Diffuse Groundwater Discharge Dominates Terrestrial Dissolved Inorganic Carbon Export and CO2 Evasion From a Semiarid Headwater Stream

Yueqing Xie¹, Chuan Wang¹, Shaoda Liu², James McCallum³, Qing Li⁴, and Jichun Wu¹

¹Nanjing University ²Yale University ³University of Western Australia ⁴Xiamen University

November 23, 2022

Abstract

Groundwater discharge to headwater streams and concomitant terrestrial dissolved inorganic carbon (DIC) export play a significant role in headwater stream CO2 evasion. However, previous studies rarely examined diffuse groundwater discharge and its impact on headwater stream CO2 evasion, thereby lacking the understanding of the role of diffuse groundwater discharge in terrestrial DIC export and stream CO2 evasion. This study quantified diffuse groundwater discharge along a 43 km semiarid headwater stream by combining hydraulic, isotopic (radon-222) and chemical (electrical conductivity) approaches, and estimated the reach-level CO2 budgets of the stream. Reach-scale water and mass balance modeling yielded highly variable diffuse groundwater discharge rates (n = 16, range: 1.08-7.80 m2/d, mean $\pm 1 \text{ sd}: 4.57 \pm 1.81 \text{ m}2/d$). Groundwater was supersaturated with CO2 at all sites, with strongly variable CO2 partial pressure (pCO2) and DIC concentrations at 1,223-27,349 µatm and 30-119 mg/L, respectively. Diffuse groundwater discharge dominated terrestrial DIC export to the stream (12-111 g C m-2 d-1, normalized to water surface area). A portion of groundwater discolved CO2 transported to the stream was emitted to the atmosphere with evasion rates varying at 0.62-3.18 g C m-2 d-1. However, most dissolved CO2 was transformed into HCO3-through carbonate buffering because of the regulation of carbonate equilibrium. Overall, the stream CO2 evasion was driven by carbon transfer but limited by carbon supply. This study provides a bottom-up perspective to understand terrestrial DIC export and stream CO2 evasion in arid and semiarid areas.

1	Diffuse Groundwater Discharge Dominates Terrestrial
2	Dissolved Inorganic Carbon Export and CO ₂ Evasion From
3	a Semiarid Headwater Stream
4	Chuan Wang ¹ , Yueqing Xie ^{1,2,*} , Shaoda Liu ³ , James L. McCallum ⁴ , Qing Li ⁵ , and
5	Jichun Wu ^{1,*}
6 7	¹ Ministry of Education Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
8 9	² National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
10	³ Yale School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
11	⁴ School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia
12 13	⁵ State Key Laboratory of Marine Environment Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
14	
15	*Corresponding author: Yueqing Xie (<u>yxie@nju.edu.cn</u>)
16	Jichun Wu (jcwu@nju.edu.cn)
17	Key Points:
18	• Diffuse groundwater discharge controlled terrestrial dissolved inorganic carbon export to
19	the stream.
20	• A large portion of dissolved CO ₂ was transformed into HCO ₃ ⁻ immediately after entering
21	the stream.
22	• Semiarid headwater stream CO ₂ evasion was driven by carbon transfer, but limited by
23	carbon supply.
24	

25 Abstract

26 Groundwater discharge to headwater streams and concomitant terrestrial dissolved inorganic 27 carbon (DIC) export play a significant role in headwater stream CO_2 evasion. However, previous 28 studies rarely examined diffuse groundwater discharge and its impact on headwater stream CO_2 29 evasion, thereby lacking the understanding of the role of diffuse groundwater discharge in 30 terrestrial DIC export and stream CO_2 evasion. This study quantified diffuse groundwater 31 discharge along a 43 km semiarid headwater stream by combining hydraulic, isotopic (radon-222) 32 and chemical (electrical conductivity) approaches, and estimated the reach-level CO₂ budgets of 33 the stream. Reach-scale water and mass balance modeling yielded highly variable diffuse groundwater discharge rates (n = 16, range: 1.08-7.80 m²/d, mean \pm 1 sd: 4.57 \pm 1.81 m²/d). 34 35 Groundwater was supersaturated with CO_2 at all sites, with strongly variable CO_2 partial pressure 36 (pCO₂) and DIC concentrations at 1,223-27,349 µatm and 30-119 mg/L, respectively. Diffuse groundwater discharge dominated terrestrial DIC export to the stream (12-111 g C $m^{-2} d^{-1}$, 37 38 normalized to water surface area). A portion of groundwater dissolved CO₂ transported to the stream was emitted to the atmosphere with evasion rates varying at 0.62-3.18 g C m⁻² d⁻¹. 39 40 However, most dissolved CO₂ was transformed into HCO₃⁻ through carbonate buffering because 41 of the regulation of carbonate equilibrium. Overall, the stream CO₂ evasion was driven by carbon 42 transfer but limited by carbon supply. This study provides a bottom-up perspective to understand 43 terrestrial DIC export and stream CO₂ evasion in arid and semiarid areas.

45 **1. Introduction**

 CO_2 evasion from streams and rivers to the atmosphere is a significant process in the global 46 47 carbon cycle (Battin et al., 2009; Butman and Raymond, 2011; Duvert et al., 2018; Marx et al., 48 2017; Raymond et al., 2013; Wehrli, 2013). The average partial pressure of carbon dioxide 49 (pCO_2) of global streams and rivers is estimated at 3,100 µatm compared with the atmospheric 50 pCO_2 of approximately 390 µatm. This large difference in pCO_2 results in the common 51 phenomenon of CO₂ supersaturation in the rivers and streams (Marx et al., 2017; Raymond et al., 52 2013). Consequently, global streams and rivers emit a considerable amount of CO_2 to the 53 atmosphere with the rate estimated at approximately 2.58 petagrams of carbon (Pg C) per year 54 (Marx et al., 2017; Raymond et al., 2013; Sawakuchi et al., 2017). Among all streams and rivers, headwater streams are hotspots, contributing 36% (i.e. $0.93 \text{ Pg C yr}^{-1}$) of the total CO₂ evasion, 55 56 which is disproportional to their catchment sizes (Marx et al., 2017; Raymond et al., 2013). This 57 significant contribution from the headwater streams is attributed to several factors including a 58 large number of the headwater streams (Marx et al., 2017), high CO₂ concentrations (Butman 59 and Raymond, 2011; Duvert et al., 2018; Horgby et al., 2019; Johnson et al., 2008; Leith et al., 60 2015; Lupon et al., 2019; Öquist et al., 2009; Winterdahl et al., 2016), and high gas transfer 61 velocities (Liu and Raymond, 2018; Raymond et al., 2013). 62 Continuous CO₂ evasion from streams and rivers is usually derived from two carbon sources, including internal production by microbial mineralization of dissolved organic carbon 63 64 (DOC), and external input of terrestrial CO₂ (Hotchkiss et al., 2015; Marx et al., 2017). The

65 internal production plays an important role in larger rivers, whereas the external input is essential

66 to continuously sustain CO₂ evasion from small streams, particularly in headwater streams

67	(Hotchkiss et al., 2015). As reported by several studies in the headwater streams, groundwater
68	pCO ₂ is typically 1-2 orders of magnitude higher than stream pCO ₂ (Deirmendjian and Abril,
69	2018; Hope et al., 2004; Johnson et al., 2008; Rasilo et al., 2017). After CO ₂ -rich groundwater
70	discharges to streams, most dissolved CO_2 (CO_2^* , similarly hereinafter) is emitted to the
71	atmosphere over a short distance downstream (Duvert et al., 2018; Johnson et al., 2008; Öquist et
72	al., 2009). Although these studies have improved our understanding of groundwater contribution
73	to terrestrial carbon export and stream CO ₂ evasion, it is hardly possible to upscale their results
74	from local scales to regional scales because of the unknown spatial variability of groundwater
75	carbon input. Some studies have attempted to quantify CO_2 evasion at the regional scale, but
76	utilized only a limited number of groundwater measurements to represent groundwater
77	contribution with an inherent assumption of relatively weak spatial variability of groundwater
78	carbon input (Duvert et al., 2018; Duvert et al., 2019; Leith et al., 2015; Lupon et al., 2019;
79	Öquist et al., 2009). However, the degree of the spatial variability of the groundwater carbon
80	input is still unclear. This knowledge gap undermines our ability to upscale headwater stream
81	CO ₂ evasion to larger spatial scales.

82 Groundwater discharge plays a crucial role in transporting terrestrial carbon to streams and 83 sustaining stream CO₂ evasion (Duvert et al., 2018; Horgby et al., 2019; Lupon et al., 2019; 84 Marx et al., 2017; Winterdahl et al., 2016). Previous stream CO₂ evasion studies have largely 85 concentrated on springs (focused groundwater discharge) where flow rates and CO₂ 86 concentrations are measurable (Duvert et al., 2018; Johnson et al., 2008; Lupon et al., 2019). 87 However, in many systems, groundwater discharge is known to occur through an entire stream 88 diffusively and at rates that are difficult to be measured directly. This diffuse groundwater 89 discharge has been frequently examined in many streams and rivers at varying length scales and

90	has been found to be strongly variable due to variable hydraulic gradients and riverbed
91	permeability (Cook et al., 2006; Xie et al., 2016). Therefore, accurate quantitative analysis of
92	CO ₂ evasion from headwater streams at large scales requires reliable estimation of diffuse
93	groundwater discharge rates.

94 Here, we longitudinally surveyed a 43 km semiarid headwater stream (Hailiutu River) 95 where stream flow was mostly maintained by groundwater discharge throughout a year (Yang et 96 al., 2012; 2014). We quantified the groundwater discharge by combining hydraulic, isotopic and 97 chemical methods, and then estimated the stream carbon budget at the corresponding resolution. 98 Through the constrained water and mass balances, we attempted to explore (i) the main driver of 99 terrestrial carbon export in a semiarid headwater stream; (ii) the main driver of stream CO₂ 100 evasion; and (iii) the role of diffuse groundwater discharge in terrestrial carbon export and 101 release.

102 **2. Data and Methods**

103 **2.1. Site description**

Our study was conducted in the Hailiutu River catchment, located in Yulin City, Shanxi Province, semiarid northern China. The total area of this catchment is around 2,645 km², and the surface elevation of this catchment ranges from 1,486 m above sea level (m.a.s.l.) in the northwest to 1,009 m in the southeast (Figure 1). The land surface is mainly covered by undulating sand dunes and xeric shrubland (Yang et al., 2012). The regional aquifer is composed of the Holocene Maowusu sand dunes (thickness: 0-30 m) underlain by the upper Pleistocene Shalawusu sandstone (thickness: 5-90 m) (Yang et al., 2014). This catchment is controlled by

semiarid continental climate with low precipitation (340 mm yr⁻¹) and high potential

112 evapotranspiration (2,184 mm yr⁻¹) (Yang et al., 2012). The majority of the precipitation occurs

113 from June to September every year.

114 The Hailiutu River and its tributary, the Bulang River, are the two major streams in this 115 catchment (Figure 1). The Hailiutu River is formed by two small streams in the northwest of our study area and extends all the way to the Hanjiamao Village (4 km above the confluence with the 116 117 Wuding River, Figure 1). It is a perennial second-order stream with the annual mean stream flow rate of 2.41 m³/s at the gauging station close to the catchment exit (2001-2007) (Yang et al., 118 119 2012). The Hailiutu River water eventually flows into the Wuding River, a major tributary along 120 the middle reach of the Yellow River (Yang et al., 2012). The studied section of the Hailiutu 121 River is approximately 43 km in length.

