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Abstract

We quantify sliding stability and rupture styles for a horizontal interface between an elastic layer and stiffer elastic half-space

with a free surface on top and rate-and-state friction on the interface. This geometry includes shallowly dipping subduction

zones, landslides, and ice streams. Specific motivation comes from quasi-periodic slow slip events on the Whillans Ice Plain

in West Antarctica. We quantify the influence of layer thickness on sliding stability, specifically whether steady loading of the

system produces steady sliding or sequences of stick-slip events. We do this using both linear stability analysis and nonlinear

earthquake sequence simulations. We restrict our attention to the 2D antiplane shear problem, but anticipate that our findings

generalize to the more complex 2D in-plane and 3D problems. Steady sliding with velocity-weakening rate-and-state friction is

linearly unstable to Fourier mode perturbations having wavelengths greater than a critical wavelength (λ c). We quantify the

dependence of λ c on the rate-and-state friction parameters, elastic properties, loading, and the layer thickness (Η). We find that

λ c is proportional to sqrt(Η) for small Η and independent of Η for large Η. The linear stability analysis provides insight into

nonlinear earthquake sequence dynamics of a nominally velocity-strengthening interface containing a velocity-weakening region

of width W. Sequence simulations reveal a transition from steady sliding at small W to stick-slip events when W exceeds a

critical width (W cr), with W cr proportional to sqrt(H) for small H. Overall this study demonstrates that the reduced stiffness

of thin layers promotes instability, with implications for sliding dynamics in thin layer geometries.
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Abstract13

We quantify sliding stability and rupture styles for a horizontal interface between14

an elastic layer and stiffer elastic half-space with a free surface on top and rate-and-state15

friction on the interface. This geometry includes shallowly dipping subduction zones, land-16

slides, and ice streams. Specific motivation comes from quasi-periodic slow slip events17

on the Whillans Ice Plain in West Antarctica. We quantify the influence of layer thick-18

ness on sliding stability, specifically whether steady loading of the system produces steady19

sliding or sequences of stick-slip events. We do this using both linear stability analysis20

and nonlinear earthquake sequence simulations. We restrict our attention to the 2D an-21

tiplane shear problem, but anticipate that our findings generalize to the more complex22

2D in-plane and 3D problems.23

Steady sliding with velocity-weakening rate-and-state friction is linearly unstable24

to Fourier mode perturbations having wavelengths greater than a critical wavelength (λc).25

We quantify the dependence of λc on the rate-and-state friction parameters, elastic prop-26

erties, loading, and the layer thickness (H). We find that λc ∝ H1/2 for small H and27

independent of H for large H. The linear stability analysis provides insight into nonlin-28

ear earthquake sequence dynamics of a nominally velocity-strengthening interface con-29

taining a velocity-weakening region of width W . Sequence simulations reveal a transi-30

tion from steady sliding at small W to stick-slip events when W exceeds a critical width31

(Wcr), with Wcr ∝ H1/2 for small H. Overall this study demonstrates that the reduced32

stiffness of thin layers promotes instability, with implications for sliding dynamics in thin33

layer geometries.34
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1 Introduction35

Several geological hazards like earthquakes and landslides can be idealized as fric-36

tional sliding between two elastic solids. In response to steady loading, sliding can oc-37

cur at either a steady rate or through stick-slip events. This sliding style is a function38

of the elastic properties of the solids, the geometry of the solids, the frictional param-39

eters at the interface, and the loading. While most previous studies have focused on in-40

terfaces in otherwise unbounded solids, several systems and natural hazards involve slid-41

ing on interfaces close to a free surface. These include ice streams, shallowly dipping sub-42

duction zone faults, and landslides.43

Ice streams are fast-moving rivers of ice that transport ice and debris from grounded44

ice sheets to the coast. Driven by gravity and/or push from comparatively steady up-45

stream ice flow, ice streams involve sliding of a relatively thin (thickness H ∼ 1 km)46

ice layer over nearly horizontal bedrock. Ice is an order of magnitude more compliant47

than bedrock, such that most deformation during slip occurs within the ice. While most48

ice streams slide in a relatively steady manner, the Whillians Ice Plain (WIP) in West49

