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Abstract

Recent exceptionally hot droughts in Amazonia have highlighted the potential role of global warming in driving elevated fire

risk and forest dieback. The previous generation of global climate models projected that eastern Amazonia would receive

less future rainfall while western Amazonia would receive more rainfall, but many of these models disagreed on the sign of

future precipitation trends in the region. Here Coupled Modeling Intercomparison Project, Phase 6 (CMIP6) models are used

to examine the shifting risk of eastern Amazonian droughts under climate change. This new generation of models shows

better agreement that the entire Amazonian basin will receive less future rainfall, with particularly strong agreement that

eastern Amazonia will dry in the 21 century. These models suggest that global warming may be increasing the likelihood

of exceptionally hot drought in the region, and by mid-century with unabated global warming, recent particularly warm and

severe droughts will become more common. However, Amazonia is a region with a relatively sparse instrumental record that

makes it difficult to test the ability of model simulations to reproduce observed long-term rainfall trends, and climate models

have traditionally struggled to reproduce satellite-era observed trends in the region. These shortcomings highlight the need to

improve confidence in global climate models’; ability to simulate future drought, even if more CMIP6 models agree on the sign

of future rainfall trends.
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Key Points: 10 

 Coupled Modeling Intercomparison Project, Phase 6 models show better agreement that 11 

the Amazon will receive less future rainfall 12 

 These simulations indicate that if global warming continues unabated, recent particularly 13 

warm and severe droughts will become more common 14 

 CMIP6 models that simulate more drying over Amazonia tend to simulate a more ‘El 15 

Nino like’ tropical Pacific 16 

  17 
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Abstract 18 

Recent exceptionally hot droughts in Amazonia have highlighted the potential role of global 19 

warming in driving elevated fire risk and forest dieback. The previous generation of global 20 

climate models projected that eastern Amazonia would receive less future rainfall while western 21 

Amazonia would receive more rainfall, but many of these models disagreed on the sign of future 22 

precipitation trends in the region. Here Coupled Modeling Intercomparison Project, Phase 6 23 

(CMIP6) models are used to examine the shifting risk of eastern Amazonian droughts under 24 

climate change. This new generation of models shows better agreement that the entire 25 

Amazonian basin will receive less future rainfall, with particularly strong agreement that eastern 26 

Amazonia will dry in the 21
st
 century. These models suggest that global warming may be 27 

increasing the likelihood of exceptionally hot drought in the region, and by mid-century with 28 

unabated global warming, recent particularly warm and severe droughts will become more 29 

common. However, Amazonia is a region with a relatively sparse instrumental record that makes 30 

it difficult to test the ability of model simulations to reproduce observed long-term rainfall 31 

trends, and climate models have traditionally struggled to reproduce satellite-era observed trends 32 

in the region. These shortcomings highlight the need to improve confidence in global climate 33 

models’ ability to simulate future drought, even if more CMIP6 models agree on the sign of 34 

future rainfall trends. 35 

 36 

Plain Language Summary 37 

Recent exceptionally hot droughts in Amazonia have highlighted the potential role of global 38 

warming in driving elevated fire risk and forest dieback. The previous generation of global 39 

climate models used in the Intergovernmental Panel on Climate Change Fifth Assessment Report 40 

(IPCC AR5) projected that eastern Amazonia would receive less future rainfall while western 41 

Amazonia would receive more rainfall. Here climate models used in the upcoming IPCC Sixth 42 

Assessment Report (IPCC AR6) are used to examine future rainfall and temperature changes 43 

over tropical South America. The new generation of CMIP6 models shows better agreement that 44 

the entire Amazonian basin will receive less future rainfall, with particularly strong agreement 45 

that eastern Amazonia will dry in the future if the planet continues to warm. These models 46 

suggest that global warming has already increased the likelihood of exceptionally hot drought in 47 

the region, and by mid-century under business-as-usual warming, recent particularly warm and 48 

severe droughts will become more common. However, climate models traditionally struggle to 49 

reproduce several key observed rainfall metrics in this region. 50 

1 Introduction 51 

The Amazonian rainforest is a biodiversity hotspot (Mittermeier et al., 1998) that 52 

provides important ecosystem services both locally and globally (Malhi et al., 2008; Lenton et 53 

al., 2008). Yet, the composition of the Amazonian rainforest is vulnerable to human land use as 54 

well as climate variability and global climate change (Nepstad et al., 1994; Malhi et al., 2009; 55 