123 **Figure 1.** Geographic location of the study area and sampling sites along the Hailiutu River.

124

2.2. Field survey and laboratory analyses

125 Our field survey was conducted between 9 and 14 May 2019 (dry season) when the stream 126 was mainly sustained by groundwater discharge. We longitudinally surveyed the stream water 127 and its adjacent groundwater at an average interval of 2.6 km (Figure 1). For groundwater 128 sampling, we excavated holes (approximately 0.5 m wide and 0.4-0.6 m deep) at the riverbank 129 and sampled the fresh groundwater within a short period of excavation (15 samples). Samples 130 were also collected from domestic wells located within 1 km of the stream (2 samples, Figure 1). 131 These wells were screened in the sand aquifer to depths between 15 and 135 m below ground 132 level.

133 We quantified groundwater discharge to the Hailiutu River by combining differential flow gauging and the mass balance modeling of radon-222 (²²²Rn) and electrical conductivity (EC). 134 135 Flow gauging was undertaken at each sampling location by dividing the stream transect into 136 intervals of approximately 0.5 m. The flow velocity of each 0.5 m section was measured using a 137 flow meter (accuracy: ±1.5%, Jiangsu Nanshui Water Technology Company, China) with the 138 one-point method. The total stream flow rate was obtained by summing the flow rate of all the sections (flow velocity multiplied by the cross-sectional area). ²²²Rn activities in both the stream 139 140 and the groundwater were obtained via the RAD7 detector coupled with the RAD H₂O 141 Accessory (Durridge Company, USA). The stream and the groundwater excavations were 142 sampled by submerging and sealing a 250 mL glass vial underwater. Domestic groundwater 143 wells were purged with a minimum of three bore volumes removed and sampled after 144 groundwater temperature, pH and EC had stabilized. EC in both the stream and the groundwater

145 was measured with the HACH HQ40d multiparameter probe (accuracy: $\pm 0.5\%$, HACH

146 Company, USA).

147 Both the stream water and groundwater were also measured for dissolved oxygen, pH and 148 temperature in the field through the HACH HQ40d multiparameter probe. Their alkalinity was 149 titrated through HACH Digital Titrator (accuracy: $\pm 1\%$). pCO₂ and DIC concentrations were 150 calculated by field measured pH, temperature and alkalinity (Supplementary information, SI, 151 Text S1). In addition to the field direct measurements, water samples were also collected for analyzing cations, anions, DOC and $\delta^{13}C_{DIC}$ in the laboratory. All the water samples were filtered 152 153 through 0.45 µm membrane filters and acidified by adding HCl if used for cation analysis. The 154 cations and anions were analyzed through ICP-OES and ion chromatography, respectively, at the 155 Key Laboratory of Surficial Geochemistry of the Ministry of Education, Nanjing University. 156 DOC was analyzed through a TOC analyzer (SHIMADZU TOC-L, Japan) at the School of the Environment, Nanjing University. The $\delta^{13}C_{DIC}$ was measured through the Gasbench and 157 158 MAT252 (Thermo Fisher Scientific, USA) at the State Key Laboratory for Mineral Deposits 159 Research, Nanjing University.

160

2.3. Reach-scale water and mass balance modeling

161 Reach-scale groundwater discharge to the Hailiutu River was estimated by modeling the 162 stream water balance and the mass balances of ²²²Rn and EC simultaneously (Cook, 2013; Cook 163 et al., 2006). The stream water balance is given by

164
$$\frac{\partial Q}{\partial x} = I + Tri - Ew \tag{1}$$

where *Q* is the stream flow rate (m³/d), *x* is the distance in the direction of flow (m), *I* is the groundwater discharge per unit length (m²/d), *Tri* is the tributary inflow rate per unit length (m²/d), *E* is the evaporation rate (m/d), and *w* is the stream width (m). *Tri* is equal to the tributary flux (positive, i.e. Bulang River flux) or irrigation diversion flux (negative, we found three irrigation diversion points) divided by the length between two adjacent stream measurement points.

The environmental tracer ²²²Rn has been used frequently to quantify groundwater discharge 171 172 to surface water (Cook, 2013; Cook et al., 2003; Cook et al., 2006; Hofmann et al., 2011; Xie et al., 2016). ²²²Rn is a radioactive noble gas with a half-life of 3.8 days. It is a decay product of 173 174 uranium series isotopes. Given the extensive existence of uranium in aquifer sediment, ²²²Rn is produced continuously in groundwater. Once groundwater discharges to the stream, ²²²Rn 175 176 activity is affected by several factors including gas exchange with the atmosphere, radioactive decay and dispersive mixing. The mass balance of ²²²Rn is given by the following equation 177 178 (Cook, 2013; Cook et al., 2003; Cook et al., 2006)

179
$$\frac{\partial(QC)}{\partial x} = IC_{gw} + Tri \cdot C_{Tri} - kwC - \lambda dwC + F_{hypor}$$
(2)

180 where C, C_{gw} , and C_{Tri} are the ²²²Rn activities (Bq/L) of the stream, the adjacent groundwater, 181 and the tributary, respectively. C_{Tri} equals C for irrigation diversion. k is the ²²²Rn gas transfer 182 velocity (m/d), λ is the radioactive constant of ²²²Rn (0.18 d⁻¹), d is the stream depth (m), and 183 F_{hypor} is the net flux of ²²²Rn from hyporheic zone into stream. The first two terms on the right 184 side of the equation represent mass fluxes due to groundwater discharge and tributary inflow, respectively. The third and fourth terms on the right side represent ²²²Rn loss rates due to gas exchange with the atmosphere and radioactive decay, respectively. The last term is hyporheic flow related mass flux. Cook et al. (2006) derived the expression of the net flux of ²²²Rn from hyporheic zone into stream (F_{hypor})

189
$$F_{hypor} = \frac{wh\theta(\gamma - \lambda C)}{1 + \lambda t_h}$$
(3)

190 where h (m), θ (dimensionless), γ (Bq/L/day), and t_h (d) are the mean depth, the porosity, the

192 Noting that
$$\frac{\partial(QC)}{\partial x} = C \frac{\partial Q}{\partial x} + Q \frac{\partial C}{\partial x}$$
, and substituting this together with Equation (1) and (3) into

193 (2) results in the following equation

194
$$Q\frac{\partial C}{\partial x} = I(C_{gw} - C) + Tri(C_{Tri} - C) + EwC - kwC - \lambda dwC + \frac{wh\theta(\gamma - \lambda C)}{1 + \lambda t_h}$$
(4)

195 For EC, the k, λ and F_{hypor} are zero as they are only related to ²²²Rn production and losses. 196 Equation (4) then becomes

197
$$Q\frac{\partial C}{\partial x} = I(C_{gw} - C) + Tri(C_{Tri} - C) + EwC$$
(5)

Groundwater discharge was quantified by solving Equation (1), (4) and (5) simultaneously,
with an explicit finite difference method. A grid size of 10 m was used, resulting in a total of
4,298 cells given the modeled stream length of 42.98 km. We utilized the DiffeRential Evolution
Adaptive Metropolis scheme ("DREAM" algorithm) (Vrugt et al., 2009), which is based on an

202 evolutionary Markov chain Monte-Carlo (MCMC) approach to calibrate the groundwater 203 discharge and other model parameters (i.e., k, h, γ and t_h). The DREAM algorithm runs 204 multiple Markov chains simultaneously for multi-modal search problems and improves the 205 efficiency of MCMC simulation significantly (Vrugt et al., 2009). This method has been 206 effectively used to model stream tracer tests (Knapp and Cirpka, 2017; McCallum et al., 2020; 207 Roche et al., 2019). The DREAM algorithm works by generating multiple Markov chains to 208 sample the parameter space by selecting combinations of parameters that produce a better fit to 209 the observed values (also known as the likelihood). The likelihood function used in this study 210 was defined as

211
$$Likelihood = -\left(\sum_{i=1}^{17} \left(\frac{Q_{modeled} - Q_{measured}}{Q_{error}}\right)^2 + \sum_{i=1}^{17} \left(\frac{Rn_{modeled} - Rn_{measured}}{Rn_{error}}\right)^2 + \sum_{i=1}^{17} \left(\frac{EC_{modeled} - EC_{measured}}{EC_{error}}\right)^2\right)$$
212 (6)

where $Q_{modeled}$, $Rn_{modeled}$, and $EC_{modeled}$ are the modeled stream flow rate, ²²²Rn activity, and EC derived from the MCMC simulation, respectively. $Q_{measured}$, $Rn_{measured}$, and $EC_{measured}$ are the field measured stream flow rate, ²²²Rn activity, and EC, respectively. Q_{error} , Rn_{error} , and EC_{error} are the errors of stream flow rate, ²²²Rn activity, and EC, respectively.

In the DREAM algorithm, new proposals are generated first using combinations of other chains. If these proposals produce a higher likelihood, the proposal is accepted. If the new likelihood is lower, the chains accept the proposal conditional on a transition probability (a transition to a slightly worse likelihood is more probable than a transition to a much lower likelihood). At each level, either the proposed values (if transition conditions are met) or the current values form a set of samples. Each of these samples is treated equally, and the resulting
statistics of all the sampled parameters sets encapsulate the range of plausible values or
uncertainty.

225

2.4. Reach-scale carbon budgeting

Based on the reach-scale water balance, we established a reach-scale CO_2 budget to explore the contributions of external input, internal production and carbonate buffering process to the stream CO_2 evasion. For a representative stream reach, we assumed that the stream was in steady state (i.e., the inputs and outputs are equal)

230
$$F_{up}^{CO_2} + F_{gw}^{CO_2} + F_{Tri}^{CO_2} + F_m^{CO_2} = F_{down}^{CO_2} + F_{air}^{CO_2} + F_b^{CO_2}$$
(7)

where $F_{up}^{CO_2}$, $F_{gw}^{CO_2}$, $F_{Tri}^{CO_2}$, and $F_m^{CO_2}$ are the upstream CO₂ input, the groundwater CO₂ input, the 231 232 tributary CO₂ input, the net internal CO₂ production (DOC mineralization minus photosynthesis), respectively. $F_{down}^{CO_2}$, $F_{air}^{CO_2}$, and $F_b^{CO_2}$ are the downstream CO₂ output, the stream CO₂ evasion rate, 233 and the CO_2 loss through carbonate buffering (positive value means CO_2^* transformed into 234 HCO_3^- , and negative value means HCO_3^- transformed into CO_2^+), respectively. Note that all the 235 236 mass fluxes in Equation (7) are normalized to the water surface area of the given stream reach and expressed in g C m⁻² d⁻¹. $F_{up}^{CO_2}$, $F_{gw}^{CO_2}$, $F_{Tri}^{CO_2}$, and $F_{down}^{CO_2}$ are determined by multiplying the 237 CO_2 concentrations and the water fluxes derived from the water balance. $F_m^{CO_2}$ is derived from 238 the reach-scale mass balance of DOC. $F_{air}^{CO_2}$ is estimated by Fick's Law. Finally, $F_b^{CO_2}$ can be 239 240 calculated from Equation (7).

