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Abstract

The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant

threat to a variety of satellite systems. While various models of the relativistic electron flux have been developed for geostationary

orbit (GEO), the behaviour of the medium energy (120-600 keV) electrons below GEO remains poorly quantified. In this paper

we present a Medium Energy electRon flux In Earth’s outer radiatioN belt (MERLIN) model based on the Light Gradient

Boosting (LightGBM) machine learning algorithm. The MERLIN model takes as input the satellite position, a combination of

geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN

is trained and validated on $>$15 years of the GPS electron flux data, and tested on more than $1.5$ years of measurements.

10-fold cross validation (CV) yields that the model predicts the MEO radiation environment well, both in terms of dynamics

and amplitudes of flux. Evaluation on the test set yields high correlation between the predicted and observed electron flux (0.8)

and low values of absolute error. The MERLIN model can have wide Space Weather applications, providing information for

the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast

of the MEO environment and surface charging analysis.
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Abstract18

The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic19

systems that pose a significant threat to a variety of satellite systems. While various models of20

the relativistic electron flux have been developed for geostationary orbit (GEO), the behaviour21

of the medium energy (120-600 keV) electrons below GEO remains poorly quantified. In this22

paper we present a Medium Energy electRon flux In Earth’s outer radiatioN belt (MERLIN)23

model based on the Light Gradient Boosting (LightGBM) machine learning algorithm. The24

MERLIN model takes as input the satellite position, a combination of geomagnetic indices25

and solar wind parameters including the time history of velocity, and does not use persistence.26

MERLIN is trained and validated on >15 years of the GPS electron flux data, and tested on27

more than 1.5 years of measurements. 10-fold cross validation (CV) yields that the model28

predicts the MEO radiation environment well, both in terms of dynamics and amplitudes of29

flux. Evaluation on the test set yields high correlation between the predicted and observed30

electron flux (0.8) and low values of absolute error. The MERLIN model can have wide31

Space Weather applications, providing information for the scientific community in the form32

of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of33

the MEO environment and surface charging analysis.34

Plain Language Summary35

The radiation belts of the Earth, which are the zones of charged energetic particles trapped by36

the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a37

variety of commercial and military satellite systems. While the inner belt is relatively stable,38

the outer belt is highly variable and depends substantially on solar activity; therefore, accurate39

and improved models of electron flux in the outer radiation belt are essential to understand the40

underlying physical processes. Although many models have been developed for the geosta-41

tionary orbit and relativistic energies, prediction of electron flux in the 120-600 keV energy42

range still remains challenging. We present a data-driven model of the medium energies (120-43

600 keV) differential electron flux in the outer radiation belt based on machine learning. We44

use 17 years of electron observations by Global Positioning System (GPS) satellites. We set45

up a 3D model for flux prediction in terms of L-values, MLT and satellite latitude. The model46

gives reliable predictions of the radiation environment in the outer radiation belt and has wide47

space weather applications.48

1 Introduction49

The Van Allen radiation belts, discovered by the array of Explorer satellites [Van Allen and50

Frank, 1959], are zones of charged energetic particles, mainly electrons and protons, trapped51

by the magnetic field of the Earth. Protons form a single radiation belt with maximum flux52

intensities between L values from ∼ 3 to 4 [Ganushkina et al., 2011]. Energetic electrons (>53

100 keV) are mainly confined to two regions - the inner belt, within L from 1.2 to 2.5, and54

the outer belt located between L from ∼ 3 to 7 [Lyons et al., 1972; Summers et al., 2004].55

The inner and outer electron radiation belts are separated with a so-called slot region, usually56

devoid of energetic electrons [Lyons and Thorne, 1973; Kavanagh et al., 2018]. The inner57

radiation belt is known to exhibit long-term stability, while the outer belt is highly dynamic58

and depends substantially on solar activity [Meredith et al., 2006].59

The dynamics of the outer radiation belt is governed by a complex interplay between ac-60

celeration and loss processes [Reeves et al., 2003]. Electrons with energies of tens of keV,61

called the source population, are injected into the inner magnetosphere during substorms and62

produce waves, for instance, the whistler mode chorus [e.g., Boyd et al., 2014, 2016; Jaynes63

et al., 2015]. Electrons with energies of hundreds of keV, called the seed population electrons,64

are also injected in the magnetosphere during substorm activity. These electron populations65

can accumulate at the surface of the spacecraft and lead to satellite loss due to the so-called66

surface charging effects [e.g., Garrett, 1981; Lanzerotti et al., 1998]. Furthermore, the seed67
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population electrons can be accelerated to relativistic energies by waves. These relativistic (>168

MeV) particles can penetrate through satellite shielding and damage the equipment onboard,69

also leading to satellite loss [e.g., Fennell et al., 2000].70

To date, there are more than 2200 operational satellites in the Earth’s orbit and many of them71

systematically pass through the radiation belts region. Approximately 1400 spacecraft are in72

Low Earth Orbit (LEO) at altitudes up to 1000 km. The LEO satellites cross the inner radiation73

belt in the region of the South Atlantic magnetic anomaly (SAA) and the outer belt at higher74

latitudes. The second most populated is the geostationary orbit (GEO) with more than 56075

satellites flying at altitudes of ∼36000 km synchronously with the rotation of the Earth. GEO76

satellites generally fly close to the outer edge of the outer radiation belt (L ∼ 6.6). Satellites77

flying below GEO and above LEO follow the so-called Medium Earth Orbit (MEO). Many78

Global Navigation Satellite System (GNSS) satellites fly at MEO, for instance, the Global79

Positioning System (GPS), GLObal NAvigation Satellite System (GLONASS) and Galileo.80

Furthermore, in order to reach GEO, an increasing number of spacecraft are using the electric81

orbit raising method and can spend hundreds of days in the MEO region [Horne and Pitchford,82

2015; Glauert et al., 2018]. Satellites following MEO systematically pass through the heart83

of the outer radiation belt and are exposed to the largest values of electron flux. The number84

of satellites in Earth’s orbit will increase significantly in the following years, and in order85

to ensure the long-term satellite operation stability, it is necessary to have reliable models of86

electron intensities at different energies (from tens of keV up to several MeV) and locations.87

The existing radiation belt models can be divided into three main categories: physics-based,88

data-driven, and data assimilation models. Several physics-based models of electron flux have89

been created for the radiation belts and ring current region. Among them, there are the Ver-90

satile Electron Radiation Belt (VERB) [e.g., Subbotin and Shprits, 2009], British Antarctic91

