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Abstract

A time-based complex network analysis on the seismic activity along the coast of Chile was made. The coast of Chile was

divided on windows of 300 km in Latitude, from Arica up to Los Angeles. The window was moved 100 km from north to south.

We built a time-based earthquake complex network, on each window and we studied a directed and undirected complex network.

Assuming a self-similar data network, for the directed network we found the value of the power-law characteristic exponent γ

for the connectivity probability distribution. For the directed network, we analyzed the average path length, measured through

steps and meters, of the data set. For each window, we obtained a similar relation between the value of γ and the average path

length. The exponents and values were evaluated for the data set with the total number of seismic events with a depth greater

than 200 km and of magnitude greater than Mw=3.0.
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Abstract
A time-based complex network analysis on the seismic activity along the coast of Chile
was made. The coast of Chile was divided on windows of 300 km in Latitude, from Ar-
ica up to Los Angeles. The window was moved 100 km from north to south. We built
a time-based earthquake complex network, on each window and we studied a directed
and undirected complex network. Assuming a self-similar data network, for the directed
network we found the value of the power-law characteristic exponent γ for the connec-
tivity probability distribution. For the directed network, we analyzed the average path
length, measured through steps and meters, of the data set. For each window, we ob-
tained a similar relation between the value of γ and the average path length. The ex-
ponents and values were evaluated for the data set with the total number of seismic events
with a depth greater than 200 km and of magnitude greater than Mw = 3.0.

Plain Language Summary

In this work different seismic data sets measured along the Chilean coast were an-
alyzed by time-based complex network method. We have made a space window of 300
km of longitude and it was moved from the northern zone of Chile (Arica city) up to the
southern zone of Chile (Los Angeles city). In each space window a complex network was
built. The probability distribution of connectivity and the Average Shortest Path Length
(ASPL) were computed. The complex networks built in the space windows show a scale-
free behavior, although the ASPL change its value along the Chilean coast showing a dy-
namic behavior. The value of the slope γ was computed for each space window and it
was compared with previous measures of the average coupling of the plates involves in
the origin of the seismicity in Chile (Métois et al., 2013, 2016). The comparison shows
an agreement between the value of γ and the average coupling in the central zone of Chile,
but against values in the northern zone of Chile and the results for the southern zone
of Chile are scattered, it seems to be a relation with the occurrence of large events and
not with the average coupling.

1 Introduction

Despite the long tradition of studies in seismicity, this area still remains with open
questions, due to the complexity of the underlying dynamic involved in the earthquake
occurrence. Although, two important laws have been established along the time, one of
which is the Omori law (Utsu et al., 1995), for the temporal pattern of aftershocks. The
second one is the well known Gutenberg-Richter law (Gutenberg & Richter., 1954), which
expresses a relationship between frequency and magnitude. In this sense, active seismic
areas of the planet are interesting regions to analyze the behavior of the earthquakes and
the complexity involved in the underlying physics process.

The subduction process takes place between the Nazca tectonic plate and the South
America tectonic plate. This strong interaction has caused great earthquakes along the
History. In particular, almost all the long coast of Chile is located on the subduction zone
between these two plates, converting Chile in a seismic active zone. This great seismic
activity has motivated several studies on local seismicity in Chile (Faŕıas et al., 2011; Huan
et al., 2019; Comte & Pardo., 1991; Comte et al., 2002; Mart́ınez-Álvarez et al., 2013;
Métois et al., 2013, 2016; Pastén et al., 2016; Reyes et al., 2013; Lay et al., 2010). In this
work, we are doing a first approach in order to find a relationship between critical ex-
ponents and parameters of complex networks and the physical process involved in the
earthquake occurrence. From a formal point of view a complex network is a set of nodes
or vertices connected via connections. A complex network has certain non-trivial sta-
tistical and topological properties that do not occur in simple networks. Research in this
area has had an important development in recent years, highlighting different fields, such
as Biology, communication, social relations (Albert et al., 1999; Alon, 2003; Barabási et

–2–



manuscript submitted to Journal of Geophysical Research Solid Earth

al., 2000; Barabási & Oltvai, 2004; Bar-Joseph et al., 2003; Centola, 2010).Taking into
account the characteristics of a complex network, earthquakes can be studied as a vis-
ibility graph considering the time evolution of the magnitudes (Abe & Suzuki, 2006; Abe
et al., 2011), or as a spatio-temporal distribution (Pastén et al., 2016).

