only those principal components (PCs) having eigenvalue at317

least 1.0 (Hidalgo et al., 2000). From the retained PCs (typically about 20–40 per sta-318

tion), we selected a parsimonious subset that is most relevant to the streamflow target319

using the VSURF (Variable Selection Using Random Forest) algorithm (Genuer et al.,320

2010). So, for each combination of KWF distance and PCA weight, we arrived at a sub-321

set of PCs for reconstruction. Each streamflow station has an ensemble of 30 such sub-322

sets, the best of which was identified using cross-validation (Section 3.2.3) and used for323

the final reconstruction.324

3.2.2 Linear Dynamical System325

Having obtained the climatic inputs, the next step was to model the relationship326

between these inputs and the catchment output (streamflow). Here, this relationship was327

not modeled with linear regression (as with original PPR, and as typical with previous328

reconstruction studies), but as a linear dynamical system (LDS), following equations (5)329

and (6):330

xt+1 = Axt +But + wt (5)331

yt = Cxt +Dut + vt (6)332

where t is the time step (year), y the catchment output (streamflow), u the climatic in-333

put (an ensemble member from the climate-informed grid point selection), w and v white334

noise, and x the hidden system state, which can be interpreted as the catchment’s flow335
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regime, i.e, wet or dry (Nguyen & Galelli, 2018). By modeling the flow regime and its336

transition, the LDS model accounts for both regime shifts (Turner & Galelli, 2016) and337

catchment memory (Pelletier & Turcotte, 1997). These behaviors are not modeled in lin-338

ear regression.339

The LDS model assumes that the initial state and the noise processes are normally340

distributed:341

wt ∼ N (0, Q) (7)342

vt ∼ N (0, R) (8)343

x1 ∼ N (µ1, V1). (9)344

It follows that the catchment state and output are also normally distributed. But some345

of our streamflow records are skewed. These were log-transformed to reduce skewness346

(Text S3 and Figure S3).347

The LDS model is trained using a variant of the Expectation-Maximization algo-348

rithm. In the E-step, we fix the model parameters and learn the hidden state. In the M-349

step, we fix the hidden state and learn the model parameters. Iterations are repeated350

between the E- and M-steps until convergence. The reconstruction algorithm is imple-351

mented in the R package ldsr (Nguyen, 2020).352

3.2.3 Cross-validation353

Consistent with the literature, we assessed reconstruction performance using the354

metrics Reduction of Error (RE) and Nash-Sutcliffe Coefficient of Efficiency (CE or NSE)355

(Nash & Sutcliffe, 1970; Fritts, 1976). Mathematically,356

RE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄c)
2

(10)357

CE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄v)2
(11)358

where t is the time step, V the validation set, Q the observed streamflow, Q̂ the recon-359

structed streamflow, Q̄c the calibration period mean, and Q̄v the verification period mean.360

Both RE and CE are based on squared error; they can be sensitive to outliers, es-361

pecially the CE. To address this limitation, Gupta et al. (2009) proposed another met-362

ric, which assesses a model output based on its correlation with observation, as well as363

its bias and variability (equation (12)):364

KGE = 1−

√
(ρ− 1)2 +

(
µ̂

µ
− 1

)2

+

(
σ̂

σ
− 1

)2

. (12)365

Here, ρ is the correlation between model output and observation, µ̂ and µ the modeled366

and observed mean of the streamflow time series, and σ̂ and σ the modeled and observed367
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standard deviation of the streamflow time series. This metric is now known as the Kling-368

Gupta Efficiency (KGE). The KGE complements RE and CE, and we included the KGE369

in model assessment.370

Conventionally, reconstruction skills are often calculated in a split-sample (i.e., two-371

fold) cross-validation scheme: the model is calibrated with the first half of the data and372

validated with the second half, then calibrated with the second half and validated with373

the first half (see e.g. D’Arrigo et al., 2011). The contiguous halves aim to test a model’s374

ability to capture a regime shift (Briffa et al., 1988). Unfortunately, this scheme is not375

practical for many stations in our record, where it would leave us only 20–25 data points376

for calibration (Figure S2). In addition, a two-fold cross-validation scheme provides only377

two point estimates for each skill score, and they may be notably different (for exam-378

ple, D’Arrigo et al. (2011) reported CE values of 0.21 and 0.73 for the two folds.) As a379

result, the mean skill score may not be robust. A number of recent works have instead380

used the leave-k-out cross-validation scheme (e.g., Gallant & Gergis, 2011; Ho et al., 2016;381