In the water column, DOC can be degraded to CO_2^* , sustaining the stream CO_2

242 oversaturation and CO_2 evasion to the atmosphere. CO_2^* can also be conversely consumed by

243 photosynthesis. Here, we utilized a reach-scale DOC mass balance to estimate $F_m^{CO_2}$

244
$$F_m^{CO_2} = F_{up}^{DOC} + F_{gw}^{DOC} + F_{Tri}^{DOC} - F_{down}^{DOC}$$
(8)

where F_{up}^{DOC} , F_{gw}^{DOC} , F_{Tri}^{DOC} , and F_{down}^{DOC} are the upstream DOC input, the groundwater DOC input, the tributary DOC input, and the downstream DOC output, respectively. Likewise, these carbon fluxes are also quantified by multiplying the corresponding DOC concentrations and the water fluxes derived from the water balance.

249
$$F_{air}^{CO_2}$$
 is estimated by Fick's Law and given below

250
$$F_{air}^{CO_2} = \left(pCO_{2 aq} - pCO_{2 air}\right) \times K_H \times K_{CO_2} \times 12 \div 1000$$
(9)

251 where $pCO_{2 aq}$ and $pCO_{2 air}$ are the CO₂ partial pressure in the stream and the air (µatm),

respectively. We assumed that the atmospheric pCO₂ was 390 µatm. K_H and K_{CO_2} are the temperature-dependent Henry's Law constant (mol/L/atm) and the CO₂ gas transfer velocity

254 (m/d).

255
$$K_H$$
 is determined according to the empirical equation from Clark and Fritz (1997)

256
$$-\log_{10}(K_H) = -7 \times 10^{-5} T^2 + 0.016T + 1.11$$
(10)

257 where *T* is the temperature of stream water (°C).

258 K_{CO_2} can be determined from the calibrated ²²²Rn gas transfer velocity (k, m/d) derived

from the reach-scale water and mass balance modeling (Raymond et al., 2012)

260
$$K_{CO_2} = k \left(\frac{Sc_{CO_2}}{Sc_{Rn}}\right)^{-0.5}$$
(11)

261 where Sc_{CO_2} and Sc_{Rn} are the Schmidt number of CO₂ and ²²²Rn, respectively. Both Sc_{CO_2} and

262 Sc_{Rn} can be calculated from stream temperature (°C) (Raymond et al., 2012)

263
$$Sc_{CO_2} = 1742 - 91.24T + 2.208T^2 - 0.0219T^3$$
(12)

264
$$Sc_{Rn} = 2939 - 173.87T + 4.532T^2 - 0.0468T^3$$
(13)

Previous studies found that carbonate buffering can significantly impact stream CO_2 evasion by shifting carbonate equilibrium, particularly in high alkalinity streams and rivers (Duvert et al., 2019; Stets et al., 2017). Oversaturated CO_2 in the stream can be either emitted to the atmosphere or transformed into HCO_3^- . Relevant chemical reactions are given below

$$CO_2(g) = CO_2(aq)$$
(14)

270
$$CO_2(aq) + H_2O = H_2CO_3 = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$$
 (15)

271
$$Ca^{2+} + 2HCO_3^- = CaCO_3 \downarrow + CO_2^* + H_2O$$
 (16)

Equation (7) can be rearranged to examine the impact of the carbon buffering process to the stream CO₂ pool as follows

274
$$F_{b}^{CO_{2}} = F_{up}^{CO_{2}} + F_{gw}^{CO_{2}} + F_{m}^{CO_{2}} - F_{down}^{CO_{2}} - F_{air}^{CO_{2}}$$
(17)

275 **2.5. Hydrogeochemical modeling**

We modeled carbonate buffering process after groundwater discharged to the stream through the PHREEQC simulation program (Parkhurst and Appelo, 2013). The mean water temperature, pH, Ca^{2+} , Mg^{2+} and alkalinity of our groundwater samples were assigned as the initial model parameters, then we modeled the re-equilibrium processes between the groundwater and the air for different pCO₂ values and calculated the corresponding calcite saturation (Ion Activity Product / Solubility Product Constant of calcite, IAP/K calcite, similarly hereinafter). Through the change of calcite saturation, we can explore the shift in carbonate equilibriums.

283

2.6. Uncertainty and statistical analysis

Uncertainty analysis was based on the results of the MCMC simulation. For the variables estimated in the MCMC simulation (i.e., I, k, h, γ and t_h), we treated the 16th-84th percentiles of the model outputted ranges as their uncertainty bounds. For the other variables including $F_{gw}^{CO_2}$, $F_m^{CO_2}$ and $F_b^{CO_2}$, their uncertainty bounds were determined according to the uncertainty bounds of I. The uncertainty of $F_{air}^{CO_2}$ were based on the k uncertainty.

Furthermore, we used one-way analysis of variance (ANOVA test) to compare the carbon concentration differences between the stream and the groundwater, and different carbon budget components at the significance level of p < 0.05.

292 **3. Results**

3.1. Longitudinal patterns of stream flow and groundwater discharge

294	Field measured values for reach-scale water and mass balance modeling are listed in SI
295	Table S1, and the spatial variations in Q , ²²² Rn activities and EC are depicted in Figure 2a-c,
296	respectively. Differential flow gauging shows that stream velocity ranged between 0.190 and
297	1.156 m/s and Q increased continuously from 0.283 m ³ /s at the upstream end of the studied reach
298	to 2.093 m^3 /s at the downstream end, with some fluctuations between 15 and 25 km (Figure 2a).
299	Stream width varies between 3.8 and 11 m, with the mean value of 6.34 m. The stream is
300	relatively shallow (range: 0.11–0.49 m) with a mean depth of 0.25 m.
301	The stream ²²² Rn activities were significantly lower than those from the adjacent
302	groundwater (ANOVA, n = 34, F = 481, p < 0.0001). The mean \pm 1 standard deviation (similarly
302 303	groundwater (ANOVA, n = 34, F = 481, p < 0.0001). The mean \pm 1 standard deviation (similarly hereinafter) of the stream and groundwater ²²² Rn activities are 0.889 \pm 0.236 and 5.082 \pm 0.752
302 303 304	groundwater (ANOVA, n = 34, F = 481, p < 0.0001). The mean \pm 1 standard deviation (similarly hereinafter) of the stream and groundwater ²²² Rn activities are 0.889 \pm 0.236 and 5.082 \pm 0.752 Bq/L, respectively. The ²²² Rn activity along the stream was fluctuating but relatively stable at 0-
302303304305	groundwater (ANOVA, n = 34, F = 481, p < 0.0001). The mean \pm 1 standard deviation (similarly hereinafter) of the stream and groundwater ²²² Rn activities are 0.889 \pm 0.236 and 5.082 \pm 0.752 Bq/L, respectively. The ²²² Rn activity along the stream was fluctuating but relatively stable at 0-27 km (0.832-1.150 Bq/L) and decreased from 1.046 at 27 km to 0.322 Bq/L at 43 km (Figure

307 The stream EC shows a decreasing trend along the stream (Figure 2c), with the maximum of 308 994 μ s/cm at the upstream end and the minimum of 456 μ s/cm at 34 km. The groundwater EC 309 was significantly lower than the stream EC (ANOVA, n = 34, F = 4.58, p < 0.05) and varied 310 between 241 and 679 μ s/cm.

311

Figure 2. Reach-scale water and mass balance modeling results of (a) stream flow rates (Q), (b) ²²²Rn activities, (c) EC, and the resultant variation in (d) groundwater discharge rates (I). The black lines and shaded areas show optimal modeling results (50th percentile) and uncertainty bounds (16th-84th percentile) derived from the MCMC simulation, respectively. The red dots are the field measured values and the error bars show the relevant uncertainties. The stream reach numbers are annotated above the line segments in (d).

Model parameters are defined in SI Table S2. Parameters E, θ and λ were assumed to be constant. For each stream reach, the upstream and downstream sampling sites were used to calculate w, d, and C_{gw} . There are three small irrigation canals along the Hailiutu River where we did not measure the ²²²Rn activities and EC. We assumed that the ²²²Rn activities and EC in the irrigation canals were the same as those of the nearest stream sampling site ($C_{Tri}=C$). This assumption is reasonable as these values were only used to account for water and mass losses

323	from the study stream. Q_0 , C_0 at the first sampling site (Hailiutu-01 in SI Table S1) were utilized
324	as the boundary conditions of the longitudinal water and mass balance model.
325	Errors are required in the likelihood function for the MCMC simulation. We measured the
326	Hailiutu-01, Hailiutu-02, Hailiutu-03 and Hailiutu-09 stream flow rates twice. The average
327	relative error at these four sites were utilized as the potential error for all stream flow rates (29%).
328	The error of the ²²² Rn activities were the 2-sigma uncertainty derived from the CAPTURE
329	software (https://durridge.com/). An error of 10% was assumed for EC to cover potential
330	measurement and analytical errors as used by McCallum et al. (2012).
331	Modeled groundwater discharge rates (I) are shown in Figure 2d, while other calibrated
332	parameters (k, h, γ and t_h) are depicted in SI Figure S1. The reach-scale water and mass
333	balance modeling results (black lines in Figure 2a-c) agree with the field measurements
334	reasonably well (for the most optimal case, the likelihood is -21.56, the root mean square errors
335	are 0.18 m ³ /s, 0.126 Bq/L and 55 μ s/cm for Q , ²²² Rn activities and EC, respectively). The
336	modeling results indicate that the groundwater discharge occurred along the entire stream other
337	than concentrating on some local areas, and <i>I</i> varied between 1.08 and 7.80 m ² /d with the mean \pm
338	1 standard deviation at 4.57 \pm 1.81 m ² /d. The highest and lowest <i>I</i> occurred at Reach 2 and
339	Reach 10, respectively. The uncertainty of <i>I</i> is approximately $2 \text{ m}^2/d$ (shaded area in Figure 2d).
340	3.2. Longitudinal patterns of carbon concentrations in stream and groundwater

341 Stream DIC concentrations show a slightly decreasing trend from 62 mg/L at the upstream

342 end to 43 mg/L at the downstream end (Figure 3a). In comparison, groundwater DIC

343 concentrations ($66 \pm 24 \text{ mg/L}$) fluctuated more strongly than those of stream water ($48 \pm 5 \text{ mg/L}$)

344	(Figure 3). Notably, DIC was the main carbon species in both the stream and the adjacent
345	groundwater, because the DIC concentrations were approximately nine times higher than DOC
346	concentrations in both the stream and groundwater (ANOVA, $n = 34$, $F = 1012$ and 97,
347	respectively, both p values < 0.0001). Stream and groundwater DOC concentrations were
348	relatively constant along the stream with the values at 5 \pm 1 and 7 \pm 3 mg/L, respectively. Both
349	the stream and the adjacent groundwater were supersaturated with CO ₂ with pCO ₂ at 719 ± 168
350	μatm and 9,343 \pm 7,050 μatm , respectively, when compared with the average atmospheric pCO_2
351	of 390 μ atm. Furthermore, groundwater pCO ₂ correlates well with groundwater DIC (Figure 3b,
352	$R^2 = 0.91, p < 0.0001).$
353	Overall, the DIC, DOC and CO ₂ concentrations in the groundwater were significantly
354	higher than those in the stream (Figure 4, ANOVA, $n = 34$, $F = 9.01$, 6.70 and 25.42,
355	respectively, all p values < 0.05). Particularly, pCO ₂ in the groundwater was an order of
356	magnitude higher than that in the stream with the mean values at 9,343 and 719 μ atm,
357	respectively. We also found that DIC concentrations and pCO_2 in the riparian groundwater were
358	higher than those in the groundwater from the wells (SI Table S3).