Survey Radiation Belts Model (BAS-RBM) [Glauert et al., 2014] and Dynamic Radiation En-92

vironment Assimilation Model (DREAM) [Reeves et al., 2012; Tu et al., 2013, 2014] codes93

based on solving the three-dimensional Fokker-Planck equation to reproduce the dynamics94

and variability of the MeV radiation belts electrons. The physics-based models typically in-95

clude the radial diffusion, losses due to pitch-angle scattering and magnetopause shadowing96

[Glauert et al., 2018]. Recently, the VERB-4D code has been developed to extend the VERB97

code to lower-energy ring current electrons by including advection terms [Shprits et al., 2015;98

Aseev et al., 2016]. The physics-based Inner Magnetosphere Particle Transport Model (IMP-99

TAM) was developed and shown to give reasonable flux predictions at energies from several100

eV up to <150 keV [Ganushkina et al., 2019]. The low energy electrons are also modeled101

by the coupled Fok Ring Current (FRC) [Fok and Moore, 1997] and Comprehensive Inner-102

Magnetosphere Ionosphere (CIMI) [Fok et al., 2001] models operating online. It should be103

noted that there is generally a gap in modeling the electron flux at energies 100-600 keV. Phys-104

ical modeling at these energies is considered difficult due to the fact that electric field effects105

have to be considered [Ganushkina et al., 2011] and also because the physics governing the106

dynamics of electrons at medium energies is not entirely understood [Horne et al., 2013].107

The data-driven models can be subdivided into static and dynamic ones. AE8 [Vampola,108

1997] and AE9 [Ginet et al., 2013] are examples of the static models providing the values of109

integral flux at energies 40 keV - 7 MeV, although we note that different versions exist for the110

times of solar minimum and maximum. AE8 and AE9 models overcome the limitations of the111

individual data sets by combining large scale statistics and are currently used as a reference112

for engineering purposes [Glauert et al., 2018]. Dynamic data-driven models typically depend113

on a combination of solar wind parameters and geomagnetic indices. Several data-driven114

models have been developed for the GEO orbit. Denton et al. [2015] developed an empirical115

model of electron flux for low energies (10 eV - 40 keV) based on 82 LANL satellites data,116

driven by the Kp index. Later, the upstream solar wind conditions were incorporated into117

the model [Denton et al., 2016], and it was also expanded to 6-20 RE [Denton et al., 2019]118

using Cluster data. For relativistic energies, Balikhin et al. [2011] employed a Nonlinear119

AutoRegressive Moving Average with eXogeneous inputs (NARMAX) technique to predict120

daily flux at GEO orbit at energies 800 keV and 2 MeV, using solar wind parameters and the121
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previous time-series of daily flux from GOES satellites. The NARMAX model was further122

extended to a broader energy range, including electron flux at energies of hundreds of keV123

[Boynton et al., 2016]. However, the model needs satellite time-series as inputs and therefore124

for now is confined to the geostationary orbit. Several models of the relativistic electron flux125

are based on the Artificial Neural Networks (ANN), e.g., Ling et al. [2010]; Kitamura et al.126

[2011]; Chen et al. [2019]; de Lima et al. [2020]. Other empirical models of relativistic flux127

developed for the GEO region include the Relativistic Electron Flux Model (REFM) driven by128

solar wind velocity [Baker et al., 1990], an empirical function D0 dependent on several solar129

wind parameters and Kp [Li, 2004], and linear regression models [e.g., Sakaguchi et al., 2015;130

Simms et al., 2014, 2016; Osthus et al., 2014] which take as inputs the solar wind parameters131

and previous values of flux at GEO. Tsutai et al. [1999] used linear filter to predict the values132

of > 2MeV flux at GEO 1 day ahead using GOES magnetic field data over the preceding 6133

days.134

Although a variety of models have been developed for the geostationary orbit, few data driven135

models exist that give reliable electron flux predictions at MEO. This is due to the fact that136

many GEO satellites provide continuous high quality observations of electron flux, while at137

MEO the temporal and spatial coverage of observations remains rather sparse [Sakaguchi138

et al., 2015]. Indeed, only ∼ 100 satellites reside in MEO, and only few of them provide139

measurements of the radiation belt populations. Among other data sets of electron flux mea-140

surements in the MEO region, the recently released GPS energetic particle data have notable141

advantages such as, for instance, the large number of satellites (23) and uniform MLT cover-142

age, as well as availability of 18 years of observations covering almost 2 solar cycles. Further-143

more, most of the GPS satellites carry onboard identical Combined X-ray Dosimeter (CXD)144

detectors measuring electron flux at energies 0.12-10 MeV. The GPS/CXD data have been145

inter-calibrated with Van Allen Probes electron flux measurements and the two missions were146

in good agreement at energies below 4 MeV [Morley et al., 2016].147

In the current paper we present the data-driven Medium EneRgy ELectron flux In the outer148

RadiatioN Belt (MERLIN) model, based on machine learning. For model training we employ149

the Light Gradient Boosting Machine (LightGBM) algorithm, which is known for its high150

efficiency and accuracy [Ke et al., 2017]. The model takes as input satellite position in an151

Lshell - MLT - latitude frame, solar wind parameters with history of velocity, and geomagnetic152

indices. The model returns values of spin-averaged electron flux at energies 120-600 keV as153

outputs. The structure of the paper takes the form of five parts, including this introductory154

section. Section 2 describes the data set used for model construction. Section 3 is concerned155

with the methodology used for this study. Section 4 presents the results. The conclusions are156

drawn in the final section.157

2 Data set158

2.1 GPS electron flux data159

The GPS spacecraft are distributed across six orbital planes, nominally inclined at 55◦. The160

satellites follow near-circular medium Earth orbit, with 12h revolution period, at a constant161

altitude. As of 2020, the constellation consists of 74 spacecraft, of which 31 are operational,162

9 reserve, 2 being tested and 32 no longer in use [www.gps.gov]. Due to its fixed altitude163

of 20,200 km (R∼ 4.2), the GPS constellation travels through a range of L-shells providing164

the particle measurements in the outer radiation belt. We note, however, that the inclination165

of the GPS orbit restricts the range of equatorial pitch angles as a function of L-shell. The166

satellite at off-equatorial magnetic latitudes (MLAT) cannot observe the particles mirroring167

at lower MLATs and therefore samples only a part of the equatorial pitch angle distribution.168

Furthermore, GPS does not resolve local pitch angles.169

Since the early 2000s, newer GPS satellites are equipped with either of the two instrument se-170

ries: the improved BDD-IIR or the Combined X-ray Dosimeter (CXD). Most of the satellites171

currently carry aboard the identical CXD detectors. Their response is well-known and their172
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electron flux data have been used in previous radiation belts studies [e.g., Olifer et al., 2018;173