Antarctica advances through twice-daily slow slip events. Each lasts about 30 minutes50

and causes about 0.5 m of slip with average rupture velocities of 100-300 m/s, an order51

of magnitude slower than the shear-wave speed of ice (Bindschadler et al., 2003; Wal-52

ter et al., 2011). These stick-slip sequences are attributed to heterogeneity in the bed,53

specifically one or more “sticky-spots” of high frictional resistance (Alley, 1993; Win-54

berry et al., 2011).55

Likewise, shallowly dipping subduction zones, particularly the shallow region near56

the trench, involve sliding on an interface in close proximity and nearly parallel to the57

free surface. The hanging wall material above the interface is often vastly more compli-58

ant than the footwall material below the interface (Bilek & Lay, 1999; Polet & Kanamori,59

2000; Jeppson et al., 2018), which influences rupture behavior and tsunamigenesis (Tanioka60

& Sataka, 1996; Kido et al., 2011; Kozdon & Dunham, 2013; Lotto et al., 2017; Sallarès61

& Ranero, 2019). Diverse sliding styles occur in the shallow subduction zone. These in-62

clude steady aseismic sliding and slow slip (LaBonte et al., 2009; Wallace et al., 2016;63

Araki et al., 2017) that pose little hazard. Sliding can also occur in hazardous, tsunami-64

producing slip events, either as part of great megathrust ruptures (Simons et al., 2011;65

Lay et al., 2012) or as tsunami earthquakes (Pelayo & Wiens, 1992; Polet & Kanamori,66

2000; Ma & Hirakawa, 2013) that are depleted in high-frequency seismic radiation rel-67

ative to their magnitude. It is likely that elastic and frictional properties influence the68

sliding style, and that frictional properties are spatially heterogeneous (Lay & Kanamori,69

1980, 1981).70

Landslides also feature localized shearing on a slip surface with diverse sliding styles71

ranging from steady creep (Van Asch, 1984; Fruneau et al., 1996) to catastrophic shear72

failure (Gomberg et al., 1995; Hungr et al., 2014). Landslide models that explore slip sta-73

bility are generally based on the idealization of frictional sliding on an interface close to74

the free surface (Palmer & Rice, 1973; Iverson, 2000; Viesca & Rice, 2012; Iverson & George,75

2016; Handwerger et al., 2016). As in the other example systems, heterogeneity of ma-76

terial properties can lead to differences in the sliding style (Handwerger et al., 2016). The77

materials making up a landslide can significantly vary, leading to areas of high frictional78

resistance (rough surfaces with coarse-grained material) and lower frictional resistance79

(smooth surfaces with fine-grained liquefied material) (Baum & Johnson, 1993; Iverson,80

2003).81

In these three systems, an elastic layer slides across a nearly horizontal frictional82

interface, causing steady sliding or stick-slip sequences. A framework to explain these83

sliding styles has been developed through experiments to determine friction, theory to84

understand sliding stability, and simulations to explore nonlinear sliding dynamics.85
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Laboratory friction experiments have found that sliding between two solids can oc-86

cur through either steady sliding and stick-slip motion reminiscent of earthquake rup-87

tures (Brace & Byerlee, 1966; Dieterich, 1972, 1978). Stick-slip events have been further88

examined through rapid imaging in recent studies. These have shown more complex rup-89

ture styles, with stick-slip motion occurring as either slow slip events or inertially-controlled90

fast slip events (Rubinstein et al., 2004; Nielsen et al., 2010). Much earlier laboratory91

experiments led to the development of rate-and-state friction, a now well-established frame-92

work to describe friction at fault interfaces (Dieterich, 1978, 1979; Ruina, 1983; Rice &93

Ruina, 1983; Rice, 1983).94

Rate-and-state friction plays a fundamental role in modern understanding of slid-95

ing stability. Rate-and-state friction describes the evolution of frictional strength with96

changes in slip velocity and sliding history. With an increase in slip velocity, there is a97

direct effect that initially increases the frictional resistance, then an evolution of frictional98

resistance to a new steady state value. This new steady state can feature either an in-99

crease in frictional resistance (velocity-strengthening) or a decrease in frictional resis-100

tance (velocity-weakening). In the context of rupture dynamics, a velocity-strengthening101

interface generally responds to steady loading through steady sliding. In contrast, slid-102

ing of a velocity-weakening interface can become unstable, producing earthquake-like slip103

events. Velocity-weakening interfaces are conditionally unstable; if frictional weakening104

happens more quickly than quasi-static stress reduction, then the interface will produce105

stick-slip events. For problem setups where the interface is completely velocity-weakening,106

