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Abstract

Martian meteorites are our only samples from Mars, thus far. Currently, there are a total of 252 individual samples originating

from [?]11 ejection sites with crystallization ages varying from 4.5 to 0.15 Ga. Analyses, through techniques that are also used

on terrestrial rocks, allow fundamental insights into the bulk composition, differentiation and evolution, mantle heterogeneity,

and role of secondary processes, such as aqueous alteration and shock, on Mars. Martian meteorites display a wide range in

mineralogy and chemistry, but are predominantly basaltic in composition. Over the past six years, the number of martian

meteorites recovered has almost doubled allowing for studies to evaluate these meteorites as suites of martian igneous rocks.

However, the martian meteorites represent a biased sampling of the martian surface with unknown ejection locations. Thus,

the geology of Mars cannot be unraveled solely by analyzing meteorites. Rocks measured by rovers at the surface are of distinct

composition to the meteorites, highlighting the importance of Mars missions, especially sample return. The Mars 2020 rover will

collect and cache — for eventual return to Earth — over 30 diverse surface samples from Jezero crater. These returned samples

will allow for Earth-based state-of-the-art analyses on diverse martian rocks with known field context. The complementary

study of returned samples and meteorites will help constrain the evolution of the martian interior and surface. Here, we review

recent finds and advances in the study of martian meteorites and provide a wish list of returned samples that would complement

and enhance their study.
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Abstract  24 
 25 

Martian meteorites are the only direct samples from Mars, thus far. Currently, there 26 
are a total of 262 individual samples originating from at least 11 ejection events. Geochemical 27 
analyses, through techniques that are also used on terrestrial rocks, provide fundamental 28 
insights into the bulk composition, differentiation and evolution, mantle heterogeneity, and 29 
role of secondary processes, such as aqueous alteration and shock, on Mars. Martian 30 
meteorites display a wide range in mineralogy and chemistry, but are predominantly basaltic 31 
in composition. Over the past six years, the number of martian meteorites recovered has 32 
almost doubled allowing for studies that evaluate these meteorites as suites of igneous rocks. 33 
However, the martian meteorites represent a biased sampling of the surface of Mars with 34 
unknown ejection locations. The geology of Mars cannot be unraveled solely by analyzing 35 
these meteorites. Rocks analyzed by rovers on the surface of Mars are of distinct composition 36 
to the meteorites, highlighting the importance of Mars missions, especially sample return. The 37 
Mars 2020 Perseverance rover will collect and cache — for eventual return to Earth — over 38 
30 diverse surface samples from Jezero crater. These returned samples will allow for Earth-39 
based state-of-the-art analyses on diverse martian rocks with known field context. The 40 
complementary study of returned samples and meteorites will help constrain the evolution of 41 
the martian interior and surface. Here, we review recent findings and advances in the study of 42 
martian meteorites and examine how returned samples would complement and enhance our 43 
knowledge of Mars. 44 

 45 
Plain-language summary 46 
 47 

Scientists learn about the formation and evolution of planets, such as Mars, by 48 
studying rock samples. Gaining rock samples from Mars allows for them to be studied in 49 
state-of-the-art laboratories on Earth with high degrees of precision and accuracy. Currently, 50 
samples are obtained from the surface of Mars through meteorites that have been ejected from 51 
the planet. We can study these rocks to learn about the volcanic processes, chemistry, and the 52 
timing of these events in martian geology. This review paper summarizes the information we 53 
have learned about Mars’ geology through analyzing martian meteorites. Most of the data 54 
collected provides evidence that the interior of Mars is compositionally varied with a high 55 
diversity in chemical makeup throughout time. However, most meteorites are relatively young 56 
with few older rocks (≥ 2.4 billion years old) analyzed to date. The Mars 2020 mission is 57 
likely to collect samples directly from Mars’s surface for eventual Earth return: These 58 
samples will be collected from the Jezero crater and could be brought back to Earth as early 59 
as 2031. The study of both meteorites and returned samples is essential to study representative 60 
rocks from Mars as well as rocks originating from different locations on the Red Planet. 61 
 62 
1. Introduction 63 
 64 

For the past 55 years, orbiters have documented the global mineralogy, composition, 65 
and geomorphology of Mars. Landers and rovers have constrained field context and measured 66 
the chemistry and mineralogy of surface rocks in situ, including remote and contact analyses. 67 
Instruments deployed on the martian surface by landers and rovers, however, do not have the 68 
precision and accuracy of analytical techniques employed in Earth-based laboratories, cannot 69 
examine multiple physical or geochemical sample parameters, nor can they reproduce the 70 
field context provided by human beings. Analyses in terrestrial laboratories can determine the 71 
chemistry, mineralogy, elemental and isotopic compositions, as well as physical properties of 72 
samples from hand-sample to the atomic scale. On the other hand, Earth-based laboratory 73 
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studies such as these are restricted to meteorites, for which there is little to no field context. 74 
Nonetheless, using samples, several fundamental planetary processes have been documented. 75 
These include the timing and nature of emplacement and formation of magmatic rocks, the 76 
nature and timing of planetary accretion and differentiation, the chemical and isotopic 77 
diversity of the mantle, the distribution and evolution of volatile compounds in and on Mars, 78 
environments and timing of alteration and weathering, and impact processes (Figure 1). 79 

Martian meteorites are the only samples currently available from Mars. Crater-forming 80 
meteorite impact events on Mars generated sufficient energy to eject fragments of the crust 81 
through the atmosphere and into space (escape velocity ~5 km/s; Fritz et al., 2005) through 82 
near-surface spallation (e.g., Head et al., 2002). Fragments of these ejection events represent 83 
the martian meteorites that have so far been recovered in Antarctica, Morocco, Libya, 84 
Tunisia, Egypt, France, Chile, USA, India, Nigeria, Mali, Mauritania, Brazil, and Oman. 85 

The martian meteorites were traditionally divided into three main groups: called the 86 
shergottites, nakhlites, and chassignites, after their namesake meteorites, Shergotty, Nakhla, 87 
and Chassigny. As such, igneous protolith (herein referred to as simply igneous) martian 88 
meteorites are also referred to as ‘SNCs’. The traditional ‘SNCs’ have mafic to ultramafic 89 
compositions (~4 to 30 wt.% MgO). In addition, martian meteorites include a few specimens 90 
that do not fall into the traditional ‘SNC’ classification: the orthopyroxenite Allan Hills 91 
(ALH) 84001 and the polymict breccia NWA 7034 and its 16 paired meteorites. Note that 92 
paired meteorites originate from the same parent meteoroid that broke up into several pieces 93 
upon ejection from Mars or upon entry into Earth’s atmosphere). Most martian meteorites are 94 
geologically young (Amazonian), with shergottites predominantly being mid- to late-95 
Amazonian in age (crystallization ages of <716 Ma), early Amazonian ages nakhlites and 96 
chassignites that have been dated at ~1.3 Ga (Borg et al., 2002, 2003; Brennecka et al., 2014; 97 
Cohen et al., 2017; Herd et al., 2017; Lapen et al., 2017; Nyquist et al., 2001, 2009; Righter et 98 
al., 2018). There are two Noachian lithologies: ALH 84001 dated at 4.1 Ga, and igneous 99 
clasts within NWA 7034 that are as old as 4.5 Ga (Bellucci et al., 2018; Bouvier et al., 2018; 100 
Lapen et al., 2010; McCubbin et al., 2016).  101 

 McSween & Stolper (1980) first proposed that the meteorites Shergotty and Zagami 102 
were derived from Mars: their chemistry, mineralogy, and ages suggested that they originate 103 
from a body large enough to still be volcanically active during the last half billion years. The 104 
first definitive evidence for a martian origin was accomplished by linking the martian 105 
atmospheric noble gases, C, and N isotopic compositions and concentrations measured by the 106 
Viking landers in 1976 to trapped gas compositions in impact-melt glasses in the Elephant 107 
Moraine (EETA) 79001 meteorite (Bogard & Johnson, 1983). While such studies have only 108 
been completed for a handful of these meteorites, all suspected martian meteorites are now 109 
confirmed using their bulk oxygen isotopic compositions. Mars has Δ17O isotopic 110 
composition that is ~0.3‰ heavier than terrestrial or lunar samples and falls along a mass-111 
dependent fractionation line (e.g., Ali et al., 2016). Although the exact locations of origin for 112 
meteorites on the martian surface are currently unconstrained, the mineralogy, petrology, 113 
major and trace element and isotopic compositions, and ages of martian meteorites have been 114 
fundamental for providing constraints on the evolution of the red planet throughout its 115 
geologic history.  116 

The Mars 2020 rover Perseverance is the first mission of the Mars Sample Return 117 
(MSR) campaign that will eventually cache over 30 samples for return to Earth as early as 118 
2031 (iMOST report, Beaty et al., 2019). For the first time, we may have access to samples 119 
with a known field context and location at the martian surface. In addition to the ability for 120 
analysis in Earth-based laboratories, these returned samples will presumably represent the 121 
geologic diversity for one location (also see iMOST report, Beaty et al., 2019). They will also 122 
provide opportunity for ground truth of remote-sensing analyses and help to calibrate crater 123 
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age counting on Mars, if ages on the collected rocks can be obtained and their stratigraphic 124 
relationships constrained. In view of these likely advances, we provide a review of the main 125 
discoveries from martian meteorites, paying particular attention to the latest discoveries in the 126 
last six years, during which martian meteorite discoveries have almost doubled. We examine 127 
the significance of these discoveries for understanding martian geology, and the open 128 
questions that result from their study — questions which may only be addressed with a suite 129 
of returned samples from Jezero crater.  130 

 131 
2. A variety of lithologies representing predominantly igneous martian processes 132 
 133 
2.1. Source and availability of martian meteorites 134 
 135 

At the time of writing of this manuscript, 262 officially classified martian meteorites 136 
have been recovered, suggested to represent 150 pairing groups (Meteoritical Bulletin 137 
Database). Paired meteorites originate from the same parent meteoroid that broke up into 138 
several pieces upon ejection from Mars or upon entry into Earth’s atmosphere. Table S1 is a 139 
compilation of the currently known martian meteorites, including paired groups. Note that not 140 
all paired groups have been confirmed in peer-reviewed publications and are based on the 141 
meteorite list created by A. J. Irving (https://imca.cc/mars/martian-meteorites-list.htm, not 142 
representing an official database). Table S2 includes the number of meteorites per type, for 143 
paired groups and unpaired individual meteorites. The total mass of martian meteorites is 144 
~211 kg, with the most massive meteorites, including recovered strewn field stones, being 145 
Zagami (~18 kg), Tissint (~12 kg), and Nakhla (~9.9 kg).  146 

The rate of recovery of martian meteorites has varied significantly over the last two 147 
centuries (Figure 2). Five witnessed meteorite falls have been reported, including: the first 148 
discovered martian meteorite Chassigny in 1815 (Champagne-Ardenne, France), Shergotty in 149 
1865 (Bihar, India), Nakhla in 1911 (Al Buhayrath in Egypt), Zagami in 1962 (Katsina, 150 
Nigeria), and Tissint in 2011 (Guelmim-Es-Semara, Morocco). A total of 30 samples have 151 
been recovered in Antarctica by the US Antarctic Search for Meteorites (ANSMET) and 152 
Japanese National Institute of Polar Research (NIPR) missions. The numbers of martian 153 
meteorites have increased dramatically since the first discovery, with nine by 1980, 25 by 154 
2000, and 57 by 2010 (Figure 2). Since 2014 (representing the year where the 8th International 155 
Conference on Mars took place), 73 martian meteorites have been recovered, constituting 156 
48% of the current collection, with all of them being found in Morocco, Algeria, Mali, 157 
Mauritania, Libya, Oman, and Chile (Figure 2). They include 68 shergottites, four nakhlites, 158 
and one chassignite. This increase in recovery rate is due to the fact that meteorite hunters, 159 
especially in Northwest Africa, have become extremely efficient at identifying valuable 160 
achondrites, helped in part by increased access to online resources and social networking, as 161 
well as a better understanding of the scientific and financial value of martian meteorites 162 
(Mendy Ouzillou, 2020, personal communication). 163 
 164 
2.2. The different types of martian meteorites 165 
 166 

With the exception of the polymict breccia lithologies, all other martian meteorites 167 
recognized to date have igneous origins. In general terms, these igneous rocks range in 168 
composition from mafic to ultramafic and generally contain variable proportions of augite, 169 
pigeonite, maskelynite (plagioclase that has been shock metamorphosed to a diaplectic glass 170 
in most specimens), olivine, and orthopyroxene, and minor minerals including Cr-spinel, 171 
phosphates (merrillite, apatite), sulfides, titanomagnetite, ilmenite, ± baddeleyite and ± silica. 172 
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The textures of the different groups of martian meteorites are aphanitic, porphyritic, diabasic 173 
(= microgabbroic), and oikocrystic (also represented in Figure 3).  174 

Over the past several years, a large diversity in lithologies, textures, chemistries, 175 
igneous crystallization ages, and initial radiogenic isotopic compositions have been observed 176 
for martian meteorites, especially for shergottites. In this section, we describe the diversity 177 
among meteorites from Mars. Different groups of martian meteorites are distinguished based 178 
on their trace element geochemistry and radiogenic isotopic compositions (yielding insights 179 
on the mantle sources), emplacement histories (known by mineralogy and textures), and 180 
crystallization and ejection ages (based on measurements of long-lived and short-lived 181 
isotopic systems). A compilation of all published martian meteorite bulk compositions is 182 
provided in Table S3. This table also includes igneous compositions found at Gusev and Gale 183 
craters. Other compilations of bulk major element data are also found in Filiberto (2017) and 184 
Treiman and Filiberto (2014).  185 
 186 
2.2.1. Shergottites 187 
 188 