Pinto et al., 2020]. The CXD instruments measure the electron flux using two sensors: the low174

energy particle (LEP) and the High Energy Particle (HEP) sensors, with the typical sampling175

rate of 240 seconds [Morley et al., 2016]. In the present study we use data of the first 5 evalu-176

ated CXD energies, namely 120, 210, 300, 425 and 600 keV. As of 2020, 21 GPS satellites are177

equipped with the CXD detectors, providing more than 200 years of satellite data. The CXD178

measurements were previously inter-calibrated with the Van Allen Probes electron flux and179

showed good agreement. Having identified 140 physical GPS - RBSP conjunctions, Morley180

et al. [2016] obtained the ratios between the count rates of two instruments, which were close181

to 1 at energies below 4 MeV, while at higher energies larger variance was observed due to the182

unaccounted instrumental backgrounds.183

2.2 Solar wind and geomagnetic indices184

The relationship between the electron flux intensities in the outer radiation belts and solar185

wind parameters has long been recognized [e.g., Paulikas and Blake, 1979; Reeves et al.,186

2011]. Numerous studies have analyzed contributions of the solar wind parameters to flux187

enhancements. The independent contributions of solar wind velocity and number density were188

investigated, for instance, in Balikhin et al. [2011]; Kellerman and Shprits [2012]; Simms et al.189

[2014]. A combination of velocity and density, pressure and geomagnetic indices, combined190

with the previous daily flux value, was examined by Sakaguchi et al. [2015]. Long-term191

relationship between velocities and MeV electron fluxes was discussed in Reeves et al. [2013].192

It has been well established that the radiation belts flux enhancements are connected with193

changes in solar wind speed. Reeves et al. [2011] analyzed the relativistic electron flux at194

GEO with respect to the solar wind speed and noted that the resulting distribution resembled195

a triangle. Such a shape was explained as follows. The Vsw values rarely fall below 300 km/s,196

and this leads to a left-hand side of the triangle [see also Wing et al., 2016]. The top side of197

the triangle forms due to the fact that the flux values seem to have a sharp maximum at higher198

Vsw, for which multiple explanations have been given. One of the most puzzling features of199

the triangular distribution is that the variability of electron flux at lower Vsw is much larger200

than at higher Vsw. Reeves et al. [2011] noted that the electron flux can exhibit large values201

under any Vsw values. The triangular form demonstrates that using the values of the solar202

wind velocity and density is not enough to fully explain the variability of flux and therefore203

other parameters have to be taken into account.204

We consider the following solar wind parameters and geomagnetic indices obtained at the OM-205

NIWeb database [omniweb.gsfc.nasa.gov]. First, amongst the solar wind drivers, we analyze206

the solar wind velocity, and its components Vx, Vy , Vz . We analyze the IMF magnitude, Bx,207

By and Bz components, and also solar wind density nsw. We employ the derived solar wind208

quantities: magnetosonic and alfvenic Mach numbers (Mach a and Mach m,respectively),209

solar wind temperature Tsw, electric field (v*Bz), dynamic pressure (Pdyn) and plasma Beta.210

From geomagnetic indices, we select SYM-H, SYM-D, ASYM-H and ASYM-D indices, plan-211

etary Kp index and auroral AL, AU and AE indices. It has been previously established that212

many of these features are, in fact, correlated with one another. In Figure 1, we show the213

Pearson linear correlations between different solar wind and geomagnetic parameters in order214

to examine which features can be used for the model set up.215

We find that Vx is perfectly anticorrelated with V, with the -1.0 coefficient, which is as ex-216

pected since Vx consitutes most of the V amplitude. Vy correlates with V with only 0.19217

correlation, and Vz shows zero correlation with velocity magnitude. SYM-D does not corre-218

late with any of the features, except for very weak (0.14) relationship with SYM-H. SYM-H,219

on the other hand, correlates with several parameters. For instance, it exhibits a moderate pos-220

itive correlation with the solar wind velocity (0.43), and negative correlation with ASYM-H221

(-0.6) and ASYM-D (-0.47). Furthermore, it correlates with auroral geomagnetic indices with222

approximately 0.5 correlation coefficient, and is also weakly anti-correlated with the electric223

field (v*Bz). ASYM-D index is correlated with ASYM-H with the R-value of 0.65, and also224

–5–



Confidential manuscript submitted to Space Weather

with auroral indices with the absolute value of the linear correlation ∼0.6. In turn, ASYM-225

H index shows weak linear correlation with solar wind velocity (0.32), IMF (0.49), dynamic226

pressure (0.36), and exhibits higher correlation with the auroral indices with the corresponding227

R values of up to 0.7. Kp index exhibits moderate positive correlation with the IMF magnitude228

(R=0.56), solar wind velocity (0.59), temperature and dynamic pressure (R∼0.5), stronger229

positive correlation with AE (R=0.7) and the corresponding AU and AL indices, along with230

0.5 correlation with SYM-H. It should be noted that the Kp index has a 3-hour cadence, and231

therefore shows lower correlation with AE than one would expect. By averaging the AE index232

to the same 3h cadence, one obtains a correlation of 0.82. IMF magnitude shows weak corre-233

lation (0.3) with solar wind density and temperature, moderate (0.5) correlation with dynamic234

pressure and Mach numbers.235

We note that although the gradient boosting regression trees are prone to the multi-collinearity236

of features [e.g., Maloney et al., 2012; Ding et al., 2016], using highly correlated inputs can237

pose a disadvantage for machine learning studies. For example, when 2 parameters are cor-238

related we can achieve the same reduction in variance as by using only one of them. Here239

we remove several correlated and derived quantities leaving the more in-depth analysis of the240

influence that different parameters have on the electron flux for further studies. First, we ex-241

clude directional components of magnetic field and velocity, since their information is already242

contained in the magnitude values (e.g., V and Vx correlate with R = −1). Furthermore,243

we exclude all of the derived quantities, because they encompass information of their original244

constituent variables (for instance, dynamic pressure strongly correlates with density). Mag-245

netosonic and Alfvenic Mach numbers essentially represent the normalized velocity and it is246

enough to consider the velocity itself. We apply the same reasoning to the geomagnetic in-247

dices selection: AE is a product of AL and AU indices, and also correlates with them, which248

is why we only use AE for model set up. AE and Kp indices are generally strongly correlated.249

While Kp is a measure of the planetary geomagnetic activity, substorms are better resolved by250

the AE index. Furthermore, Smirnov et al. [2019] reported the long-term positive correlation251

of electron flux at energies up to 400 keV with AE index along the solar cycles 23 and 24.252