Li et al., 2019). In this scheme, a random chunk of k data points is withheld for valida-382

tion while the model is calibrated with the remaining data points, then calibration and383

validation are repeated over as many as 100 chunks of k. This scheme provides a more384

robust estimate of the mean skill score, but it may not correctly assess the model’s abil-385

ity to capture a regime shift, because the withheld points are not contiguous like in the386

split-sample scheme.387

We sought a balanced approach. In each cross-validation run for each station, we388

withheld a contiguous chunk of 25% of the data points for validation and trained the model389

on the remaining 75%. This way, we maintain the goal of the split-sample scheme while390

still having enough data for calibration and getting distributions of skill scores, which391

yield a reasonably robust mean skill estimate for each metric. Having distributions of392

skill scores has another benefit: we can now make probabilistic statements about skill.393

For example, we can calculate the probability that CE < 0, and if that probability is394

less than a threshold α, say 0.1, then we consider the reconstruction statistically skill-395

ful with respect to CE at α = 0.1. While not doing formal statistical tests, we can make396

analogous statements about the significance of the skills scores.397

When the hold-out chunks are contiguous, there are not as many chunks as when398

they are random, so we repeated the procedure 30 times instead of 100, and calculated399

the mean RE, CE and KGE over these 30 runs. When calculating the mean scores, we400

used the Tukey’s biweight robust mean (Mosteller & Tukey, 1977) instead of the arith-401

metic mean, to limit the effect of outliers. The robust mean is commonly used by den-402

drochronologists to derive the mean chronology from tree ring samples (Cook & Kair-403

iukstis, 1990), and we have extended its use here. After cross-validating all ensemble mem-404

bers (Section 3.2.1), we selected one member for each station based on the robust mean405

CE and KGE (RE is similar to CE and is omitted). The ideal score for both CE and KGE406

is 1; therefore, we calculated for each ensemble member the Euclidean distance between407

the tuple (CE, KGE) and the point (1, 1). For each station, the ensemble member near-408

est to the ideal score was used for the final reconstruction.409
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4 Results and Discussion410

4.1 Reconstruction Skills411

Reduction of Error (RE) is positive at all stations (Figure 4a and b); Coefficient412

of Efficiency (CE) is positive at all but one: Kachora in the Indus (Pakistan), where CE ≈413

−0.06 (Figures 4c and d). At α = 0.1, 30 stations are statistically skillful with respect414

to RE, and 23 are with CE (Figure S9). Comparing the histograms of RE and CE (Fig-415

ures 4b and d), we observe that CE is slightly lower—this is expected as CE is a more416

stringent metric than RE (Cook & Kairiukstis, 1990). Much lower CE than RE implies417

overfitting; we do not observe that here.418

When using the Kling-Gupta Efficiency (KGE), if one wishes to benchmark a model419

against the verification period mean (as is with the CE), the threshold value is 1−
√

2 ≈420

−0.41, i.e, KGE > −0.41 is analogous to CE > 0 (Knoben et al., 2019). Our KGE421

ranges from 0.22 to 0.68 (Figure 4e and f), far higher than the threshold. Furthermore,422

all 62 stations are statistically skillful with respect to KGE at α = 0.1 (Figure S9). These423

results indicate that our reconstruction model performs well in terms of key character-424

istics: correlation, bias, and variability.425
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All three metrics have similar spatial distributions (Figure 4a, c, and e). As expected,426

lower skills are seen in most of Central Asia, Japan, and West Asia, which lie outside the427

core monsoon area. An exception is the upper reach of the Selenge River, upstream of428

Lake Baikal, where model skill is high, owing to high quality tree ring records from Mon-429

golia (Davi et al., 2006; Pederson et al., 2013; Davi et al., 2013; Pederson et al., 2014).430

In all other regions, model skill is homogeneous. The consistent performance of our model431

suggests that the MADA is a good proxy for streamflow reconstruction in Asia, and our432

climate-informed dynamic reconstruction is skillful. More validation exercises (Figures433