In this study we analyze a seismic data set measured along the coast of Chile as
a directed and undirected earthquake complex network based on the time sequence of
the seismic events occurrence (Abe & Suzuki, 2006; Abe et al., 2011; Abe & Suzuki, 2004;
Pastén et al., 1995; Pastén et al., 2016; Pastén et al., 2018). The complete zone is di-
vided in windows of 300 km in Latitude (from far north to the south of Chile). We move
the window 100 km from north to south and we analyze the spatial evolution of the earth-
quake complex network. In order to make the complex networks analysis, each window
is divided into cubic cells with side size of 10 km. Each cell containing hypocenter rep-
resents a node. In the directed network, the direction of the connections is defined through
the temporal sequence of the seismic events in the window. The spatial evolution of the
free scale behavior of this network has been analyzed by using the method of Abe et al. (Abe
& Suzuki, 2006; Abe et al., 2011; Abe & Suzuki, 2004; Pastén et al., 1995). For the undi-
rected network we used the Dijkstra algorithm (Dijkstra, 1959) to calculate the aver-
age path length (Albert & Barabási, 2002). We follow the earthquake complex network
evolution along the Chilean coast.

During the last years the coupling between Nazca plate and South American plate
along the Chilean subduction zone has been studied (Métois et al., 2013, 2016). That
works have identified zones with more background seismicity. The highly coupled seg-
ments usually exhibit low background seismicity. We have compared our results with the
high coupling and low coupling zones described by previous works (Métois et al., 2013,
2016). The results suggest that could have a relation between coupling and the value of
the critical exponent γ.

2 Seismic Data

The seismic data was measured by the National Seismological Center of Chile (Cen-
tro sismológico Nacional, CSN) (CSN: Centro Sismológico Nacional , 2005-2017) between
January 2005 and March 2017, containing 12 years of measurements with 38 083 seis-
mic events in the zone between 17.9◦ to 39.1◦ South Latitude and between 67.5◦ to 75◦

West Longitude, with a maximum depth of 200.0 km.

The data was collected by the National Seismological Centre (Centro Sismológico
Nacional) (CSN: Centro Sismológico Nacional , 2005-2017) in the format date, hypocen-
ter and magnitude. For the present study the hypocenter is used in kilometers. The Lat-
itude is represented by the angle θ and the Longitude by the angle φ. The Latitude and
Longitude are converted into kilometers by using the following expressions,

dNSi = R(θi − θ0),

dEWi = R(φi − φ0) cos(θav),

dzi = zi,

where zi is the depth and θAV is the average Latitude. θ0 and φ0 are the minimum val-
ues for the Latitude and Longitude, and R the radius of the earth, considered for this
study as 6 370 km.

–3–
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Figure 1. Map with the seismic events with magnitudes greater than Mw = 4.0, where the

blue dots represent values of magnitude between 4.0 < Mw ≤ 5.0, the green dots is for values of

magnitude between 5.0 < Mw ≤ 6.0, the orange dots for values of magnitude betweeen 6.0 <

Mw ≤ 7.0 and the red ones for values of magnitude greater than Mw = 7.0.

2.1 Gutenberg Richter Law

Distributions of earthquakes in any region of the Earth typically satisfy the Guten-
berg and Richter (Gutenberg & Richter., 1954) relationship given by

log10(N) = a− bM, (1)

where N is the cumulative numbers of earthquakes greater than magnitude M . The val-
ues a and b indicate the intercept and the slope of the power law. The most important
parameter in this case is b, a higher value of b indicates a larger proportion of small earth-
quakes, and a lower value refers us to a smaller proportion of small earthquakes (Gutenberg
& Richter., 1954).