The shergottites are the most abundant type of martian meteorites, accounting for 89% 189 
of the total collection by number and 82% by mass. Shergottites are geochemically classified 190 
based on their relative enrichment or depletion in incompatible trace elements (ITE) and these 191 
ITE compositions are largely inherited from their mantle sources. The range in ITE 192 
compositions of the martian mantle likely formed during silicate planetary differentiation and 193 
crystallization after a magma ocean phase (e.g., Borg and Draper, 2003; Debaille et al., 2008) 194 
very early in Mars’ history (e.g., Debaille et al., 2007; Borg et al., 2016). As observed, the 195 
long-term variations in mantle ITE compositions have resulted in relatively large variations in 196 
radiogenic isotopic compositions in these mantle sources. Subsequent partial melting of these 197 
mantle sources has imparted distinct isotopic compositions to the shergottites derived from 198 
them (e.g., Borg et al., 2003; Lapen et al., 2017).  199 

Coupled variations in ITE, including bulk rock rare earth elements (REE), and 200 
radiogenic isotopic compositions (147Sm/144Nd and 176Lu/177Hf) are used to distinguish three 201 
groupings of shergottites (Figure 4); These groups include specimens that are either relatively 202 
enriched in ITE, depleted in ITE, or have compositions intermediate between the enriched and 203 
depleted groupings. Depleted shergottites have bulk REE compositions with (La/Yb)CI <0.3 204 
and have relatively low initial 87Sr/86Sr, 207,206,208Pb/204Pb, and187Os/188Os ratios, and relatively 205 
high initial 142,143Nd/144Nd and 176Hf/177Hf ratios. Enriched shergottites have REE 206 
compositions relatively enriched in the more incompatible REE resulting in (La/Yb)CI > 0.8. 207 
The relative enrichment in ITE is associated with relatively high initial 87Sr/86Sr, 208 
207,206,208Pb/204Pb, and 187Os/188Os ratios, and relatively low initial 142,143Nd/144Nd and 209 
176Hf/177Hf ratios. Intermediate shergottites, with (La/Yb)CI of 0.3 to 0.8, represent 210 
compositions intermediate between the enriched and depleted endmember compositions 211 
(Armytage et al., 2018; Borg et al., 2003; Borg et al., 2016; Borg et al., 2002; Brandon et al., 212 
2000; Brandon et al., 2012; Brennecka et al., 2014; Combs et al., 2019; Debaille et al., 2008; 213 
Ferdous et al., 2017; Filiberto et al., 2012; Lapen et al., 2017; McSween, 2015; Nyquist et al., 214 
2001; Paquet et al. 2020; Shafer et al., 2010; Symes et al., 2008; Tait & Day, 2018; Usui et 215 
al., 2010). Shergottite sources are further described in section 4.1. 216 

Shergottites can be classified into different groups according to their texture (i.e., grain 217 
size, shapes, and modal abundances). The different textures represent mineral formation and 218 
emplacement in the shallow subsurface or perhaps eruption at the surface. First are the 219 
basaltic shergottites, which mostly contain pyroxene (average lengths of 0.3 mm, up to 1 mm) 220 
and maskelynite and are characterized by the absence of olivine phenocrysts or megacrysts 221 
(Figure 3a; e.g., He et al., 2015; Howarth et al., 2018; McSween et al., 1996; Rubin et al., 222 
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2000). Second in abundance are the olivine-phyric shergottites, which are porphyritic and 223 
contain olivine phenocrysts (sometimes megacrystic with sizes up to 2.5 mm) with later-224 
crystallizing olivine, pyroxene, and maskelynite (Figure 3b; grains in the groundmass of 225 
~0.25 mm; e.g., Balta et al., 2015; Basu Sarbadhikari et al., 2016; Chen et al., 2015; Dunham 226 
et al., 2019; Goodrich, 2002; Liu et al., 2016). Third are the poikilitic shergottites that contain 227 
olivine chadacrysts (up to 1.8 mm) enclosed by large pyroxene oikocrysts (from 3 to 10 mm 228 
in length), with later-crystallizing olivine, pyroxene, and maskelynite (Figure 3c; Combs et 229 
al., 2019; Howarth et al., 2014; Kizovski et al., 2019; Rahib et al., 2019; Walton et al., 2012). 230 
Poikilitic shergottites were previously termed lherzolitic shergottites (e.g., Mikouchi & 231 
Kurihara, 2008). However, in the last decade, numerous new finds and descriptions of this 232 
group of shergottites has shown that many of them have >10% plagioclase, and thus, are not 233 
lherzolites sensu stricto (Walton et al., 2012). The fourth type are gabbroic shergottites, which 234 
contain cumulate pyroxene or plagioclase (Figure 3d; Filiberto et al., 2018; Filiberto et al., 235 
2014; Udry et al., 2017). Most shergottites studied before 2014 were fine-grained or diabasic, 236 
but new gabbroic specimens (= crystallized at depth under the martian surface) have now 237 
been recovered, including NWA 6963 (pyroxene cumulate) and NWA 7320 (plagioclase 238 
cumulate) (Udry et al., 2017, Filiberto et al., 2018, Hewins et al., 2019). Gabbroic shergottites 239 
are similar to basaltic shergottites but have a cumulate texture (with average grain size of 240 
cumulus grains of pyroxene or plagioclase > 1 mm up to 5 mm in length) and geochemically 241 
show indications of crystal accumulation. They may be related to basaltic shergottites through 242 
magmatic processes (see section 3.1.). Hewins et al. (2019) describe NWA 10414, which is a 243 
pigeonite-rich (73 mod.%) cumulate shergottite, with pigeonite grain lengths up to 4 mm. It is 244 
a distinctive shergottite, as it does not contain augite in any significant quantity. A recent 245 
discovery among the olivine-phyric shergottites is the presence of olivine phenocrysts that 246 
display concentric core-to-rim color differences in transmitted light, from amber to red-brown 247 
to clear (e.g., NWA 7042, Izawa et al., 2015; Kizovski et al., 2020; NWA 10416, Piercy et al., 248 
2020; Vaci et al., 2020). While the alteration of olivine to iddingsite is not uncommon in the 249 
martian meteorites (attributable to either low-temperature aqueous alteration on Mars or a 250 
similar process on Earth), this particular texture is distinct, and has been suggested to be due 251 
to deuteric alteration (i.e., reaction with magmatic fluids during crystallization (Kizovski et 252 
al., 2020; Kuebler, 2013; Vaci et al., 2020) or, alternatively, preferential terrestrial alteration 253 
(Piercy et al., 2020). 254 

Two recently described shergottites, NWA 7635 and NWA 8159, are distinct in 255 
texture and crystallization age from the other shergottites, but which overlap in ejection age 256 
(Figure 3e; see section 5). Northwest Africa 7635, dated at 2.40 ± 0.14 Ga, consists of 257 
phenocrysts of maskelynite (up to 200 µm in length), augite, and olivine in a maskelynite and 258 
pyroxene groundmass, but lacks pigeonite (Lapen et al. 2017). Northwest Africa 8159, 259 
originally described as an augite basalt (Herd et al. 2017), is dated at 2.37 ± 0.25 Ga, has an 260 
intergranular texture of plagioclase (partially converted to maskelynite), augite, and olivine 261 
(with grain sizes varying from 100 to 200 µm), and also lacks pigeonite. Orthopyroxene in 262 
this rock is the result of a subsolidus reaction (Herd et al. 2017). Both rocks are depleted in 263 
LREE with (La/Yb)CI ~0.1, but with a slightly different Dy/Lu ~ 0.84 (compared to Dy/Lu > 1 264 
in other shergottites). Nevertheless, the depleted nature, geochemistry, and radiogenic isotopic 265 
characteristics of NWA 7635 suggest that it is derived from the same mantle sources as the 266 
depleted shergottites (Lapen et al., 2017). 267 

The majority of the shergottites are late Amazonian in age with enriched shergottite 268 
crystallization ages ranging from 165 to 225 Ma (Borg  et al., 2008; Combs et al., 2019; 269 
Ferdous et al., 2017; Lapen et al., 2009; Moser et al., 2013; Nyquist et al., 2001; Shafer et al., 270 
2010; Usui et al., 2010), intermediate shergottites ranging from 150 to 346 Ma (Borg et al., 271 
2002; Nyquist et al., 2001, 2009) and depleted shergottite ages from 327 Ma to 2.4 Ga 272 
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(including NWA 7635 and 8159; Brennecka et al., 2014; Herd et al., 2017; Lapen et al., 2017; 273 
Nyquist et al., 2001; Shih et al., 2011). The timing of formation of shergottites and other 274 
meteorites is represented in figure 5.  275 

Using Pb-Pb isotopic compositions, Bouvier et al. (2005, 2008, 2009) proposed >4 Ga 276 
Noachian ages for all shergottites. However, other isotopic systems, such as Rb-Sr, Lu-Hf, 277 
Sm-Nd, U-Pb, and Re-Os, are concordant and yield Amazonian ages. Bellucci et al. (2015) 278 
proposed that the Pb-Pb compositions of shergottites do not represent an >4 Ga isochron age, 279 
but minor additions from an additional highly radiogenic, probably crustal reservoirs on Mars. 280 
The radiogenic Pb component may be widespread and mixed into virtually every martian 281 
meteorite (Bellucci et al., 2016; Gaffney et al., 2011). Gaffney et al. (2011) showed that 282 
maskelynite is more susceptible to Pb disturbance than other minerals. Maskelynite is a 283 
diaplectic glass formed during shock and is common in shergottites, which have Sm-Nd and 284 
Pb-Pb isochron ages that are identical within uncertainties. Gaffney et al. (2007) also 285 
observed that U-Pb ages generated older apparent ages (~4.3 Ga) for shergottites that they 286 
interpreted as being erroneous. Furthermore, Niihara et al. (2012) showed that U-Pb 287 
baddeleyite ages were not reset through shock but give younger ages than bulk rock Pb-Pb 288 
data, and thus support “young” ages for shergottites. The combined evidence from 289 
independent isotopic systems (Ar-Ar, Rb-Sr, Lu-Hf, Sm-Nd, Re-Os, and U-Pb) is that the 290 
shergottites have relatively young eruption ages, between 150 and 2400 Ma. An important 291 
goal in measuring samples from Jezero crater in terrestrial laboratories will be to examine the 292 
cause of discrepancy of whole-rock Pb-Pb in some martian samples from any other long-lived 293 
isotope systems (e.g., Rb-Sr, Lu-Hf, Sm-Nd, and Re-Os). 294 
 295 
2.2.2. Nakhlites and chassignites 296 
 297 

Nakhlites and chassignites make up ~10% of the total martian meteorite collection by 298 
number and 17% by mass. Nakhlites are ~1.3 Ga clinopyroxene-rich igneous rocks containing 299 
cumulus pyroxene and olivine (average lengths between 0.3 – 0.4 mm), with minor glass, 300 
plagioclase, phosphate minerals, fayalite-rich olivine in the mesostasis, titanomagnetite, and 301 
sulfide minerals (Figure 3f; Treiman, 2005). Chassignites are ~1.3 Ga dunitic rocks 302 
comprised of cumulus olivine (average 0.6 mm in length) with chromite inclusions and 303 
interstitial plagioclase, orthopyroxene, and phosphate minerals (Figure 3g). All nakhlites and 304 
chassignites have similar crystallization (~1.3 Ga) and ejection (~11 Ma) ages (Cohen et al., 305 
2017; Nyquist et al., 2001; Udry & Day, 2018). The similar ejection ages suggest that they all 306 
likely originate from the same location on Mars. Nakhlites and chassignites have the same 307 
depleted radiogenic isotopic compositions, with high 142Nd/144Nd, and 182W/184W, and low 308 
87Sr/86Sr, but these compositions are distinct from shergottites (Carlson & Boyet, 2009; Caro 309 
et al., 2008; Debaille et al., 2009; Foley et al., 2005; Nyquist et al., 2001). Although the 310 
nakhlites and chassignites were previously suggested to be unrelated (Wadhwa & Crozaz, 311 
1995), their compositions, textures, and volatile-bearing minerals suggest they may originate 312 
from the same volcanic system (McCubbin et al., 2013; Udry & Day, 2018). The ferroan 313 
chassignite NWA 8694 may represent the link between the nakhlites and chassignites based 314 
on bulk, mineral, and melt inclusion compositions (Hewins et al., 2020). Previous studies 315 
suggested that the nakhlites were emplaced as one magmatic body, often called a ‘cumulate 316 
pile’ (Berkley et al., 1980; Day et al., 2006; Mikouchi et al., 2012). According to their mineral 317 
chemistry, nakhlites represent different degrees of thermal processing, attributed to their 318 
relative position in the ‘cumulate pile’ (Day et al., 2006; Jambon et al., 2002; Mikouchi et al., 319 
2003; Sautter et al., 2002; Treiman, 2005; Treiman & Irving, 2008). The recovery and study 320 
of new nakhlites and chassignites since 2014 (Balta et al., 2017; Corrigan et al., 2015; Jambon 321 
et al., 2010; Krämer Ruggiu et al., 2020; Tomkinson et al., 2015; Udry & Day, 2018), 322 
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however, shows greater variation in mineralogy and composition compared to the previously 323 
observed samples, suggesting that these rocks were emplaced as several shallow sills and/or 324 
lava flows, and may not represent a singular magmatic body. Textural evidence also suggests 325 
that the nakhlites have undergone different emplacement and/or shock histories (Corrigan et 326 
al., 2015; Griffin et al., 2019; Krämer Ruggiu et al., 2020; Udry & Day, 2018). 327 
 328 
2.2.3 Allan Hills 84001 329 
 330 