S5 to S8) further support the reliability of the reconstruction.434

4.2 Spatiotemporal Variability of Monsoon Asia’s Streamflow435

Having obtained reliable skill scores, we now present eight centuries of spatiotem-436

poral streamflow variability in Monsoon Asia, in terms of standardized streamflow (z-437

score of mean annual flow) (Figure 5a). This reconstructed history captures the ripar-438

ian footprint of major historical events—large volcanic eruptions and megadroughts (Fig-439

ure 5b). We first discuss the impact of the three largest eruptions of the past eight cen-440

turies (Sigl et al., 2015): Samalas (1257) (Lavigne et al., 2013), Kuwae (1452-53) (Gao441

et al., 2006), and Tambora (1815) (Stothers, 1984).442

Assuming that Kuwae erupted in 1452 (consistent with tree ring records, see e.g.443

Briffa et al. (1998)), these three eruptions saw similar streamflow patterns (Figure 5b,444

panels 1, 4, and 8). In the eruption year t (t = 1257, 1452, 1815), large positive stream-445

flow anomalies were observed in Southeast and East Asia. The magnitude of the pos-446

itive anomalies were largest with Samalas, followed by Kuwae, and then Tambora. The447

global radiative forcings of the Samalas, Kuwae, and Tambora events are -32.8, -20.5,448

and -17.1 W/m2, respectively (Sigl et al., 2015). Thus, we observe a correspondence be-449

tween the magnitude of positive streamflow anomalies and the magnitude of radiative450

forcings. This correspondence are also seen clearly from the distributions of streamflow451

anomalies in the three events (Figure S10a). These results suggest a direct influence of452

volcanic eruptions on streamflow in Southeast and East Asia.453

Unlike East and Southeast Asia, South Asia’s streamflow remained around the nor-454

mal level in years t and t+1 in all three eruptions, suggesting little volcanic influence.455

Differently still, mixed wet and dry conditions were observed in Central Asia, and nor-456

mal to wet conditions were observed in eastern China and West Asia (see also Figure S10a).457

Thus, the influence of volcanic eruptions on Monsoon Asia’s streamflow varies spatially,458

ranging from strong positive, mixed, to little. Understanding the mechanism underly-459

ing this spatial variability could be an interesting research direction.460

Our results are mostly consistent with Anchukaitis et al. (2010), who used Super-461

posed Epoch Analysis to analyze PDSI anomalies in the eruption years. The key differ-462

ence is in eastern China, where Anchukaitis et al. (2010) showed negative PDSI in year463

t, while we observed normal to positive streamflow anomalies in year t, and negative stream-464

flow anomalies in year t + 1 (see also Figure S10b). The discrepancies may be due to465

the different eruption data sets (Anchukaitis et al. (2010) demonstrated this with three466
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sets of events) and the analytical methods. It could also be because they analyzed PDSI467

while we analyzed streamflow. That we observed negative streamflow anomalies in year468

t+ 1 instead of t could be due to the lagged response of streamflow in this region.469

As a drought/pluvial indicator, streamflow may differ from PDSI in individual years470

for some regions, as discussed above, but on longer terms, our reconstructed streamflow471

agrees well with reconstructed PDSI. For example, our record fully captures the Angkor472

Droughts (1345–1374 and 1401–1425) (Buckley et al., 2010, 2014) with prolonged low473

flow throughout Southeast Asia, and extended as far as India (Figure 5b, panels 2 and474

3), in agreement with speleothem records from Dandak and Jhuma Caves (Sinha et al.,475

2007, 2011). Heavy monsoon rain interrupted these megadroughts; such abrupt alter-476

ations to the flow regime proved difficult for the ancient city of Angkor (Buckley et al.,477

2014). The city once thrived thanks to an extensive network of hydraulic infrastructure478

(Lieberman & Buckley, 2012). After the first Angkor Drought, the inflow/outflow func-479

tions of the barays (reservoirs) were altered in an attempt to preserve water. Heavy rains480

and flooding subsequently destroyed the reduced-capacity hydraulic infrastructure. This481

flood likely occurred in 1375 (Figure 5b, event 2). By the second Angkor Drought, the482