Marengo et al., 2018). A combination of warming and rainfall deficits, driven by both climate 56 

variability and change, will likely cause future ecosystem stress, and thus potentially limit the 57 

ability of this region to continue to store carbon (Tian et al., 1998; Phillips et al., 2009). 58 

Decreased seasonal precipitation and warming are already contributing to drought and vegetation 59 

stress in this region (Marengo et al., 2018; Lewis et al., 2011; Dai et al., 2013; Jimenez-Munoz et 60 
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al., 2016; Saatchi et al., 2013). Specifically, fires during droughts in tropical South America can 61 

clear tropical rainforest and grassland, leading to carbon emissions to the atmosphere (Aragao et 62 

al., 2018); recent work has shown that rainfall deficits can increase fire risk, leading to self-63 

amplified forest loss and a possible deforestation tipping point (Brando et al., 2014; Zemp et al., 64 

2017; Boers et al., 2017) . 65 

Superimposed on future rainfall changes (Duffy et al., 2017), the region will also need to 66 

cope with multi-year droughts arising from natural background climate variability (Parsons et al., 67 

2018). The paleoclimate records suggests that the Amazonian ecosystem was able to persist 68 

during moderate droughts in the pre-industrial climate (Bush et al., 2016), but it is uncertain if 69 

future climate change, combined with other anthropogenic stressors and natural hydroclimatic 70 

variability, will trigger unprecedented and rapid forest dieback in this ‘climate change hotspot’ 71 

(Davidson et al., 2012; Diffenbaugh and Giorgi, 2012). The region is expected to warm quickly 72 

as the globe warms (Soares et al., 2019), but action that will limit future global climate change 73 

may significantly reduce the most detrimental impacts of climate change locally (Lehner et al., 74 

2017). 75 

The previous generation of climate models (Coupled Model Intercomparison Project 76 

Phase 5, or CMIP5) indicated that northeastern Amazonia may dry while western Amazonia may 77 

receive increasing rainfall as the globe warms (Duffy et al., 2015). Recent work has shown that 78 

the new Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations agree on the sign 79 

of decreasing future rainfall trends in Amazonia, with droughts projected to increase in duration 80 

and intensity with global warming (Ukkola et al., 2020). Specifically, CMIP6 models show 81 

drying across western Amazonia, and most CMIP6 models agree on future decreases in soil 82 

moisture and runoff across most of Amazonia in low, medium, and high greenhouse gas 83 

emissions scenarios (Cook et al., 2020).  84 

Studies of observed rainfall and temperature indicate that climate change may already be 85 

driving ‘enhanced drought’ in the region; 2016 was the warmest year in Amazonia since 1950 86 

CE (Marengo et al., 2018), and the recent 2015-2016 drought in eastern Amazonia was at least 87 

1.5ºC warmer than the drought associated with the 1997-1998 El Niño event (Jimenez-Munoz et 88 

al., 2016; hereafter JM16). Yet, the risk of this type of recent ‘enhanced hot’ drought (JM16) has 89 

not been investigated in state-of-the-art climate models, and recent preliminary studies of future 90 

drought changes in CMIP6 (e.g., Cook et al., 2020; Ukkola, 2020) have relied on limited 91 

numbers of these new model simulations (e.g., 10-13 models). Given the severity of recent 92 

seasonal droughts in the region and the apparent increase in model agreement in terms of future 93 

drying in the region, here instrumental records and an expanded suite of CMIP6 climate and 94 

Earth system model simulations are used to examine recent and future trends in rainfall and 95 

temperatures, with a focus on the likelihood of the risk of a 2015-2016 type ‘enhanced drought’ 96 

event (JM16) under a shifting precipitation baseline. 97 

2 Data and Methods 98 

2.1 Choice of season and drought metric  99 

Surface air temperature variability and rainfall variability and trends over tropical Central 100 

and South America in October-March (ONDJFM) is examined (e.g., Satyamurty et al., 2010; 101 

