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Abstract

Uncertainty quantification and characterization in changing climate scenarios can have a direct impact on the efforts to mitigate

and adapt. Chaotic and non-linear nature of atmospheric processes results in high sensitivity to initial conditions resulting in

considerable variability. Multiple model ensembles of Earth System Models are often used to visualize the role of parametric

uncertainties in mean and extreme attributes of precipitation trends in various time horizons. However, studies quantifying

the role of internal variability in controlling extreme precipitation statistics in decadal and interdecadal scales are limited. In

this study, we use a thirty one-member ensemble of Community Earth System Model Large ensemble project and thirty-one

ensembles from Coupled Model Intercomparison Project 5 (CMIP5) to quantify the relative contribution of uncertainty due

to internal variability in the depth and volatility of Indian Summer Monsoon Rainfall extremes of different durations and

frequencies. We find that in the short-term and long-term, the role of internal variability in extreme precipitation indices is

comparable to the uncertainty arising from structural differences in the model captured through multiple model ensembles.

Further, we show that combining outputs from multiple initial condition runs generated to span the range of internal climate

variability can help us reduce uncertainty in infrastructure design relevant Depth Duration and Frequency (DDF) curves.
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Key Points:6

• Comparable uncertainty due to internal climate variability to that estimated from7

multiple model ensembles for precipitation events of disparate duration, frequen-8

cies, and extreme volatility for Indian Summer Monsoon Rainfall (ISMR) high-9

lights the inherent challenge to plan for extreme precipitation events.10

• Combining outputs from multiple initial condition runs generated to span the range11

of internal climate variability can help us reduce uncertainty in infrastructure de-12

sign relevant Depth, Duration and Frequency (DDF) curves.13
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Abstract14

Uncertainty quantification and characterization in changing climate scenarios can15

have a direct impact on the efforts to mitigate and adapt. Chaotic and non-linear na-16

ture of atmospheric processes results in high sensitivity to initial conditions resulting in17

considerable variability. Multiple model ensembles of Earth System Models are often used18

to visualize the role of parametric uncertainties in mean and extreme attributes of pre-19

cipitation trends in various time horizons. However, studies quantifying the role of in-20

ternal variability in controlling extreme precipitation statistics in decadal and interdecadal21

scales are limited. In this study, we use a thirty one-member ensemble of Community22

Earth System Model Large ensemble project and thirty-one ensembles from Coupled Model23

Intercomparison Project 5 (CMIP5) to quantify the relative contribution of uncertainty24

due to internal variability in the depth and volatility of Indian Summer Monsoon Rain-25

fall extremes of different durations and frequencies. We find that in the short-term and26

long-term, the role of internal variability in extreme precipitation indices is comparable27

to the uncertainty arising from structural differences in the model captured through mul-28

tiple model ensembles. Further, we show that combining outputs from multiple initial29

condition runs generated to span the range of internal climate variability can help us re-30

duce uncertainty in infrastructure design relevant Depth Duration and Frequency (DDF)31

curves.32

1 Introduction33

Several decades of research and development have undergone to understand the var-34

ious atmospheric processes and their impact on hydrological processes under the chang-35

ing climate scenarios at the global scale as well as regional scales (Zhang et al., 2019).36

Earth System models (ESMs), which are capable of simulating atmospheric processes,37

are subjected to well-described uncertainties (Asch et al., 2016). However, climate mod-38

els only provide general information rather than exact information about the future pro-39

jections of various climate variables, including precipitation and temperature (Schiermeier,40

2010). Despite recent advancements in climate model predictions, extreme precipitation41

is still having higher uncertainty bound. Estimation of return levels of precipitation with42

less uncertainty is a prerequisite for decision-makers in formulating adaptation policies43

and economical design of hydraulic structures. There is a need to communicate these un-44

certainties to the stakeholders (Deser, Knutti, et al., 2012). There are three primary sources45

of uncertainty in climate projections: that due to future emissions trajectories (charac-46

terized through Representative Concentration Pathways or RCP Scenarios), due to In-47

ternal Climate Variability (ICV), and due to inter-model differences. While Multiple Model48

Ensembles can characterize the inter-model differences, Internal Climate Variability is49

typically handled by considering Multiple Initial Condition Ensembles (MICE) runs. MICE50

runs are generated by applying minor perturbations to the initial state of the model such51

that the different climate trajectories are surrogate representations of the natural climate52

variability (Deser, Knutti, et al., 2012), (Kumar and Ganguly (2018), Stocker et al. (2013),53

Asch et al. (2016)). On the global scale, Intergovernmental Panel on Climate Change54

Assessment Report 5 (IPCC AR5) highlights that in the context of global surface tem-55

peratures, the RCP scenario spread is the dominant source of uncertainty in the long-56

term. In contrast, internal variability and inter-model uncertainty dominate in the near57

term. However, relative contributions of uncertainty at regional and local scales in both58

mean and extreme attributes of climate variables could be counter-intuitive, calling for59

regional and local scale analysis.60

In the context of the Indian Subcontinent, the Indian Summer Monsoon (ISM) is61

the major component that provides 80% of the total annual rainfall from June to Septem-62

ber (JJAS) in India (Jain & Kumar, 2012). About one-sixth of the world’s population63

affected by the ISM and its variability increased significantly since the 1950s (Goswami64