3 Network Analysis

The completeness data set contains 38 083 events and it is divided in windows of
300 km in Latitude. We move the window each 100 km from the North to the South,
so every window will have 200 km of the previous zone. Finally, we have N = 22 win-
dows of 300 km to analyze. In order to make the time-based complex network analysis
we build the network for each window, so we divide a window into cubic cells. Each cu-
bic cell has a side size of ∆ = 10 km, if a hypocenter is inside the cubic cell, this cell
is called as a node. In this study, two types of networks are analyzed by each window:
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Figure 2. Complete magnitude data set is found above Mw = 3.0 for each zone. (a) For the

area 0 km to 600 km we obtain a parameter b = 0.77 ± 0.01. (b) For the area 600 km to 1200 km

we obtain a parameter b = 0.90 ± 0.01. (c) For the area 1200 km to 1800 km we obtain a parame-

ter b = 0.95 ± 0.01. (d) For the area 1800 km to 2400 km we obtain a parameter b = 0.88 ± 0.01.

a directed and an undirected network. The connections of both types of networks de-
pend on the earthquakes time sequence. Fig 3 shows a schematic representation of these
complex networks. Each node has a mark.

Figure 3. Schematic example of complex networks. (a) Undirected network. There is no

directed edges. (b) Directed network. The edges are directed.

In the study of complex networks there are many metrics that could be useful to
characterize specific systems, among them we can mention the probability distribution
of connectivity (P (k)), the clustering coefficient (C), the betweenness centrality (σ) or
the average shortest path length (l) (Newman, 2001, 2003, 2018). In the present anal-
ysis we will be concentrated in two metrics: the probability distribution of connectiv-
ity and the average shortest path length.
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3.1 Probability distribution of connectivity

Generally the degree of connectivity of the nodes of a complex network is statis-
tically distributed. In the case of time-based complex networks built with seismic data
sets the probability distribution of the connectivity given by a power law (Abe & Suzuki,
2006, 2004).

P (k) = k−γ , (2)

where γ is the characteristic exponent of the scale free distribution (Telesca & Lovallo,
2012; Juan & Guzmán-Vargas, 2013).That fact shows a scale-free behavior of the seis-
micity in the distribution of the connectivity. We follow this behavior window by win-
dow along the Chilean coast in the subduction zone of Chile, so we show a spatial evo-
lution of the γ exponent. In order to obtain a reliable value of the γ exponent, we have
used two different methods to evaluate γ: the linear regression and the Maximum Like-
lihood Estimation (MLE) and we compare both results by each window, it is due to the
fact that some areas have a small number of points (seismic events).

The MLE is computed by using the approximation proposed by (Goldstein et al.,
2004) for discrete data with a scale-free distribution, and the range of application used
is determined by for Kolgomorov-Smirnov test. On the other hand a Linear Regression
analysis is made on the histogram obtained from the log-log probability distribution of
connectivity of the complex network. The LR analysis was applied to the same range
used in the MLE analysis.

Figs.4 and 5 show the linear range of the probability distribution of connectivity by us-
ing the two methods LR and MLE for each window, from the far north of Chile to the
south of Chile. We can remark that both methods fit very well the power law in the same
linear range along the coast of Chile. In some windows, like windows 7, 8 , 9 , 10, 21 and
22 (Figs. 4g), 4h), 4i), 4j), 5i), 5j)), the number of seismic events measured is smaller
than the number of seismic events in the other windows, that is due the number of seis-
mic station in those zones is less than the other zones, but value of the adjustment ob-
tained with the two methods is very similar. The spatial evolution of the time-based com-
plex network is shown in Fig. 6, where the value of the critical exponent γ is calculated
by Latitude. This figure is showing the change of this exponent along the subduction
zone.