the governing equations can be linearized around the steady state solution to quantify107

conditions for instability. Instability occurs if the perturbation wavelength is larger than108

a critical wavelength (λc), which is a function of the frictional parameters, elastic prop-109

erties, loading, and material thickness. The stability of sliding between elastic solids has110

been studied in several contexts, including the study of elastic properties above and be-111

low the interface (identical vs. dissimilar materials) and the study of geometries (two112

half-spaces vs. layer over half-space) (Ruina, 1983; Rice et al., 2001; Ranjith, 2014; Al-113

dam et al., 2016). A linear stability analysis can provide insight into more complex non-114

linear frictional behavior that can only be studied with experiments or simulations.115

Earthquake sequence simulations utilizing rate-and-state friction have been used116

to further examine instability and sliding dynamics. Several studies have been performed117

examining sliding between two half-spaces with a velocity-strengthening interface with118

a central velocity-weakening region. This frictional interface is the simplest idealization119

of real-world frictional heterogeneity. These studies have shown that a small velocity weak-120

ening region leads to aseismic slip (steady sliding), intermediate size leads to stick-slip121

sequences nucleating at the center of the velocity-weakening region, and very large velocity-122

weakening region leads to chaotic non-periodic rupture nucleated near the sides caus-123

ing both partial and full ruptures (Sammis & Rice, 2001; Chen & Lapusta, 2009; Cat-124

tania & Segall, 2019; Barbot, 2019). The transition in size needed to cause instability125

(steady sliding to stick-slip sequences) is consistent with what is found in the linear sta-126

bility analyses, with the onset of stick-slip cycles occurring when the velocity weaken-127

ing zone is just larger than the nucleation length (Rubin & Ampuero, 2005; Ampuero128

& Rubin, 2008).129

This study will focus on 2D antiplane shear sliding of a layer over half-space, which130

has been studied to a lesser extent (Ranjith, 2014; Bar-Sinai et al., 2013; Lipovsky & Dun-131

ham, 2017; Bar-Sinai et al., 2019). The linear stability analysis of this geometry can pro-132

vide insight into earthquake sequences on more complex nonlinear interface frameworks,133

such as those of the WIP, shallowly dipping subduction zones, and landslides. Instabil-134

ity occurs when the velocity-weakening region is larger than some critical size. There-135

fore, we seek to quantify how instability depends on layer thickness, frictional param-136

eters, elastic properties, and loading. First, we use a linear stability analysis to derive137

the critical wavelength for instability for an elastic layer over stiffer half-space with a velocity-138
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weakening interface. Second, we justify that a compliant elastic layer over a stiffer un-139

derlying half-spaces, such as the ice-on-rock configuration of the WIP, can be treated as140

an elastic layer over a rigid half-space. Finally, we use numerical sequences simulations141

with a more complex distribution of frictional properties. We verify that key features142

of the linear stability analysis also describe sliding behavior for a more complex frictional143

interface.144

2 Model and Governing Equations145

Consider an elastic layer of thickness H sliding on a frictional interface over a half-146

space (Figure 1). In the linear stability analysis (section 3), the frictional interface is ev-147

erywhere velocity-weakening (Figure 1a); instability occurs when a sinusoidal perturba-148

tion having wavelength (λ) larger than a critical wavelength (λc) is added to the steady149

sliding solution. In the numerical simulations (section 4), the frictional interface is ve-150

locity strengthening with a central velocity-weakening region (Figure 1b); stick-slip earth-151

quake sequences occur in response to steady loading when the width (W ) of the velocity-152

weakening region is larger than a critical width (Wcr). We demonstrate that the quan-153

titative influence of H on sliding stability is consistent between the linear stability anal-154

ysis and sequence simulations. For sufficiently small H, the critical length scales λc and155

Wcr both decrease as H1/2 as H decreases. For large H, both critical length scales are156

independent of H.157

y y

z

frictional interface
Half-space:

μ', ρ', c'

Layer:
μ, ρ, c

z

frictional interface
Half-space:

μ', ρ', c'

  λ  

Linear Stability Analysis Numerical Simulations(a) (b)

Velocity Strengthening Zone
Velocity Weakening Zone

HH
Layer:
μ, ρ, c   W  

Figure 1. Antiplane shear sliding of an elastic layer over a half-space. (a) For the linear

stability analysis, steady sliding on a velocity-weakening interface is unstable to sinusoidal per-

turbations having wavelengths (λ) larger than λc. (b) In the numerical simulations, the interface

is velocity strengthening with a central region that is velocity-weakening. When the width of the

region (W ) is larger than Wcr, stick-slip sequences occur in response to steady forcing.