Wang et al., 2018), with a specific focus on northeastern Amazonia (10ºS-8º N, 60ºW-50º W, 102 

outlined in Figure 1). Although many CMIP6 models project drying across much of tropical 103 
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South America (Ukkola, 2020; Cook et al., 2020), this study focuses on northeastern Amazonia 104 

due to the impact of recent drought in this region in observations (JM16), as well as the robust 105 

drying response in CMIP6 models in this region under climate change (Cook et al., 2020, also 106 

discussed here). Furthermore, although abnormally low rainfall can occur during various months 107 

throughout the year, here the focus is on ONDJFM due to the impacts of El Niño events during 108 

the time period (e.g., JM16). Precipitation is chosen to study the impacts of climate change on 109 

drought because many other drought metrics, such as Palmer Drought Severity Index (PDSI) or 110 

precipitation minus evaporation (P-E), can provide conflicting answers about responses of 111 

drought to warming or overestimate aridification from warming (e.g., Trenberth et al., 2014; 112 

Swann et al., 2016). Furthermore, droughts are complex phenomena with various characteristics 113 

including intensity, duration, frequency, onset, demise, and areal extent. Here, implications of 114 

seasonal precipitation and temperature trends on seasonal droughts are examined as the issue of 115 

drought duration and severity have already been addressed in Ukkola, 2020.  116 

2.2 Instrumental Data 117 

The station-based Global Precipitation Climatology Centre (GPCC) version 2018 118 

(Schneider et al., 2011), University of Delaware (UDEL) version 5.01 (Willmott and Matsuura, 119 

2001), and National Oceanic and Atmospheric Administration (NOAA) Precipitation 120 

Reconstruction over Land (Chen et al., 2002; PRECL) are used to examine past rainfall 121 

variability and trends. When showing time series covering the 1979-2018 CE time period, the 122 

station-based data are supplemented with Climate Prediction Center Merged Analysis of 123 

Precipitation (CMAP) data set, which blends satellite and gauge-based data from 1979 CE to the 124 

present (Xie and Arkin, 1997). Past surface air temperature variability over land is also examined 125 

using Goddard Institute of Space Studies (GISS) surface temperature analysis (GISTEMP; 126 

Lenssen et al., 2019), Climate Research Unit (CRU) Air Temperature Anomalies version 4.2.0 127 

(CRUTEMv4; Jones et al., 2014), and University of Delaware (UDEL) temperature version 5.01 128 

(Willmott and Marsuura, 2001). Linear trends in each temperature and rainfall dataset are 129 

calculated over the 1950-2014 CE time period and the average of these trends are shown in 130 

Figure 1. Stippling in Figure 1 shows where all rainfall (GPCC, UDEL, PRECL) or temperature 131 

data (GISTEMP, CRUTEM4, UDEL) agree on the sign of trend over this time period. Varying 132 

the time period over which this trend is calculated (e.g., 1950-2010 or 1950-2017 CE) does not 133 

noticeably change these results. 134 

In all instrumental time series (e.g., Figure 2), data are normalized to the mean and 135 

standard deviation () of the 1950-2000 CE time period (hereafter ‘baseline) using the mean and 136 

 from all datasets that have coverage over this time period. The instrumental October-March 137 

1950-2000 CE mean rainfall is 1230 mm (+/- 19 mm), and  is 214mm (+/- 19mm). The 138 

October-March mean UDEL temperature over the baseline period is 22.4°C, and the average 139 

temperature  across all three instrumental data sources is 0.34°C (+/-0.03°C). GISTEMP and 140 

CRUTEM4 provide temperatures as anomalies, so their mean 1950-2000 CE temperatures are 141 

not presented here. An anomalously ‘hot’ season is defined as a year when October-March mean 142 

temperatures are at least 2- above the baseline, and anomalously dry seasons are defined as 143 

October-March precipitation anomalies at least 1.5  below the baseline period. These thresholds 144 

are based on anomalously high temperatures and drought conditions experienced in this region 145 

during recent El Niño events (1982-1983, 1997-1998, 2015-2016; JM16; Figure 2). 146 
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2.3 Climate Model Data 147 

Surface air temperature (tas) and precipitation (pr) from 25 models from Phase 6 of the 148 

Coupled Model Intercomparison Project (CMIP6) model simulations are used (Table S1). 149 

Precipitation and temperatures are examined using monthly data from the historical and Shared 150 

Socio-Economic Pathway (SSP) 3-7.0 experiments (Eyring et al., 2016; Riahi et al., 2017). The 151 

historical runs are driven by observed transient forcing (land use change, greenhouse gas, 152 

aerosol, ozone). The SSP simulations are high-end emissions scenarios from the Scenario Model 153 