Allan Hills 84001 is an igneous cumulate orthopyroxenite (with grain size up to 3.5 331 
mm) that contains minor chromite, augite, glass, olivine, apatite, and 1 vol.% of secondary 332 
phases including Fe-Mn-Mg carbonate, the latter notably containing magnetite inclusions and 333 
organic matter (Figure 3h; Bradley, 1996; McKay et al., 1996; Mittlefehldt, 1994). Allan Hills 334 
84001 underwent four to five shock events before being ejected from Mars 14.2 Ma ago 335 
(Eugster et al., 2002; Treiman, 1998). The igneous crystallization age is 4.09 ± 0.03 Ga 336 
(Lapen et al., 2010), with younger carbonates dated at 3.95 Ga (Borg et al., 1999; Beard et al., 337 
2013). This meteorite became famous after McKay et al. (1996) declared that ALH 84001 338 
showed evidence of past life on Mars, due to the presence of possible indigenous organic 339 
molecules (polycyclic aromatic hydrocarbons) and putative fossil bacteria, and because the 340 
magnetite inclusions in carbonate globules show chemical and physical characteristics similar 341 
to magnetite formed by magneto-bacteria on Earth (Thomas-Keprta et al., 2000). However, 342 
several studies demonstrate that these features are likely to be abiotic (Anders et al., 1996; 343 
Treiman, 2019). A recent study by Koike et al. (2020) presented evidence for ancient N-344 
bearing organic compounds preserved in secondary carbonate in ALH 84001. These authors 345 
hypothesized that the surface environments on Mars at the time of carbonate formation might 346 
have been less oxidizing than they are now. Carbonates were likely formed through neutral 347 
water at ~25 °C (Halevy et al., 2011; Valley et al., 1997). The Sr isotopic compositions of 348 
carbonate indicate that the Sr contained in them was largely derived from phyllosilicates 349 
produced during pre-4.2 Ga low-temperature aqueous alteration of crustal rocks (Beard et al., 350 
2013). Magnetite formed through shock metamorphism from the Fe-carbonates during rapid 351 
temperature increase along carbonate grain faces and edges (Treiman, 2003). In spite of the 352 
lack of convincing evidence for ancient life in this rock, the conditions recorded by the 353 
carbonates are suggestive of a habitable environment during the Noachian (McSween, 2019; 354 
Treiman, 2019). 355 
 356 
2.2.4. Polymict regolith breccia NWA 7034 and its pairs 357 
 358 

The polymict regolith breccia NWA 7034 and its 16 paired meteorites totaling a mass 359 
of ~941 g, including NWA 7533, are perhaps the most significant discovery among the 360 
martian meteorites in the past six years. These rocks show similar reflectance spectra and bulk 361 
composition to the average crust (Agee et al., 2013; Cannon et al., 2015; Humayun et al., 362 
2013). The NWA 7034 meteorite group contains a variety of igneous clasts that include 363 
basalt, mugearite, trachyandesite, norite, gabbro, and monzonite (area sizes between 0.04 – 3 364 
mm2), some of which originate from distinct parent melts (Figure 3i; Wittmann et al, 2015; 365 
Hewins et al., 2017; Santos et al., 2015). They also contain impact melt clasts (Wittmann et 366 
al., 2015), at least one of which has the same composition as the surface Gusev basalt 367 
Humphrey (Udry et al., 2014). The clasts in NWA 7034 represent the early Noachian lithified 368 
portion of the regolith, which has undergone hydrothermal activity (McCubbin et al., 2016; 369 
Nyquist et al., 2016). The variability in rock type and compositions of the different clasts 370 
observed in this breccia, including some sedimentary clasts (e.g., Wittmann et al., 2015), 371 
show that there are many lithologies in this meteorite not previously represented in the other 372 
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martian meteorites. This polymict regolith breccia likely assembled by pyroclastic eruption(s) 373 
and/or impact event(s), then underwent lithification represented by a thermal event at ~1500 – 374 
1100 Ma (Bridges et al., 2017; Goderis et al., 2016; Macarthur et al. 2019; McCubbin et al., 375 
2016). Alternatively, Cassata et al. (2018) proposed that contact metamorphism occurred 376 
between ~1500 and 1200 Ma based on 40Ar/39Ar ages, with brecciation and lithification 377 
happening at ≤225 Ma. The contact metamorphic event could coincide with a 37Cl-rich fluid 378 
metamorphic event at ~1.6 Ma (Hu et al., 2019). Northwest Africa 7034 shows a different and 379 
higher bulk oxygen isotopic values than any other martian meteorites (or planetary samples) 380 
with Δ17O = 0.517 ± 0.025‰ and δ18O between 5.5 and 7.0‰ and might be due to different 381 
reservoirs (Agee et al., 2013). 382 

Northwest Africa 7034 igneous clasts contain the oldest dated martian minerals, which 383 
are zircons >4300 Ma up to 4,476 ± 1 Ma, with a minimum source model age of 4,547 Ma, 384 
suggesting the formation of an extremely old enriched and andesitic primordial crust, as the 385 
last stage of magma ocean crystallization (Baziotis et al., 2018; Bellucci et al., 2018a; Bouvier 386 
et al., 2018; Hu et al., 2019; McCubbin et al., 2016; Nyquist et al., 2016). The fact that some 387 
alkaline clasts have crystallization ages of ~4.4 Ga show that alkaline magmatism occurred 388 
early in martian history, possibly due to early partial melting of mantle or contamination of 389 
primary magmas by the early alkali-rich martian crust (McCubbin et al., 2016). The regolith 390 
breccia was launched from Mars between ~5 and 9 Ma ago and underwent relatively little 391 
shock metamorphism (between 5 – 15 GPa) (Cartwright et al., 2014; Wittmann et al., 2015). 392 
The oldest zircons underwent a low-shock history, signifying that the giant impact period on 393 
Mars, including the Borealis impact, took place before 4.48 Ga, and represents a maximum 394 
age for habitable conditions (assuming that the shock processes on the planet was equally 395 
distributed, Cassata et al., 2018; Moser et al., 2019).  396 
 397 
2.3. Secondary processes recorded by meteorites 398 
 399 

Meteorites are invaluable for understanding of the geology of Mars. They have 400 
undergone secondary effects that have modified the chemistry that is either related to Mars, 401 
such as alteration (e.g., Beard et al., 2013; Bridges et al., 2001; Bridges & Schwenzer, 2012; 402 
Leshin & Vicenzi, 2006), mass independent fractionation of S in the surface environment 403 
(Franz et al., 2014), and shock (e.g., Fritz et al., 2005), or that are unrelated to martian 404 
processes: i.e., terrestrial alteration (e.g., Crozaz et al., 2003). While these secondary 405 
processes may pose challenges for interpreting primary processes, nevertheless they are 406 
critical for understanding surface processes acting on Mars. Terrestrial alteration processes 407 
will not be recorded in returned samples, reducing complication from these effects. However, 408 
some of the returned samples may display evidence for shock metamorphism from previous 409 
impacts at the martian surface. 410 

 411 
2.3.1. Terrestrial alteration 412 
 413 

Most martian meteorites were found in hot (NWA) and cold (Antarctica) deserts, 414 
which allow terrestrial alteration and weathering to occur in these rocks. Although martian 415 
meteorites found in Antarctica have terrestrial ages two orders of magnitude older than NWA 416 
meteorites (mean age of 30 ka), the latter are more weathered than the cold desert rocks, due 417 
to ice limiting interaction with liquid water (Sharp et al., 2019). Chemical alterations are more 418 
problematic for analyses. For example, terrestrial evaporites (Mg- and Ca-carbonates, sulfates 419 
such as barite) are typically observed in fractures (Bland, 2001; Wadhwa et al., 2020). 420 
Through terrestrial alteration, bulk composition can be enriched in Ba, Sr, U, and Ce, and 421 
possibly the light rare earth elements (Crozaz et al., 2003). For example, the nakhlite Caleta el 422 
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Cobre (CeC) 022 shows the highest Ce positive anomaly compared to the other nakhlites, 423 
likely due to alteration and oxidation in the Atacama desert (Krämer Ruggiu et al., 2020). 424 
 425 
2.3.2. Shock metamorphism 426 

 427 
Shock features can change primary physical and chemical characteristics of the rocks. 428 

During ejection from Mars, ejected samples undergo shock metamorphism, which involves 429 
mineral deformation (twinning, mosaics, planar fractures) and amorphization of plagioclase 430 
(forming a diaplectic glass known as maskelynite), formation of shock melt, olivine reduction 431 
to iron nanoparticles, modification of the primary volatile content of apatite, and formation of 432 
high pressure minerals, such as ringwoodite [Mg2SiO4], tissintite [(Ca,Na,)AlSi2O6], tuite [γ-433 
Ca3 (PO4)2], and coesite [SiO2] (Fritz et al., 2005; Sharp et al., 2019; Walton et al., 2014; 434 
Walton et al., 2012). Shock metamorphism is highly variable in martian meteorites, both 435 
between samples and within them. The lowest shock pressures experienced by martian 436 
meteorites show that at least 5 to 14 GPa is required to eject martian material from the surface 437 
(Fritz et al., 2005). Presence of crystalline plagioclase in several meteorites (NWA 4480, 438 
NWA 10416; Walton et al., 2016, NWA 8159; Sharp et al., 2019, and NWA 12241; Udry et 439 
al., 2020) suggest that they were subjected to lower shock pressures than other meteorites, in 440 
which all of the plagioclase has been converted to diaplectic glass. Most shergottites show 441 
higher shock pressures >19 GPa (Baziotis et al., 2013; Fritz et al., 2005), and rarely up to 70 – 442 
90 GPa (Kizovski et al., 2019). Nakhlites have undergone limited shock, and contain 443 
crystalline plagioclase, although they can contain twinned augite (Treiman, 2005). In a given 444 
meteorite, the greatest effect of shock is often localized in glassy to partially-crystalline melt 445 
veins or pockets (e.g., Walton et al., 2014). Melt pockets are now understood to represent the 446 
former locations of void spaces or fractures (e.g., Sharp et al., 2019; Walton et al., 2014), 447 
providing an explanation for the implantation of atmospheric gases into these meteorites, 448 
most likely during the event that ejected them from Mars (Walton et al., 2007). The 449 
localization of shock effects and the short duration of shock largely negates arguments that 450 
shock features erase original chemical zonation and/or isotopic equilibrium (e.g., El Goresy et 451 
al., 2013) as demonstrated by Jones (1986), although care needs to be taken to avoid shock 452 
features (especially veins and pockets) for determining petrological and compositional 453 
characteristics of the meteorites. 454 
 455 
2.4. Mars bulk silicate composition 456 
 457 

Meteorites are a key constraint for the bulk composition of Mars. The Wänke and 458 
Dreibus models (Dreibus & Wanke, 1985; Wanke et al., 1994; Wanke & Dreibus, 1988) as 459 
well as the updated Taylor model (Taylor, 2013) have been the most widely used. By 460 
assuming refractory element abundances in the bulk silicate Mars (BSM) are the same as CI 461 
carbonaceous chondrites, these models use the elemental compositions of martian meteorites 462 
to reconstruct the composition of BSM. Taylor (2013) suggested that Mars is rich in FeO 463 
compared to Earth, Venus, or Mercury, suggesting an FeO increase with heliocentric distance 464 
(FeO of Bulk Silicate Earth = 8.0 wt.%, McDonough & Sun, 1995) with a FeO content of 18 465 
wt.% in the Taylor (2013) model and 14.7 wt.% in the new Yoshizaki & McDonough (2020) 466 
model in the BSM. The Mars bulk H2O is slightly depleted compared to Earth, with water 467 
contents of 300 ± 150 ppm versus 500 ppm on Earth, and similar D/H compared to Earth 468 
(Taylor, 2013). The martian volatile budget indicates that Mars likely accreted from inner 469 
solar system material (Taylor, 2013). Recently, Yoshizaki & McDonough (2020) suggested 470 
that CI chondrites do not represent the composition of Mars, and only use shergottite 471 
compositions and spacecraft data to determine the BSM. These authors show that Mars is 472 
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systematically depleted in moderately volatile elements and enriched in refractory lithophile 473 
elements at 2.26 times higher abundances than in CI chondrites. According to this study, the 474 
martian core contains light elements with ≤7 wt.% of S, less than previously suggested 475 
(Stewart et al., 2007), but contains O (5.2 wt.%) and H (0.9 wt.%) (Yoshizaki & McDonough, 476 
2020). The martian mantle is more oxidized and has a lower Mg# [= molar MgO/(MgO + 477 
FeO)] of ~0.79 than the Earth’s mantle (McDonough & Sun, 1995; Yoshizaki & McDonough, 478 
2020). 479 

 480 
2.5. Low-temperature alteration surface processes on Mars 481 
 482 

Orbiters, landers, and rovers have shown geomorphological and mineralogical 483 
evidence of the presence of former liquid water on Mars as well as present ice in the polar 484 
caps and within the subsurface. Some hydrous minerals present in martian meteorites, like 485 
amphibole and apatite, are primary minerals and formed from crystallization of magmas. 486 
However, most hydrous minerals in martian meteorites were formed through interaction with 487 
water occurring on the martian surface or subsurface. The compositions, textures, and ages of 488 
aqueous alteration can provide insights into the hydrologic history of Mars. 489 

To distinguish martian from terrestrial alteration features and textures in meteorites, 490 
alteration minerals should ideally be older than the ejection events (e.g., cross cut by shock 491 
melt veins), and/or have documented martian compositions (Leshin & Vicenzi, 2006). 492 
Variable bulk rock and mineral δD values represent some combination of mantle reservoir(s) 493 
and/or near-surface/atmospheric reservoirs with δD values approaching those analyzed at the 494 
martian surface (> 5000‰; Villanueva et al., 2015; Webster et al., 2013) supporting a martian 495 
provenance (Hallis & Taylor, 2011; Liu et al., 2018; Usui et al., 2012).  496 