“hydraulic city” (Groslier, 1979; Lustig & Pottier, 2007) had insufficient water storage483

and could not recover.484

Four more megadroughts that severely affected Asian societies (Cook et al., 2010)485

are also captured in our reconstruction (Figure 5b, panels 5, 6, 7, and 9), along with other486

major droughts and pluvials. For example, Central Asia observed a six-decade drought487

between 1260–1320, and sustained pluvials during 1740–1769. Most notably, Southeast488

Asia suffered a drought between 1225–1255 that was comparable in length to Angkor Drought489

I, but more severe in magnitude. Following this drought was a multi-decadal pluvial in490

1271–1307. The drought is prominent in the speleothem record of J. K. Wang et al. (2019),491

and the pluvial can also be traced from there.492

4.3 Links to Oceanic Drivers493

To exemplify the spatial variation of how the oceans influence streamflow, we se-494

lected four river basins from west to east: Godavari, Chao Phraya, Mekong, and Yangtze,495

and selected one station from each basin. The selected stations are in the main stream496

and their reconstructions are statistically skillful.497

We calculated the correlation between reconstructed annual streamflow at each sta-498

tion and the seasonal averages of global sea surface temperature (SST) for the period499

1856–2012. The season definitions are: December to February (DJF), March to May (MAM),500

June to August (JJA), and September to November (SON). We also included JJA and501

SON of the prior year (JJA (−1) and SON (−1)). Correlation patterns vary both sea-502

sonally and spatially, with differences among rivers and among oceans (Figure 6).503
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4.3.1 Pacific Ocean504

Tropical Pacific SST correlates significantly with streamflow at all four basins, but505

the correlation patterns vary. For the Godavari, moderate positive correlations are seen506

from JJA (−1) to DJF, and strong negative correlations are seen from JJA to SON. For507

the Yangtze, the pattern is completely opposite: strong positive correlations from JJA508

(−1) to DJF, and moderate negative correlations in JJA and SON. The location of the509

strongest correlations suggests links to the El Niño-Southern Oscillation (ENSO, cf. McPhaden510

et al. (2006)). We find it interesting that ENSO seems to influence the Godavari and Yangtze511

in contrasting ways.512

Unlike the Godavari and Yangtze, the Chao Phraya and Mekong’s streamflow cor-513

relates significantly with SST over most of the Pacific Ocean, and the correlation per-514

sists across all seasons. The correlation pattern is negative in the tropical Pacific, and515

positive in the northern and southern Pacific. This pattern and its lack of seasonality516

suggest that, beside ENSO, there are influences from a driver at longer time scales, likely517

the Pacific Decadal Variability (PDV)—decadal variations of Pacific SST resulted from518

complex tropical-extratropical ocean-atmosphere interactions (Henley, 2017). The North519

Pacific component of PDV is known as the Pacific Decadal Oscillation (PDO) (Mantua520

& Hare, 2002), its southern counterpart the South Pacific Decadal Oscillation (Shakun521

& Shaman, 2009); basin-wide SST variation patterns have also been termed Interdecadal522

Pacific Oscillation (Folland et al., 1999). These modes are closely related (Henley, 2017).523

The PDV has been shown to influence hydroclimatic variability in Monsoon Asia, in con-524

junction with ENSO (Yu et al., 2018). Specifically for the Chao Phraya, PDV also mod-525

ulates ENSO’s influence on peak flow (Xu et al., 2019).526

4.3.2 Indian Ocean527

Correlation patterns are less prominent in the Indian Ocean compared to the Pa-528

cific. We observe basin-wide correlations in DJF for the Godavari and Yangtze; corre-529

lations bear the same sign as that in the Pacific. This is consistent with the Indo-Pacific530

coupling: an ENSO event in the Pacific leads to SST anomalies of the same sign in the531

Indian Ocean (Saji et al., 1999). The Godavari and Yangtze also exhibit another cor-532

relation pattern in SON (with small areas of significance): correlations bear opposite signs533

between the tropical western Indian Ocean near the Horn of Africa and the southeast-534

ern Indian Ocean around Sumartra. This pattern and its timing suggest links to the In-535

dian Ocean Dipole (IOD) (Saji et al., 1999; Ummenhofer et al., 2017). The IOD accounts536

for about 12% of Indian Ocean SST variability, much less than the basin-wide coupling537

mode (30%) (Saji et al., 1999); this explains the weaker correlations of the IOD. Pos-538

itive IOD events have also been linked to droughts in Southeast Asia, but this relation-539

ship is not robust (Ummenhofer et al., 2013). In our analysis, the link between IOD and540