158

159

160

161

162

Three different slip styles (steady sliding, slow slip sequences, and fast slip sequences)163

can occur in the numerical simulations with steady forcing, with instability manifesting164

as the transition between steady sliding and slow slip sequences. Figure 2 shows three165

simulations, one for each slip style. (Simulation details are provided later.) The entire166

layer is sliding at a constant, steady state velocity at the start of the simulation. When167

W < Wcr, steady sliding occurs for the duration of the simulation (Figure 2, column168

1). For W approximately equal to Wcr, perturbations about the steady state slip veloc-169

ity grow and reach a limit cycle of slow slip events (Figure 2, column 2). When W >170

Wcr, fast slip event sequences occur (Figure 2, column 3). The transition from slow to171
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fast slip is continuous and is distinguished by the relative of importance of inertia in the172

momentum balance. A primary objective of this study is to determine how layer thick-173

ness (H) influences Wcr and slip style.174

Figure 2. Simulation illustrating how increasing the width of the velocity-weakening region

causes changes in sliding style style: column 1 (A, D, G) steady sliding; column 2 (B, E, H) slow

slip events; column 3 (C, F, I) fast slip events. Row 1 (A, B, C): Space-time plots of normalized

slip velocity. Row 2 (D, E, F): Normalized slip velocity at the center of the interface. Row 3 (G,

H, I): Slip at the center of the interface.

175

176

177

178

179

2.1 Rate-and-state friction180

Rate-and-state friction is a common framework to describe friction in tectonic set-181

tings (Dieterich, 1978, 1979, 1992; Ruina, 1983; Rice & Ruina, 1983; Marone, 1998; Rice182

et al., 2001). Frictional strength (τ) at the interface is a function of sliding velocity (V ),183

a state variable that quantifies sliding history (θ), and effective normal stress (σ):184

τ = f(V, θ)σ, (1)185

with friction coefficient186

f(V, θ) = f0 + a ln

(
V

V0

)
+ b ln

(
V0θ

dc

)
, (2)187

where f0 and V0 are reference friction coefficient and reference sliding velocity, a and b188

are rate-and-state coefficients, and dc is the state evolution distance. We use the aging189

law for state evolution:190

∂θ

∂t
= 1− θV

dc
. (3)191

–6–
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At steady state ∂θ/∂t = 0, for which state assumes its steady state value θss(V ) = dc/V .192

Substituting this into the friction law (1) and (2) provides the steady state frictional strength,193

τss(V ) = σ

[
f0 + (a− b) ln

(
V

V0

)]
. (4)194

When a − b > 0 friction is velocity strengthening, corresponding to steady sliding in195

response to steady forcing, whereas when a−b < 0 friction is velocity-weakening which196

can lead to unstable slip and earthquake sequences (Rice & Ruina, 1983; Rice, 1983).197

Keeping σ constant and linearizing the frictional strength (1) and (2) about a steady state198

velocity (V0) yields (Rice, 1983; Rice et al., 2001):199

∂τ

∂t
=
aσ

V0

∂V

∂t
− V0
dc

(
(τ − τ0) +

σ(b− a)

V0
(V − V0)

)
, (5)200

where τ0 = τss(V0) and, without loss of generality, the reference velocity to equal steady201

state velocity. We will utilize (5) in the linear stability analysis to follow.202

2.2 Elasticity and loading203

In the 2D antiplane shear model setup, there is an elastic layer above the interface204

(z > 0) and an elastic half-space below the interface (z < 0). The materials above and205

below the interface are possibly different (shear moduli µ and µ′, density ρ and ρ′, which206

together give shear wave speeds c =
√
µ/ρ and c′ =

√
µ′/ρ′), with the prime indicat-207

ing material properties in the half-space. In the numerical simulations, we take the half-208

space to be rigid (µ′ → ∞ and c′ → ∞). The layer slides in the x-direction relative209

to the half-space, with the y-direction along the interface and the z-direction upward (Fig-210

ure 1). There is a spatially uniform effective normal stress (σ) along the interface at z =211