3.2 Average Shortest Path Length (ASPL)

The Average Shortest Path Length (ASPL) is a useful metric that considers the
distance between nodes inside the network (Newman, 2001, 2003, 2018). First, we will
measure the distance between all the nodes in the network following the path of connec-
tions.

The distance between nodes in the network will be determinated by measuring the
distance from the center of a node to the center of one of the nodes connected to it. The
APSL is a concept in network topology that is defined as the average number of steps
along the shortest paths for all possible pairs of nodes in the network. It is a measure
of the efficiency of the information transference or mass transport on a network, and it
is given by

ASPL =
1

n(n− 1)
∑̇i jd(vi, vj). (3)
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Figure 4. Maximum Likelihood Estimation (MLE) and Linear regression (LR) for the proba-

bility distribution of connectivity in each of the first 12 windows used in this analysis. From the

north to the south of Chile: a) 0 km to 300 km, b) 100 km to 400 km, c) 200 km to 500 km, d)

300 km to 600 km, e) 400 km to 700 km, f) 500 km to 800 km, g) 600 km to 900 km, h) 700 km

to 1000 km, i) 800 km to 110 km, j) 900 km to 1200 km, k) 1000 km to 1300 km, l) 1100 km to

1400 km.

Here n denotes the total number of nodes in the network and d(vi, vj) is the value
of shortest-path length of nodes vi and vj . The d(vi, vj) has been calculated with the
Dijkstra algorithm (Dijkstra, 1959).

Fig. 8 shows the values of the ASPL for the complex network built in each window
studied. This value is calculated by steps in the network, i.e., how many steps are be-
tween two nodes (blue points) and by the euclidean distance between nodes, consider-
ing the distance in kilometers from the center of a node to the center of the another node
(red points). Both measurements have a similar general behavior. The values of the ASPL
are very similar along the Chilean coast, except for the regions that contain a smaller
number of seismic events.

3.3 Spearman Rank Correlation

Spearman rank correlation is a non-parametric test that is used to measure the de-
gree of association between two variables (Lyerly, 1952; Fieller et al., 1957). The Spear-
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Figure 5. Maximum Likelihood Estimation (MLE) and Linear regression (LR) for the proba-

bility distribution of connectivity of the 10 last windows used in this analysis. From the north to

the south of Chile: a) 1200 km to 1500 km, b) 1300 km to 1600 km, c) 1400 km to 1700 km, d)

1500 km to 1800 km, e) 1600 km to 1900 km, f) 1700 km to 2000 km, g) 1800 km to 2100 km, h)

1900 km to 2200 km, i) 2000 km to 2300 km, j) 2100 km to 2400 km.
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Figure 6. Value of γ along the Chilean coast. From the 18◦ to the 39◦ South Latitude.

man correlation coefficient, ρ, can take values in a range between [−1, 1]. When ρ has
the value 1 it indicates a perfect association of ranks, when the value of ρ is zero it in-
dicates no association between ranks and when the value of ρ is −1 it indicates a per-
fect negative association of ranks. The following formula shows how this coefficient is
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Figure 7. Schema of the method to calculate the shortest path length, through Dikjstra Algo-

rithm. (a) The initial network, where the values of the shortest path length between all the nodes

and the initial node (0) is infinity. (b) It is calculated the shortest path length between the initial

node and the node 1. Two paths were found and are compared one another the shortest path

replaces the distance infinity, and is defined like the shortest path between the node 0 and the

node 1. (c) The same process done with node 1 is done with node 2. (d) And finally the process

is ended with the last node.
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Figure 8. Average Shortest Path Lenght (ASPL) calculated for each window along the

Chilean coast, from the northern zone to the southern zone of Chile. This value was calculated

by kilometers and by steps in the network.

calculated

ρ = 1 −
6
∑
i d

2
i

n(n− 1)
,

where di is the difference between ranks and n is the number of observations.

Finally, Fig. 11 is showing the longitude of the rupture zone for three large earth-
quakes occurred along Chilean coast in the last 10 years.