All types of martian meteorites show variable degrees of martian alteration. Allan 497 
Hills 84001 includes ~1% of carbonate rosettes that have a wide range of compositions and 498 
were dated at 3.9 Ga (Borg & Drake, 2005). These carbonates likely formed from 499 
precipitation of an aqueous fluid or evaporative brine implying that water/rock interaction 500 
occurred during the Noachian (Beard et al., 2013; McSween, 2019; Velbel, 2012). Northwest 501 
Africa 7034 and pairs contain accessory pyrite that might have formed through hydrothermal 502 
activity under reducing conditions, possibly triggered by the ~1.1 – 1.5 Ga thermal event (Liu 503 
et al., 2016; McCubbin et al., 2016; Wittmann et al., 2015). However, based on zircon 504 
compositions, Guitreau & Flahaut (2019) proposed an average alteration age of 227 Ma, close 505 
to the impact age suggested by Cassata et al. (2018). Some clast protoliths in NWA 7034 have 506 
undergone fluid-rock interactions at higher temperatures (>100ºC), before the brecciation 507 
impact event (Liu et al., 2016).  508 

Nakhlites have undergone variable degrees of aqueous alteration evidenced by a wide 509 
variety of alteration minerals: the presence of iddingsite in fractures, Fe-rich carbonates 510 
(siderite), phyllosilicates, halite, gypsum, anhydrite, and pyrite/marcasite (Bridges & Grady, 511 
1999; Day et al., 2006; Gillet et al., 2002; Hallis et al., 2014; Jambon et al., 2010; Lee et al., 512 
2018; Tomkinson et al., 2015; Treiman, 2005; Velbel, 2012; Velbel, 2016). Iddingsite is 513 
ubiquitous in nakhlites and a product of hydrous alteration of olivine. It consists of a mixture 514 
of smectite, Fe-oxyhydroxides, silica, and salts. Localized alteration of sulfides is observed as 515 
hematite when in contact with mesostasis, except when sulfides are armored by Fe-rich 516 
pyroxenes (Day et al., 2006). The alteration of the different nakhlite samples is thought to be 517 
~633 Ma based on iddingsite dating, possibly lasting from as little as 1 to 10 months (Borg & 518 
Drake, 2005; Changela & Bridges, 2010). Daly et al. (2019) recently proposed that aqueous 519 
alteration was aided by fracturing and brecciation by shock. 520 

Shergottites and chassignites are the meteorites that show the least martian secondary 521 
alteration, and include Ca-, Mg-, and Fe-Mn-carbonates, chlorite, illite, and smectite (Leshin 522 
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& Vicenzi, 2006; Stoker et al., 1993), dated between 1 and ~600 Ma (Borg & Drake, 2005; 523 
Chen et al., 2015). Recent studies of the olivine-phyric shergottite Tissint, which take 524 
advantage of the fact that it was recovered soon after its 2011 fall, and thus preclude most 525 
terrestrial effects, demonstrate that shock melt pockets contain a cryptic signature of near-526 
surface martian alteration, as evidenced by higher H2O and Cl concentrations and δD and 527 
δ37Cl isotopic compositions (Chen et al., 2015; Kuchka et al., 2017; Williams et al., 2016). 528 
Similar trends have also been observed in the shergottites Elephant Moraine (EETA) 79001 529 
and Larkman Nunatak (LAR) 06319 (Liu et al., 2018; Usui et al., 2015). Collectively, these 530 
studies suggest small amounts of low-temperature alteration by water in contact with surface 531 
or atmospheric reservoirs, within fractures or voids that collapsed upon impact to form shock 532 
melt pockets (Kuchka et al., 2017; Liu et al., 2018). 533 

It is apparent that shergottites and nakhlites did not undergo extensive leaching or 534 
low-temperature major element compositional changes, implying low water-rock interaction 535 
in these samples (Chen et al., 2015; Daly et al., 2019; Treiman et al., 1993). Similar to other 536 
meteorites, ALH 84001 also underwent relatively short lived and low water-rock ratio 537 
interaction, based on carbonate composition (Melwani Daswani et al., 2016). Although not 538 
pervasive, aqueous alteration has affected the source rocks of the martian meteorites from at 539 
least the early Noachian to the late Amazonian. The presence of liquid water throughout most 540 
of martian geologic history is consistent with surface data (Carr & Head, 2010), although the 541 
results from olivine-phyric shergottites may provide insights into subsurface water chemistry 542 
over the past 600 Ma (Liu et al., 2018). 543 

 544 
3. Igneous emplacement of martian magmas 545 
 546 

The diversity in textures and mineralogies observed in martian meteorites indicate 547 
various emplacement processes close to the surface of Mars. Although textures and 548 
mineralogies can be inferred from observations of surface basalts, the analyses of textures and 549 
mineral compositions is much more accurate when conducted on samples in laboratories on 550 
Earth. The current number of martian meteorites and increasing number of ejection age 551 
determinations have allowed groupings of meteorites into different ejection sites and volcanic 552 
systems, and thus, provide more constraints on the evolution of their magmas and volcanic 553 
systems. Two examples of proposed co-genetic relationships include the nakhlite-chassignite 554 
association, where complementary igneous compositions and crystallization and ejection ages 555 
all imply that they originate from the same or a similar volcano-magmatic edifice on Mars 556 
(e.g., McCubbin et al., 2013; Udry & Day, 2018, see Tables S1 and S3 for names of nakhlites 557 
and chassignites). Another is represented by a group of shergottite specimens that have 558 
identical ejection ages at 1.1 Ma and similar geochemical and isotopic characteristics, perhaps 559 
representing a magmatic center active for at least 2 Ga (e.g., Lapen et al, 2017).  560 
 561 
3.1. Evolution and emplacement of shergottites 562 
 563 

Based on bulk major element compositions, shergottites from enriched, intermediate, 564 
and depleted sources have been calculated to originate from mantle sources with anomalous 565 
mantle potential temperatures (~1750˚C) compared to Noachian rocks from Gale crater 566 
(~1450˚C), and thus represent products from a hot mantle plume (Filiberto, 2017). The large 567 
number of shergottite specimens enables a better understanding of how the different sub-types 568 
(poikilitic, gabbroic, basaltic, and olivine-phyric) were emplaced in the martian crust and 569 
surface; a schematic representation is presented in Figure 6.  570 

Olivine-phyric shergottites contain zoned olivine megacrysts (usually > 0.5 mm in 571 
length) that co-crystallized at depth within magma staging chambers, likely close to the base 572 
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of the crust (based on pyroxene Ti/Al thermometry). These crystals were entrained in an 573 
ascending magma, which then erupted at the surface or was emplaced in the near-surface 574 
hypabyssal environment. At this point, Fe-rich rims formed on olivine megacrysts and high-575 
Ca rims on pyroxene phenocrysts, followed by crystallization of plagioclase along with late-576 
stage accessory phases (e.g., Fe-Ti oxides, phosphates, sulfides) as the groundmass. The 577 
olivine megacrysts in olivine-phyric shergottites can be phenocrystic, xenocrystic, or 578 
antecrystic depending on the association with the groundmass in the rock. Some of the 579 
olivine-phyric shergottites represent the closest approximation of primary mantle derived 580 
magmas (e.g., Yamato (Y) 980459 , NWA 5789, NWA 6234, NWA 1068; Collinet et al., 581 
2017; Gross et al., 2011, 2013; Musselwhite et al., 2006), although most have undergone 582 
some degree of crystal sorting in magma staging chambers at depth or during ascent to the 583 
surface resulting in either loss or addition of olivine macrocrysts (e.g., Sayh al Uhaymir (SaU) 584 
005; Gross et al., 2013).  585 

Poikilitic shergottites are characterized by coarse-grained (> 1 cm in some cases) large 586 
low-Ca pyroxene crystals with high-Ca rims enclosing olivine and chromite chadacrysts. As 587 
with olivine-phyric shergottites, these phases likely crystallized close to the crust-mantle 588 
boundary (based on pyroxene Ti/Al thermometry; Rahib et al., 2019). Pyroxene oikocrysts 589 
were entrained and transported to shallower depths during magma ascent, at which point 590 
additional pyroxene and olivine co-crystallized, as informed by mineral composition and 591 
quantitative textural analyses (Figure 6; Combs et al., 2019; Howarth et al., 2014; Howarth et 592 
al., 2015; Rahib et al., 2019). The high abundance of olivine with resultant high bulk-rock 593 
MgO contents of the poikilitic shergottites clearly indicate significant accumulation of olivine 594 
during their emplacement in the crust and these meteorites do not represent primary mantle 595 
melts. Plagioclase, along with accessory phases, then crystallized during emplacement as 596 
shallow sills.  597 

Basaltic and gabbroic shergottites form from relatively evolved magmas that have 598 
undergone previous stages of olivine crystallization and fractionation and complete loss of 599 
olivine phenocrysts from the system. They are marked by pyroxene crystallization at depths, 600 
possibly within the same magma staging chambers where olivine fractionation occurred, 601 
followed by subsequent plagioclase and accessory mineral crystallization during emplacement 602 
at the surface as a flow or within the near-surface hypabyssal environment (Figure 6; e.g., 603 
Howarth et al., 2018). Although most shergottites show some degree of accumulation of 604 
early-formed phases (olivine and pyroxene), most basaltic shergottites likely erupted onto the 605 
surface as lava flows (Liu et al., 2016). As a result of pyroxene accumulation, most basaltic 606 
shergottites do not represent a liquid composition, with some rare exceptions (e.g., Queen 607 
Alexandra Range (QUE) 94201; Kring et al., 2003; McSween et al., 1996). 608 

Petrogenetic relationships between shergottite sub-types have been constrained on the 609 
basis of mineralogy, bulk chemistry, and isotopic characteristics. According to their mineral, 610 
bulk, and isotopic compositions, the different sub-types of shergottites are likely 611 
petrogenetically linked (Rahib et al., 2019; Treiman & Filiberto, 2014), signifying that 612 
different sub-types can originate from the same magmatic systems or bodies. Based on 613 
texture, isotopic composition, and mineralogy, poikilitic shergottites are linked through 614 
fractionation to basaltic and olivine-phyric shergottites and might originate from the same 615 
magmatic systems (Filiberto et al., 2018; Rahib et al., 2019; Udry et al., 2017). Specifically, 616 
poikilitic shergottites may have formed from fractionation of an originally olivine-phyric 617 
shergottite-like magma through fractionation of olivine within staging chambers at depth; 618 
early pulses of magma ascending from staging chambers incorporated predominantly olivine 619 
and formed olivine-phyric shergottites at the surface, whereas later ascending magmas 620 
incorporated more pyroxene oikocrysts and formed the poikilitic shergottites at the surface 621 
(Combs et al., 2019). Basaltic shergottites may also have formed from an olivine-phyric 622 
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shergottite magma, through fractionation of olivine or lack of olivine entrainment (Combs et 623 
al., 2019; Filiberto et al., 2012; Treiman & Filiberto, 2014; Udry et al., 2017). This process 624 
may explain the low-Al basalts, with high-Al basalts formed through further fractionation of 625 
pyroxene. Gabbroic shergottites are also likely linked to basaltic shergottites (Figure 6). For 626 
example, the gabbroic NWA 7320 originated from a common volcanic system with the 627 
basaltic shergottites, Los Angeles and NWA 856, based on similar mineralogy and isotopic 628 
composition (Udry et al., 2017). Northwest Africa 7320 represents a sub-volcanic cumulate 629 
version of a basaltic shergottite that erupted at the surface. Some of the gabbroic meteorites 630 
could represent the feeder dike system that fed the lava flows represented by the basaltic 631 
shergottites. The petrogenetic link between groups of shergottites is also supported by the fact 632 
that ~20 depleted shergottites, including basaltic and olivine-phyric shergottites, and the 633 
augite-rich types (NWA 7635 and 8159), have ejection ages within error of 1.1 Ma, 634 
suggesting that they originated from the same long-lived volcanic system, active from at least 635 
327 to 2403 Ma (Brennecka et al., 2014; Lapen et al., 2017).  636 

We plotted crystallization ages versus ejection ages for the martian meteorites (Figure 637 
7; note that only meteorites with both published ages were included; see data on Table S4). 638 
Depleted olivine-phyric shergottites show similar ejection ages and intermediate poikilitic 639 
shergottites are clustered. However, there is no clear correlation between sub-types of 640 
shergottites, sources, and ages, which might be due to the fact that only a subset of 641 
shergottites have had their ages measured. In addition, as also mentioned in Fritz et al. (2005), 642 
ejection events are not constant on Mars with different discrete events, with most of the 643 
shergottites ejected after 4.5 Myr. 644 

Due to lack of calibrations for martian conditions, few geobarometers can be used to 645 
constrain the depth of crystallization of martian meteorite phenocryst/megacryst phases. 646 
Pyroxene Ti/Al can help constrain a range of pressures of crystallization (not an exact 647 
pressure, as it is not fully calibrated for Mars; Filiberto et al., 2010; Nekvasil et al., 2007). 648 
The application of this geobarometer to various shergottites and chassignites suggests that 649 
formation of staging chambers at the crust/mantle boundary may be widespread on Mars, 650 
possibly leading to the formation of the various shergottite lithologies (Combs et al., 2019; 651 
Dunham et al., 2019; Filiberto, 2017; Howarth et al., 2018; Nekvasil et al., 2004; Rahib et al., 652 
2019; Udry et al., 2017). Minor element compositions in pyroxene in nakhlites also suggest 653 
that they could have formed at the bottom of the martian crust (McCubbin et al., 2013; Udry 654 
& Day, 2018). As such, there may be a large quantity of pyroxenite (and possibly dunite or 655 
wehrlite) cumulates representing materials from these staging chambers, that underplate the 656 
martian crust and in the martian lithosphere.  657 
 658 
3.2. Evolution and emplacement of nakhlites/chassignites 659 
 660 