The same conclusion was drawn in [Smirnov et al., 2020] by analyzing the long-term phase253

space density (PSD) variations of low-µ electrons, indicating the importance of the substorm254

activity for radiation belts transport processes. For these reasons we include both Kp and AE255

indices as inputs.256

The inner edge of the outer belt is highly dynamic and can move inwards during slot-filling257

events and outwards during the quiet periods. Li et al. [2006] reported a correlation between258

the 30-day averages of the innermost edge of the outer belt and the plasmapause location259

(Lpp) using 12 years of SAMPEX data. The flux values in the slot region, located below the260

Lpp, are lower than those beyond the plasmapause due to loss processes attributed to storm-261

enhanced EMIC and plasmaspheric hiss waves [Li et al., 2006] . O’Brien and Moldwin [2003]262

presented a model of the plasmapause location parametrized as a function of the maximum AE263

value over preceding 36 hours. Furthermore, the Lpp model based on the AE index was found264

to perform better than that using the Dst values. In order to account for the dynamics of the265

inner edge of the outer belt, we include the maximum value of the AE over 36 hours as an266

input parameter. We do not apply the linear regression coefficients to convert the max(AE) to267

Lpp, as the Regression Trees are invariant to linear scaling operations [e.g., Druzhkov et al.,268

2011].269

After the enhancement events, the flux of medium energy electrons decay to their pre-storm270

values gradually over a period of up to 20 days [e.g., Meredith et al., 2006]. Such a slow271

decay can be explained by the longer hiss lifetimes, which by different estimates vary from272

several up to tens of days [Orlova et al., 2016]. Hence, it is crucial to include some indication273

of the previous state of the radiation belts into the model. This is usually done by adding the274

preceding values of flux as model inputs [e.g., Simms et al., 2016, 2014; Boynton et al., 2016].275

Instead, in the MERLIN model we include the history of solar wind velocity as a proxy of the276

previous activity. We use the averaged vsw values over the preceding 1, 2, 3, 6, 9, 12, 15, 18,277

21, 24, 30, 36, 42 hours and 2, 3, 7 and 14 days. It should be noted that the averages over278
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longer periods of time also carry part of the information from shorter scales averages. In this279

study we only consider the history of solar wind velocity, while adding the history of number280

density leads to overfitting, as discussed in Section 4.1. In sum, as input parameters we select281

the satellite position in the L-MLT-latitude frame, geomagnetic indices SYM-H, Kp and AE,282

solar wind parameters - number density, electric field (v*Bz) and velocity with 2 weeks of283

history (see also figures 2 and 4). More features can be incorporated into the model in future,284

however preserving the methodology, and the more refined feature selection will be performed285

in a separate study.286

3 Methodology287

Large and growing volumes of data have been provided by the satellite missions in the Earth’s288

radiation belts region. One of the efficient ways to utilize these long-term data sets for model-289

ing is to apply machine learning (ML) techniques. Over the years, machine learning has found290

numerous applications in the field of space physics research. ML methods have been employed291

for the geomagnetic indices forecast [e.g., Bala et al., 2009; Shprits et al., 2019], global re-292

constructions of the plasmaspheric dynamics [Zhelavskaya et al., 2017; Bortnik et al., 2018],293

solar activity prediction [e.g., Colak and Qahwaji, 2009]. Prediction of the electron flux in the294

outer radiation belt remains one of the most challenging tasks in the space weather research295

[Camporeale, 2019]. In the present study, we use the Light Gradient Boosting approach, de-296

scribed in detail below, to predict the flux of medium energy electrons using the GPS particle297

data.298

3.1 Light Gradient Boosting Machine (LightGBM)299

One of the predictive approaches, widely used in machine learning, is the so-called Gradient300

Boosting Decision Tree (GBDT) method. The GBDT algorithms gained popularity for being301

efficient, highly accurate and interpretable. GBDT is an ensemble model of usually shallow302

decision trees, also called weak learners, trained in sequence [Friedman, 2001]. Growing each303

individual tree starts from the source set contained in a root node of the tree (shown in Figure304

2). When a split is made, the root node is divided into two subsets, and 2 branches are gen-305

erated [Ren et al., 2019]. The procedure is repeated recursively until either the subset at each306

node contains all identical values of the target variable, or when the splitting is constrained307

by the algorithm’s hyperparameters (e.g., max_depth or num_leaves is reached). The308

GBDTs are grown iteratively and each new tree fits the residuals of the previous iteration309

to account for the mis-modeled instances [Freund et al., 1999]. GBDTs have been applied310

successfully to many machine learning problems, performing well for regression and classi-311

fication tasks alike. Numerous GBDT implementations have been developed, starting from312

Adaptive boosting (AdaBoost - [Freund et al., 1999]). One of the most popular gradient313

boosting methods up to date is the Extreme Gradient Boosting Machine (XGBoost) [Chen314

and Guestrin, 2016], famous for winning machine learning competitions and out-performing315

even the deep learning neural network (NN) models on tabular data. Even though the gradient316

boosting methods are capable of giving high quality predictions, their main limitation is the317

unsatisfactorily long training time and poor scalability [e.g., Zhang et al., 2019].318

The main cost in GBDT lies in learning the decision trees, and the most time-consuming part in319

learning each tree is finding the optimal segmentation points. In the conventional algorithms320

this is usually done using the so-called pre-sorted algorithm. This method enumerates all321

possible split points on the pre-sorted feature values. While being simple and effective, this322

method is also known to be inefficient in training speed and memory consumption [Ke et al.,323

2017]. Another more recent method is the histogram-based approach. It divides the continuous324

features into k intervals and selects the split points from those k values [Ju et al., 2019]. Such325

an approach also has regularization effect and helps prevent overfitting.326

One of the GBDT implementations, called the Light Gradient Boosting Machine (LightGBM),327

has been recently developed by Microsoft [Ke et al., 2017]. LightGBM addresses the tradi-328

tional GBDT performance issues by, first, using the histogram approach to find segmentation329
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points, and second by uzilizing a different approach to the tree growth. The conventional330

gradient boosting, and also other tree-based methods such as random forest, grow the trees331

level-wise. This means that when it is necessary to make a new split, a new level of leaves332

will be grown. In contrast, the LightGBM method grows the trees leaf-wise which adds only333

one more leaf and not level when a split is made. Such an approach leads to much faster and334

less computationally expensive implementation of the gradient boosting [Ke et al., 2017]. It335

has been demonstrated that LightGBM can be as much as 20 times faster than XGBoost while336

reducing more loss.337

The objective of this study is to predict values of electron flux at a range of L-shells throughout338

the outer radiation belt. Since the quantity being modeled can be represented by real numbers,339

we construct a regression gradient boosting model. The model set up is described in detail in340

section 3.3.341

3.2 Test - train splitting of the data342

Any supervised machine learning model learns on the so-called training dataset. The training343

set is seen by the model and usually contains most of the employed data points. Machine344