Southeast Asian streamflow is not visible. Our interpretation is that ENSO and PDV541

are the main drivers here, and they dominate any links that the IOD might have.542
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basins (this work) and seasonal averages of global sea surface temperature (SST) from the

NOAA ERSST v5 data set (Huang et al., 2017) for the period 1856–2012; significant correla-

tions (α = 0.05) enclosed in black boundaries. The locations of the stations are shown in the

catchment maps; these are the same stations shown in Figure 3. Seasons are marked by the year

in which they end. “(-1)” denotes previous year.

4.3.3 Atlantic Ocean543

The Chao Phraya and Mekong streamflow correlates positively with tropical and544

northern Atlantic SST. Significant and consistent correlations are observed throughout545

the seasons for the Mekong, but less consistent for the Chao Phraya. The link between546

tropical Atlantic SST and Southeast Asian hydroclimate was also found in a Laotian cave547
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speleothem record (J. K. Wang et al., 2019). To explain this relationship, J. K. Wang548

et al. (2019) examined SST, atmospheric pressure, and zonal moisture transport from549

climate model simulations, and proposed the following mechanism: increased tropical550

Atlantic SST leads to changes in zonal moisture transport, causing depression over trop-551

ical Indian Ocean, reducing rainout over the basin, leaving more moisture available to552

be transported to mainland Southeast Asia, ultimately strengthening Indian Monsoon553

rain over the region.554

We repeated the correlation analysis above for other stations in the Godavari, Mekong,555

and Yangtze, where additional stations with statistically skillful results are available on556

the main stream. Results for those stations are consistent with what we report here (Fig-557

ures S11 to S13).558

4.3.4 Temporal variability of teleconnections559

The correlation analysis of Figure 6 shows the spatial variation of the streamflow–560

SST teleconnection in Monsoon Asia. This analysis was done for the common period of561

SST and streamflow data (1856–2012). To explore whether and how the teleconnection562

patterns changed through time, we repeated the correlation analysis using a sliding 50-563

year window with 10-year increments. We show in Figure 7 three non-overlapping win-564

dows, and present all windows in Movie S1. Results show that all correlation patterns565

changed through time, echoing previous works that found non-stationarities in oceanic566

teleconnection (e.g., Krishna Kumar et al. (1999); Singhrattna et al. (2005)). Correla-567

tions were much weaker in the period 1911–1960 compared to the preceding and sub-568

sequent five decades (Figure 7). Some patterns are more transient than others. The Yangtze’s569

JJA-SON pattern of negative correlations with tropical Pacific was only strong in 1921–570

1980 (Movie S1). On the other hand, the Chao Phraya’s SON positive correlations with571

tropical Pacific persisted throughout all periods. In 1901–1950, when ENSO teleconnec-572

tion was the weakest for all rivers, tropical and northern Atlantic SST became the strongest573

teleconnection for the Chao Phraya and Mekong (Movie S1).574

5 Conclusions575

In this work, we produce the first large-scale and long-term record of streamflow576

variability for Monsoon Asia, covering 62 stations in 16 countries. In making this record,577

we also develop a novel automated, climate-informed, and dynamic streamflow recon-578

struction framework that leverages the computational advantages offered by our climate579

proxy—the Monsoon Asia Drought Atlas (MADA) version 2. Our framework achieves580

good skills for most of Monsoon Asia, and skill distribution is spatially homogeneous.581

Our results provide a synoptic understanding of Monsoon Asia’s streamflow variability582

over the past eight centuries, and reveal how the teleconnection between streamflow and583

its oceanic drivers varied over space and time.584

From our reconstruction, streamflow in Monsoon Asia appears coherent: high and585

low flows often occur simultaneously at nearby stations and adjacent basins. This co-586
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Figure 7. Temporal variability of the streamflow–sea surface temperature correlations. The

analysis here is the same as that carried out in Figure 6, but split into three 50-year periods.
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herence is attributed to common oceanic drivers—the El Niño–Southern Oscillation (ENSO),587

the Pacific Decadal Variability (PDV), and sea surface temperature variations in the In-588

dian and Atlantic Oceans. Coherence emerges even though we reconstructed each sta-589

tion individually, demonstrating the merits of Point-by-Point Regression. More impor-590

tantly, this coherence implies that large-scale infrastructure transferring water, or other591

water-reliant commodities, across river basins could accidentally expose riparian people592

to unforeseen risks. For example, Thailand is increasingly purchasing Mekong-generated593

hydropower from Laos, and when that is insufficient, complements its energy needs with594

thermal power from plants that use water from the Chao Phraya for cooling. Thailand’s595

energy system is more vulnerable when a prolonged drought occurs at both rivers (Chowdhury596

et al., 2020)—our record shows such events have happened several times in the past.597