In contrast to shergottites, which originated from different localities, the nakhlite and 661 
chassignite meteorites have been inferred to be derived from a large igneous pile. A recent 662 
comprehensive study by Udry and Day (2018) showed that nakhlites and chassignites were 663 
likely emplaced as various lava flows and/or hypabyssal sills according to their different 664 
mineralogies, cooling rates, and qualitative and quantitative textures, similar in many ways to 665 
volcanic emplacement on Earth (Balta et al., 2017; Corrigan et al., 2015; Daly et al., 2019; 666 
Jambon et al., 2016; Udry & Day, 2018). At least five eruptive events for the nakhlites are 667 
suggested by their 40Ar/39Ar ages, that vary between 1415 ± 7 Ma (Y-000749) to 1322 ± 9 Ma 668 
(Lafayette) (Cohen et al., 2017), with the youngest events at 1,215 ± 67 Ma (Krämer Ruggiu 669 
et al., 2020) 670 
 671 
3.3. Link between shergottites and nakhlites/chassignites? 672 
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 673 
Radiogenic isotope data of nakhlites as a whole are similar to depleted/intermediate 674 

shergottites. However, there are distinct differences that appear to preclude or complicate 675 
genetic relationships between shergottites (including ALH 84001) and nakhlites. For example, 676 
all shergottites plot as a linear array on a 142Nd/144Nd(measured) versus 143Nd/144Nd(source calculated at 677 
the present day) diagram (e.g., Debaille et al., 2007; Caro et al., 2008; Borg et al., 2016; Lapen et 678 
al., 2017; Figure 8). Regardless of whether the linear array represents a mixing line between 679 
depleted and enriched mantle sources (e.g., Debaille et al., 2007; Lapen et al., 2017) or that 680 
the slope of the array has age significance (e.g., Borg et al., 2016), the nakhlites do not plot on 681 
this array requiring that the nakhlite mantle source has a different early evolution than 682 
shergottite sources. Based on 176Lu-176Hf, 146Sm-142Nd, 147Sm-143Nd, and W isotope 683 
compositions of nakhlites, Debaille et al. (2009) proposed a model of early majoritic garnet 684 
fractionation that explains the apparent decoupling of W, Hf, and Nd isotopes observed in 685 
these meteorites and not shergottites. Given that there is as yet no evidence for isotopic 686 
mixing between shergottite and nakhlite mantle sources, these reservoirs and the melts 687 
derived from them seem to have remained isolated from one another during their 688 
petrogeneses. 689 

Based on their bulk trace element compositions, nakhlite, chassignite, and shergottite-690 
like magmas are all predicted to be produced from large plume-fed systems (Day et al., 2018). 691 
In order to explain the distinct mantle sources, it has been proposed that shergottites and 692 
nakhlites represent main shield and later rejuvenated magmas from metasomatized 693 
lithosphere, respectively, in a stagnant-lid regime (Day et al., 2018). This process is 694 
represented in figure 9. Due to eruption of a large volume of shergottite lavas during the main 695 
shield period, load is emplaced unevenly on the underlying lithosphere, leading to flexure and 696 
the development of a flexural bulge outboard of the volcanic edifice. Flexural moats and 697 
bulges are observed on Earth in the Hawaiian-Emperor chain volcanoes and also occur, based 698 
on gravity, in the Tharsis volcanic province on Mars (e.g., Genova et al., 2016; Sandwell et 699 
al., 2014). The geochemical compositions of nakhlites and chassignites share several key 700 
similarities with Hawaiian rejuvenated lavas formed by partial melting of the migrating 701 
flexural bulges and would seemingly preclude the formation of bulges around large martian 702 
volcanic edifices forming from thickening restites from partial melting. As with terrestrial 703 
rejuvenated lavas, a previously depleted mantle, which is required for the source of nakhlites 704 
based on their Sr-Nd isotope systematics, has to be metasomatized in order to induce 705 
localized partial melting through decompression during lithospheric flexure. This depleted 706 
mantle likely represents martian lithosphere, and so, the cause of 182W and 142Nd isotope 707 
variations in nakhlites would relate to the early formation of the martian lithosphere, or by 708 
inheritance from metasomatizing partial melts from deeper mantle sources, but also could be a 709 
consequence of both processes. Nakhlite- and chassignite-like melts would correspond to 710 
rejuvenated magmas on Mars (Day et al., 2018). 711 

 712 
4. The interior of Mars is poorly mixed 713 
 714 

Martian meteorites allow the timing of planet-formation processes to be elucidated 715 
using isotopic and elemental compositions inherited from their source reservoirs. Both Earth 716 
and Mars have geochemically and isotopically distinct components, but Mars does not have 717 
plate tectonics that would have facilitated mixing and dilution of primordial components 718 
(Debaille et al., 2013).  Thus, Mars retains a higher resolution record of mantle 719 
heterogeneities produced during early planetary differentiation. Mantle heterogeneities are 720 
assessed using trace elements and isotopic compositions, including 146,147Sm-142,143Nd, 182Hf-721 
182W, 176Lu/177Hf, U-Pb, 87Rb-87Sr, and 187Re-187Os, as well as redox conditions (Armytage et 722 
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al., 2018; Bellucci et al., 2018b; Brandon et al., 2012; Day et al., 2018; Debaille et al., 2007, 723 
2008, 2009; Foley et al., 2005; Herd, 2003; Herd et al., 2017; Lapen et al., 2017; Tait & Day, 724 
2018; Wadhwa, 2001). At least six different reservoirs have been proposed on Mars, 725 
including a mixture of three for shergottites and ALH 84001 (e.g., Lapen et al., 2010; 2017; 726 
Figure 4), one for the nakhlites and chassignites (e.g., Debaille et al., 2009), one for NWA 727 
8159 (e.g., Bellucci et al., 2020) and at least one for some components in NWA 7034 728 
(Armytage et al., 2018). In this section, we describe these different sources, their timing of 729 
formation, and the early global processes for Mars, including accretion and differentiation, 730 
which can only be determined using samples. 731 
 732 
4.1. Shergottite reservoirs 733 
 734 

Shergottites largely inherit their trace element and initial radiogenic isotopic 735 
compositions from their mantle sources. Initial radiogenic isotopic compositions, in 736 
conjunction with igneous crystallization ages, are used to calculate important geochemical 737 
information of shergottite (and ALH 84001) mantle sources. For example, measurement of an 738 
initial 87Sr/86Sr of a shergottite specimen would allow the calculation of the long-term 739 
87Rb/86Sr of its mantle source, defined here as the mantle source ratio (e.g., Borg et al., 2003; 740 
Debaille et al., 2008; Lapen et al, 2017). The same methodology could also be applied to the 741 
long-lived 147Sm-143Nd, 176Lu-176Hf, 238U-206Pb, and 187Re-187Os isotope systems in 742 
calculating the mantle source ratios of 147Sm/144Nd, 176Lu/177Hf, 238U/204Pb, and 187Re/188Os 743 
source ratios, respectively. Bivariate plots of 147Sm/144Nd and 87Rb/86Sr source ratios precisely 744 
define an apparent two-component mixing hyperbola (e.g., Borg et al., 2003; Lapen et al, 745 
2017). Bivariate plots of 176Lu/177Hf and 147Sm/144Nd source ratios (Figure. 4), however, 746 
indicate mixtures of at least three components. Using mantle cumulate and residual liquid 747 
compositions calculated from the progressive Mars magma ocean crystallization model of 748 
Debaille et al. (2008), the most ITE-depleted component (highest 176Lu/177Hf and 147Sm/144Nd 749 
source ratios; 0.08 and 0.4, respectively) might represent mantle cumulates that constitute the 750 
depleted lower portions of the upper mantle (UM2 in Figure 4). Another depleted component 751 
might represent shallower and more evolved mantle cumulates (UM1 in Figure 4) with less 752 
elevated 147Sm/144Nd and 176Lu/177Hf source ratios than earlier-formed deeper cumulates. The 753 
ITE-enriched endmember can be modeled as dominated by a trapped residual liquid 754 
component in the upper mantle (e.g., Lapen et al., 2010) with 176Lu/177Hf and 147Sm/144Nd 755 
source ratios of approximately 0.017 and 0.17, respectively (Lapen et al., 2017; Figure 4). 756 
These data imply a hybridized martian mantle. In addition to the shergottite source 757 
systematics shown by the Lu-Hf, Sm-Nd, and Rb-Sr data, the Re-Os and U-Pb isotope 758 
systems also follow the predicted mantle source mixing where depleted and enriched 759 
endmembers can be mixed to produce the compositional variations observed in shergottites 760 
(Bellucci et al., 2018; Brandon et al., 2012; Day et al., 2018; Debaille et al., 2008, 2009; 761 
Herd, 2003; Herd et al., 2017; Lapen et al., 2017; Tait & Day, 2018; Wadhwa, 2001). These 762 
mantle source endmembers also have differences in redox conditions (oxygen fugacity, ƒO2), 763 
resulting in correlations between calculated primary ƒO2 in the shergottites, ITE abundances, 764 
and radiogenic isotope compositions (Figure 10 and 11) (e.g., Borg et al. 2002, 2003, 2016; 765 
Brandon et al. 2012; Brennecka et al. 2014; Combs et al. 2019; Debaille et al. 2008; Ferdous 766 
et al. 2017; Herd 2003; Lapen et al. 2017; McSween 2015; Nyquist et al. 2001; Paquet et al. 767 
2020; Rahib et al. 2019; Shafer et al. 2010; Symes et al. 2008; Tait and Day 2018; Usui et al. 768 
2010; Wadhwa 2001). Finally, the shergottite components have heterogeneous volatile 769 
contents, with 36 to 73 ppm H2O in the enriched source and 14 to 23 ppm H2O in the depleted 770 
source (McCubbin et al., 2016), discussed below in section 4.5. 771 

Although it is accepted that the depleted components are located in the mantle, the 772 



17 
 

origin of the enriched component is still debated, and could be located in the crust or mantle  773 
(Borg & Draper, 2003). Recent consensus leans toward an enriched mantle source — or 774 
sources. If the enriched source were the crust, it would signify that crustal assimilation has 775 
occurred (e.g., Humayun et al., 2013; Norman, 1999). However, assimilation is not consistent 776 
with major element, isotopic compositions, and redox conditions of shergottites (Armytage et 777 
al., 2018; Brandon et al., 2012; Ferdous et al., 2017; Herd, 2003; Symes et al., 2008; Tait & 778 
Day, 2018). Peters et al. (2015) proposed that the trace element compositions indicate that 779 
crustal recycling back into the mantle, possibly through delamination — due to the higher 780 
density of the lower crust (Papike et al., 2013), might be responsible for the enriched 781 
shergottite source. Regardless of their origin, shergottites represent variable mixtures of these 782 
endmember compositions. For example, Combs et al. (2019) showed that the enriched 783 
shergottites Los Angeles, NWA 7320, NWA 856, and NWA 10169 likely originated from a 784 
different mantle source endmember mixture than the other enriched shergottites based on their 785 
Lu/Hf isotopic compositions. In addition, the depleted reservoir might also be locally 786 
heterogeneous based on U/Pb and Sm/Nd ratios in Dar al Gani (DaG) 476 and Y-980459 787 
(Moriwaki et al., 2020). 788 

The early Amazonian shergottite NWA 8159 formed from a depleted mantle source 789 
(Herd et al., 2017) that is distinct from the depleted shergottites based on Cr, W, Nd, and Pb 790 
isotopic studies (Bellucci et al., 2020; Herd et al., 2017). While NWA 8159 shares some 791 
similarities with NWA 7635, including crystallization age, mineralogy, REE compositions, 792 
and ejection age — suggesting they may be launch-paired — differences in isotopic 793 
compositions and textures between the two samples warrant further studies to discern whether 794 
they are derived from the same mantle source and are petrogenetically related (Herd et al., 795 
2017).  796 

Shergottite sources show diversity in isotopic and elemental compositions, but also in 797 
oxygen fugacity (ƒO2), representing their redox history, indicating redox heterogeneity of the 798 
interior. Based on a limited number of samples, it was noted that shergottite ƒO2 correlates 799 
with their isotopic compositions and bulk REE enrichment (Herd, 2003; Herd et al., 2002; 800 
Wadhwa, 2001). The discovery and study of diverse new shergottites complicates the 801 
simplicity of the original correlations. However, ƒO2 does correlate with source compositions 802 
once the effects of ascent and eruption are taken into account (e.g., Castle & Herd, 2017). 803 
Oxygen fugacity, and thus, redox history, is determined using major and/or trace element-804 
based oxybarometers applied to the compositions of different mineral assemblages (see Herd, 805 
2008 for a review). It is important to calculate the ƒO2 of early-crystallizing and late-806 
crystallizing mineral assemblages, as these mineral assemblages will represent different 807 
stages of crystallization, and thus, different set of conditions. Olivine-phyric and poikilitic 808 
shergottites show at least two different stages of crystallization. By measuring the early- and 809 
late-stage mineral assemblages, it was shown that an increase in ƒO2 (up to ~3 log units 810 
relative to the quartz-fayalite-magnetite — QFM — solid oxygen buffer) occurred from early- 811 
to late-stage crystallization in all measured olivine-phyric shergottites. This increase in ƒO2 812 
implies that most shergottites underwent degassing and/or auto-oxidation during magma 813 
ascent (Castle & Herd, 2017, 2018; Howarth et al., 2018; Rahib et al., 2019). Evidence for the 814 
degassing process suggests that volatiles were present early in the shergottite parental magma, 815 
although the suite of volatiles responsible for the oxidation have yet to be elucidated (Balta et 816 
al., 2013; Castle & Herd, 2017; Combs et al., 2019; Howarth et al., 2014; Howarth et al., 817 
2018; Howarth & Udry, 2017; Peslier et al., 2010; Rahib et al., 2019; Shearer et al., 2019). 818 
Figure 11 provides a representation of the correlation between ƒO2 and La/Yb ratio — a 819 
proxy for incompatible element enrichment. The ƒO2 trends for early-crystallizing 820 
assemblages in poikilitic shergottites, olivine-phyric, and basaltic shergottites increase from 821 
depleted to enriched shergottites, demonstrating that the depleted and enriched shergottite 822 
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reservoirs have different ƒO2, which is higher in the enriched reservoir(s). These trends are 823 
parallel, especially poikilitic and basaltic trends, suggesting a link between the different 824 
shergottite groups. Note that subsolidus Fe-Mg exchange might have occurred in early-825 
crystallizing olivine and chromite in poikilitic shergottites, complicating calculated ƒO2 for 826 
these rocks (Walton et al., 2012). 827 
 828 
4.2. Nakhlite/chassignite reservoir 829 
 830 