learning algorithms are trained iteratively trying to reduce the cost function value at each345

training iteration [Camporeale, 2019]. At some point, the model learns not only the useful346

dependencies from the data, but also noise due to reducing the cost function to extremely347

low values, which results in over-fitting. The performance of the model cannot be adequately348

evaluated on the data that were used to train it. Therefore, another set is needed to give an349

unbiased estimate of model performance and also for tuning the hyperparameters. This second350

set is called a validation set. Since these data had not been seen during training, the loss351

function value would decrease only in case when the model captured the underlying general352

dependencies from the data. However, it has to be noted that since the loss function is being353

routinely evaluated on the validation set, the model occasionally sees it as well, although354

never learns from it. Therefore, it is essential that after training the model and checking its355

performance on the validation set, the model be evaluated one last time on the fraction of data356

that had never been used before, neither for training nor validation. The data set used for this357

purpose is called a test set. In many machine learning competitions (e.g., Kaggle), only the358

training and validation sets are given to the competing teams, while the test set is released after359

the model submissions and decides the winner.360

Multiple ways have been proposed to separate the data set into the train, validation and test361

parts. In fact, very different strategies can be applied based on the field and objective of the362

study. For instance, in social sciences the accepted methodology would be to use the random363

test-train split, that is, when points for train, validation and test sets are selected randomly364

from the original full dataset. This, however, should not be applied for modeling the time-365

series and physical processes, due to the fact the validation points (usually 10-20 percent of366

values) can then be obtained by linearly interpolating the typically larger training set. Such a367

selection technique might introduce what is referred to as the data leakage [e.g., Camporeale,368

2019]. Hence, it is important to validate, and then test the model on the events unseen during369

training. For that purpose, we should select the consecutive time intervals for validation and370

testing. One of the ways to achieve this is to use, for example, first 80 percent of data for371

training, the next 10 percent for validation and then test the model on the last 10 percent of372

the data. However, in case of magnetospheric phenomena we have to take into account the373

solar cycle evolution of the processes we model. Indeed, the radiation belts dynamics during374

the descending and quiet phases of the solar cycle are vastly different. Therefore, the model375

will be trained on some part of the solar cycle and validated on another, which would not yield376

an adequate estimate of its performance. In order to take the solar cycle dependence of the377

radiation belt dynamics into account, we perform a 10-fold cross validation (CV), described378

below.379

We first reserve >1.5 years of data (March 2016 - January 2018) for testing the model. This380

is done due to the fact that on one hand, this interval had numerous solar wind enhancement381
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events and also had enough data points (∼1.100.000) for such evaluation. The entire data set382

consists of ∼ 5.5 million data points, and therefore approximately 20% are reserved for test383

set.384

The rest of the dataset is used for the K-fold CV, illustrated in Figure 3. The data are divided385

into K roughly equal parts (in our case, K=10). At every such split the model is fitted on the386

(K-1) parts and validated on 1 part that was left out. For instance, during the first split we use387

the first fold for validation and fit the model on the rest of the data. This splitting process is388

repeated K times, each time selecting a different interval for validation. The K-fold allows one389

to utilize all observations for training and evaluating the model, and each of the data points390

is used for validation only once. The K-fold CV is used to optimize the hyperparameters and391

also to retrieve the accuracy of the model, averaged over different phases of the solar cycle.392

3.3 Model Set Up393

The present study is based on 17 years of GPS/CXD electron flux measurementsat energies394

120-600 keV. The flux values were cleaned using the flags, and also outliers in the data were395

removed by setting the minimum allowed flux values to 1 cm−2kev−1s−1sr−1. We use data396

from 21 satellites (ns53−ns73) carrying the CXD detectors [for details see Carver et al.,397

2018]. We train the model on data with the original cadence of measurements equal 240398

seconds. Before fitting the model, we applied the base 10 logarithm to the GPS electron399

flux, as the data variance can be up to several orders of magnitude. In this study, we use the400

LightGBMRegressormethod as implemented in the Python version of lightgbm library401

[Ke et al., 2017].402

LightGBM has a variety of algorithm parameters, also called hyperparameters, that can have a403

non-negligible effect on the model performance. Several of them have to remain fixed, while404

others need to be optimized to achieve higher accuracy. Some of the parameters that do not405

change, include the objective (in our case, regression), the booster method (we use406

gbdt, although we note that other possibilities are available using the novel DART and GOSS407

methods [Ke et al., 2017]), metrics of the loss function values (we select both L1 and L2408

metrics, representing the MSE and MAE, respectively), and the early_stopping_rounds409

parameter which is used to stop the model training once overfitting occurs. The learning_rate410

controls how much the model is adjusted on each iteration. In case of the high learning rate,411

the algorithm makes faster fits that can cause overfitting, while in case of extremely low val-412

ues the training speed drops sufficiently and more iterations are needed to reach convergence.413

We select the learning_rate of 0.05 and keep it fixed throughout further tuning. Other414

parameters need to be optimized. The most sensitive hyperparameter is the maximum number415

of leaves in a tree, or num_leaves. Deeper trees have better learning capabilities, but since416

the gradient boosting model represents an ensemble of weak learners, the num_leaves is417

usually not very high, in our case ranging from 15 to 250. Another important parameter is418

the minimum number of data points in leaf (min_data_in_leaf), which has regulariza-419

tion effect and stops the model from learning the noise. However, the large values can cause420

decrease in model accuracy. One can also use the subset of the input features for training each421

individual tree by setting the colsample_by_tree value. To optimize the said hyperpa-422

rameters we use the hyperopt Python library [Bergstra et al., 2013] which employs the Tree423

of Parzen Estimator (TPE) approach. The resulting hyperparameters values, as well as their424

search domains are given in Table 3.3.425

4 Results and discussion428

4.1 Feature importances429

One of the advantages of the tree-based machine learning methods, LightGBM included, lies430

in the fact that the resulting model can be easily interpreted. Every tree comprising the model431

can be visualized and can give direct information about the individual split gains, internal val-432

ues in each leaf and the decision making process in general. In practice, it is often not possible433
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Table 1. LightGBM Hyperparameters used for model set up. First 5 parameters were kept fixed, while the

next ones were optimized using HyperOpt.