0.212

In this study, which focuses primarily on the transition between steady sliding and213

slow slip, we solve the quasi-static elastic problem and, in numerical simulations only (but214

not in the linear stability analysis), utilize the radiation damping approximation to cap-215

ture inertial effects. Quasi-static stresses are denoted as σij . The top of the layer, at z =216

H, is traction free,217

σxz(y, z = H, t) = 0. (6)218

For antiplane shear sliding, displacement occurs in the x-direction only; therefore, uy =219

uz = 0 and we define u = ux(y, z, t). The slip across the interface is220

δ(y, t) = u(y, z = 0+, t)− u(y, z = 0−, t), (7)221

and slip velocity is V (y, t) = ∂δ/∂t. Shear tractions are balanced across the interface,222

σxz(y, z = 0−, t) = σxz(y, z = 0+, t). (8)223

At the interface, the shear stress is the sum of the quasi-static shear stress and the ra-224

diation damping stress change (Rice, 1993),225

τ(y, t) = σxz(y, z = 0, t)− ηV, (9)226

where the radiation damping term is neglected (i.e., η = 0) in the linear stability anal-227

ysis whereas η = µ/c in the numerical simulations. Hooke’s law,228

σxy = µ
∂u

∂y
and σxz = µ

∂u

∂z
, (10)229

relates stress and elastic strain, where µ differs above and below the interface.230
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The layer slides due to an applied body force (fx) applied only in the layer, mak-231

ing the 2D equilibrium equations232

0 = µ

(
∂2u

∂y2
+
∂2u

∂z2

)
+ fx (11)233

above the interface (z > 0) and234

0 = µ′
(
∂2u

∂y2
+
∂2u

∂z2

)
(12)235

below the interface (z < 0).236

Fast slip events are defined as those for which inertial effects, appearing through237

the −ηV term, are appreciable. We use the following criterion to distinguish fast from238

slow slip, but note that the transition is gradual:239

V >
(b− a)σ

µ
c. (13)240

The body force causes the layer to slide at a steady state velocity V0 in the absence241

of perturbations. Using the equation of motion (11), we can obtain the forcing term (fx)242

by integrating the equilibrium equation (11) over the domain, utilizing the free surface243

boundary condition (6), and setting shear stress on the interface (9) equal to frictional244

strength (1). For spatially uniform forcing and sliding in steady state conditions, we find245

fx =
τss(V0)− ηV0

H
. (14)246

2.3 Parameter choices247

The setup of a velocity-weakening region within a velocity-strengthening interface248

that we use in our simulations (Figure 1b) is motivated by the Whillans Ice Plain (WIP).249

This section of an Antarctic ice stream exhibits twice-daily slow slip events (Walter et250

al., 2011). Because of our interest in this phenomenon, we base our nominal model pa-251

rameters on those of ice (Table 1). However, we note that the model setup and analy-252

sis results apply to a wide range of elastic properties and frictional parameters, such as253

shallowly dipping subduction zones and landslides. Therefore, the results of this study254

are normalized to encompass various types of geologic settings.255

Table 1. Parameters used in the linearized stability analysis and numerical simulations. Model

parameters based on those of ice.

256

257

Symbol Parameter Value

f0 reference friction coefficient 0.4
V0 reference velocity (and steady state velocity) 10−5 m/s
dc state evolution distance 0.014 m
σ effective normal stress 101 kPa
a direct effect parameter 0.02
bV S evolution effect parameter for velocity-strengthening region 0.015
bVW evolution effect parameter for velocity-weakening region 0.025
µ layer shear modulus 3.6 GPa
ρ layer density 900 kg/m3

η radiation damping coefficient 1.8 MPa/(m/s)
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3 Linear Stability Analysis258

For a velocity-weakening interface subject to constant loading, sliding occurs at a259

steady velocity in the absence of perturbations. When the system is perturbed, the per-260

turbation can grow to cause instability or decay to return the system to its steady slid-261

ing state. Steady sliding on a velocity-weakening interface (Figure 1a) is linearly unsta-262

ble to Fourier mode perturbations having wavelengths greater than the critical wavelength263

(λc). This critical wavelength is dependent on layer thickness (H), the elastic proper-264

ties, and the rate-and-state parameters. We examine a perturbation added to steady state265

in slip (δ̂), slip velocity (V̂ ), and shear stress (τ̂) to quantify the response. This pertur-266

bation is of the form exp(iky+pt), where k = 2π/λ is a real wavenumber and p = ζ+267

iω is complex and characterizes the time response to the perturbation as a function of268

k. For quasi-static elasticity (without radiation damping), the perturbations are269