4 Discussion

We have characterized the seismicity along the coast of Chile by using a time-based
complex network description. We have divided the coast from the northern to the south-
ern of Chile in windows of 300 km and we have applied the time-based complex network
method in each window. Windows are divided into cubic cells and each node corresponds
to a cubic cell with at least one hypocenter inside of it. In this analysis we have followed
the spatial evolution along the Chilean coast of two parameters of complex networks: the
critical exponent γ (probability distribution of connectivity) and the ASPL.

Fig. 6 shows the values of γ along the Chilean subduction zone. These values are
calculated by using two different methods the Linear Regression (LR) and the Maximum
Likelihood Estimation (MLE). This figure shows the comparison of these two methods,
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Figure 9. Average Path Length for each value versus the critical exponent γ, calculated by a

simple Linear Regression (LR) and the Maximum Likelihood Estimation method (MLE).

Average Coupling γMLE

γLR 0.191417 0.979673

γMLE 0.218521 1

Table 1. Spearman Rank correlation coefficient between the values of the exponent γ, pre-

viously calculated using the linear regression and the Maximum Likelihood Estimation (MLE),

and the values of Average Coupling from Métois paper’s (Métois et al., 2013, 2016). The values

shown are seen in figures 9, 10 and 11.

Latitude S Average Coupling

18.8◦ - 23.3◦ −0.9

23.3◦ - 32.3◦ 0.636364

32.3◦ - 38.8◦ 0.142857

Table 2. Spearman Rank correlation coefficient between the values of the exponent γ, previ-

ously calculated using the Maximum Likelihood Estimation (MLE), and the values of Average

Coupling from Métois paper’s, separated into different zones. The values shown are seen in fig-

ure 11.
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critical exponent γ calculated with the Maximum Likelihood Estimation method (MLE).
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Figure 11. Longitude of the rupture zone of the last three large earthquakes occurred in

Chile, Mw8.8 Maule (2010), Mw8.2 Iquique (2014) and Mw8.3 Illapel (2015).

presenting a good agreement between both results. The values of the Spearman Rank
shown in Table 1 supports this agreement.

Fig. 8 shows the evolution of the Average Shortest Path Length (ASPL) along the
Chilean coast. This figure compares the values measured by steps in the network and
the Euclidean distance measured in kilometers, both measures show a good agreement
in the ASPL. On the other hand, Fig. 9 show the ASPL versus the values of γ calculated
by LR (red) and MLE (blue). This two metrics, the ASPL and the critical exponent γ,
show a good correlation along the zone studied. In order to evaluate the correlation be-
tween this two metrics, Table 1 shows the Spearman Rank value for Fig. 9.

In order to make a first approach to the physical dynamics of earthquakes and the
complex networks parameters, we have compared the critical exponent γ against the coup-
pling in the coast of Chile. For this purpose, we have taken the results of Metois et al. (Métois
et al., 2013, 2016), who measured the coupling along Chilean coast. Fig. 10 shows a good
correlation between the values of γ and the coupling in the central zone of Chile between
these two parameters, while there is not a good correlation in the northern zone and in
the southern zone. Table 2 shows the Spearman rank correlation for this figure, the best
correlation is obtained for the central zone of Chile.

5 Concluding Remarks

Two time-based a directed and undirected complex networks are constructed for
a data set measured along the coast of Chile, network. We compute the values of the char-
acteristic exponent γ (from the probability distribution of connectivity) for the directed
network, and we compute the Average Shortest Path Length (ASPL) for the undirected
network.