We showed that the Pacific, Indian, and Atlantic Oceans influence streamflow vari-598

ability, and that the strength and spatial footprint of these teleconnections varied over599

time. This result suggests that our understanding of how water-dependent infrastruc-600

ture could perform may be narrow, especially in South and Southeast Asia, where we601

observe alternating periods of strong and weak teleconnections. A narrow characteriza-602

tion of climate-induced risks is likely to misguide climate change assessments, an impor-603

tant source of information for many major infrastructural decisions. Stakes are partic-604

ularly high in Monsoon Asia, whose river basins will experience further pressure in the605

coming decades (Satoh et al., 2017; Y. Wang et al., 2019). If we can develop method-606

ologies for viewing future changes in streamflow in the context of past and present cli-607

mate, we then have a pathway for making more informed and robust decisions. The re-608

constructions developed in our study offer a first step in this direction.609
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Introduction

In this Supporting Information, we provide some information on previous reconstruc-

tion works in Monsoon Asia, and more details on data: streamflow station metadata,

streamflow preprocessing, and MADA’s starting year. We also provide a comparison of

spatial coherence in the modern period, and a more in-depth analysis of the streamflow–

SST teleconnection. Finally we provide additional results to support the findings in the

main text.

Text S1. Previous streamflow reconstructions in Monsoon Asia

The first streamflow reconstruction in Monsoon Asia was by Davi et al. (2006). Since

then, 27 reconstruction studies have appeared, more than half of which were published in

the last four years (Figure S1). Each of these works studied a specific river; most of them

focused on China (Table S1).

Text S2. Station selection

We obtained most of our mean annual flow data from the Global Streamflow Indices

and Metadata (GSIM) Archive (Do et al., 2018; Gudmundsson et al., 2018). The GSIM

authors ignored missing data when calculating mean annual flow, but provided for each

station the fraction of missing days for the whole record length, and the number of missing

days for each year. We first selected stations with no more than 3% of missing days over

the whole record length. Then, for each of these stations, we looked at each year’s number

of missing days, and if this number was greater than 30, we considered that year’s data as

missing. We adopted these criteria to avoid the situation where the mean annual flow was

calculated from too many missing data. After this second step, we counted the number

of non-missing years for each station, and retain only those having at least 41 years.
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For the Chao Phraya, we obtained monthly flow from the Thai Royal Irrigation De-

partment (hydro-1.net, in Thai) for stations P.1, N.1, and C.2, and calculated the mean

annual flow from the monthly flow. If there were more than one month missing for any

year, that year was considered missing as well (similar to what we did with the GSIM

stations).

For Mekong, Yangtze, Citarum, and Brahmaputra data, we obtained annual flow di-

rectly from our colleagues, and we did not have any information on the degree of miss-

ingness.

There were no missing data in South Korea, but the longest record was only 39 years.

We wanted to have a station for this country, so we made an exception for the 41-year

criterion. Similarly, we made an exception to the Yeruu River: the mean annual flow here

is 49.8 m3/s, slightly less than the 50 m3/s threshold, but we retain this record so as to

have a station in Mongolia.

Text S3. Streamflow data preprocessing

We determined the degree of asymmetry of the streamflow data using the Hinkley’s D

statistic (Hinkley, 1977), formulated according to equation (1)

D =
m− µ
q

(1)

where m is the sample median, µ the sample mean, and q the sample inter-quartile range.

If log-transforming reduces the absolute value of D for a station, then we will use the

log-transformed flow as reconstruction target; otherwise we use the untransformed flow.