An isotopically uniform mantle source reservoir is inferred for nakhlites and 831 
chassignites. This mantle source has been ITE depleted for most of Mars history (high 832 
176Lu/177Hf and 147Sm/144Nd, and low 87Rb/87Sr and 187Re/188Os; Figure 10). The ε143Nd(present 833 
day) versus ε142Nd(measured)  of nakhlites (Debaille et al., 2009; Figure 8) indicate limited 834 
variability in compositions that are distinct from the shergottite source mixing line. This 835 
source reservoir is more depleted in Heavy REE (HREE) than shergottites and could have 836 
experienced early garnet fractionation (Debaille et al., 2009; Treiman, 2005). According to 837 
δ34S compositions and secondary phases indicative of alteration, some nakhlite samples 838 
record hydrothermal processes and assimilation of martian regolith, and possibly assimilation 839 
of an enriched mantle component based on their 187Os/188Os composition (Franz et al., 2014; 840 
Mari et al., 2019). The nakhlite source seems to have undergone variable degrees of 841 
metasomatism (= change in bulk composition due to introduction of fluids). Based on the 842 
calculated compositions of the nakhlite parental melt, the nakhlite and chassignite sources 843 
could have been enriched in K through metasomatism (Goodrich et al., 2013; Ostwald et al., 844 
2020). This form of metasomatism has also been suggested for the source of Gale crater rocks 845 
(Stolper et al., 2013; Treiman et al., 2016; Udry et al., 2014), and thus might be a widespread 846 
process in the shallow martian interior. 847 
 848 
4.3. Polymict regolith breccia source 849 
 850 

The mantle sources of some igneous components in the regolith breccia NWA 7034 851 
and its paired meteorites are different from the source of the other martian meteorites, 852 
primarily because it is a polymict breccia with clasts of a variety of material types. 853 
Nevertheless, the isotopic composition (low 147Sm/144Nd and 176Lu/177Hf; Figure 10) of some 854 
clasts is consistent with an ancient LREE-enriched crust, which is distinct from the enriched 855 
shergottite source (Armytage et al., 2018; Kruijer et al., 2017; Nyquist et al., 2016). In 856 
addition, the Pb isotopic compositions of the paired regolith breccias shows that a previously 857 
unknown enriched reservoir in 207Pb/204Pb is present in the martian interior, and is possibly 858 
crustal (Bellucci et al., 2016). Alkali basalt clasts in Northwest Africa 7034 are also highly 859 
oxidized compared to all other martian meteorites with ƒO2 of QFM+3 (calculated from 860 
ilmenite-magnetite pairs, Santos et al., 2015). As noted above, clasts within NWA 7034 (and 861 
paired rocks) provide unprecedented insights into the nature of the early martian crust and 862 
shows that it was isotopically and chemically distinct from the sources of the other martian 863 
meteorites. 864 
 865 
4.4. Early martian history and magma oceanography 866 
 867 

Mars accretion and core formation occurred before the accretion of the Earth, both 868 
estimated between 7 – 10 Ma (Figure 5, Dauphas & Pourmand, 2011; Debaille et al., 2009; 869 
Foley et al., 2005; Kleine et al., 2004; Kruijer et al., 2017) after solar system condensation of 870 
calcium-aluminum-rich inclusions (CAIs) at ~4567 Ma (Amelin, 2002; Connelly et al., 2017; 871 
Connelly et al., 2012). After an initial major phase of accretion, terrestrial planets are widely 872 
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considered to have undergone global and deep melting, resulting in a magma ocean, referred 873 
here for Mars as the MMO (martian magma ocean) (Elkins-Tanton et al., 2003). The latest 874 
estimates of the duration of crystallization of the MMO are from 10 to 25 Ma after solar 875 
system condensation (Kruijer et al., 2017, with earliest estimates at 33 Ma, Borg et al., 2003), 876 
but could have lasted up to 100 Ma (Debaille et al., 2009; Elkins-Tanton, 2005; Figure 5). 877 
Following crystallization of the MMO and the formation of solid cumulates, mantle overturn 878 
occurred. Mantle overturn is induced by the final crystallizing layers, which are inferred to be 879 
rich in Fe and incompatible elements forming near the top of the MMO, and are denser 880 
compared to earlier-crystallizing layers — they will therefore sink into the mantle (Elkins-881 
Tanton et al., 2003). The solid cumulates that are formed during initial crystallization are then 882 
moved within the mantle during overturn. During overturn, parts of the MMO can melt 883 
adiabatically.  884 

Large-scale mantle reservoirs, including the different sources of martian meteorites, 885 
likely formed during silicate differentiation associated with MMO solidification and overturn 886 
(Bouvier et al., 2018; Debaille et al., 2008; 2009; Kruijer et al., 2017). Combined W and Nd 887 
isotopic compositions of shergottites, ALH 84001, and NWA 7034, suggest a single 888 
differentiation event between 25 and 40 Ma after solar system condensation that established 889 
the mantle sources for the meteorites (Kruijer et al. 2017). Formation of components recorded 890 
in these rocks need not have been contemporaneous, nor do all enriched shergottite 891 
components need to be identical on this basis (Kruijer et al. 2017). The cumulate components 892 
of the MMO represent the depleted component(s), whereas the enriched component(s) are 893 
likely the last dregs of MMO crystallization (e.g., Borg & Draper, 2003; Debaille et al., 2008; 894 
Lapen et al., 2010; Moriwaki et al., 2020). Mixing of the two could have formed the 895 
intermediate reservoir (Borg et al. 2003). The depleted shergottite reservoir might also be 896 
locally heterogeneous based on U/Pb and Sm/Nd ratios (Foley et al., 2005) and coupled Lu/Hf 897 
and Sm/Nd source systematics (Lapen et al., 2017), possibly due to later events than the 898 
MMO, including further mixing of enriched and depleted sources or local remelting (e.g., Tait 899 
& Day, 2018), or as produced directly from the MMO crystallization processes (Debaille et 900 
al., 2008). Differentiation histories were likely different between shergottites and 901 
nakhlites/chassignites based on the 182Hf-182W and 146Sm-142Nd systems (Bellucci et al., 902 
2018), due to possible mantle overturn (Dauphas & Pourmand, 2011; Foley et al., 2005; 903 
Debaille et al., 2009). While nakhlites potentially record the mantle overturn (Debaille et al. 904 
2009), it would be a complex heritage, with metasomatism of a depleted mantle source during 905 
plume impingement required to explain their gross geochemical characteristics (Day et al., 906 
2018), as the nakhlite depleted source was likely metasomatized by fluids later on. The 907 
nakhlite mantle source likely formed before the shergottite source and might have formed 908 
during the first 10 – 25 Ma after CAI condensation (Borg & Drake, 2005; Debaille et al., 909 
2009; Foley et al., 2005) and have different 182W than shergottites. The source of ALH 84001 910 
also formed early at ~20 Ma after CAI condensation (Kruijer et al., 2017). This source is 911 
related to, and perhaps identical with, the enriched shergottite source endmember (Lapen et 912 
al., 2010). 913 

Solid-state MMO overturn and associated decompression melting could have formed 914 
the martian crust between 20 and 100 Ma after solar system condensation (Bouvier et al., 915 
2018; Debaille et al., 2008; Kruijer et al., 2017). The more recent estimate of crustal 916 
formation (~4,547 Ma) was calculated using the oldest zircons found in NWA 7034. This age 917 
implies that an enriched andesitic-like crust formed extremely early in Mars history at the last 918 
stages of magma ocean crystallization (Bellucci et al., 2018; McCubbin et al., 2016; Nyquist 919 
et al., 2016). The source of NWA 7034 could have formed up to ~40 Ma after CAI 920 
condensation; note that as NWA 7034 is a polymict breccia, which might originate from 921 
several sources (Kruijer et al., 2017). Furthermore, the similarity in W-Nd isotopic 922 
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composition between NWA 7034, ALH 84001, and enriched shergottites suggests that Mars 923 
is relatively simple in terms of W and Nd isotopic reservoirs. Little compositional mixing has 924 
occurred throughout the entire geologic history of Mars (Blichert-Toft et al., 1999) and thus 925 
the shergottite sources have not significantly changed since their formation due to the absence 926 
of vigorous convection (Debaille et al., 2013), in particular, because of the lack of toroidal 927 
flow associated with transform boundaries (Kiefer, 2003).  928 
 929 
4.5. Volatiles in the martian interior 930 
 931 

A significant debate about the pre-eruptive volatile content of martian igneous rocks is 932 
still occurring. The problem originates from bulk water contents of shergottites, which are 933 
lower than most terrestrial magmas (50 – 150 ppm) (Dreibus & Wanke, 1985; Leshin, 2000; 934 
Leshin et al., 1996). This debate originally lead to two schools of thought: martian magmas 935 
were drier than their terrestrial counterparts or martian magmas catastrophically degassed 936 
before eruption and were initially much wetter (Dann et al., 2001; Filiberto & Treiman, 2009; 937 
Herd et al., 2005; Lentz et al., 2001, 2001; McCubbin et al., 2012; McSween et al., 2001; 938 
Nekvasil et al., 2007; Treiman, 1985; Treiman et al., 2006; Udry et al., 2016; Usui et al., 939 
2012; Wilson & Head, 1981).  940 
 Resolving this discrepancy required new detailed analyses of apatite, amphibole, melt 941 
inclusions, nominally anhydrous minerals, and impact melts. Apatite is a ubiquitous but minor 942 
phase in most martian meteorites and the only primary volatile-bearing phase in shergottites. 943 
Apatite chemistry can reveal the primary volatile content of the parent magma, but only if: (1) 944 
significant crystal fractionation did not occur; (2) the magma did not degas before apatite 945 
crystallization; (3) magma mixing did not occur; (4) the magma did not assimilate crustal 946 
material; (5) the magma did not interact with crustal fluids either during or after 947 
crystallization; or (6) the apatite was not affected by shock related processes (Howarth et al., 948 
2015; McCubbin et al., 2016). Amphibole is a better recorder of magmatic volatiles than 949 
apatite (Hawthorne, 1983). However, amphibole is rare in martian meteorites and is only 950 
found in melt inclusions in a limited number of meteorites (McCubbin et al., 2013; Sautter et 951 
al., 2006; Treiman, 1985). Amphibole chemistry is complicated and requires complex 952 
modeling and assumptions to calculate the parental magma and these models are not fully 953 
calibrated for martian magmas (Giesting et al., 2015; Giesting & Filiberto, 2014). Direct 954 
measurements of volatiles in magmas can be made on melt inclusions in olivine and pyroxene 955 
(Usui et al., 2012), but hydrogen can easily diffuse through the silicate host (Gaetani et al., 956 
2012) and crystallization can cause element exchange between the melt inclusion magma and 957 
silicate host (Danyushevsky et al., 2000). Therefore, while melt inclusions can be used to 958 
constrain volatile contents of parent magmas, care needs to be taken before directly applying 959 
these measurements. Nominally anhydrous minerals, such as olivine and pyroxene, can 960 
contain tens to hundreds of ppm H2O in the form of protons incorporated into their structural 961 
defects and can therefore also be used to constrain magmatic volatiles, but again, these require 962 
calibrated partition coefficients. In order to get accurate estimates of the primary H2O 963 
contents of these nominally anhydrous minerals, the effects of degassing and shock 964 
metamorphism need to be carefully considered (e.g., Peslier et al., 2019). Finally, impact-melt 965 
hygrometers have also been developed to track the primary versus secondary sources of 966 
volatiles in martian meteorites (Chen et al., 2015; Liu et al., 2018).  967 

Of the above-mentioned ways in which the volatile contents of martian magmas can 968 
be constrained, apatite has received the most attention. Using the constraints on apatite and 969 
amphibole petrogenesis discussed in the previous paragraph and discarding any analyses that 970 
may have been affected by element mobility, Filiberto et al. (2016) and McCubbin et al. 971 
(2016) in companion papers attempted to constrain the pre-eruptive volatile (H2O, Cl, and F) 972 
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contents of the parent magma of the shergottite meteorites and their source region. They 973 
specifically excluded the nakhlites from this calculation because the nakhlites have seen both 974 
high-temperature magmatic hydrothermal fluids and secondary low-temperature fluids that 975 
have altered the apatite chemistry (Bridges & Schwenzer, 2012; Filiberto, Treiman, et al., 976 
2014; Giesting & Filiberto, 2016). These companion papers along with a follow up study 977 
(Filiberto et al. 2019), showed that shergottite magmas have 2.5 ± 1 times the amount of 978 
chlorine compared with terrestrial magmas and that they were not volatile saturated — e.g., 979 
they did not degas before eruption (at least those using these conservative filters). Instead 980 
shergottite magmas have water contents consistent with their bulk water contents (5 – 150 981 
ppm water) and similar to terrestrial mid-ocean ridge basalts (Filiberto et al., 2016). Using 982 
these magmatic volatile contents, McCubbin et al. (2016) then calculated water contents of 983 
different source regions: a) 36 – 73 ppm H2O for the enriched shergottite source and b) 14 – 984 
23 ppm H2O for the depleted shergottite source region. These values represent water contents 985 
for the shergottite source during the Amazonian. Based on nominally anhydrous minerals 986 
rather than apatite, the mantle source sampled by the nakhlites has been estimated to have 59 987 
– 184 ppm ( Peslier et al., 2019).  988 