Intercomparison Project (ScenarioMIP). These scenarios are concentration-driven experiments 154 

determined from hypothetical future socioeconomic pathways (Riahi et al., 2017). The SSP3-7.0 155 

scenario reaches ~7.0 W/m
2
 radiative forcing by 2100 in a ‘regional rivalry’ scenario (O’Neill et 156 

al., 2016). CMIP6 temperature and rainfall trends are compared to output from 32 CMIP5 157 

historical and RCP8.5 simulations (CMIP5 models listed in Table S1). CMIP6 SSP3-7.0 results 158 

have been compared to CMIP6 SSP5-8.5 results, and the main conclusions are nearly identical 159 

(not shown).  160 

CMIP6 model time series of eastern Amazonian rainfall and temperatures are shown as 161 

anomalies relative to the October-March mean and standard deviation () 1950-2000 CE 162 

‘baseline’. In the CMIP6 historical simulations 1950-2000 CE, the mean October-March rainfall 163 

over eastern Amazonia is 926 mm (+/- 222 mm), and  is 180mm (+/- 36mm). The October-164 

March mean temperature is 22.4°C (+/-1.1°C), and  is 0.60°C (+/-0.19°C). The CMIP6 models 165 

show a slightly wetter mean as compared to the CMIP5 simulations, which Yin et al., 2013 166 

reported displayed a ‘dry bias’; the CMIP5 (Table S1) mean 1950-2000CE October-March 167 

rainfall is 846 mm (+/-274 mm). However, the intent of this work is not to provide a detailed 168 

analysis of the causes for CMIP5 and CMIP6 differences in these models (e.g., Cook et al., 169 

2020), but instead to discuss the implications of a drying a warming trend for the region.  170 

2.4 Comparison with sea-surface temperature variability 171 

Variability of sea-surface temperatures in the tropical Atlantic and Pacific is also 172 

compared to rainfall and temperature variability over land. Specifically, the El Niño Southern 173 

Oscillation (ENSO) index, calculated from the National Oceanic and Atmospheric 174 

Administration (NOAA) Extended Reconstructed Sea Surface Temperature version 5 175 

(ERSSTv5) dataset (Huang et al., 2017), is compared with rainfall and temperature variability 176 

over land. The October-March Niño3.4 index (5ºS-5º N, 170º-120º W), and the Tropical North 177 

Atlantic index (6ºS-22º N, 80ºW-15º W) is compared with October-March rainfall and 178 

temperature over tropical South America over the 1950-2014 CE time period after removing the 179 

linear trend from each grid point over this time period. Maps of correlations show the average 180 

correlation between the ERSSTv5 Niño3.4 index and each precipitation dataset (GPCC, UDEL, 181 

PRECL) and temperature dataset (GISTEMP, CRUTEM4, UDEL), with stippling showing 182 

where all datasets agree on the sign of the correlation (Figure S2, Figure S3). 183 

The CMIP6 historical and SSP3-7.0 rainfall and temperature over South America are also 184 

compared with the Niño3.4 index (5ºS-5º N, 170º-120º W) and Tropical North Atlantic index 185 

(6ºS-22º N, 80ºW-15º W). Specifically, the Niño3.4 index and TNA index are correlated in each 186 

CMIP6 model with rainfall and temperature over tropical South America separately over the 187 

1950-2014 CE and 2015-2100 CE after removing the linear trend from each grid point over these 188 

time periods (Figure S2, Figure S3). Maps of correlations in Figures S2 and S3 show the average 189 
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correlation among all CMIP6 simulations over the relevant time periods, with stippling showing 190 

where >90% models agree on sign of correlation. 191 

 192 

3 Results 193 

 3.1 Trends in Amazonian Temperature and Rainfall 194 

Instrumental data and CMIP6 simulations show similar warming trends 1950-2014 CE 195 

over northern Amazonia and much of southeastern Brazil (Figure 1). However, the CMIP6 196 

multi-model mean shows a more widespread, homogeneous warming pattern than the 197 

instrumental data; this result is perhaps not surprising given that ensemble mean of climate 198 

model simulations tend to maximize forced variability (Knight et al., 2009). All CMIP6 models 199 

show a continued warming trend across the region (Figure 1) in the warming projections from 200 

the Shared Socio-Economic Pathway (SSP) 3-7.0 simulations). 201 

Instrumental precipitation data show a drying trend over much of eastern Amazonia and 202 

northern tropical South America, and a positive rainfall trend in much of western Amazonia 203 