Figure 3. Spatial variations in DIC, DOC and pCO₂ along (a) the Hailiutu River and (b) the adjacent
groundwater.

362

Figure 4. The comparison of DIC, DOC and pCO_2 in the Hailiutu River (n = 17) to those in the adjacent

- 364 groundwater (n = 17). Boxes indicate median and interquartile range, whiskers show the maximum and
- 365 minimum values, dots are outliers from the whiskers, and red dashed lines represent mean values.

366 3.3. Hydrogeochemical processes after groundwater discharges to stream

367	pCO_2 and IAP/K (calcite) in the groundwater are higher and lower than the corresponding
368	values in the stream, respectively (Figure 5, ANOVA, $n = 34$, $F = 25.42$ and 60.46, respectively,
369	both p values < 0.001). The stream was generally supersaturated with calcite with the IAP/K
370	(calcite) of 11.45 ± 4.99 (Range: 6.31~27.54). The modeled results (blue dashed curve in Figure
371	5) indicate that the calcite saturation (IAP/K) increased significantly after the CO ₂ -rich

372 groundwater discharged to the stream.

Figure 5. The hydrogeochemical processes after the groundwater (black squares) discharged to the stream (red
squares). IAP/K(Calcite) was derived from the PHREEQC modeling. The upward arrow indicates the CO₂
evasion process, while the rightward arrow shows the carbonate buffering process (i.e., CO₂^{*} was transformed

377 into HCO₃), thereby causing the supersaturation of calcite. The blue triangles are the modeled results when

- 378 groundwater re-equilibrates with the air of $-\log_{10}(pCO_2)$ (atm) at 2.03 (i.e., 9,343 µatm, the average pCO₂ of
- the 17 groundwater samples in our study), 2.5, 3.0, 3.41 (i.e., 390 µatm, the atmospheric pCO₂), respectively.
- 380 The model parameters used in the PHREEQC simulation are defined in SI Table S4.

381 **3.4. Terrestrial carbon export and stream CO₂ evasion**

The measured data for quantifying the reach-scale carbon budget are listed in SI Table S3, 382 383 and these results are depicted in Figure 6-8. The comparison between external and internal CO_2 384 contributions indicates that the external CO_2 input was higher than the net internal CO_2 production ($F_{gw}^{CO_2}$: 3.73 ± 2.52 g C m⁻² d⁻¹, $F_m^{CO_2}$: 1.08 ± 4.66 g C m⁻² d⁻¹, Figure 6). It should be 385 386 noted that the net internal CO₂ production at all the stream sections except Reaches 5, 8, 9 and 13 387 made positive contribution to the stream CO₂ balance (Figure 6a). Since DIC is the main carbon 388 species in both the groundwater and the stream as discussed above, the terrestrial carbon export is primarily in the form of DIC. The reach-scale terrestrial DIC export (F_{ww}^{DIC} , the product of the 389 groundwater DIC concentrations and I) was 48.78 ± 28.78 g C m⁻² d⁻¹, and varied between 12.20 390 and 111.13 g C m⁻² d⁻¹ (Figure 7a). I at Reach 2 was the highest (Figure 2d), and F_{gw}^{DIC} was also 391 the highest (Figure 7a). Conversely, where I was limited (e.g., Reaches 10 and 11), F_{gw}^{DIC} was 392 also constrained (Figure 7a). 393

Notably, both the stream and the groundwater were high in pH (8.50 ± 0.10 and 7.60 ± 0.25, SI Table S3) and alkalinity (3.98 ± 0.46 and 5.04 ± 1.71 meq/L, SI Table S3). Thus, carbonate buffering plays a significant role in regulating the stream CO₂ pool in our study (Duvert et al., 2019; Stets et al., 2017). The CO₂ mass balance results show that most reaches (except Reaches 8 and 9) had positive $F_{h}^{CO_{2}}$ values (Figure 7b). This indicates that most CO₂^{*} was transformed

406 1.25 g C m⁻² d⁻¹ (range: 0.36~4.16 g C m⁻² d⁻¹). This comparison indicates that our model for 407 calculating $F_{air}^{CO_2}$ performed reasonably well (Figure 8b). Since our K_{CO_2} values were calibrated 408 through the water and mass balance modeling, our $F_{air}^{CO_2}$ values are likely to be better than those 409 empirically derived values.

23

- 411 Figure 6. (a) The reach-scale comparison and (b) the corresponding boxplot comparison of external CO₂ input
- 412 ($F_{gw}^{CO_2}$) to net internal CO₂ production ($F_m^{CO_2}$). Error bars in (a) represent the uncertainties caused by
- 413 groundwater discharge. Boxes in (b) indicate median and interquartile range, whiskers show the maximum and
- 414 minimum values, dots are outliers from the whiskers, and red dashed lines represent mean values.

416 **Figure 7.** The spatial variation in (a) terrestrial DIC export via diffuse groundwater discharge (F_{gw}^{DIC}), (b) 417 carbonate buffering transformation within the stream ($F_b^{CO_2}$) (positive values mean that CO₂^{*} is transformed 418 into HCO₃⁻, and vice versa), and (c) stream CO₂ evasion rate ($F_{air}^{CO_2}$) along the stream. The shaded areas 419 around each line represent the uncertainty bounds. Numbers above line segments are stream reach numbers.

Figure 8. (a) Comparison of reach-scale stream CO₂ evasion rates between an empirical model (model A, Equation (7) in Raymond et al. (2012), SI Text S2) and our study (model B). (b) The statistical comparison between model A and model B. Error bars in (a) represent the uncertainty caused by the uncertainty of ²²²Rn gas transfer velocity. Boxes in (b) indicate the medians and interquartile ranges, whiskers show the maximum and minimum values, dots are outliers from the whiskers, and the red dashed lines represent the mean values.

426 **3.5. Potential drivers for terrestrial carbon export and release**

427 Both the terrestrial DIC export and the stream CO_2 evasion can be controlled by either 428 carbon transfer (i.e., groundwater discharge rate and CO₂ gas transfer velocity, Zone A in Figure 9) or carbon supply (i.e., groundwater DIC concentration and stream pCO₂, Zone C in Figure 9). 429 430 The reaches located at Zone B in Figure 9 are hotspots for carbon fluxes and driven by both the 431 transfer and the supply, whereas the reaches located in Zone D are limited by both the transfer 432 and the supply and so are not important for carbon fluxes. In our study, most reaches are hotspots 433 (located at Zone B in Figure 9a) for terrestrial DIC export except Reaches 10 and 11 (limited by 434 groundwater discharge, Figure 2d). Stream CO₂ evasion rates are mainly located close to the

threshold for dividing Zone A and Zone B in Figure 9b, indicating that the carbon fluxes aredriven by the transfer but limited by the supply.

437 Terrestrial DIC export to headwater streams is mainly controlled by groundwater discharge 438 and groundwater DIC concentrations (Horgby et al., 2019; Leith et al., 2015; Lupon et al., 2019; 439 Öquist et al., 2009; Öquist et al., 2014). In our study, we found that the terrestrial DIC export is 440 positively correlated with the groundwater discharge, but no significant correlation between the 441 terrestrial DIC export and the groundwater DIC concentration (Figure 10a and 10c). In 442 comparison, the stream CO₂ evasion is positively correlated with both the CO₂ gas transfer 443 velocity and stream pCO₂, with the former more significant than the latter (Figure 10b and 10d).

Figure 9. The main control factors on (a) terrestrial DIC export (F_{ew}^{DIC}) and (b) stream CO₂ evasion ($F_{air}^{CO_2}$). 445 446 We utilized the mean reach distance (2.69 km), surface area $(17,571 \text{ m}^2)$, and stream water temperature 447 (14.4 °C) in our study to estimate the isolines (grey solid lines) for terrestrial DIC export and stream CO₂ 448 evasion. The red dots represent the 16 stream reaches. The carbon fluxes can be driven by either carbon 449 transfer (A), carbon supply (C), or both (B). Hotspots of carbon fluxes (B) can then occur when the supply is 450 sufficient and the transfer is fast. Conversely, both the supply and the transfer limited zones (D) are less 451 significant for carbon fluxes. The threshold values (grey dashed lines) for dividing these zones (A-D) are 452 somewhat subjective and based on plausible minimum values of carbon fluxes at hotspots identified through

the literature review (Butman and Raymond, 2011; Liu and Raymond, 2018; Marx et al., 2017; McCallum et
al., 2012; Raymond et al., 2013).

456 **Figure 10.** Correlations between (a) terrestrial DIC export (F_{gw}^{DIC}) and groundwater discharge (*I*), (b) stream 457 CO₂ evasion $(F_{air}^{CO_2})$ and CO₂ gas transfer velocity (K_{CO_2}) , (c) terrestrial DIC export and groundwater DIC 458 concentration, and (d) stream CO₂ evasion and stream pCO₂. Black lines are the linear regression results, while 459 the grey dashed lines are the 10% and 90% confidence intervals.

460 **4. Discussion**

461 **4.1. Diffuse groundwater discharge as a significant driver for terrestrial DIC export**

462	Since our field survey was conducted in the dry season, the steady increase in the stream
463	flow rate was largely attributed to the diffuse groundwater discharge other than the precipitation
464	nor the surface water inflow. This has been supported by the presence of the relatively high
465	stream ²²² Rn activities and the gradual decline in the stream EC along the stream. In our studied
466	catchment, the stream bank and streambed were composed of highly conductive and
467	homogeneous sand (Yang et al., 2012; 2014). Focused groundwater discharge via preferential
468	flow paths is unlikely to occur in such an environment. Rather, the groundwater discharge is
469	more likely to occur in a diffusive pattern along the stream (Duvert et al., 2018; Lupon et al.,
470	2019).

471 Previous studies highlighted the control of focused groundwater discharge on stream CO₂ 472 evasion, but failed to demonstrate the contribution from diffuse groundwater discharge (Duvert 473 et al., 2018; Johnson et al., 2008; Lupon et al., 2019). In this study, we found that the diffuse 474 groundwater discharge not only maintained the streamflow, but also continuously exported a 475 considerable amount of terrestrial carbon to the stream, in particular the terrestrial DIC. As the 476 diffuse groundwater discharge is widely existent (Cook et al., 2003; Cook et al., 2006; 477 McCallum et al., 2012; Xie et al., 2016), it is expected to be the main driver for the terrestrial 478 DIC export in not only our headwater stream but also many other headwater streams.