We also check the densities of the transformed and untransformed flow visually (Figure

S3), and found that the densities are similar for most stations.
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Figure S1. Number of Monsoon Asia streamflow reconstruction papers published each year

till September 2019. The publications are listed in Table S1.
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Figure S3. Densities of the transformed and untransformed flow at each station. The densities

are centralized and rescaled for comparison.
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Figure S5. Comparing the reconstructed spatiotemporal variability of streamflow in the

period 1950–2012 with instrumental streamflow data. Gray areas denote no data; color scale and

annotations are the same as Figure 5 in the main text. The reconstruction captures well the

spatial coherence and the extreme events in this period.
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Figure S6. Comparing reconstructions and observations for the instrumental period at four

representative stations (those used in Figures 3 and 6 of the main text).
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Figure S7. Full reconstruction time series for the same four stations shown in Figure S6.

Vertical shaded areas show the megadroughts of Figure 5 in the main text (from left to right:

Angkor Drought I, Angkor Drought II, Ming Dynasty Drought, Strange Parallels Drought, East

India Drought, and Victorian Great Drought).
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Figure S8. Composite correlation matrix of streamflow. The top half shows the correlations in

the instrumental data; the bottom half the reconstruction. Stations are grouped by their region

(according to Figure 1 of the main text) and follows the same order as in Figure 5 of the main

text. This composite correlation matrix is close to symmetry about its diagonal; in other words,

the reconstruction captures the correlation structure of the streamflow network.
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Figure S9. Distribution of performance scores. As explained in Section 3.2.3 of the main text,

the reconstruction is considered statistically skillful at level α with respect to a metric if the

probability of that metric being worse than the benchmark is less than α. Here we used α = 0.1.

The benchmark, shown as maroon horizontal line, equals zero for RE and CE, and equals 1−
√

2

for KGE. “Robust mean” refers to the Tukey’s biweight robust mean (Mosteller & Tukey, 1977;

Cook & Kairiukstis, 1990).
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Figure S10. Distribution of standardized streamflow index in three volcanic eruptions. The

widths of the box plots are proportional to their sample sizes.
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Figure S11. Same as Figure 6 in the main text, but for the Godavari River.
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Figure S12. Same as Figure 6 in the main text, but for the Mekong River.
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Figure S13. Same as Figure 6 in the main text, but for the Yangtze River.
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Table S1. List of Monsoon Asia streamflow reconstruction papers

Reference Proxy River Country

Davi et al. (2006) Tree ring Selenge Mongolia
Yuan et al. (2007) Tree ring Manasi China
X. Gou et al. (2007) Tree ring Yellow China
Liu et al. (2010) Tree ring Heihe China
X. H. Gou et al. (2010) Tree ring Yellow China
D’Arrigo et al. (2011) Tree ring Citarum Indonesia
Yang et al. (2012) Tree ring Heihe China
Cook et al. (2013) Tree ring Indus Pakistan
Davi et al. (2013) Tree ring Kherlen Mongolia
Pederson et al. (2013) Tree ring Yeruu Mongolia
Xu et al. (2015) Stalagmite δ18O Jialingjiang China
Chen, Yuan, Davi, and Zhang (2016) Tree ring Irtysh China
Chen and Yuan (2016) Tree ring Guxiang China
Chen, Yuan, Zhang, et al. (2016) Tree ring Shiyang China
D. Zhang et al. (2016) Tree ring Aksu China
R. Zhang et al. (2016) Tree ring Tuoshigan China
Chen et al. (2017) Tree ring Kurshab Kyrgyzstan
Panyushkina et al. (2018) Tree ring Ili Kazakhstan
T. Zhang et al. (2018) Tree ring Haba China
Rao et al. (2018) Tree ring Indus Pakistan
Nguyen and Galelli (2018) MADAa Ping Thailand
Li et al. (2018) Tree ring Yangtze China
Chen, Shang, Panyushkina, Meko, Yu, et al. (2019) Tree ring Lhasa China
Chen, Shang, Panyushkina, Meko, Li, et al. (2019) Tree ring Salween China
Yang et al. (2019) Tree ring Lancang China
Li et al. (2019) Tree ring Yellow China
Xu et al. (2019) Tree ring δ18O Chao Phraya Thailand

a Monsoon Asia Drought Atlas (Cook et al., 2010)

Table S2. Metadata of the streamflow stations used. This large table is uploaded separately

as “table S2.csv”
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