1950-2014 CE (Figure 1). CMIP6 models show a drying trend over northern South America and 204 

much of southern Amazonia. However, under the SSP3-7.0 global warming scenario, >75% of 205 

models show that the drying trend expands over much of southwestern, eastern, and northern 206 

tropical South America. All but two months show future drying trends across much of Amazonia 207 

in CMIP6 projections (Figure S1). CMIP6 models show a different response to warming as 208 

compared to the CMIP5 21
st
 century warming projections, which suggested that much of western 209 

Amazonia will become more wet while eastern Amazonia will receive less rainfall (Duffy et al., 210 

2015; Cook et al., 2020). 211 
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 212 

 213 

Figure 1. Temperature (top) and rainfall (bottom) trends in instrumental data 1950-2014 CE 214 

(left) climate model historical simulations 1950-2014 CE (middle), and in the SSP3-7.0 warming 215 

scenario 2015-2100 CE (right). Grey box outlines the Eastern Amazonian region used to make 216 

all time series shown in text (10ºS-8º N, 60ºW-50º W), red line outlines the Amazonian basin, 217 

and black lines show country borders. Precipitation and temperature trend maps show average 218 

trends across instrumental and model data (Methods). Stippling on maps shows where all 219 

instrumental data agree on sign of trend (left) or where more than 19 out of 25 model simulations 220 

(>75%) agree on the sign of the trend (middle, right). 221 

3.2 Climate Change and the Shifting Risk of Amazonian Drought 222 

Instrumental records of Amazonian rainfall and surface air temperatures extending to the 223 

early 20
th

 century can be used to put recent ‘enhanced droughts’ in a longer-term context (JM16). 224 

Instrumental data show that recent October-March seasonal droughts associated with El Niño 225 

events have been 2-3 standard deviations () warmer than the 1950-2000 CE baseline (Methods), 226 

with recent multi-year temperatures either at or near this 2  level (Figure 2). Recent low-rainfall 227 

seasons also appear more frequent than the mid 20
th

 century, with multiple seasons since 1980 228 
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CE showing rainfall deficits at least 1.5-2  below the baseline. Although recent droughts appear 229 

abnormal, the time period ~1900-1940 CE also experienced several warm seasons nearly 2  230 

above the 1950-2000 CE mean, and there were multiple dry events of lower magnitude during 231 

this time period (Figure 2). Given the lack of station data in the early 20
th

 century (Figure 2), 232 

CMIP6 simulations are used to examine the shifting frequency of 2- seasonal temperature 233 

anomalies and -1.5  rainfall extremes. 234 

CMIP6 historical simulations confirm the instrumental-based analysis, which shows that 235 

isolated warm years in Amazonia have occurred before the recent late 20
th

 century and early 21
st
 236 

century warming. However, these models show that greenhouse gas driven warming is already 237 

increasing the frequency of these events (Figure 2). Specifically, by 2030 CE the average 238 

temperature in CMIP6 is 2  warmer than the baseline. Under unabated emissions, by mid-239 

century, the coolest October-March seasons will be as warm as the isolated heat events of the 240 

recent past. By the end of the 21
st
 century under unabated emissions, the average October-March 241 

season is 6-8  (3.6-4.8ºC) above the baseline, with the warmest seasons 12-20  (7.2-12ºC) 242 

above the baseline, and the coolest seasons at least as warm as the hottest droughts during El 243 

Niño events in the late 20
th

 century and early 21
st
 century.  244 

Although all models show warming in the SSP3-7.0 scenario that exceeds internal 245 

variability, future rainfall trends do not exceed the envelope of 20
th

 century variability in all 246 

CMIP6 simulations (Figure 2). However, a drying trend in almost all models increases the 247 

likelihood of seasonal droughts similar in magnitude to recent observed droughts. CMIP6 248 

simulations show an average decrease in precipitation of ~0.5  relative to 1950-2000 CE by 249 