426

427

Name Search Range Value

’objective’ fixed ’regression’
’boosting_type’ fixed ’gbdt’

’metric’ fixed ’L1’ & ’L2’
’learning_rate’ fixed 0.05

’early_stopping_rounds’ fixed 50

’num_leaves’ 15− 250 69
’reg_alpha’ 0− 1 0.95
’reg_lambda’ 0− 1 0.03

’min_data_in_leaf’ 10− 1000 18
’colsample_by_tree’ 0.7− 1 0.99

to analyze the model in this way due to the large number of trees in an ensemble (in our case,434

∼300). The insight on the model construction can then be obtained indirectly, for example, by435

analyzing the importance scores of each variable, also called feature importances. They are436

computed for each GBDT and then averaged across all of the trees forming the model. There437

are multiple ways to retrieve the feature importances. LightGBM utilizes the so-called split438

or gain methods. The split method counts the number of times each variable was used to439

make a split. The gain method summarizes all gains of splits which use each of the features.440

It has been well established that the two methods can, in fact, give different results, and also441

that feature importances estimated this way only carry information about how the particular442

model was constructed, rather than physical meaning. Furthermore, removing one of the fea-443

tures can potentially redistribute its feature importance between several other variables and444

yield a different result altogether. Other methods, which are more stable, include the mutual445

information criterion, permutation method [Auret and Aldrich, 2011] and the recently devel-446

oped Shapley values technique [Lundberg and Lee, 2017]. These methods require an in-depth447

analysis which is beyond the scope of the present paper and will be evaluated in future studies.448

In the present section we confine to describing of the key attributes of the MERLIN model.449

Feature importances estimated using the split and gain methods are shown in Figure 4.450

MERLIN uses the satellite position (Lshell, latitude, MLT), as well as values of the SYM-H,451

Kp, and AE indices and solar wind density (n sw), IMF, electric field (El field) and solar wind452

velocity. Plasmapause location is denoted as Lpp. Furthermore, the time history of velocity is453

incorporated into the model in the form of averages over the certain time intervals. We use the454

progressively increasing time steps, from 1 hour (1h) up to 3 days (3d) and also the averages455

over 1 and 2 weeks (2w).456

We find that the most important features by gain are the L-shell and maximum of AE over457

36 hours, which is a proxy of the plasmapause location (Figure 4). Indeed, the values of458

electron flux depend on these quantities to a large extent, due to the fact that the electron459

intensities are higher in the heart of the outer belt, and then decrease to the outer edge of460

the belt and also in the opposite direction towards the slot region, which is reflected in the461

L-values. The importance of the plasmapause location has been discussed in [Li et al., 2006],462

and it was shown that Lpp correlated with the inner edge of the outer belt. The flux values drop463

significantly below the Lpp, although it is of note that the relationship between the innermost464

location of the outer belt and Lpp is energy dependent [e.g., Reeves et al., 2016; Ripoll et al.,465

2016]. Among the instantaneous values of solar wind and geomagnetic indices, the SYM-H466

index, which is a proxy of geomagnetic storms, shows the most importance in both split and467
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gain methods. We also note that the time history of solar wind velocity plays an important468

role. For the 210 keV electrons, the average velocity over 6 hours and also over 1 and 2 weeks469

have the most importance based on impurity reduction (Fig. 4). The importance of the 2470

weeks average of vsw likely comes from the fact that following the flux enhancement events,471

velocity drops to quiet time values faster than the electron intensities which remain at elevated472

levels for longer periods of time. Using CRRES data, [Meredith et al., 2006] demonstrated473

that the flux values elevated by the substorm or storm processes decay to their pre-storm values474

gradually, and that the flux can fall by 2 orders of magnitude over a period of approximately475

20 days. Therefore, an indicator of the past events is needed in order to correctly reproduce476

the dynamics of the flux decay. In the MERLIN model we do not use any previous values of477

flux and hence it is the history of velocity that the model uses as such an indicator. We note478

that AE and Kp indices exhibit very close feature importance values, because being highly479

correlated with one another, they produce equal reduction in variance when making splits.480

Figure 5 shows the influence of the solar wind history on the model performance on the ex-481

ample of 425 keV electrons. The MSE of the model with no solar wind history employed is482

shown as black dots. We further add the history of solar wind velocity of up to 14 days with483

gradually increasing time steps. The MSE gradually decreases as more history is included,484

both on training and validation data. On the other hand, including also the time history of485

solar wind density decreases the training but not the validation error. In Figure 5 it can be seen486

that while the training MSE is lower at every time step when density is included, the validation487

MSE does not change as compared to using velocity history alone and remains within the error488

bar, indicating overfitting. Therefore, we only use the history of velocity as inputs.489

4.2 Results of 10-fold cross validation490

Multiple metrics can be used to evaluate the model accuracy [for details see Morley et al.,491

2018; Liemohn et al., 2018]. The LightGBM library offers a variety of metrics implemented492

for model analysis. The default metrics is the mean squared error (MSE), which is computed at493

each training iteration. It should be noted that the electron flux can exhibit strong depletions,494

up to several orders of magnitude, over short times [Ganushkina et al., 2019]. The mean495

squared error is susceptible to outliers , and therefore we also evaluate the median of the496

squared error. In Table 4.2 it can be seen that both for training and validation sets, median of497

the squared error is ∼3 times lower than the MSE. This means that while some of the rapid498

depletions/enhancements are not completely reproduced, the value of the median squared error499

of 0.05 shows that the model predictions are very close to the observed data.500

Table 2. Metrics evaluated on the train and validation sets during 10-fold CV, and on the test data for 425

keV electrons. The standard error for the 10-fold CV are shown in brackets.

501

502

Metrics Train Validation Test

Mean SE 0.16 (±0.011) 0.24 (±0.026) 0.23
Median SE 0.05 (±0.004) 0.08 (±0.009) 0.07

MAE 0.21 (±0.009) 0.26 (±0.014) 0.26
NRMSD 0.05 (±0.006) 0.08 (±0.009) 0.08

PE 0.76 (±0.015) 0.59 (±0.018) 0.55
Spearman ρ 0.88 (±0.006) 0.81 (±0.012) 0.79

Ratio 1 1 1

Another useful metric, implemented in the LightGBM library, is the median absolute error,503

denoted as MAE. Evaluating the median error allows us to pay less attention to the outliers504
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but gives a good proxy of model performance otherwise. In our case, MAE values are close505

for the train (0.21) and validation sets (0.26). These values of MAE mean that in general, the506

predicted values differ from observations by a factor of ∼1.5, which is considered acceptable507

for radiation belt modeling. The scale-dependent metrics can be difficult to interpret, since the508

model predicts base 10 logarithms of flux and also because the level of flux is generally differ-509

ent for different energies. We evaluate the normalized root mean squared deviation (NRMSD),510

defined in [Denton et al., 2019, eq. 1]. The zero value of NRMSD corresponds to the perfect511

prediction, and the values of < 1 generally indicate a good match between the model and512

data [Denton et al., 2019]. From Table 4.2 one can see that the values of NRMSD are close513

to 0 (0.05 for train and 0.08 for the validation set), indicating that the model reproduces the514

observations very well.515

The metrics mentioned above mainly quantify how far the predictions deviate from observa-516

tions at stationary points. In order to evaluate how well the model reproduces the dynamical517

behaviour of the electron flux, we employ the following metrics. First, we evaluate the cor-518

relation between the predictions and observations. The standard Pearson linear correlation519

coefficient is susceptible to outliers, and therefore we use the Spearman rank correlation co-520

efficient (ρ). From Table 4.2 it can be seen that the correlations are rather high both for train521

and validation sets, based on the 10-fold CV. The average correlation on the train set is 0.88522

and is slightly higher than that on the validation (0.79), which is as expected since the model523

was fitted on the train data. The high values of the correlation coefficient show that the model524

captures the behavior of flux at energies 120-600 keV, which are known to be very dynamic525

and can exhibit drastic changes on the order of several minutes.526

Another popular metric widely used in machine learning is the r2-score. This indicator is527

used to quantify the fraction of variance explained by the model [e.g., Morley et al., 2018].528