δ̂ = δ − V0t = D(k, p)eiky+pt, (15)270

271

V̂ = V − V0 = pδ̂, (16)272

and273

τ̂ = τ − τ0 = T (k, p)δ̂, (17)274

where D(k, p) is the amplitude of the perturbation and275

T (k, p) = − µ′µ|k|
µ+ µ′ coth(|k|H)

, (18)276

as derived in Ranjith (2014) by solving the quasi-static elasticity problem stated in Sec-277

tion 2.2. Without loss of generality we choose reference velocity to be equal to steady278

state velocity denoted as V0 and τ0 = τss(V0). For these Fourier mode perturbations,279

the linearized friction law (5) becomes280

τ̂

(
p+

V0
dc

)
=

σ

V0

(
ap− (b− a)

V0
dc

)
pδ̂. (19)281

Substituting the elasticity relation (17) into (19) and defining ε = µ/µ′ as the shear mod-282

uli ratio, we obtain the characteristic equation283 (
p+

V0
dc

)
−µ|k|

ε+ coth(|k|H)
=

σ

V0

(
ap− (b− a)

V0
dc

)
p. (20)284

This is a quadratic equation for p that has two solutions.285

Note first that when k →∞, the solutions p are real and negative, causing short286

wavelength perturbations to be damped and the system to return to steady sliding. Sec-287

ond, p = 0 is not a solution to the characteristic equation for k > 0.288

We next focus on conditions for neutral stability, i.e., ζ = <(p) = 0. Separating289

the real and imaginary parts of the characteristic equation (20) and setting ζ = 0, we290

obtain the following neutral stability condition:291

µkc
ε+ coth(kcH)

=
σ(b− a)

dc
, (21)292

where we have denoted the solution k as the critical wavenumber kc; the corresponding293

critical wavelength is λc = 2π/kc. Numerical solutions to (21) are shown in Figure 3294

with normalization described below.295

3.1 Linear stability analysis – Limits296

Multiple limits, including limits in layer thickness relative to perturbation wave-297

length (kH) and material properties (ε = µ/µ′), can be examined for the neutral sta-298

bility condition (21). If we consider the overlying layer as a half-space (H →∞), (21)299

–9–
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has the solution300

kc = (ε+ 1)
σ(b− a)

µdc
. (22)301

When ε = 1, this solution reaches the well-known neutral stability condition for a fric-302

tional interface in a homogeneous elastic whole-space (Rice & Ruina, 1983; Rice et al.,303

2001),304

kc =
2σ(b− a)

µdc
. (23)305

When the half-space above the interface is elastic and the half-space below the interface306

is rigid, ε→ 0 and the critical wavelength becomes307

λ∞ =
2πµdc
σ(b− a)

. (24)308

This solution is used to normalize length scales in Figures 3 and 4, and is shown as the309

red dashed line in Figure 3a.310

Next, if we consider the overlying layer as being small relative to the perturbation311

wavelength (|k|H � 1), the neutral stability condition (21) reduces to312

µHk2c
εHkc + 1

=
σ(b− a)

dc
, (25)313

and the critical wavenumber is314

kc =
εσ(b− a)

2µdc
+

√[
εσ(b− a)

2µdc

]2
+
σ(b− a)

Hµdc
. (26)315

If, in addition, the half-space below the interface is rigid (ε→ 0), the critical wavelength316

is317

λthin = 2π

√
Hµdc
σ(b− a)

. (27)318

This limit was examined by Lipovsky and Dunham (2017) in their study of the Whillans319

Ice Plain stick-slip events, and appears as the black dashed line in Figure 3a. From Fig-320

ure 3a, we see that the critical wavelength transitions continuously from the thin layer321

limit (27) to the half-space limit (24) as layer thickness increases.322

Figure 3b displays critical wavelengths for different choices of material properties323

(ε = µ/µ′). When ε = 1, the layer and half-space have identical material properties.324

When ε = 0, the underlying half-space is rigid. At small layer thicknesses, the critical325

wavelengths converge for all ε values—showing that in this limit the shear modulus of326

the half-space becomes irrelevant. For larger layer thicknesses, the critical wavelength327

becomes independent of layer thickness, but does depend on ε.328

For the earthquake sequence simulations (Section 4), we assume the underlying half-333

space to be rigid (ε = 0). These simulations are specifically motivated by the WIP stick-334

slip events that involve sliding of ice over rock, for which we estimate ε = 0.111. To quan-335

tify when the rigid half-space approximation is valid, we examine dependence on ε for336

two limits: the half-space over a half-space limit and the thin layer over a half-space limit.337