479

4.2. Terrestrial DIC export as the major carbon source for streams

480 As demonstrated by previous studies, supersaturated CO_2^* in streams and rivers is mainly 481 derived from external input (i.e., terrestrial DIC export) or internal metabolism (Hotchkiss et al., 482 2015). Here, we found that the terrestrial DIC export via the diffuse groundwater discharge 483 played a more significant role in contributing CO_2^* to the studied headwater stream compared

484	with the internal metabolism, which is consistent with existing studies (Duvert et al., 2018;
485	Hotchkiss et al., 2015; Öquist et al., 2009; Winterdahl et al., 2016). More importantly, our study
486	indicates that the riparian zone had a stronger impact on the terrestrial DIC export and stream
487	CO_2 evasion because of the higher DIC and CO_2 concentrations in the riparian groundwater than
488	those in the groundwater from the domestic wells (Hope et al., 2004; Leith et al., 2015; Lupon et
489	al., 2019; Vidon et al., 2010). In semiarid headwater streams, the riparian zone allows for better
490	vegetation growth than areas that are relatively far from the streams. Therefore, soil respiration is
491	more active in the riparian zone than in the rest of the catchment, causing the higher CO_2
492	concentrations (Hope et al., 2004; Leith et al., 2015).
493	This finding was also supported by groundwater $\delta^{13}C_{DIC}$ values (-11.90 \pm 1.98 ‰, see SI
494	Table S5), which fall in the potential $\delta^{13}C_{DIC}$ range for C4 plants (corn in our case) grown in the
495	riparian zone (Clark and Fritz, 1997). Furthermore, our $\delta^{13}C_{DIC}$ data also suggest that terrestrial
496	DIC export is the main carbon source of stream DIC pool. After terrestrial DIC was exported to
497	the stream, the CO_2 gas exchange between the stream and atmosphere and the internal
498	metabolism resulted in more positive $\delta^{13}C_{\text{DIC}}$ values in stream than in groundwater (ANOVA, n
499	= 34, F = 8.64, p < 0.01) (Deirmendjian and Abril, 2018).

500 **4.3. Stream CO₂ evasion was driven by carbon transfer but limited by carbon supply**

501 The terrestrial CO_2 export via the diffuse groundwater discharge directly sustained the 502 stream CO_2 evasion. However, considering the high pH and high alkalinity setting in our study 503 area, most of the terrestrial DIC exported to the stream were in the form of HCO_3^- . Thus, the 504 transformation between CO_2^+ and HCO_3^- (carbonate buffering) can also indirectly enhance or 505 limit the stream CO_2 evasion by regulating stream CO_2 pool (conceptual model in Figure 11),

506	especially in high alkalinity streams (Duvert et al., 2019; Stets et al., 2017). Our CO ₂ mass
507	balance results indicate that the carbonate buffering caused most CO_2^* to be transformed into
508	HCO_3^- after the CO ₂ -rich groundwater discharged to the stream, thereby increasing the calcite
509	saturation of the stream water (Figure 5) (Jacobson and Usdowski, 1975; Lorah and Herman,
510	1988; Lu et al., 2000). Although most reaches are the hotspots for the terrestrial DIC export
511	(Figure 9a), most CO_2^* loss occurred through the carbonate buffering, causing the limited carbon
512	supply for the stream CO_2 evasion. The limited $CO2$ evasion was supported by very close mean
513	$\delta^{13}C_{DIC}$ values of stream water and groundwater (-10.46 ‰ and -11.90 ‰, respectively, SI Table
514	S5). This CO ₂ loss mechanism is attributed to the high alkalinity and pH setting in groundwater
515	and stream. This diffuse groundwater discharge pattern is different from previous studies where
516	most CO2 was emitted to the atmosphere due to focused groundwater discharge (Duvert et al.,
517	2018; Johnson et al., 2008). Thus, the stream CO ₂ evasion in our study catchment was driven by
518	the carbon transfer but limited by the carbon supply (most reaches have high CO ₂ gas transfer
519	velocity but relatively low stream pCO ₂).

Figure 11. The conceptual model demonstrates that diffuse groundwater discharge dominates terrestrial DIC export, and carbonate buffering process regulates stream CO_2 pool through transformation between CO_2^* and HCO₃⁻. This carbonate buffering process can either enhance (i.e., HCO₃⁻ transformed into CO₂) or limit (i.e., CO₂ transformed into HCO₃⁻) stream CO₂ evasion. In our study stream, the carbonate buffering largely limited the stream CO₂ evasion.

526 **4.4. Implication for CO₂ evasion from semiarid headwater streams**

527 Previous studies quantifying headwater stream CO₂ evasion focused mostly on peatland
528 streams (Billett and Harvey, 2013; Hope et al., 2001; Long et al., 2015) and forested streams
529 (Aho and Raymond, 2019; Jones and Mulholland, 1998; Marx et al., 2018; Öquist et al., 2009;
530 Wallin et al., 2013) due to high internal production in these environments. However, headwater

531	streams in arid and semiarid regions are likely to be a significant "transfer station" for terrestrial
532	carbon export and release to the atmosphere because of their close connection with terrestrial
533	ecosystem through diffuse groundwater discharge. Our reach-scale carbon budget results indicate
534	that stream CO ₂ evasion rates (0.62-3.18 g C m ⁻² d ⁻¹ in our study) could be comparable to the
535	average CO ₂ efflux of conterminous US streams (2.42-10.98 g C $m^{-2} d^{-1}$) (Butman and Raymond,
536	2011). Comparison in headwater stream CO ₂ evasion rates between our study, peatland and
537	forested headwater streams suggests that headwater stream CO ₂ evasion from arid and semiarid
538	regions may be as important as that from humid regions (SI Table S6).
520	
539	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2
539 540	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO_2 evasion rates are higher than
539 540 541	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO_2 evasion rates are higher than those reported in these studies (Mediterranean rivers, 0.20-2.63 and 0.49-1.15 g C m ⁻² d ⁻¹ ,
539 540 541 542	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO_2 evasion rates are higher than those reported in these studies (Mediterranean rivers, 0.20-2.63 and 0.49-1.15 g C m ⁻² d ⁻¹ , respectively). We attributed the higher stream CO_2 evasion rates in our study to the greater
539 540 541 542 543	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO_2 evasion rates are higher than those reported in these studies (Mediterranean rivers, 0.20-2.63 and 0.49-1.15 g C m ⁻² d ⁻¹ , respectively). We attributed the higher stream CO_2 evasion rates in our study to the greater diffuse groundwater discharge rates and higher CO_2 gas transfer velocities (transfer driven). As
 539 540 541 542 543 544 	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO ₂ evasion rates are higher than those reported in these studies (Mediterranean rivers, 0.20-2.63 and 0.49-1.15 g C m ⁻² d ⁻¹ , respectively). We attributed the higher stream CO ₂ evasion rates in our study to the greater diffuse groundwater discharge rates and higher CO ₂ gas transfer velocities (transfer driven). As our survey was conducted during the dry season, our results may represent the lower bound of
 539 540 541 542 543 544 545 	Former studies pointed out semiarid headwater streams may also be hotspots for CO_2 evasion (Gómez-Gener et al., 2015; Schiller et al., 2014). Our CO_2 evasion rates are higher than those reported in these studies (Mediterranean rivers, 0.20-2.63 and 0.49-1.15 g C m ⁻² d ⁻¹ , respectively). We attributed the higher stream CO_2 evasion rates in our study to the greater diffuse groundwater discharge rates and higher CO_2 gas transfer velocities (transfer driven). As our survey was conducted during the dry season, our results may represent the lower bound of the Hailiutu River CO_2 evasion rates. Larger CO_2 evasion rates are expected to occur when

5. Conclusions 547

548 In this study, we discovered that headwater streams in arid and semiarid areas are 549 significant sources of CO₂ to the atmosphere. These understudied streams received a considerable amount of dissolved CO₂ from terrestrial ecosystems via diffuse groundwater 550 551 discharge. Interestingly, a large portion of dissolved CO₂ was not directly and quickly emitted to the atmosphere, but transformed into HCO₃⁻ through carbonate buffering. The stream CO₂ 552

553	evasion was driven by fast carbon transfer processes between terrestrial ecosystems, stream and
554	atmosphere, but limited by relatively small carbon supply in stream due to the inhibition of
555	carbonate buffering. To the best of our knowledge, previous studies seldom integrated the vital
556	contribution of terrestrial carbon export via diffuse groundwater discharge to headwater stream
557	carbon budget, which may underestimate headwater stream CO ₂ evasion rates (Duvert et al.,
558	2018; Hotchkiss et al., 2015; Johnson et al., 2008; Lupon et al., 2019; Marx et al., 2017; Öquist
559	et al., 2009). Our analysis highlights the importance of the diffuse groundwater discharge on
560	terrestrial DIC export and stream CO ₂ evasion at the regional scale.

561 Acknowledgments

562 The authors confirm that there is no conflict of interest. Additional supporting information

563 can be found in the supporting information (SI). All research data used in this study are available

and can be found at figshare repository (https://doi.org/10.6084/m9.figshare.12295769.v1). This

research was supported by the National Natural Science Foundation of China (No. 41972246)

and the Fundamental Research Funds for the Central Universities (No. 020614380088).

567 **References**

Aho, K. S., and Raymond, P. A. (2019). Differential response of greenhouse gas evasion to
storms in forested and wetland streams. *Journal of Geophysical Research: Biogeosciences*, *124*(3), 649-662.

Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.
(2009). The boundless carbon cycle. *Nature Geoscience*, 2(1), 598-600.

Billett, M. F., and Harvey, F. H. (2013). Measurements of CO₂ and CH₄ evasion from UK
 peatland headwater streams. *Biogeochem.*, *114*(1-3), 165-181.

575 Butman, D., and Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and 576 rivers in the United States. *Nature Geoscience*, *4*(12), 839-842.

- 577 Clark, I. D., and Fritz, P. (1997), *Environmental Isotopes in Hydrogeology*, CRC Press, Taylor &
 578 Francis Group, New York.
- 579 Cook, P. G. (2013). Estimating groundwater discharge to rivers from river chemistry surveys.
 580 *Hydrological Processes*, 27(25), 3694-3707.
- 581 Cook, P. G., Favreau, G., Dighton, J. C., and Tickell, S. (2003). Determining natural
- 582 groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic 583 environmental tracers. *Journal of Hydrology*, 277(1-2), 74-88.
- Cook, P. G., Lamontagne, S., Berhane, D., and Clark, J. F. (2006). Quantifying groundwater
 discharge to Cockburn River, southeastern Australia, using dissolved gas tracers ²²²Rn and
 SF₆. *Water Resources Research*, 42(10).
- 587 Deirmendjian, L., and Abril, G. (2018). Carbon dioxide degassing at the groundwater-stream588 atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy
 589 watershed. *Journal of Hydrology*, 558, 129-143.
- Duvert, C., Butman, D. E., Marx, A., Ribolzi, O., and Hutley, L. B. (2018). CO₂ evasion along
 streams driven by groundwater inputs and geomorphic controls. *Nature Geoscience*, 11(11),
 813-818.
- Duvert, C., Bossa, M., Tyler, K. J., Wynn, J. G., Munksgaard, N. C., Bird, M. I., et al. (2019).
 Groundwater-derived DIC and carbonate buffering enhance fluvial CO₂ evasion in two
 Australian tropical rivers. *Journal of Geophysical Research: Biogeosciences*, *124*(2), 312-327.
- Gómez-Gener, L., Obrador, B., von Schiller, D., Marcé, R., Casas-Ruiz, J. P., Proia, L., et al.
 (2015). Hot spots for carbon emissions from Mediterranean fluvial networks during summer
 drought. *Biogeochemistry*, 125(3), 409-426.
- Hofmann, H., Gilfedder, B. S., and Cartwright, I. (2011). A novel method using a silicone
 diffusion membrane for continuous ²²²Rn measurements for the quantification of groundwater
 discharge to streams and rivers. *Environmental Science & Technology*, 45(20), 8915-8921.
- Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C. (2001). Carbon dioxide and methane
 evasion from a temperate peatland stream. *Limnology and Oceanography*, 46(4), 847-857.
- Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C. (2004). Variations in dissolved CO₂
 and CH₄ in a first-order stream and catchment: an investigation of soil–stream linkages. *Hydrological Processes*, 18(17), 3255-3275.
- Horgby, Å., Canadell, M. B., Ulseth, A. J., Vennemann, T. W., and Battin, T. J. (2019). Highresolution spatial sampling identifies groundwater as driver of CO₂ dynamics in an Alpine
 stream network. *Journal of Geophysical Research: Biogeosciences*, *124*(7), 1961-1976.
- Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., et al.
 (2015). Sources of and processes controlling CO₂ emissions change with the size of streams
 and rivers. *Nature Geoscience*, 8, 696-699.