The average r2 for the train data is 0.76, and 0.59 for the validation set. While these values529

appear low, we conduct a more detailed analysis of the r2 on the synthetic data, shown in the530

Supplement (Figure S1). We first generate a harmonic function - a sinusoid, for 20 periods531

of 2π each, and then add random noise of maximum magnitude equal 0.2. The electron flux532

are known to exhibit rapid depletions of up to several orders of magnitude, and to account for533

this we add 80 dropouts where we subtract 2 units from the synthetic signal. We compute the534

values of the r2 for the case with and without outliers. The initial sinusoid signal compared535

to the data with no outliers yields prediction efficiency of ∼0.9, while the data in presence536

of outliers give a lower r2 value of ∼0.6, which is approximately equal to the value we have537

for MERLIN on the validation set. This means that the model can adequately reproduce538

the behaviour of flux but miss some of the dropout magnitudes, which results in the lower539

prediction efficiency. This will be further discussed while analyzing the performance on the540

test data.541

Figure 6 demonstrates the model performance, averaged over the 10-fold CV, for individual542

energy channels. Fig. 6a shows the median absolute error. It can be seen that the best perfor-543

mance is achieved for 425 keV electrons, although we note that the MAE for other channels544

is only slightly different. We find that the accuracy improves with higher energies (MAE for545

120 keV on the validation set is 0.33 compared with ∼0.26 for 425 keV). The accuracy then546

slightly decreases from 425 keV to 600 keV electrons. Same can be seen in terms of the547

correlation (Figure 6b) - the averaged correlation on the validation sets is ∼0.76 for 120 keV548

and ∼0.82 for 425 keV. The ρ value then slightly decreases to 0.8 for 600 keV. A slightly549

lower ρ ∼ 0.75 for 120 keV electrons likely comes from the more dynamic nature of this550

low-energy population, with processes on timescales of shorter than 1 minute having a non-551

negligible effect [e.g., Ganushkina et al., 2019]. It should be noted that the values of MAE and552

the correlation for each individual channel show that the MERLIN model well predicts both553

amplitudes and flux dynamics throughout the considered energy range.554
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4.3 Performance on test data555

The train set is used to learn the model, and the model is constructed so as to minimize the556

error on the validation set. On each iteration, the MSE and MAE values should decrease for557

the train set as the gradient boosting model adjusts the residuals to fit the train set better, and558

then the updated model is evaluated on the validation set. If the validation error reduces, the559

training continues to a new iteration (i.e., grows a new GBDT). The model never learns from560

the validation set, however, it is still being used on every training iteration. We therefore need561

another totally independent set of values to check that the model generalizes well onto the562

unseen data. It is of note that this test set can only be used once to evaluate the performance,563

after the model training has been completed, and no further changes to the model can be made.564

More details on the train-validation-test splitting of the data can be found in Section 3 and in565

Figure 3.566

The values of different metrics discussed above are given in Table 4.2. We find that the values567

on the test set are close to those on the average of the validation sets. MAE values are identical568

and equal to 0.26 on the two sets. MERLIN yields NRMSD values of 0.08 for both test and569

validation data, which show that the model performs well on both sets as the NRMSDs are570

close to zero. The values of the Spearman correlation coefficient are very close for the test571

data (0.79) and the average validation (0.81). The mean and median squared errors also yield572

almost identical values for validation and test sets, and their differences are within the error bar.573

In general, all of the metrics exhibit values which are sufficiently close on test and validation574

sets and are slightly lower than on training data. This means that the model successfully learnt575

the underlying relationships between the input parameters and the resulting electron flux on576

the training data, yields good accuracy on the validation intervals, and generalizes well onto577

the unseen data.578

Figure 7a shows the GPS electron flux from all 21 spacecraft for March 2016-December 2017579

for 300 keV. Figure 7b gives the flux values from the MERLIN model, and the difference be-580

tween the predicted and observed flux is shown in Figure 7c. Figure 7e demonstrates the solar581

wind velocity for the test set. It should be noted that several solar wind velocity enhancements582

happened during the test interval with vsw rising up to>700 km/s. These events generally cor-583

respond to increases in electron flux, but it can be seen that the after velocity drops to its quiet584

time values the flux remains elevated for longer periods of time. For instance, vsw increased585

up to 700 km/s at the beginning of September 2016 (detailed illustration is in the Figure S2)586

and caused a rapid increase in electron flux by over an order of magnitude. The velocity then587

started decreasing and within 1 week dropped to 500 km/s while the flux remained at the ele-588

vated levels. Within a few days, velocity continued decreasing until it reached <300 km/s but589

the electron flux had a much longer decay, and even after ∼1 week of very low velocities the590

flux did not fall to the pre-event values.591

In general, the model adequately reproduces all of the major flux enhancement events and also592

reproduces well the flux decay due to consideration of the velocity history. We note that for593

L-shells lower than 5, the flux enhancements are sometimes followed by periods of the intense594

data variance (Fig. 7a). The most likely explanation lies in the fact that the GPS electron595

flux data are a derived quantity. As such, the fluxes are computed using a forward model596

combining 3 relativistic Maxwellians (in energy) and a Gaussian (in log of momentum) [see597