2040 CE; around this time, these simulations project regular 1.5-2  seasonal rainfall deficits 250 

relative to the baseline every year. By the end of the 21
st
 century if global warming is left 251 

unchecked, the average year in eastern Amazonia receives as much rainfall as a typical drought 252 

year in the 20
th

 century, and particularly dry seasons approach 3-4  below the baseline. 253 

The bottom panel in Figure 2 shows the shifting risk of these ‘enhanced’ droughts by 254 

decade. Starting in the 21
st
 century, at least 10% of CMIP6 simulations cross the 2- heat 255 

threshold per decade, and by mid-century, all CMIP6 SSP3-7.0 simulations show that seasonal 256 

temperatures will cross this threshold at some point each decade. In addition to projecting large 257 

temperature increases, CMIP6 simulations show an increasing risk of rainfall deficits 1.5  258 

below the baseline as well; in the coming decades (2020-2050 CE), between 0 and 20% of 259 

models cross this rainfall deficit threshold per decade. By mid-century, at least 10% of models 260 

show cross this drought threshold at least once per decade, and by 2080 CE, on average at least 261 

one in five models show 1.5  droughts at least once per decade. 262 

 263 
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 264 

Figure 2. Top two panels show October-March temperature (top) and rainfall (middle) 265 

anomalies from the 1950-2000 CE time period in eastern Amazonia (10ºS-8º N, 60ºW-50º W) in 266 

instrumental data (grey) and CMIP6 historical and SSP3-7.0 simulations (blue). Thick light grey 267 

line on bottom of middle panel shows number of station observations in eastern Amazonia. 268 

Boxplots in bottom panel show the percent of years per decade that fall outside the baseline 269 

(1950-2000 CE) range of temperature and rainfall variability. Dashed black line shows the 1950-270 

2000 CE mean, red dotted line shows the heat and drought thresholds, light grey lines show 271 

spread of instrumental data, and dark grey lines show mean of instrumental data. Vertical line 272 

shows the end of the historical simulations and the start of the SSP simulations. Dark blue lines 273 

show multi-model mean temperature and rainfall in the historical and SSP3-7.0 simulations, and 274 
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light blue lines show CMIP6 maxima and minima. See Methods for more information about 275 

instrumental data. Red boxplots show the spread in the percent of models per decade that exceed 276 

a 2- temperature threshold, and teal boxplots show the spread in the percent of models per 277 

decade that simulate droughts 1.5  below the baseline. 278 

4 Discussion and Conclusions 279 

Sea-surface temperature anomaly patterns in both the tropical Pacific and tropical 280 

Atlantic can help drive temperature and rainfall variability over northern South America (Yoon 281 

and Zeng, 2010; Kousky et al., 1984; Ropelewski and Halpert, 1987). Although seasonal 282 

droughts in southern Amazonia have been linked to the tropical North Atlantic (Yoon and Zeng, 283 

2010), recent particularly warm droughts in central and eastern Amazonia have occurred during 284 

strong El Niño events (JM16). Future rainfall changes over Amazonia could be driven by a 285 

warming tropical Pacific (Barichivich et al., 2012). Indeed, CMIP6 simulations project a 286 

strengthening relationship between the tropical Pacific (Figure S2) and the tropical North 287 

Atlantic (Figure S3) in the 21st century over tropical South America.  288 

 289 

Figure 3. Agreement in sign of drying trend in CMIP5 RCP 8.5 (N=32) and CMIP6 SSP3-7.0 290 

(N=25) 21
st
 century warming simulations. 291 

 292 

CMIP5 and CMIP6 models appear to show qualitatively similar relationships with the 293 

tropical Pacific and Atlantic, yet CMIP6 models more consistently simulate drying in Amazonia 294 

in the 21
st
 century warming projections across the Amazonian basin in most seasons (Figure 1; 295 

Figure S1), whereas CMIP5 models show less agreement in future rainfall trends (Figure 3; 296 

Figure S4). Although a relationship between 21
st
 century trends in the Niño3.4 index and trends 297 

in Amazonian rainfall is found (Figure 4), future global warming could independently cause 298 

increasing temperatures in the tropical Pacific while causing decreasing rainfall over Amazonia. 299 
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Therefore, west-east tropical Pacific temperature trend differences are compared to determine if 300 

the tropical Pacific becomes more ‘El Niño like’ or ‘La Niña like’ in the 21
st
 century. CMIP6 301 

models that simulate a more ‘El Niño like’ future tropical Pacific (stronger warming in the 302 

eastern Pacific relative to the western Pacific) tend to simulate more drying over Amazonia 303 

(Figure 4). Most CMIP6 models analyzed here indicate that the tropical Pacific will become 304 

more ‘El Niño like’ in the future; shifts in Walker circulation related to decreasing tropical 305 

Pacific SST gradient could explain much of the CMIP6 agreement in future drying trends over 306 