For the half-space over half-space limit (H → ∞), examining (22) shows that the er-338

ror between using ice/rock properties (ε = 0.111) and ice/rigid properties (ε = 0) is339

only 11%. For the thin layer limit (|k|H � 1) that is arguably more relevant to the WIP,340

Taylor series expansion of (26) in ε about ε = 0 gives341

kc =

√
σ(b− a)

Hµdc

(
1 + ε

√
σ(b− a)H

4µdc

)
+O(ε2). (28)342

This shows that the elastic properties of the underlying half-space do not significantly343

affect the solution. This is seen in Figure 3b, which shows that the critical wavelength344
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Figure 3. (a) Critical wavelength for an elastic layer over rigid half-space (ε = 0). The critical

wavelength asymptotes to λthin, equation (27), when H/λ∞ � 1 and λ∞, equation (24), when

H/λ∞ � 1. (b) Dependence of critical wavelength on shear moduli ratio ε. Note convergence of

critical wavelengths for H/λ∞ � 1. Only the shear modulus of the layer is relevant in this limit.

329

330

331

332

becomes independent of ε for H/λ∞ � 1. Therefore, we conclude that if the half-space345

below the interface is significantly stiffer than the layer above, the underlying half-space346

can be modeled as rigid.347

In the next section, we turn to earthquake sequence simulations to explore nonlin-348

ear slip dynamics, with a similar problem set up involving sliding of a layer over half-349

space, but with a velocity-weakening region in an otherwise velocity-strengthening in-350

terface (Figure 1). Although this problem setup is somewhat different than the linear351

stability analysis, we anticipate similar dependence on layer height, elastic properties,352

and frictional parameters. Specifically, we found from the linear stability analysis that353

for large H, the critical wavelength becomes independent of the layer thickness. Like-354

wise, for small H, the critical wavelength becomes proportional to H1/2. We hypothe-355

size that similar dependence on H will appear for the critical width (Wcr) of the velocity-356

weakening region that delimits the transition between steady sliding and slow slip se-357

quences.358

4 Earthquake sequence simulations359

In this section we consider earthquake sequence simulations for an elastic layer slid-360

ing on a rigid half-space. The interface has a velocity-weakening region of width W in361

an otherwise velocity-strengthening interface (Figure 1b). Our objective is to determine362

the critical width (Wcr) that marks the boundary between steady sliding and stick-slip363

event sequences. Three different styles of slip can occur: steady sliding, slow slip sequences,364

and fast slip sequences (Figure 2). We predict that the transition between steady slid-365

ing and slow slip sequences will have a similar dependence on layer thickness to the lin-366

ear stability analysis.367

4.1 Simulation framework368

We briefly supplement the model description from Section 2 with a few implemen-369

tation details. The computational domain is truncated in the y-direction with traction-370

free boundary conditions that permit continued slip without development of elastic strains,371

σxy

(
±Ly

2
, z, t

)
= 0. (29)372
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The domain boundaries are placed sufficiently far from the velocity-weakening region that373

there is negligible effect on the earthquake sequences. Specifically, the size of the domain374

in the y-direction (Ly) is 60 times larger than the critical wavelength (λc) calculated in375

the linear stability analysis. At the edge of the domain, slip velocity fluctuates by < 0.001%376

about the steady state velocity. The velocity-weakening region is well resolved, with a377

constant grid spacing of λc/160 for |y| < 2λc. Outside this region, the grid spacing in-378

creases continuously following a cubic function that passes through λc/80 at |y| = 3λc379

and λc/4 at |y| = 10λc.380

At the start of the simulation, the frictional resistance (4) is uniform along the in-381

terface (regardless of whether that section of the interface is velocity-strengthening or382

velocity-weakening because steady state velocity and the reference velocity are equal).383

Simulations are run for sufficiently long time that results become independent of initial384

conditions. We observe that if the width of the velocity-weakening region (W ) is larger385

than a critical width (Wcr), perturbations about steady sliding (arising from numerical386

error) grow until the system reaches a limit cycle of slow or fast slip sequences (Figure387