This study shows a change in the behavior of the value of γ and the values of the
Average Path Length, for each zone under study. Both of these values are not constant
along the Chilean subduction zone. The value of γ increases between the 23.3◦ and the
29.6◦ South Latitude, the value of this parameter keeps in a vale in the northern zone
of Chile (between 18.5◦ and 23.2◦ South Latitude). The last large earthquake in the north-
ern zone of Chile was on 1st April 2014, with a moment mangnitude of Mw8.2 and bro-
ken a fault region of 150 km, which is shown in Fig. 11. There seems to be a correlation
between a low value of γ and the rupture zone in Iquique.
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On 16th September 2015, a large earthquake with moment magnitude of Mw8.3
occurred close to the Illapel city, located at 31.6◦ South Latitude, with epicenter in 31.5◦

South Latitude and a fault zone of 200 km, aprox, to the north of the epicenter. In the
spatial vicinity of this two large earthquakes we compute a low value of γ, this fact is
in agreement with the recent past occurrence of large earthquakes on these two zones.

The capital of Chile, Santiago, is located at 33.47◦ South Latitude, the zone around
the capital shows a low value of γ. The values of this parameter grows again from the
35◦ South Latitude. The Maule 2010 large earthquake had the epicenter at 36.2◦ South
Latitude, with a moment magnitude of Mw8.8. In the vicinity of the zone affected by
this large earthquake the value of γ is increasing. Following the spatial evolution of the
critical exponent γ and the ASPL, it seems that the spatial evolution of the parameter
γ has a good agreement with the large earthquake occurrence, so γ could be an indica-
tor that could show the behavior of the physical dynamic involved in the earthquake oc-
currence. The agreement of this parameter with the coupling zones is high, see in Ta-
ble 1, the highest coupling zones, according Metois (Métois et al., 2013, 2016), have a
value of γ closed to 2, and the Low coupling zones have a value of γ greater than 3. In
addition, Fig. 11 shows a great agreement between the low values of γ and the large earth-
quake occurrence. This is a first effort to connect parameters of complex networks with
the physical dynamic of earthquakes occurrence.

6 Open Research

The data is available for future research in the research data repository of the Uni-
versity of Chile (Mart́ın & Pastén, 2020a, 2020b).
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Abe, S., Pastén, D., Muñoz, V., & Suzuki, N. (2011). Universalities of earthquake-
network characteristics. Chinese Science Bulletin, 56 , 34. doi: https://doi
.org/10.1007/s11434-011-4767-6

Abe, S., & Suzuki, N. (2004). Scale-free network of earthquakes. Chinese Science
Bulletin, 65 , 581. doi: https://doi.org/10.1209/epl/i2003-10108-1

Abe, S., & Suzuki, N. (2006). Complex-network description of seismicity. Nonlinear
Proc. Geophys, 13 , 145-150. doi: https://doi.org/10.5194/npg-13-145-2006

Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Re-
views of modern physics., 74 , 47. doi: https://doi.org/10.1103/RevModPhys
.74.47

Albert, R., Jeong, H., & Barabasi., L. (1999). Diameter of the world wide web. Na-
ture., 401 , 130-131. doi: https://doi.org/10.1038/43601

Alon, U. (2003). Biological networks: the tinkerer as engineer. Science., 301 ,
1866–1867. doi: https://doi.org/10.1126/science.1089072

Barabási, A., Albert, R., & Jeong, H. (2000). Scale-free characteristics of ran-
dom networks: the topology of the world-wide web. Physica A: Statistical
Mechanics and its Applications., 281 , 69-77. doi: https://doi.org/10.1016/
S0378-4371(00)00018-2

Barabási, A., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s func-
tional organization. Nature Reviews Genetics., 5 , 101–113. doi: https://doi
.org/10.1038/nrg1272

Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F.,

–12–



manuscript submitted to Journal of Geophysical Research Solid Earth

. . . Gifford, D. K. (2003). Computational discovery of gene modules and
regulatory networks. Nature Biotechnologyvolume., 21 , 1337–1342. doi:
https://doi.org/10.1038/nbt890

Centola, D. (2010). The Spread of Behavior in an Online Social Network Experi-
ment. Science., 329 , 1194-1197. doi: https://doi.org/10.1126/science.1185231