The water content and H isotopic compositions of Northwest Africa 7034 show that 989 
this rock represents a crustal reservoir with H compositions between the martian mantle and 990 
atmosphere (Davidson et al. 2020). A recent study by Barnes et al. (2020) demonstrates that 991 
the bulk martian crust (represented by NWA 7034 and ALH 84001) likely has had the same 992 
D/H composition for at least 3.9 Ga. Further, this work showed that the D/H compositions of 993 
the enriched and depleted shergottite sources are heterogeneous and the crust likely represents 994 
a mixture of at least two mantle reservoirs, which provides further evidence that the enriched 995 
component of the shergottites originates in the mantle and is not a crustal reservoir. In 996 
contrast, Hu et al. (2020) suggests that shergottites represent the mixing of crustal (δD ~5000 997 
– 6000‰) and magmatic water (δD ~ 0‰).   998 

A major uncertainty for the volatile content of the martian interior remains the volatile 999 
content earlier in Mars’ history (Filiberto et al., 2016). It is likely that earlier in Mars history, 1000 
the interior was more volatile-rich in terms of water, halogens, carbon, and likely sulfur (e.g. 1001 
Filiberto et al., 2016; McCubbin et al., 2016; Médard & Grove, 2008). Through time, volatile 1002 
elements partitioned into the magma, as they are all largely incompatible elements during 1003 
mantle melting, and then were lost to the crust and atmosphere during emplacement. Without 1004 
plate tectonics and crustal recycling, there is no large-scale mechanism to replenish the 1005 
interior with volatile elements, and thus the martian interior should have dried out over time. 1006 
However, the extent to which this occurred, the exact volatile content of the Noachian mantle, 1007 
the exact nature of the enriched versus depleted source regions, and how heterogeneous the 1008 
interior was remains largely unconstrained (see Filiberto et al. 2016b for a full review of 1009 
open-ended questions). 1010 
 1011 
5. What we still don’t know 1012 

 1013 
One of the main knowledge gaps for martian meteorites is the locations on the surface 1014 

from where they were derived. Comparison of martian meteorite ages with the crater 1015 
chronology-based ages of surface units, shows a distinct bias in the martian meteorite suite, 1016 
also defined as the “age paradox” by Nyquist et al. (1998). This bias was recognized early in 1017 
the study of martian meteorites, when the total number of recovered meteorites was low (e.g., 1018 
Jones, 1989; Warren et al., 2004). A better understanding of the physics of ejection of the 1019 
meteorites (e.g., Head et al., 2002), and considerations of shock effects and isotopic 1020 
compositions (e.g., Walton et al., 2008) only strengthens this conclusion. It is apparent that 1021 
the process of ejection of meteoroids from Mars is sufficiently violent as to favor young 1022 
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igneous lithologies and highlights the need for calibration of the crater count-based 1023 
chronology of Mars. 1024 

Martian meteorites in the terrestrial collection were ejected from Mars between 0.7 Ma 1025 
to 20 Ma, corresponding to at least 11 different events, as determined by isotopes such as 3He, 1026 
10Be, 15N, 21Ne, 38Ar, 53Mn, and 81Kr (Herd et al., 2017; Herzog & Caffee, 2014; McSween, 1027 
2015; Nyquist et al., 2001; Wieler et al., 2016). Meteorites deriving from the same location on 1028 
Mars will likely have the same ejection age, as it can be assumed, based on crater distribution 1029 
on Mars and lack of young overlapping craters, that a single impact event occurred to eject 1030 
rocks from the same location. Some groups of martian meteorites likely originated from the 1031 
same location. The nakhlites and chassignites have an ejection age of 10.7 ± 0.8 Ma (Cohen et 1032 
al., 2017), with the exception of NWA 5790, which has an ejection age of ~7.3 ± 0.4 Ma 1033 
(Wieler et al., 2016). The latter ejection age of NWA 5790 suggests that two distinct ejection 1034 
events could represent ejection from the same location on Mars. The depleted shergottites 1035 
have an ejection age of 1.1 ± 0.2 Ma (95% confidence), which includes at least 20 samples 1036 
(Lapen et al., 2017). These are good examples of where ejection ages have allowed 1037 
determination of groups of meteorites originating from similar locations and that potentially 1038 
allow for more comprehensive studies of cogenetic magma systems. Long-lived volcanoes 1039 
based on crater age counting (> 3 Ga, including Alba Mons, Biblis Tholus, Jovis Tholus, 1040 
Uranius Mons, and Hecates Tholus) are well known on Mars; NWA 7635, NWA 8159, and 1041 
the depleted shergottites may originate from one of them. Most of the rest of shergottites have 1042 
ejection ages varying between ~2 and 5 Ma (Herzog & Caffee, 2014; Wieler et al., 2016) 1043 

To locate the possible source location of meteorites at the surface, crater features need 1044 
to fit meteorite features, including the age of ejection and crystallization, the minerals present, 1045 
and their modal abundances (e.g., Treiman 1995). For most meteorites, we expect their source 1046 
craters to be young craters in Amazonian terrains. In addition, Bowling et al. (2020) recently 1047 
showed that the size of crater can be linked to ‘dwell times’ (time spent by meteorites at high 1048 
pressure during impact) determined by the high pressure mineralogy observed in meteorites. 1049 
Less than 10% of the martian surface is younger than 1 Ga (Hartmann & Neukum, 2001), 1050 
including Tharsis, Amazonis Planitia, and Elysium (see Figure 12 for locations). The higher 1051 
elevation of some of these areas, and thus lower density of the atmosphere, lead to easier 1052 
ejection of fragments to space. Oblique and rayed craters at these locations, which represent 1053 
young and high ejection velocities craters with preserved impactites, are likely the best 1054 
candidates (Artemieva & Ivanov, 2004; Fritz et al., 2005; Tornabene et al., 2006).  1055 

Several techniques have been attempted to try to determine meteorite source craters, 1056 
including spectral matching (Hamilton et al., 2003; Ody et al., 2015), combined with crater 1057 
counting (Mouginis‐Mark et al., 1992; Werner et al., 2014), as well as impact modeling (Herd 1058 
et al., 2017; 2018). Notably, spectral matching is hindered by dust coverage, especially for the 1059 
Amazonian igneous terrains (e.g., Lang et al., 2009). Modeling using the iSALE shock 1060 
physics code simulates dwell times and peak pressures of ejection of Mars-like basaltic target 1061 
and constrains pre-impact burial depth (Bowling et al., 2020). A crater diameter range can be 1062 
inferred from this model (Herd et al., 2018). Fewer than 20 well-preserved potential source 1063 
craters with diameters larger than 2.5 km in igneous terrains of Amazonian ages were 1064 
identified as possible sources for four representative meteorites (Zagami, Tissint, Chassigny, 1065 
and NWA 8159; Herd et al., 2018); a subset of these are currently being mapped in detail to 1066 
further assess their likelihood as source craters (Hamilton et al., 2020).  1067 

Various source craters have been proposed for martian meteorites, but none have been 1068 
confirmed. Terrains proposed by Hamilton et al. (2003) match the mineralogy of some 1069 
martian meteorites, but are not consistent with meteorite ages nor associated with young 1070 
source craters. Similarly, Lang et al. (2009) proposed that lava flows in Arsia Mons show 1071 
bulk compositions similar to shergottites, but these have discrepancies in mineralogy. Some 1072 
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craters were selected by Werner et al. (2014) and Ody et al. (2015) as source craters for 1073 
shergottites, including Mojave crater; however, these authors assumed that shergottites are 1074 
Noachian in age. Nakhlite source craters were proposed at Syrtis Major, Tharsis, and Zumba 1075 
and Gratteri craters, located south of Tharsis (Figure 12; e.g., Mouginis-Mark et al., 1992; 1076 
Hamilton et al., 2003; Harvey & Hamilton, 2005; Tornabene et al., 2006). Six <3 km diameter 1077 
rayed craters dated at 11 Ma were identified as possible sources of nakhlites (Kereszturi & 1078 
Chatzitheodoridis, 2016). Daly et al. (2019) showed that nakhlites have undergone shock 1079 
metamorphism before 633 Ma (time of aqueous alteration) and that the 11 Ma nakhlite source 1080 
crater should have formed close to the impact occurring before 633 Ma. Nakhlites might also 1081 
originate at a shield volcano flexural bulge (Day et al., 2018), but as of now, no craters in this 1082 
geological context have been identified as the potential nakhlite source crater. Wittmann et al. 1083 
(2015) proposed that the polymict regolith breccia NWA 7533 and paired meteorites 1084 
(including NWA 7034) originate from the 6.9 km diameter, ~5 Ma old Gratteri crater. Until 1085 
better crater counting calibration is completed, including from the study of samples from the 1086 
Jezero crater region, the source craters for martian meteorites will be difficult to constrain. 1087 

 1088 
6. Open questions about Mars derived from the study of martian meteorites 1089 
 1090 

Meteorites are currently the only samples that we have from Mars. They provide a 1091 
context for silicate differentiation and mantle source formation, igneous fractionation and 1092 
emplacement and evolution, and secondary processes, such as aqueous alteration. The bulk 1093 
composition of Mars can only be determined using these samples. Early martian history is 1094 
shown to have involved fast accretion and core formation compared to Earth. Discovery of 1095 
new martian meteorites has revealed a diversity of sources and magmatic histories, and that 1096 
the martian interior is even more heterogeneous than previously thought. Indeed, these finds 1097 
point to lithologies that we do not have that might reveal fundamental processes that we also 1098 
do not know about in Mars. From the martian meteorites, we now know that Mars has a 1099 
heterogeneous mantle, represented by various mantle sources, which have not significantly 1100 
mixed since the differentiation of the martian magma ocean, due to the lack of plate tectonics 1101 
and transform boundaries (Kiefer, 2003). The ancient crust is underrepresented in martian 1102 
meteorites, but an old crustal reservoir is represented in the Noachian meteorite NWA 7034. 1103 
Notably, this crust is not nearly as aqueously altered relative to what is inferred from orbital 1104 
observations of Noachian terrains (Table S3; e.g., Bibring et al., 2005). Mars has a crust with 1105 
a mostly-basaltic composition, but other compositions, such as alkali-rich lithologies that 1106 
formed very early in martian history, have recently been discovered via rover exploration 1107 
(e.g., Filiberto, 2017). Various magmatic processes and compositions are reflected in martian 1108 
meteorites, through their textures, mineralogy, and bulk compositions. Meteorites help us 1109 
understand processes during the Amazonian and show that lithologies such as shergottites 1110 
may be petrogenetically linked and could also be linked to the other major groups of 1111 
meteorites, nakhlites and chassignites. Although we do not know the field context for 1112 
meteorites and have not constrained source craters, we can constrain their emplacement at or 1113 
near the surface of Mars. 1114 

We currently have only 262 samples to understand an entire planet. All martian 1115 
meteorites, except the polymict breccia NWA 7034 and the singular ALH 84001, have 1116 
Amazonian ages, representing a biased sampling of the martian crust (McSween et al., 2009; 1117 
Walton et al., 2008). Martian surface rocks have a higher SiO2, higher alkalis, and lower MgO 1118 
and CaO contents relative to the martian meteorites (Filiberto, 2017; McSween et al., 2009). 1119 
Note that through terrestrial analogue analyses, a new study by Berger et al. (2020) shows that 1120 
the APXS instrument on board of Spirit, Opportunity, and Curiosity rovers overestimated Al 1121 
and S and underestimated Mg due to matrix effects. The olivine-bearing basalts and soils at 1122 
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the martian surface might be more similar to the olivine-bearing meteorites than previously 1123 
thought. Nevertheless, only one sample, called Bounce Rock found in Meridiani Planum at 1124 
the martian surface, has the same composition as meteorites (Zipfel et al., 2011). In addition, 1125 
various felsic and alkaline rock compositions were analyzed at the surface by Spirit and 1126 
Curiosity (Cousin et al., 2017; Edwards et al., 2017; McSween et al., 2006; Payré et al., 2020; 1127 
Sautter et al., 2015; Stolper et al., 2013) and fractional crystallization and/or assimilation 1128 
could be a process that formed these evolved rocks (Ostwald et al., 2020; Payré et al., 2020; 1129 
Udry et al., 2018). Alkaline compositions were found as clasts in NWA 7034 and paired 1130 
meteorites as well as in late-stage nakhlite mesostasis, but evolved compositions are very rare 1131 
in meteorites even if fractional crystallization is commonly involved in their formation. Thus, 1132 
the lack of evolved compositions in younger (e.g. shergottite-like) basaltic magmas compared 1133 
to surface rocks is enigmatic. Compositional and age bias signifies that the geologic diversity 1134 
of Mars is not fully represented by martian meteorites. Thus, various first-order questions still 1135 
remain regarding the geology and evolution of Mars:  1136 

- How variable in composition is the martian interior and surface, including bulk 1137 
chemistry, isotopic composition, and volatile abundances? 1138 

- Are the estimates of 50% accretion, core formation and silicate differentiation inferred 1139 
for Mars from meteorites accurate? 1140 

- How did the magma ocean crystallize? 1141 
- How diverse are mantle and crustal sources on Mars and how have they changed with 1142 

time? 1143 
- How has magmatic behavior (fractional crystallization, assimilation, accumulation) 1144 

evolved with time on Mars? 1145 
- How were volcanic rocks emplaced at the martian surface? 1146 
- What is the volatile content in the martian interior, how did it evolve, and was Mars a 1147 

volatile-rich planet? 1148 
- What types of alteration occurred and what are their extent at the martian surface? 1149 
- What was the history of the martian dynamo prior to its demise? 1150 
- What is the record of cratering on Mars, and how does it differ from that of the Moon? 1151 
- How do we reconcile the dichotomy between meteorites and remote-sensing data? 1152 