Amazonia. A similar comparison in 32 CMIP5 models indicates that the previous generation of 307 

models shows a similar relationship between the tropical Pacific SST and Amazonian rainfall. 308 

Specifically, several CMIP5 models simulate a more ‘La Niña like’ future tropical Pacific and 309 

minimal or no increasing rainfall trends over Amazonia (Figure 4). 310 

Although there is better agreement in projected future rainfall trends in CMIP6 models in 311 

many regions (e.g., Cook et al., 2020; Ukkola et al., 2020), these results should be interpreted 312 

with caution for several reasons. Most CMIP6 models show future drying in Amazonia, but the 313 

local details of this drying pattern can vary from model to model (Figure S5). Future work 314 

should examine the causes of increased CMIP6 agreement in rainfall trends in the region, as well 315 

as why certain models, such as INM-CM4-8 and INM-CM5-0, appear to show increasing future 316 

rainfall in many parts of tropical South America (Figure S5). Additionally, treating individual 317 

model simulations from a Modeling Intercomparison Project as independent can be problematic 318 

because multiple, similar models from the same modeling centers are often included (Table S1), 319 

and models from different centers often share similar components (e.g., Knutti et al., 2013). 320 

Also, climate models from different modeling centers can agree on the sign of a projected 321 

precipitation trend, but this agreement could be based on the same systematic bias that appears 322 

across models (e.g., Tierney et al., 2015). 323 

Future changes in the tropical Pacific are uncertain, and recent work has shown that 324 

CMIP5 models show considerable tropical Pacific biases, so future trends in tropical Pacific 325 

gradients and their potential impacts on tropical rainfall could be incorrect (e.g., Seager et al., 326 

2019). Furthermore, climate model simulations may underestimate dry-season length (Marengo 327 

et al., 2017) as well as the risk of multi-year droughts in Amazonia (Parsons et al., 2017), so the 328 

potential for multi-year dry periods superimposed on background warming and potential drying 329 

trends in CMIP6 projections should be considered (Marengo et al., 2018). Recent work has also 330 

shown that the December-May season may in fact have experienced increasing rainfall trends 331 

1979-2015 CE in northwestern Amazonia (Fu et al., 2013). CMIP6 historical simulations do 332 

simulate positive rainfall trends in northeastern Amazonia (1950-2014 CE) in several of these 333 

months (Figure S1), although these trends are apparent in the October-March seasonal average as 334 

well (Figure 1). Additionally, the work presented here has not explored the length of the dry or 335 

onset of rainy season (Marengo et al., 2011; 2017; Fu et al., 2013; Ukkola et al., 2020), or how 336 

temperature and rainfall changes can impact other drought metrics in CMIP6 projections such as 337 

soil moisture content (e.g., Cook et al., 2020).  338 

Nonetheless, if CMIP6 simulations of future drying in the America Tropics are accurate, 339 

these results are especially relevant given recent developments in Amazonia related to land 340 

management, drought, and fires. The Amazonian forest appears to be particularly vulnerable to 341 

forest fire and land clearing during drought (Nepstad et al., 2008; Le Page et al., 2017), 342 

particularly for forest edges where drying, fire intensity, and grass invasion are greatest (Balch et 343 

al., 2015). Given that rainfall deficits on their own can increase fire risk and forest dieback, this 344 
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region appears susceptible to self-amplified forest loss and a possible deforestation tipping point 345 

(Brando et al., 2014; Zemp et al., 2017; Boers et al., 2017). Without significant local land 346 

management efforts combined with global efforts to curtail carbon emissions, this region appears 347 

increasing vulnerable to warming, drought, fire, and land use conversion (Marengo et al., 2018). 348 

Forest dieback driven by these combined stressors would, in turn, have major implications for 349 

regional carbon sequestration and biodiversity and the global climate system. 350 

 351 

 352 
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 353 

Figure 4. Relationship between October-March temperature trends in the tropical Pacific and 354 

eastern Amazonian rainfall in CMIP5 RCP8.5 (2006-2099 CE) and CMIP6 SSP3-7.0 simulations 355 

(2015-2099 CE). Difference in western tropical Pacific and eastern tropical Pacific temperature 356 

trends (Methods) and eastern Amazonian rainfall trends (left) and Niño3.4 temperature trends 357 

and eastern Amazonian rainfall trends (right). 358 

 359 
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