Morley et al., 2016, for details]. The electron energy spectra inside the plasmapause can have598

local peaks that may not be well-captured by the forward model [see Section 3.2 of Morley599

et al., 2016], and intense plasmaspheric hiss can generate a reverse spectrum in the energy600

range of hundreds of keV [Zhao et al., 2019]. These spectra cannot be properly represented by601

the forward model used for calculating the GPS flux and can lead to ill-determined fits, giving602

the observed variance in flux at lower energies. This explanation is also supported by the fact603

that these events are not visible in the higher GPS energy channels. As expected, these periods604

are not reproduced by the MERLIN model.605

The Spearman correlation between the observed and predicted flux is approximately 0.77. It606

is, however, important that the model reproduces not only the flux along the GPS orbits but607
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is also capable of giving reasonable prediction at fixed L-values. Figure 7d shows the GPS608

observations and the MERLIN output for L of 5.2. The correlation between the two is 0.75609

and the mean squared error is 0.06. One can therefore conclude that the model generalizes610

well on the unseen data, both at a fixed L and along the orbit. The same conclusion can be611

drawn for the 600 keV population, demonstrated in Figure 8.612

Figure 9a-e shows the occurrence density plots of the observed versus predicted flux for all 5613

energies considered. Solid white lines show the one-to-one relationship between observations614

and predictions, and the dashed likes represent the flux deviating by a factor of 5. In general,615

the occurrence maxima follow the trend and most of the points are within the factor of 5616

from the trend line. Figure 9f provides an example of the histogram of model residuals for617

the 210 keV population. From the figure it is evident that the model has very low bias of ∼618

0.05, depicted by a green line. Furthermore, the errors are normally distributed and the 10-th619

and 90-th percentiles are ∼ ±-0.52 and 0.53, respectively, meaning that 80% of the model620

residuals are within a range of ±0.5. Therefore, we can conclude that MERLIN predicts the621

electron flux in 120-600 keV energy range well, has low bias and captures all of the general622

trends represented in the data.623

5 Conclusions624

A new data-driven model of the electron flux in the outer radiation belt is presented. The625

model uses satellite position and a combination of geomagnetic indices and solar wind pa-626

rameters (with time history of velocity) in order to predict the flux values at energies 120-600627

keV. The model has been trained and validated on more than 15 years of GPS electron flux628

data, and tested on >1.5 years of observations. The 10-fold cross validation shows that the629

MERLIN model predicts the MEO radiation environment well, capturing both the dynamics630

and amplitudes of electron flux. The results of the 10-fold cross validation agree well with the631

evaluation on the test data meaning that the model is able to generalize well onto the unseen632

events. Predicted values of flux exhibit high correlation with the observations (∼0.8) and low633

values of error.634

The MERLIN model can have wide Space Weather applications. It can be used by the sci-635

entific community to analyze specific events as well as to reconstruct the long-term radiation636

belt dynamics at the 120-600 keV energy range, for which there is generally a lack of models.637

Furthermore, it is of use for satellite operators for the nowcast of the MEO environment and638

can provide information for the surface charging analysis. We note that the model was trained639

on the data from the GPS constellation, which follows an inclined orbit. Therefore, at higher640

magnetic latitudes the satellites sample only a part of the equatorial pitch angle distribution.641

However, using the appropriate pitch angle models it is possible to reconstruct the values of642

equatorial flux from MERLIN predictions [e.g., using a methodology of Allison et al., 2018].643

Further directions for the present study include, first, a more refined analysis of the feature644

importances using the appropriate permutation and Shapley values methods and the corre-645

sponding feature selection. Second, as GPS continues to probe the outer radiation belt, more646

data can be incorporated into the model.647
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Figure 1. Correlation between different solar wind and geomagnetic parameters based on 2001-2016

OMNIWeb data.

909

910

–21–



Confidential manuscript submitted to Space Weather

 1. Satellite position
    (L-shell, MLT, latitude)

2. Solar wind parameters
    (v_sw, n_sw, IMF,  v*Bz)

3. Time history of v_sw

4. Geomagnetic indices
(SYM-H, Kp, AE) 

Input

LightGBM

...

GPS fluxes at:
 

120 keV

210 keV

300 keV

425 keV

600 keV 

Output

Figure 2. Schematic representation of the model workflow. The input parameters include the satellite po-

sition in L-MLT-latitude frame, solar wind parameters with history of velocity, and geomagnetic indices. The

inputs are supplied to the LightGBM algorithm in order to return the flux values at energies 120-600 keV.
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All data
Train & Validation Test

Split 1

Split 2

Split 3

Split 8

Split 9

Split 10

Final evaluation:

...

Figure 3. Schematics of the K-fold cross validation (CV). The last 1.5 years of data are reserved as the test

set, never to be used during training and validation. The rest of the data are then divided into K equal parts

(here, K=10) and at every split the model is trained on 9 parts and validated on 1 part. The training process is

repeated 10 times, each time withholding a different set for validation. Thus, the model uses all observations

for training and validation, and each of the data points is used for validation only once. The final evaluation is

performed on the test set.
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Figure 4. Feature importances estimated using the intrinsic LightGBM gain and split methods for 210 keV

electron flux.
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a

b

Figure 5. MSE on the training (a) and validation (b) data for 425 keV electron flux depending on solar

wind history. The black dot represents the model with no solar wind history employed. Averages of solar

wind velocity (blue curve) are added as model inputs and reduce both train and validation error. Including

also the history number density reduces the train but not the validation error and leads to overfitting. The

vertical dashes represent the errors of the 10-fold CV.
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(b)(a)

Figure 6. Model performance on training and validation sets averaged over the 10-fold cross validation.

Median absolute error values are shown in (a), and Spearman correlation coefficients are given in (b).
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Figure 7. Model performance on the test set for 300 keV electron flux. (a) GPS CXD measurements; (b)

prediction using the MERLIN model; (c) logarithmic difference between the observed and predicted flux; (d)

comparison of observed (red) and predicted (blue) flux at the fixed L-shell of 5.2; and (e) solar wind velocity

over the test time interval.
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Figure 8. Same as Figure 7 but for 600 keV electron flux.933
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Figure 9. Probability of occurrence of the observed (on x-axis) versus predicted (on y-axis) electron flux

for (a) 120, (b) 210, (c) 300, (d) 425, (e) 600 keV for test data. The white lines show the one-to-one ratio

between the observed and predicted flux. The silver dashed lines give the threshold within a factor of 5. (f)

shows an example of the histogram of the model residuals for 600 keV electron flux.
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Figure S1. (a) Sinusoid signal with added random noise (blue), and the pure sinusoid signal (orange);

r2-score value is 0.87. (b) Sinusoid signal with random noise and 60 added outliers (blue), and the

original sinusoid (orange); r2-score value is 0.56.
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Figure S2. (a) GPS electron flux data merged for 21 satellites with CXD detectors in September

2016. (b) Kp-index during this interval. (c) 600 keV electron flux at a fixed L=5.2 (blue), and solar

wind velocity (red). After the flux enhancement on the 1-2 September 2016, the velocity dropped to

the quiet-time value in ∼4-5 days and continued decreasing up to < 300 km/s, while the flux took

approximately 14 days to decay to the pre-storm value.
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