Comte, D., Haessler, H., Dorbath, L., Pardo, M., Monfret, T., Lavenu, A., . . .
Hello, Y. (2002). Seismicity and stress distribution in the Copiapo, north-
ern Chile subduction zone using combined on- and off-shore seismic obser-
vations. Physics of the Earth and Planetary Interiors., 132 , 197-217. doi:
https://doi.org/10.1016/S0031-9201(02)00052-3

Comte, D., & Pardo., M. (1991). Reappraisal of great historical earthquakes in
the northern Chile and southern Peru seismic gaps. Natural Hazards., 4 , 23-44.
doi: https://doi.org/10.1007/BF00126557

Csn: Centro sismológico nacional. (2005-2017). https://www.sismologia.cl/.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik., 1 , 269-271. doi: https://doi.org/10.1007/BF01386390

Faŕıas, M., Comte, D., Roecker, S. W., Carrizo, D., & Pardo, M. (2011).
Crustal extensional faulting triggered by the 2010 Chilean earthquake: The
Pichilemu Seismic Sequence. Tectonics, 30 . doi: https://doi.org/10.1029/
2011TC002888

Fieller, E. C., Hartley, H. O., & Pearson, E. S. (1957). Tests for Rank Correla-
tion Coefficients. I. Biometrika., 44 , 470-481. doi: https://doi.org/10.2307/
2332878

Goldstein, M. L., Morris, S., & Yen, G. G. (2004). Problems with fitting to the
power-law distribution. . The European Physical Journal B., 41 , 255-258. doi:
https://doi.org/10.1140/epjb/e2004-00316-5

Gutenberg, B., & Richter., C. (1954). Seismicity of the earth and associated phe-
nomena. (N. . P. U. P. Princeton, Ed.).

Huan, Z., Tilmann, F., Comte, D., & Zhao., D. (2019). P Wave Azimuthal
Anisotropic Tomography in Northern Chile: Insight Into Deformation in the
Subduction Zone. Journal of Geophysical Research Solid Earth., 124 , 742-765.
doi: https://doi.org/10.1029/2018JB016389

Juan, B. A.-S., & Guzmán-Vargas, L. (2013). Earthquake magnitude time series:
scaling behavior of visibility networks. . The European Physical Journal B.,
86 , 454. doi: https://doi.org/10.1140/epjb/e2013-40762-2

Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., , Sufri, O., & Hutko,
A. R. (2010). Teleseismic inversion for rupture process of the 27 Febru-
ary 2010 Chile (Mw 8.8) earthquake. Applied Soft Computing., 37 . doi:
https://doi.org/10.1029/2010GL043379

Lyerly, S. B. (1952). The average spearman rank correlation coefficient. Psychome-
trika., 17 , 421-428. doi: https://doi.org/10.1007/BF02288917

Mart́ın, F., & Pastén, D. (2020a). Replicar los datos para: Data set of seismology of
chile (2005-2017).
doi: https://doi.org/10.34691/FK2/VENURN

Mart́ın, F., & Pastén, D. (2020b). Replicar los datos para: Relation between connec-
tivity and coupling in the chilean subduction zone: a first approach: Figures
and tables.
doi: https://doi.org/10.34691/FK2/C3X8AE
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This supporting information provides the same tables as seen in the main article,
with the same captions.

Average Coupling γMLE

γLR 0.191417 0.979673

γMLE 0.218521 1

Table 1. Spearman Rank correlation coefficient between the values of the exponent γ, pre-

viously calculated using the linear regression and the Maximum Likelihood Estimation (MLE),

and the values of Average Coupling from Métois paper’s (Métois et al., 2013, 2016). The values

shown are seen in figures 9, 10 and 11.

Latitude S Average Coupling

18.8◦ - 23.3◦ −0.9

23.3◦ - 32.3◦ 0.636364

32.3◦ - 38.8◦ 0.142857

Table 2. Spearman Rank correlation coefficient between the values of the exponent γ, previ-

ously calculated using the Maximum Likelihood Estimation (MLE), and the values of Average

Coupling from Métois paper’s, separated into different zones. The values shown are seen in figure

11.
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