2 E, F).388

We classify slip style as a function of W as follows, noting that the transitions be-389

tween slip styles are continuous so the delimiting criteria are somewhat arbitrary. We390

define the onset of slow slip sequences (Figure 2, column 2) when slip velocity pertur-391

bations first exceed V/V0 = 1.1. The transition from slow slip sequences to fast slip se-392

quences (Figure 2, column 3) is determined by the importance of inertia as quantified393

by (13). For our model parameters, this corresponds to V/V0 = 2.8.394

4.2 Simulation results395

We perform earthquake sequence simulations for a variety of H and W values and396

classify slip style using the criteria defined above. Figure 4 shows the resulting param-397

eter space study. Also shown in Figure 4 is the linear stability analysis prediction of crit-398

ical wavelength λc as a function of H. While the critical wavelength prediction does not399

exactly match the boundary between steady sliding and slow slip events, there is remark-400

able similarity in the dependence on H. Specifically, we find that Wcr increases as H1/2
401

for H/λ∞ � 1 and becomes independent of H for H/λ∞ � 1. However, we do note402

some quantitative differences, such as the discrepancy between the asymptotic values of403

λc and Wcr for large layer thicknesses. This discrepancy is most likely due to the dif-404

ference in the frictional property distribution between the linear stability analysis (uni-405

formly velocity-weakening) and sequence simulations (velocity-weakening region in velocity-406

strengthening interface). Earthquake sequence simulations have a more complex frictional407

interface compared to the linear stability analysis. Thus we do not expect an exact cor-408

respondence between the linear stability analysis and numerical sequence simulation. Nonethe-409

less, we do conclude that the proximity of the free surface in the thin layer limit influ-410

ences slip behavior in the same manner in the sequence simulations as in the linear sta-411

bility analysis.412

5 Conclusions419

In this study we examined the sliding dynamics of a frictional interface between420

elastic solids. The motivation of this work was to quantify sliding stability and slip styles421

for a layer over half-space geometry with a free surface on top and rate-and-state fric-422

tion at the interface. To understand the effects of layer thickness (H), we performed a423

linear stability analysis and earthquake sequence simulations. In the linear stability anal-424

ysis, we quantified dependence of the critical wavelength on layer thickness and the ra-425

tio of shear moduli above and below the interface. We justified conditions for which the426

underlying half-space can be regarded as rigid, and showed that this rigid half-space ap-427

proximation is well justified for ice sliding on rock. The earthquake sequence simulations,428
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Figure 4. Dependence of slip style (steady sliding, slow slip events, and fast slip events) on

width of velocity-weakening region (W ) and layer thickness (H). Also shown is the linear stabil-

ity analysis prediction (for which the W/λ∞ axis should be interpreted as λc/λ∞). For both the

linear stability analysis and numerical sequences simulation for small layer thickness, H/λ∞, the

critical instability length is proportional to H1/2, emphasized in b and c. For large H/λ∞, the

critical instability length becomes independent of H.

413

414

415

416

417

418

featuring a velocity-weakening region in an otherwise velocity-strengthening interface,429

were conducted using this approximation. We found that the critical width of the velocity-430

weakening region, which marks the transition between steady sliding and slow slip events,431

depends on layer thickness (H) as H1/2 for sufficiently small H. This is exactly the same432

dependence that was revealed by the linear stability analysis. In particular, we note that433

the critical width or wavelength can be vastly smaller in this thin layer limit than when434

the layer thickness is large, as compared to the critical stability length in the thick-layer435

limit. This finding demonstrates the importance of accounting for free surface effects in436

problems involving frictional sliding on surfaces that are subparallel to and in close prox-437

imity to the free surface. Such sliding problems arise in the context of ice streams, the438

shallow region of subduction zones, and landslides. Of course, each of these problems fea-439

tures additional complexities, such as viscoelasticity and thermomechanical effects for440

the ice stream problem, and fluids in likely all cases, that must be considered for a proper441

characterization of the system. Furthermore, we have limited attention to the simplest442

2D antiplane shear problem, whereas the 2D in-plane and fully 3D problems would also443

feature normal stress changes due to elastic and geometrical mismatch across the inter-444

face. These are all potential topics for additional work. Nonetheless, this study demon-445

strates how the decreasing elastic stiffness associated with small layer thickness reduces446

the critical length for instability, with important implications for rupture dynamics in447

thin layer geometries.448
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