–2–



manuscript submitted to Journal of Geophysical Research Letters: Atmosphere

and Chakravorty (2017), Roxy and Chaithra (2018), Ghosh et al. (2016), Ghosh et al.65

(2012)). Goswami and Xavier (2005) have shown that only about 50% of inter-annual66

variability of the ISM is explainable, and the remaining part is climate noise. The ISM67

is a unique tropical climate system with larger spatial as well as temporal variability, which68

leads to higher uncertainty bounds for the future extreme precipitation, further used for69

the estimation of the T-year return period flow (RLT ). RL30 is useful for most urban70

drainage system designs (Butler et al., 2018), and RL100 and DDF curves are essential71

for hydraulic engineering designs, operations, and water resources planning or manage-72

ment. Climate adaptation stakeholders require clear guidelines for selecting the value73

of RL30 and RL100 with low uncertainty bounds to assimilate climate change effect (Kumar74

& Ganguly, 2018). Higher uncertainty bound and overlapping of DDF of different year75

return levels result in lower confidence of decision-makers for adaptation policies and eco-76

nomical design (Alliance (2009), Schindler and Hilborn (2015), Rosenzweig et al. (2011),77

Hawkins et al. (2014), Deser et al. (2014)). The high variability in ISM extreme precip-78

itation motivated us to further explore the role of ICV as compared to model uncertainty79

and the effect of concatenation.80

Several studies have used ensemble-based approaches to address the internal vari-81

ability and model uncertainty for prediction of mean and heavy precipitation, temper-82

ature and robustness of future changes in local precipitation extremes (Sriver et al. (2015),83

Kendon et al. (2008), Aalbers et al. (2018), Ghosh and Mujumdar (2007), Ghosh and84

Mujumdar (2009)). They have also communicated the need to consider numerous Ini-85

tial Conditions (ICs) and models. The ICV is analysed using 40 member ensembles for86

precipitation at global scale (Deser, Phillips, et al., 2012) and for US (Deser et al., 2014).87

Singh and AchutaRao (2019) has considered the CMIP5 and 40-member CESM-LE en-88

semble for uncertainty analysis for temperature and mean precipitation for India. A re-89

cent study shows that the internal variability contributed by the ISM sub-seasonal fluc-90

tuations so far considered chaotic is partly predictable (Saha et al., 2019). However, Bhatia91

and Ganguly (2019) demonstrated that combining multiple ensembles of initial condi-92

tion runs could help us reduce the parametric (or aleatoric) uncertainty in the estimates93

of extremes by augmenting the sample size. The concatenation of all ensemble data in-94

creases the size of the data for the analysis eventually helps us to reduce the total un-95

certainty.96

In this study, we analyze the role of Internal Climate Variability (ICV) in the pro-97

jections of extreme precipitation return levels for various duration and frequencies and98

extreme volatility indices (Fuller et al., 2006) for Indian Summer Monsoon Rainfall (ISMR)99

using 31 initial condition runs of the same model. We compare the role of ICV in ex-100

treme precipitation indices with multiple model ensembles for different time-periods. The101

Precipitation Extremes Volatility Index (PEVI) and the difference between RL100 and102

RL30 in terms of the Inter Quartile Range (IQR) are also analyzed to obtain the mea-103

sures of uncertainties in design and adaptation relevant indices. Contrary to the find-104

ings reported by (Bhatia & Ganguly, 2019), ICV is not only comparable but dominates105

the uncertainty as obtained from MME for specific regions in India. We also test the ap-106

plicability of the hypothesis outlined in (Bhatia & Ganguly, 2019), which allows us to107

concatenate MICE data to reduce the ICV for ISMR. Here, we propose to use multiple108

models with concatenated multiple initial condition data to envelope total uncertainty.109

Recently, Deser et al. (2020) provides the opportunity to consider the collection of initial-110

condition large ensembles (LEs) generated with seven Earth system models under his-111

torical and future radiative forcing scenarios. Our study can help scientists and policy-112

makers to understand and communicate the role of ICV in the context of ISMR, and pro-113

vide a way to assimilate multiple sources of information to justify actions in climate change114

adaptation.115
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2 Data116

We obtain observed grid daily precipitation data from the Indian Meteorological117

Department (IMD) at the resolution of 0.25 degrees (∼25 Square Kilometers) (Pai et al.,118

2015). To characterize ICV, we obtain 31 IC runs from The National Center for Atmo-119

spheric Research (NCAR) Community Earth System Model Large Ensemble Project (LENS).120