- Jacobson, R. L., and Usdowski, E. (1975). Geochemical Controls on a Calcite Precipitating
- 614 Spring. *Contr. Mineral. Petrol.*, *51*(1), 65-74.

Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E., Ometto, J. P. H. B., et al.
(2008). CO₂ efflux from Amazonian headwater streams represents a significant fate for deep
soil respiration. *Geophysical Research Letters*, 35(17).

- Jones, J. B., and Mulholland, P. J. (1998). Carbon dioxide variation in a hardwood forest stream:
 An integrative measure of whole catchment soil respiration. *Ecosystems*, 1(2), 183-196.
- Knapp, J. L. A., and Cirpka, O. A. (2017). Determination of hyporheic travel time distributions
 and other parameters from concurrent conservative and reactive tracer tests by local-in-global
 optimization. *Water Resources Research*, 53(6), 4984-5001.
- Leith, F. I., Dinsmore, K. J., Wallin, M. B., Billett, M. F., Heal, K. V., Laudon, H., et al. (2015).
 Carbon dioxide transport across the hillslope–riparian–stream continuum in a boreal
 headwater catchment. *Biogeosciences*, *12*, 1881-1892.
- Liu, S., and Raymond, P. A. (2018). Hydrologic controls on pCO₂ and CO₂ efflux in US streams
 and rivers. *Limnology and Oceanography*, *3*(6), 428-435.

Long, H., Vihermaa, L., Waldron, S., Hoey, T., Quemin, S., and Newton, J. (2015). Hydraulics
are a first - order control on CO₂ efflux from fluvial systems. *Journal of Geophysical Research: Biogeosciences*, *120*(10), 1912-1922.

Lorah, M. M., and Herman, J. S. (1988). The Chemical Evolution of a Travertine-Depositing
Stream - Geochemical Processes and Mass-Transfer Reactions. *Water Resources Research*,
24(9), 1541-1552.

- Lu, G., Zheng, C., Donahoe, R. J., and Lyons, W. B. (2000). Controlling processes in a CaCO₃
 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. *Journal of Hydrology*, 230(1-2), 34-54.
- Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., Karlsson, J., and Sponseller, R. A. (2019).
 Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. *Limnology and Oceanography*, 64(4), 1545-1557.
- Marx, A., Conrad, M., Aizinger, V., Prechtel, A., van Geldern, R., and Barth, J. A. C. (2018).
 Groundwater data improve modelling of headwater stream CO₂ outgassing with a stable DIC
 isotope approach. *Biogeosciences*, 15(10), 3093-3106.
- Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., et al. (2017). A review
 of CO₂ and associated carbon dynamics in headwater streams: A global perspective. *Reviews of Geophysics*, 55(2), 560-585.
- 646 McCallum, J. L., Cook, P. G., Berhane, D., Rumpf, C., and McMahon, G. A. (2012).
- 647 Quantifying groundwater flows to streams using differential flow gaugings and water 648 chemistry. *Journal of Hydrology*, *416-417*, 118-132.

649 McCallum, J. L., Höhne, A., Schaper, J. L., Shanafield, M., Banks, E. W., Posselt, M., et al. 650 (2020). A Numerical Stream Transport Modeling Approach Including Multiple Conceptualizations of Hyporheic Exchange and Spatial Variability to Assess Contaminant 651 652 Removal. Water Resources Research, 56(3). Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H. (2009). Dissolved Inorganic 653 654 Carbon Export Across the Soil/Stream Interface and Its Fate in a Boreal Headwater Stream. 655 Environmental Science & Technology, 43(19), 7364-7369. 656 Öquist, M. G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S. J., Laudon, H., et al. (2014). 657 The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. 658 Environmental Science & Technology Letter, 1(7), 315-319. 659 Parkhurst, D. L., and Appelo, C. A. J. (2013), Description of input and examples for PHREEQC 660 version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and 661 inverse geochemical calculations, 497 pp., U.S. Geological Survey Techniques and Methods. 662 Rasilo, T., Hutchins, R. H. S., Ruiz-González, C., and del Giorgio, P. A. (2017). Transport and 663 transformation of soil-derived CO₂, CH₄ and DOC sustain CO₂ supersaturation in small boreal 664 streams. Science of The Total Environment, 579, 902-912. 665 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., et al. (2012). 666 Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography: Fluids and Environments, 2(1), 41-53. 667 668 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. 669 (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359. 670 Roche, K. R., Shogren, A. J., Aubeneau, A., Tank, J. L., and Bolster, D. (2019). Modeling 671 benthic versus hyporheic nutrient uptake in unshaded streams with varying substrates. Journal 672 of Geophysical Research: Biogeosciences, 124(2), 367-383. 673 Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. d. L. C., Valerio, A. M., Gagne-Maynard, 674 W., et al. (2017). Carbon Dioxide Emissions along the Lower Amazon River. Frontiers in 675 Marine Science, 4(76). 676 Schiller, D. v., Marcé, R., Obrador, B., Gómez-Gener, L., Casas-Ruiz, J. P., Acuña, V., et al. 677 (2014). Carbon dioxide emissions from dry watercourses. Inland Waters, 4(4), 377-382. 678 Stets, E. G., Butman, D., McDonald, C. P., Stackpoole, S. M., DeGrandpre, M. D., and Striegl, 679 R. G. (2017). Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global 680 Biogeochemical Cycles, 31(4), 663-677. 681 Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., et al. (2010). Hot Spots 682 and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management1. 683 Journal of The American Water Resources Association, 46(2), 278-298.

- Vrugt, J. A., Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., and Higdon, D.
- 685 (2009). Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with
- 686 Self-Adaptive Randomized Subspace Sampling. *International Journal of Nonlinear Sciences* 687 *and Numerical Simulation*, 10(3), 273-290.
- Wallin, M. B., Grabs, T., Buffam, I., Laudon, H., Ågren, A., Öquist, M. G., et al. (2013).
- Evasion of CO_2 from streams The dominant component of the carbon export through the aquatic conduit in a boreal landscape. *Global Change Biology*, *19*(3), 785-797.
- Wehrli, B. (2013). Biogeochemistry: Conduits of the carbon cycle. *Nature*, *503*(7476), 346-347.
- Winterdahl, M., Wallin, M. B., Karlsen, R. H., Laudon, H., Öquist, M., and Lyon, S. W. (2016).
 Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. *Journal of Geophysical Research: Biogeosciences*, *121*(10), 2630-2651.
- Kie, Y., Cook, P. G., Shanafield, M., Simmons, C. T., and Zheng, C. (2016). Uncertainty of
 natural tracer methods for quantifying river–aquifer interaction in a large river. *Journal of Hydrology*, 535, 135-147.
- Yang, Z., Zhou, Y., Wenninger, J., and Uhlenbrook, S. (2012). The causes of flow regime shifts
 in the semi-arid Hailiutu River, Northwest China. *Hydrology and Earth System Sciences*, 16,
 87-103.
- Yang, Z., Zhou, Y., Wenninger, J., and Uhlenbrook, S. (2014). A multi-method approach to
 quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin,
 northwest China. *Hydrogeology Journal*, 22(3), 527-541.

AGU PUBLICATIONS

2	[Water Resources Research]								
3	Supporting Information for								
4 5	Diffuse Groundwater Discharge Dominates Terrestrial Dissolved Inorganic Carbon Export and CO2 Evasion From a Semiarid Headwater Stream								
6	Chuan Wang ¹ , Yueqing Xie ^{1,2,*} , Shaoda Liu ³ , James L. McCallum ⁴ , Qing Li ⁵ , and Jichun Wu ^{1,*}								
7 8	¹ Ministry of Education Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China								
9 10	² National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia								
11	³ Yale School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA								
12	⁴ School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia								
13 14	⁵ State Key Laboratory of Marine Environment Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China								
15	*Corresponding author: Yueqing Xie (<u>yxie@nju.edu.cn</u>)								
16	Jichun Wu (j <u>cwu@nju.edu.cn</u>)								
17									
18	Contents of this file								
19 20 21 22 23 24	Text S1 to S2 Figures S1 to S2 Tables S1 to S6 Additional Supporting Information (Files uploaded separately)								
24 25	Tables S7. Data set of Hailiutu River								
26									
27	Introduction								

- 28 Text S1 demonstrates the calculation of pCO_2 and DIC in our study. Text S2 shows how we
- 29 derived the empirical stream CO₂ evasion rate. Figure S1 shows the calibrated water and mass

- 30 balance parameters derived from MCMC modeling. Figure S2 depicts the relationship
- 31 between carbonate buffering transformation and net internal CO₂ production. Table S1-S3 are
- 32 the measured data and parameters for water and carbon balance calculation. Table S4 shows
- 33 the initial parameters used for PHREEQC simulation. Table S5 is the measured carbon isotopic
- 34 data. Table S6 is the comparison of different headwater stream CO₂ evasion rates. All
- 35 measurements were obtained between 9 and 14 May 2019 (dry season), and according to the
- 36 methods described in the manuscript. Table S7 is all the related data used in this study, and
- 37 uploaded separately as excel file.