 1153 
Although martian meteorites have helped to reveal the nature of these uncertainties, a 1154 

different set of samples is required, such as returned samples. Returned martian samples are 1155 
not yet available. However, the Mars 2020 mission, which launched in July 2020, will cache 1156 
at least 31 samples for return to Earth as early as 2031 (Clery & Voosen, 2019). The landing 1157 
site for Perseverance is Jezero crater (Figure 12). Rocks in Jezero crater show diverse 1158 
lithologies with different mineralogies, textures, and representing time periods from the early 1159 
Noachian to the Amazonian. Jezero crater is a 45-km diameter open-lake basin, containing 1160 
two delta deposits with a likely early Noachian paleolake system dated between ~3.95 – 3.97 1161 
Ga (Fassett and Head, 2005; Ehlmann et al., 2008; Goudge et al., 2012; 2015). Igneous 1162 
minerals and basaltic rock compositions with limited pervasive alteration are ubiquitous in the 1163 
different units of Jezero crater, including olivine (3 – 12%), pyroxene (24 – 30%), and 1164 
plagioclase (18 – 25 %), and even K-feldspar (1 – 7.5%) (Salvatore et al., 2018). The 1165 
stratigraphy near the landing ellipse of Mars 2020, includes the Noachian crust, basin fill 1166 
consisting mostly of olivine and Mg-carbonates with an age of 3.82 ± 0.07 Ga (mid to late 1167 
Noachian), an 2.6 ± 0.5 Ga (early Amazonian or late Hesperian) mafic cap, and a pitted cap 1168 
that could either be an impact melt or volcanic unit (Goudge et al., 2015; Goudge et al., 2012; 1169 
Horgan et al., 2020; Mandon et al., 2020; Salvatore et al., 2018).  1170 

The iMOST report includes an exhaustive list for objectives of the Mars Sample 1171 
Return (MSR) campaign (Beaty et al., 2019), as well as the list of samples and types of 1172 
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measurements that will address these objectives. The iMOST report divides MSR into seven 1173 
objectives, which cover geological and biological processes, and preparation for human 1174 
exploration, as returned samples will be useful to evaluate environmental hazards and in situ 1175 
measurements. Not all samples with the characteristics from the iMOST wish lists will be 1176 
likely returned from Jezero crater, but it is possible that we will discover some of them in new 1177 
martian meteorites. Before the returned samples come back to Earth (not before 2031), we 1178 
might optimistically expect to recover at least 100 meteorites, based on the current recovery 1179 
rate (Figure 2). If so, statistically, the odds are that 94% shergotittes, 5% 1180 
nakhlites/chassignites and 1% other sample types might be recognized until 2031 based on 1181 
current samples. Note that the low probability (~1%, i.e., other sample types) to recover 1182 
Jezero-like meteorites on Earth before 2031 shows the importance of returning samples from 1183 
Jezero crater. 1184 

Returned samples from Mars would allow us to better constrain the compositions of 1185 
the martian interior, including elucidating the diversity of geochemical reservoirs. The field 1186 
context that Mars 2020 — a key advantage for these samples over the martian meteorites — 1187 
will provide a higher resolution view of igneous and other geological processes. Returned 1188 
samples would also allow important chronological context constraints. Presently, crater 1189 
counting on Mars assumes lunar crater calibration, but Jezero crater shows potential volcanic 1190 
flows (Goudge et al., 2015) that can provide a calibration point to enable better definition of 1191 
crater ages, and as a benefit, the late accretion flux to Mars. All of these insights are in 1192 
addition to those gained regarding the potential astrobiology of Mars, including the search for 1193 
martian organic compounds and biologically significant molecules (Grady, 2020). Returned 1194 
samples would represent one new dataset to study Mars as a geological and biologic system, 1195 
also including meteorites, orbital, and surficial data.  1196 

The complementary study of returned samples and meteorites will help constrain the 1197 
evolution from the Noachian to the Amazonian of the martian interior. Meteorites and 1198 
samples will inform each other to help reveal the secrets of the Red planet. 1199 
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Figure captions 2214 
 2215 
Figure 1. Schematic diagram representing the different kinds of information that martian 2216 
meteorites can provide about the martian surface and interior. Blue bubbles represent highly 2217 
volatile compounds, such as OH, H2O, CO2, Cl, and S. Not at scale. 2218 
 2219 
Figure 2. Number of meteorites recovered each year separated by types of martian meteorites 2220 
(x-axis with no continuous years). 2221 
 2222 
Figure 3. From top to bottom and left to right: a) Basaltic shergottites: NWA 8657 2223 
(Backscatter Electron — BSE — image); Basaltic shergottites mostly contain pyroxene and 2224 
maskelynite and are characterized by the absence of olivine phenocrysts or megacrysts. b) 2225 
Olivine-phyric shergottite: LAR 06319 (XPL image); Olivine-phyric shergottites are 2226 
porphyritic and contain olivine phenocrysts with later-crystallizing olivine, pyroxene, and 2227 
maskelynite. c) Poikilitic shergottite NWA 4468 (XPL image); Poikilitic shergottites contain 2228 
olivine chadacrysts enclosed by large pyroxene oikocrysts (from 3 to 10 mm in length), with 2229 
later-crystallizing olivine, pyroxene, and maskelynite. d) Gabbroic shergottite NWA 6369 2230 
(BSE image); Gabbroic shergottites contain cumulate pyroxene or plagioclase (average > 1 2231 
mm up to 5 mm in length). e) Augite-rich shergottite: NWA 8159 (BSE image from Herd et 2232 
al., 2017); NWA 8159 has an intergranular texture of plagioclase, augite, and olivine, and also 2233 
lacks pigeonite. f) Nakhlite: MIL 090030 (XPL image); Nakhlites are clinopyroxene-rich 2234 
rocks containing cumulus pyroxene and olivine. g) Chassignite: NWA 2737 (XPL image); 2235 
Chassignites are olivine cumulates with chromite inclusions and interstitial plagioclase, 2236 
orthopyroxene, and phosphate minerals. h) Orthopyroxenite ALH 84001 (XPL image, 2237 
courtesy of Allan Treiman, Lunar and Planetary Institute); This meteorite is an cumulate that 2238 
contains minor chromite, augite, glass, olivine, apatite, and 1 vol.% of secondary phases 2239 
including Fe-Mn-Mg carbonate. i) Regolith breccia NWA 7034 (BSE image). This rock 2240 
contains a variety of igneous clasts that include basalt, mugearite, trachyandesite, norite, 2241 
gabbro, and monzonite (area sizes between 0.04 – 3 mm2). Scale bars represent 500 µm for all 2242 
images. 2243 
 2244 
Figure 4. Calculated 176Lu/177Hf and 147Sm/144Nd source ratios of shergottites and ALH 2245 
84001 (Red with two standard deviation error bars; Lapen et al., 2017 and references therein) 2246 
superimposed to a hypothetical source end-member mixing array (gray) using end-member 2247 
compositions (green) calculated from a progressive Mars magma ocean (MMO) 2248 
crystallization model of Debaille et al. (2008). The enriched end-member, which is identical 2249 
to the independently-calculated source composition for ALH 84001, is hypothesized to reflect 2250 
residual trapped liquid in equilibrium with cumulates of upper mantle (UM1). The most 2251 
depleted end-member can be represented by an assemblage that reflects earlier-formed 2252 
cumulates formed during MMO crystallization (UM2). The third component could either be 2253 
represented by cumulates forming UM1 or shallow upper mantle (SUM98). In the modeled 2254 
mixing array (gray), it is assumed that SUM98 represents the upper mantle cumulate 2255 
assemblage. Please see Debaille et al. (2008) and Lapen et al. (2010; 2017) for details of the 2256 
MMO crystallization modeling and data. 2257 
 2258 
Figure 5. Timeline of major processes in Mars’ history based on martian meteorite studies 2259 
(see text for references), including crystallization ages, source ages, and global processes. Age 2260 
periods from Hartmann & Neukum (2001) chronology with thinner lines representing 2261 
different divisions of martian periods (e.g., E: early, M: mid, and L: late). The most recent 2262 
studies were used in this figure for each processes; crystallization ages of depleted 2263 
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shergottites from Borg  et al., 2008; Combs et al., 2019; Ferdous et al., 2017; Lapen et al., 2264 
2009; Moser et al., 2013; Nyquist et al., 2001; Shafer et al., 2010; Usui et al., 2010), 2265 
intermediate shergottites from Borg et al., 2002; Nyquist et al., 2001, 2009; depleted 2266 
shergottite ages from Brennecka et al., 2014; Herd et al., 2017; Lapen et al., 2017; Nyquist et 2267 
al., 2001; Shih et al., 2011; nakhlites and chassignites from Cohen et al., 2017; Kramer 2268 
Ruiggui et al., 2020 Nyquist et al., 2001; Udry & Day, 2018; ALH 84001 from Lapen et al. 2269 
2010, NWA 7034 clasts from  Baziotis et al., 2018; Bellucci et al., 2018a; Bouvier et al., 2270 
2018; Hu et al., 2019; McCubbin et al., 2016; Nyquist et al., 2016. Ages of accretion and core 2271 
formation from Foley (2005), Kruijer et al. (2017), Kleine et al. (2004); MMO crystallization 2272 
from Kruijer et al. (2017); crust formation from Bouvier et al. (2018); shergottite source ages 2273 
from Borg et al. (2016) and Debaille et al. (2007), Kruijer et al. (2017), Foley et al. (2005); 2274 
nakhlite source age from Debaille et al. (2009); ALH 84001 source age from Kruijer et al. 2275 
(2017); and NWA 7034 source ages from Kruijer et al. (2017) and Bouvier et al. (2018). 2276 
 2277 
Figure 6. Interpretation of possible emplacement scenarios for a) olivine-phyric, b) poikilitic, 2278 
and c) basaltic and gabbroic shergottites. Note that the relative grain size of different mineral 2279 
in the different types of shergottites are not at the same scale.  2280 
 2281 
Figure 7. Crystallization ages versus ejection ages of martian meteorites. Included are 2282 
meteorites with both publication crystallization and ejection ages from the literature. b) zooms 2283 
on the highlighted portion of a). Data and references in Table S4. 2284 
 2285 
Figure 8. ε143Nd(present day) versus ε142Nd(measured) for shergottites (red circles) and nakhlites 2286 
(orange squares) (data from Debaille et al., 2007; 2009; Borg et al., 2016; Lapen et al., 2287 
2010;2017).  Superimposed on the data are a modeled mixing line for shergottites (green line) 2288 
and an isochron diagram (black and blue lines) assuming a CHondritic Uniform Reservoir 2289 
(CHUR) system bulk composition (blue star). The dashed gray curved lines reflect, from left-2290 
to-right, 147Sm/144Nd ratios of 0.15, 0.17, 0.196 (CHUR), 0.23, 0.25, 0.28, and 0.30. The 2291 
shergottite data form a linear array (Green line) that is both consistent with mixing between 2292 
enriched and depleted end-members (e.g., Figure 4; Debaille et al., 2007) and as an isochron 2293 
(e.g., Borg et al., 2016). If the data represents a mixing line and Mars has a Sm/Nd ratio of 2294 
CHUR, the data would predict that the slope of the array has no age significance.  However, 2295 
since the end-member compositions reflect materials formed during Martian Magma Ocean 2296 
(MMO) crystallization, the mixing line intercepts of the isochrons at their respective Sm/Nd 2297 
ratios (dashed gray lines) would have age significance (e.g., Debaille et al., 2007). In this 2298 
case, the modeled formation ages of the depleted and enriched end-member compositions 2299 
would be about 4510 and 4400 Ma (blue), respectively. These dates are about 50 Ma younger 2300 
than those calculated by Debaille et al. (2007) due to the more extended range in shergottite 2301 
data since 2007. Of course, the dates are strongly model dependent, but the important 2302 
prediction is that the depleted cumulates formed before the more enriched components, 2303 
consistent with progressive MMO crystallization. If the shergottite data do have unique age 2304 
significance and represent reservoirs that formed at exactly the same time, an apparent age of 2305 
4504 ± 6 Ma can be calculated. Whether the shergottite data represent a mixing line or an 2306 
isochron, the nakhlite data (orange) indicate that they cannot be related to shergottite mantle 2307 
sources and also indicate that Sm and Nd were decoupled in the nakhlite mantle source prior 2308 
to nakhlite petrogenesis. 2309 
 2310 
Figure 9. Schematic diagram representing the emplacement of shergottite-like lavas versus 2311 
nakhlite-like lavas based on a lithospheric flexure model (Day et al., 2018) and using a 2312 
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terrestrial analog from Hawaii (Bianco et al., 2005). The lithosphere above the plume is 2313 
slightly thinner. Not at scale. 2314 
 2315 
Figure 10. Different shergottite, nakhlite, chassignite, and NWA 7034 sources based on 2316 
initial ε143Ndi and 87Sr/86Sri bulk compositions, and, in the case of shergottites, level of Light 2317 
Rare Earth Element (LREE) enrichment (modified after Day et al., 2018; Shearer et al., 2019; 2318 
NWA 7034 data from Agee et al., 2013). 2319 
 2320 
Figure 11. Oxygen fugacity (ƒO2, in log units, relative to the QFM buffer) of representative 2321 
shergottites versus whole-rock La/Yb (CI-normalized). Oxygen fugacity data sources for 2322 
olivine-phyric (early-crystallizing assemblages only) and basaltic shergottites as summarized 2323 
in Castle & Herd (2017) and updated in Herd (2019), except for additional estimates, which 2324 
are calculated using Fe-Ti oxide data from Ferdous et al. (2017), Hui et al. (2011), and Ikeda 2325 
et al. (2006). Poikilitic shergottite data representing the early-crystallizing assemblages are 2326 
from Rahib et al. (2019), Kizovski et al. (2019) and Walton et al. (2012). Exponential lines-2327 
of-best-fit are shown for each set of data: solid black line = poikilitic; dashed grey line = 2328 
olivine-phyric; dashed black line = basaltic. The envelopes represent the three different 2329 
enriched, intermediate, and depleted shergottite groups.  2330 
 2331 
Figure 12. Mars topography map from Mars Orbiter Laser Altimeter (MOLA) instrument, 2332 
including main martian regions and landing sites of successful NASA missions and their 2333 
landing dates. The landing date of the NASA Mars 2020 rover is scheduled on February 18, 2334 
2021 and the landing date of ESA ExoMars 2020 is not yet known. 2335 
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