39 Text S1. pCO₂ and DIC calculation

40 Dissolved inorganic carbon (DIC) is defined as the sum of CO_2^* (i.e., $CO_{2(aq)} +$

- 41 H_2CO_3), HCO_3^- and CO_3^{-2-} . The relative proportion of the three inorganic carbon species
- 42 (partition coefficient) depends on pH and temperature in water

43
$$\alpha_0 = \left(1 + \frac{K_1}{\left[H^+\right]} + \frac{K_1 K_2}{\left[H^+\right]^2}\right)^{-1}$$
(S1)

44
$$\alpha_1 = \left(1 + \frac{\left[H^+\right]}{K_1} + \frac{K_2}{\left[H^+\right]}\right)^{-1}$$
(S2)

45
$$\alpha_2 = \left(1 + \frac{\left[H^+\right]^2}{K_1 K_2} + \frac{\left[H^+\right]}{K_2}\right)^{-1}$$
(S3)

46 where α_0 , α_1 , and α_2 are the partition coefficient of CO₂^{*}, HCO₃⁻ and CO₃²⁻,

- 47 respectively. $[H^+]$ is the activity of H⁺ (mol/L), which equals 10^{-pH}. K_1 and K_2 are the
- 48 temperature-dependent first and second dissociation constant for the dissociation of
- 49 H₂CO₃, respectively. K_1 and K_2 are determined according to empirical equations from

50 Clark and Fritz (1997)

51
$$-\log_{10}(K_1) = 1.1 \times 10^{-4} T^2 - 0.012T + 6.58$$
 (S4)

52
$$-\log_{10}(K_2) = 9 \times 10^{-5} T^2 - 0.0137T + 10.62$$
 (S5)

53 where T is the temperature in water (°C).

54 Alkalinity is defined as

55

$$Alkalinity = \left[HCO_{3}^{-}\right] + 2\left[CO_{3}^{2-}\right] + \left[OH^{-}\right] - \left[H^{+}\right]$$

$$= \alpha_{1}DIC + 2\alpha_{2}DIC + \left[OH^{-}\right] - \left[H^{+}\right]$$
(S6)

56 Rearranging Equation (S6) leads to the expression of DIC

57
$$DIC = \frac{1}{\alpha_1 + 2\alpha_2} \left(Alkalinity + \left[H^+ \right] - \left[OH^- \right] \right)$$
(S7)

58 when pH is 5~9 and *Alkalinity* > 1 meq/L, $[H^+] - [OH^-]$ can be neglected and the

59 expression of DIC can be simplified into

60
$$DIC = \frac{1}{\alpha_1 + 2\alpha_2} Alkalinity$$
(S8)

61 where the unit of Alkalinity is meq/L, α_1 and α_2 can be derived from Equation (S2) and

62 (S3), respectively, and the unit of *DIC* is mmol/L.

According to Plummer and Busenberg (1982), the partial pressure of CO_2 (pCO_2 ,

64 atm) can be calculated by (all the variables are in mol/L)

$$pCO_2 = \frac{HCO_3^- \times H^+}{K_H \times K_1}$$
(S9)

66 where HCO_3^- is the activity of bicarbonate and can be determined by multiplying the DIC 67 (mol/L) and the partition coefficient α_1 , H^+ equals 10^{-pH} , and K_1 can be derived through 68 Equation (S4). K_H is the Henry's law constant (mol/L/atm), and can be derived from 69 Clark and Fritz (1997)

70
$$-\log_{10}(K_H) = -7 \times 10^{-5} T^2 + 0.016T + 1.11$$
(S10)

71 where T is the temperature in water (°C).

72 Text S2. Empirical stream CO₂ evasion model

73 We utilized Equation (7) in Raymond et al. (2012) to estimate the normalized K_{CO_2}

74 with a Schmidt number of 600 (k_{600})

75
$$k_{600} = 4725 \times (VS)^{0.86} \times Q^{-0.14} \times D^{0.66}$$
 (S11)

76 where V, S, Q, and D are the stream velocity (m/s), slope (dimensionless), stream

flow rate (m^3/s) , and stream depth (m). S is derived from Digital Elevation Model in our

study area, and the other variables (V, Q, and D) are field measured values.

79 Empirical
$$K_{CO_2}$$
 can be calculated by

80
$$K_{CO_2} = k_{600} \times \left(\frac{Sc_{CO_2}}{600}\right)^{-0.5}$$
(S12)

81 where Sc_{CO_2} is the Schmidt number of the field measured stream temperature (°C) and

82 derived from Raymond et al. (2012)

83
$$Sc_{CO_2} = 1742 - 91.24T + 2.208T^2 - 0.0219T^3$$
 (S13)

84 The stream CO₂ evasion rate ($F_{air}^{CO_2}$, g C m⁻² d⁻¹) of the empirical model was

85 calculated by

86
$$F_{air}^{CO_2} = \left(pCO_{2 aq} - pCO_{2 air}\right) \times K_H \times K_{CO_2} \times 12 \div 1000$$
(S14)

87 where $pCO_{2 aq}$ and $pCO_{2 air}$ are the CO₂ partial pressure in the stream and the air (µatm),

- respectively. We assumed that the atmospheric pCO₂ was 390 µatm. K_H and K_{CO_2} are
- 89 the temperature-dependent Henry's Law constant (mol/L/atm) derived from Equation
- 90 (S10) and the CO_2 gas transfer velocity (m/d) derived from Equation (S12).

92

94 corresponding uncertainty bounds (16th-84th percentiles) including (a) ²²²Rn gas transfer

95 velocity (k), (b) hyporheic zone thickness (h), (c) ²²²Rn production rate in the hyporheic zone (γ

96), and (d) hyporheic zone residence time (t_h) derived from the evolutionary Markov chain

- 97 Monte-Carlo simulation.
- 98

100 **Figure S2.** The positive relationship between carbonate buffering transformation ($F_b^{CO_2}$) and

101 net internal CO₂ production ($F_m^{CO_2}$). The black line is the linear regression result, while the grey

- 102 dashed lines are the 10% and 90% confidence intervals.
- 103

	Distance	Flow rate <i>Q</i>	Width w	Depth ^a d	Velocity ^b v	Stream		Groundwater	
-	km	m ³ /s	m	m	m/s	EC(µS/cm)	²²² Rn(Bq/L)	EC(µS/cm)	²²² Rn(Bq/L)
Hailiutu-01	0	0.283	6.3	0.19	0.234	994	1.080	659	4.830
Hailiutu-02	1.57	0.343	4.1	0.24	0.347	887	1.080	640	5.340
Hailiutu-03	3.37	0.440	4.7	0.49	0.190	726	1.150	396	6.442
Hailiutu-04	5.83	0.547	4.4	0.42	0.294	699	1.119	648	4.922
Hailiutu-05	7.52	0.596	3.8	0.33	0.477	619	1.049	396	5.337
Hailiutu-06	9.30	0.713	5.2	0.41	0.338	576	0.837	609	5.077
Hailiutu-07	11.05	0.693	8.2	0.15	0.578	631	0.832	376	5.470
Hailiutu-08	13.57	0.793	9.6	0.11	0.735	581	0.837	375	4.797
Hailiutu-09	15.99	1.394	8.0	0.19	0.930	686	0.904	338	5.707
Hailiutu-10	18.41	0.949	5.9	0.22	0.727	612	0.944	558	5.707
Hailiutu-11	21.29	1.191	7.9	0.21	0.705	563	1.020	679	4.020
Hailiutu-12	24.37	0.845	6.2	0.17	0.808	516	0.978	420	6.636
Hailiutu-13	27.39	0.898	5.0	0.19	0.956	491	1.046	517	4.070
Hailiutu-14	30.44	1.116	11.0	0.13	0.786	485	0.731	488	4.350
Hailiutu-15	34.08	1.085	5.3	0.21	0.958	456	0.800	628	4.755
Hailiutu-16	38.09	1.824	6.8	0.31	0.869	457	0.383	241	4.482
Hailiutu-17	42.98	2.093	5.4	0.34	1.156	472	0.322	674	4.447

104 **Table S1.** Field measured values for reach-scale water and mass balance modeling. ^a *d* equals 105 the cross-section area divided by the stream width. ^b *v* equals the stream flow rate divided by 106 the cross-section area. The Bulang River (Q, EC and ²²²Rn activity are 0.076 m³/s, 433 µS/cm and 107 0.767 Bq/L, respectively) flows into the Hailiutu River at the distance of 14 km. Three irrigation 108 diversion points exist between Hailiutu-01~Hailiutu-02, Hailiutu-04~Hailiutu-05, and Hailiutu-109 O9~Hailiutu-10, and their outgoing fluxes are 0.071, 0.116, and 0.557 m³/s, respectively.

Туре	Symbol	Description	Values
Fixed ^a	Ε	Evaporation rate	0.005 m/d
	θ	Hyporheic zone porosity	0.38
	λ	Radioactive constant of ²²² Rn	0.18 d^{-1}
	W	Stream width	Measured values
	d	Stream depth	Measured values
	C_{gw}	Groundwater ²²² Rn activity (or EC)	Measured values
	C_{Tri}	Tributary ²²² Rn activity (or EC)	Measured values
	Q_0	Incoming stream flow rate	$0.283 \text{ m}^3/\text{s}$
	C_0	Incoming stream ²²² Rn activity (or EC)	1.08 Bq/L (or 994 µS/cm)
Calibrated ^b	Ι	Groundwater discharge	$0-10 \text{ m}^2/\text{d}$
	k	²²² Rn gas transfer velocity	1-12 m/d
	h	Hyporheic zone thickness	0.1-2 m
	γ	²²² Rn production rate in hyporheic zone	2-4 Bq/L/d
	t_h	Hyporheic zone residence time	0.01-1 d
Modeled	Q	Stream flow rate	-
	С	Stream ²²² Rn activity (or EC)	-

111 **Table S2.** Model parameters for reach-scale water and mass balance modeling. ^a *E* usually

112 varies in 10^{-3} - 10^{-2} m/d and is negligible (Cook et al., 2003; Cook et al., 2006). θ was taken from

113 (Ma et al., 2017). λ is a constant value of 0.18 d⁻¹. For a given stream reach, w, d, C_{gw} , and C_{Tri} are

114 the mean values between two measurement points. ^b The calibrated parameter ranges were

115 chosen according to literature review (Cook, 2013; Cook et al., 2006; McCallum et al., 2012;

116 Raymond et al., 2012; Xie et al., 2016)

Measured	Temperature	pН	DO	Alkalinity	DIC	DOC	pCO ₂	Ca ²⁺	Mg^{2+}	IAP/K(calcite)
1 0	°C	-	mg/L	meq/L	mg/L	mg/L	µatm	mg/L	mg/L	-
Stream										
Hailiutu-01	14.8	8.48	10.30	5.14	61.55	5.71	954	76.50	34.38	15.49
Hailiutu-02	17.7	8.76	9.40	4.76	56.12	5.86	470	75.13	32.15	27.54
Hailiutu-03	12.1	8.36	8.71	4.74	57.13	5.18	1131	65.59	28.53	9.12
Hailiutu-04	13.3	8.49	9.17	3.82	45.75	4.91	681	67.33	27.33	10.47
Hailiutu-05	15.6	8.63	9.34	4.20	49.92	4.75	552	63.52	24.50	15.85
Hailiutu-06	15.9	8.65	9.15	3.95	46.90	5.25	497	60.84	23.12	15.14
Hailiutu-07	12.2	8.38	9.48	3.70	44.56	4.97	843	59.54	19.66	7.24
Hailiutu-08	21.5	8.50	7.67	3.68	43.90	4.86	706	57.13	18.10	11.75
Hailiutu-09	15.3	8.52	8.25	3.60	43.02	4.93	611	60.36	19.62	10.47
Hailiutu-10	9.7	8.49	9.74	3.78	45.35	8.08	648	58.74	19.16	8.51
Hailiutu-11	13.1	8.46	8.72	3.90	46.78	5.49	744	57.49	18.10	8.91
Hailiutu-12	17.2	8.50	8.40	3.88	46.37	4.89	706	57.41	17.68	10.96
Hailiutu-13	15.9	8.48	8.04	3.70	44.28	4.75	695	57.61	16.59	9.77
Hailiutu-14	14.4	8.41	8.26	3.68	44.21	5.57	801	56.96	16.86	7.94
Hailiutu-15	8.7	8.35	9.56	3.84	46.38	4.46	904	60.20	16.56	6.31
Hailiutu-16	11.7	8.50	9.37	3.70	44.33	4.81	633	59.16	17.10	9.12
Hailiutu-17	16.2	8.50	8.47	3.62	43.28	4.89	651	57.56	16.20	10.00
Groundwater										
Hailiutu-01-G	15.0	7.26	1.59	8.68	119.29	9.29	27349	80.36	46.53	1.70
Hailiutu-02-G	12.8	7.71	1.63	4.88	61.62	5.34	5304	65.99	26.45	2.29
Hailiutu-03-G	12.1	7.36	0.26	4.74	63.84	6.61	11465	57.67	13.03	0.89
Hailiutu-04-G	14.3	7.68	2.09	5.16	65.29	5.29	6117	73.69	24.88	2.63
Hailiutu-05-G	10.2	7.70	0.90	4.32	54.79	4.93	4667	60.85	17.18	1.74
Hailiutu-06-G	14.6	7.39	0.73	5.36	71.27	6.75	12454	68.75	24.36	1.35
Hailiutu-07-W	13.7	8.04	2.08	3.02	37.00	5.51	1545	46.96	12.66	2.45
Hailiutu-08-G	16.7	7.81	4.94	3.24	40.33	3.85	2927	60.02	11.92	2.14
Hailiutu-09-W	13.1	8.00	4.75	2.62	32.19	3.73	1461	36.50	12.77	1.51
Hailiutu-10-G	11.6	7.54	1.13	5.24	67.97	7.39	8320	82.99	23.21	2.00
Hailiutu-11-G	15.6	7.38	2.15	6.58	87.52	15.45	15834	95.85	27.79	2.19
Hailiutu-12-G	14.4	7.57	1.00	4.12	52.95	5.53	6304	71.96	12.20	1.70
Hailiutu-13-G	13.3	7.55	2.77	4.80	61.99	6.49	7593	96.69	27.81	2.24
Hailiutu-14-G	13.8	7.33	0.25	6.60	89.22	12.30	17446	96.37	28.07	1.86
Hailiutu-15-G	9.2	7.47	0.20	7.00	92.48	8.89	12720	128.50	29.78	2.95
Hailiutu-16-G	13.9	8.05	7.37	2.44	29.87	7.61	1223	44.54	7.91	2.00
Hailiutu-17-G	14.0	7.38	1.76	6.82	91.01	7.62	16102	108.40	31.87	2.34

- 118 **Table S3.** Measured values for quantifying the reach-scale CO₂ budget. The Hailiutu-07-W and
- 119 Hailiutu-09-W are groundwater collected from wells, while others are the riparian
- 120 groundwater.
- 121

Parameters	Values
temperature	13.43 °C
pН	7.6
pe	4
Ca ²⁺	75.06 mg/L
Mg^{2+}	22.26 mg/L
Alkalinity	5.04 meq/L

- **Table S4.** Initial model parameters for modeling IAP/K calcite value change after the CO₂-rich groundwater discharged to the stream. 123

	Distan	Stream		Ground	water
River points	ce	$\delta^{13}C_{DIC}$	SD	$\delta^{13}C_{DIC}$	SD
-	km	‰	‰	‰	‰
Hailiutu-01	0	-10.29	0.03	-6.15	0.09
Hailiutu-02	1.57	-9.42	0.02	-12.01	0.02
Hailiutu-03	3.37	-10.66	0.03	-12.41	0.03
Hailiutu-04	5.83	-10.52	0.04	-12.49	0.02
Hailiutu-05	7.52	-10.21	0.03	-10.91	0.05
Hailiutu-06	9.30	-10.13	0.03	-13.86	0.02
Hailiutu-07	11.05	-10.74	0.03	-11.45	0.03
Hailiutu-08	13.57	-10.70	0.05	-11.17	0.06
Hailiutu-09	15.99	-10.69	0.04	-10.01	0.06
Hailiutu-10	18.41	-10.24	0.05	-12.79	0.03
Hailiutu-11	21.29	-10.31	0.06	-13.87	0.04
Hailiutu-12	24.37	-10.49	0.07	-12.18	0.03
Hailiutu-13	27.39	-10.71	0.05	-12.47	0.03
Hailiutu-14	30.44	-10.88	0.03	-13.74	0.03
Hailiutu-15	34.08	-10.68	0.04	-12.35	0.02
Hailiutu-16	38.09	-10.76	0.03	-9.81	0.08

126 **Table S5.** $\delta^{13}C_{DIC}$ values of the Hailiutu River and its adjacent groundwater. All $\delta^{13}C_{DIC}$ are

42.98

Hailiutu-17

reported as per mil deviation (‰) from the standard Vienna Pee Dee Belemnite (VPDB). SD

-10.41

0.03

-14.56

0.03

represents the standard deviation. The Hailiutu-07 and Hailiutu-09 groundwater samples are groundwater collected from wells, and others are riparian groundwater.

130

_

Location	Stream type	pCO ₂ (µatm) ^a	Stream CO ₂ evasion (g C m ⁻² d ⁻¹) ^a	Reference
Scotland, UK	peatland	174-2678 (1136)	0.07-110.94 (9.33)	Long et al. (2015)
Scotland, UK	peatland	420-4500 (-)	0.26-45.88 (-)	Hope et al. (2001)
UK ^b	peatland	671-10271 (-)	0-43.2 (-)	Billett and Harvey (2013)
Connecticut, USA	forest	667-11104 (3534)	0.75-66.23 (7.40)	Aho and Raymond (2019)
Northern Sweden	forest	722-24167 (-)	3.99-17.56 (-)	Wallin et al. (2013)
Northern Sweden	forest	2015-7838 (-)	- (6.45)	Öquist et al. (2009)
Tennessee, USA	forest	360-6228 (-)	1.88-4.48 (-)	Jones and Mulholland (1998)
Northern Czech Republic	forest	450-3749 (-)	0.02-59.5 (5.90)	Marx et al. (2018)
Alps, Swiss	Alpine	309-1305 (634)	18.66-44.69 (31.20)	Horgby et al. (2019)
Northern China	Semiarid	470-1131 (719)	0.62-3.18 (1.40)	This study

131 **Table S6.** Comparison of CO₂ evasion rates from different headwater streams.^a pCO₂ and

132 stream CO₂ evasion rates are expressed as minimum-maximum (mean).^b This research

133 surveyed headwater streams in six UK peatland catchments.

135 Supporting references

- Aho, K. S., and Raymond, P. A. (2019). Differential response of greenhouse gas evasion
 to storms in forested and wetland streams. *Journal of Geophysical Research: Biogeosciences*, 124(3), 649-662.
- Billett, M. F., and Harvey, F. H. (2013). Measurements of CO₂ and CH₄ evasion from
 UK peatland headwater streams. *Biogeochem.*, *114*(1-3), 165-181.
- 141 Clark, I. D., and Fritz, P. (1997), *Environmental Isotopes in Hydrogeology*, CRC Press,
 142 Taylor & Francis Group, New York.
- Cook, P. G. (2013). Estimating groundwater discharge to rivers from river chemistry
 surveys. *Hydrological Processes*, 27(25), 3694-3707.
- 145 Cook, P. G., Favreau, G., Dighton, J. C., and Tickell, S. (2003). Determining natural
- 146 groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic
- 147 environmental tracers. *Journal of Hydrology*, 277(1-2), 74-88.
- 148 Cook, P. G., Lamontagne, S., Berhane, D., and Clark, J. F. (2006). Quantifying
- 149 groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas 150 tracers 222 Rn and SF₆. *Water Resources Research*, 42(10).
- Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C. (2001). Carbon dioxide and
 methane evasion from a temperate peatland stream. *Limnology and Oceanography*,
 46(4), 847-857.
- Horgby, Å., Canadell, M. B., Ulseth, A. J., Vennemann, T. W., and Battin, T. J. (2019).
 High-resolution spatial sampling identifies groundwater as driver of CO₂ dynamics in an Alpine stream network. *Journal of Geophysical Research: Biogeosciences*, 124(7), 1961-1976.
- Jones, J. B., and Mulholland, P. J. (1998). Carbon dioxide variation in a hardwood forest
 stream: An integrative measure of whole catchment soil respiration. *Ecosystems*, 1(2),
 183-196.
- 161 Long, H., Vihermaa, L., Waldron, S., Hoey, T., Quemin, S., and Newton, J. (2015).
- Hydraulics are a first order control on CO₂ efflux from fluvial systems. *Journal of Geophysical Research: Biogeosciences*, *120*(10), 1912-1922.
- Ma, H., Yang, Q., Yin, L., Huang, J., Zhang, J., Wang, X., et al. (2017). Isotopic
 Implications for Vapor-Liquid Infiltration Pattern in the Desert Area of Ordos Plateau,
- 166 China. Clean Soil Air Water, 45(5).
- 167 Marx, A., Conrad, M., Aizinger, V., Prechtel, A., van Geldern, R., and Barth, J. A. C.
- 168 (2018). Groundwater data improve modelling of headwater stream CO_2 outgassing
- 169 with a stable DIC isotope approach. *Biogeosciences*, *15*(10), 3093-3106.

- 170 McCallum, J. L., Cook, P. G., Berhane, D., Rumpf, C., and McMahon, G. A. (2012).
- Quantifying groundwater flows to streams using differential flow gaugings and water
 chemistry. *Journal of Hydrology*, *416-417*, 118-132.
- Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H. (2009). Dissolved
 Inorganic Carbon Export Across the Soil/Stream Interface and Its Fate in a Boreal
 Headwater Stream. *Environmental Science & Technology*, *43*(19), 7364-7369.
- Plummer, L. N., and Busenberg, E. (1982). The solubilities of calcite, aragonite and
 vaterite in CO₂-H₂O solutions between 0 and 90°C, and an evaluation of the aqueous
 model for the system CaCO₃-CO₂-H₂O. *Geochimica et Cosmochimica Acta*, 46(6),
 1011-1040.
- 180 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., et al.
- (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small
 rivers. *Limnology and Oceanography: Fluids and Environments*, 2(1), 41-53.
- 182 rivers. Limnology and Oceanography: Fluids and Environments, 2(1), 41-53.
- 183 Wallin, M. B., Grabs, T., Buffam, I., Laudon, H., Ågren, A., Öquist, M. G., et al. (2013).
- 184 Evasion of CO_2 from streams The dominant component of the carbon export through 185 the aquatic conduit in a boreal landscape. *Global Change Biology*, *19*(3), 785-797.
- 186 Xie, Y., Cook, P. G., Shanafield, M., Simmons, C. T., and Zheng, C. (2016). Uncertainty
- of natural tracer methods for quantifying river–aquifer interaction in a large river.
 Journal of Hydrology, 535, 135-147.