These ICs are obtained by rounding off (order of 10−14°K) differences in air tempera-121

ture from the single model, and the model is run in coupled mode to obtained projec-122

tions of state and derived variables including precipitation (Kay et al. (2015), Deser, Phillips,123

et al. (2012)). To compare the contribution of ICV and model uncertainty in extreme124

precipitation, we use the output from 31 model ensembles (MME) from the Climate Model125

Intercomparison Project (CMIP5) for single initial conditions (listed in SI: Table S1).126

We have used the same number of realizations for MME and MICE to avoid sampling127

bias. In this study, we have considered extreme Representative Concentration Pathway128

(RCP 8.5) transient forcing after 2005 for future analysis. However, as more modelling129

groups produce large ensembles of initial condition runs, this approach can be extended130

to obtain a clear picture of relative contributions of the uncertainty at regional and lo-131

cal scales.132

3 Methodology133

To estimate the return level associated with an extreme precipitation event occur-134

ring with the probability of a T-year event, we use the Extreme Value Theory (EVT).135

Specifically, we use the Block Maxima (BM) approach and extract annual maximum pre-136

cipitation for the period of June-July-August-September (JJAS) from observations, MME,137

and MICE separately. The details of EVT can be found in (Coles et al., 2001). To match138

the resolution of models with that of observations, we perform quantile-quantile map-139

ping (Maraun, 2013). We use observed data from the period of 1951 to 2005 for quantile-140

quantile mapping. To compute the return levels associated with the D-day duration event,141

we calculate the rolling sum for the number of days under consideration. In the present142

study, we perform the analysis for 1,2,5,7 and 10 days with return levels of 30-year and143

100-year to obtain the Depth-Duration-Frequency curves for ISMR. We calculate The144

GEV parameters using the Maximum Likelihood Estimate Approach implement through145

”fevd” and ”eva” library of Rpy2 in python to estimate return levels. We report uncer-146

tainty in our MLE estimates using 95% confidence intervals. We test for the goodness147

of fit of the extreme value distributions using the Kolmogorov-Smirnov test at a 5% sig-148

nificance level. We have considered only those points for computation of RL calculation149

where p-value at grid point greater than 0.05.150

For spatial analysis, we consider seven zones of India, as shown in Bhatla et al. (2019)151

(in SI: Figure S1). Data for four-time windows with different time duration such as 1975-152

2004 (Historical period), 2006-2035 (Short-term period), 2006-2065 (Medium-term pe-153

riod) and 2006-2095 (Long-term period) are considered separately for RL calculation.154

RL100 and RL30 for all grid points over India are calculated independently for MICE155

and MME. We consider the difference between upper and lower bound as uncertainty156

measure for individual models for return levels and IQR as the measure for uncertainty157

within ensembles such as MICE and MME. The temporal variability of RL100 is ana-158

lyzed for historical and RCP 8.5 emission scenario. We consider 30-year moving window159

and analyze the trend of the average value of an estimated RL100 over all grid points in160

terms of time series (in SI: Figure S2). Time series of historical data shows the similar-161

ity between the uncertainty bounds of MICE and MME. In contrast, it indicates higher162

uncertainty bound and an increasing trend for MICE RCP 8.5. For further investiga-163

tion, we analyze the ratio of different future duration with historical RL100 data (in SI:164

Figure S3), which also shows the shift towards higher values of RL100. This evidence in-165

dicates that ICV is more significant than model uncertainty for ISM extreme precipita-166

tion and ignoring ICV results in an underestimation of RL100.167
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The PEVI, which is the ratio of RLs and also consider a measure of the variabil-168

ity of extreme, is calculated to find the volatility of extreme precipitation (Khan et al.,169

2007). The rationale in using PEVI is that it can serve as an indicator of the safety fac-170

tor for infrastructure design. We consider PEVI as the ratio of RL100 to RL30 by con-171

sidering that magnitude corresponding to RL30 is used for design and RL100 is a rarer172

event. The PEVI takes unity or more than unity value as RL30 can not be more than173

RL100. The unity value represents that magnitude corresponding to both return level174

are same. Higher PEVI indicates that either only rarer event magnitude or both events175

quantities are increasing. Thus, to get a more precise idea, we also analyze the differ-176

ence of both return levels. The decrease in the difference between RL100 and RL30 in-177

dicates that the frequency of rarer extreme events is approaching to design magnitude,178

which is an alarming situation for the stakeholders.179

For extreme precipitation analysis, we consider the annual maximum value for the180

investigation, which limits the size of the data. MICE data, coming from the same model,181

allows us to concatenate data. The concatenation approach enables us to augment the182

sample size of extremes and hence reduce the uncertainty in the estimation of param-183

eters of GEV (Bhatia & Ganguly, 2019). The DDF curves are developed from concate-184

nated MICE data and compare it with the average overall MICE data.185

4 Results and discussions186

Figure 1 (a) compares the uncertainty in estimates of RL100 (daily precipitation)187

for two randomly selected models from MICE and MME (out of 31 models) as well as188

among the models for a future period (2006-2035). The supplementary section provides189

the results for historical, 2006-2065 and 2006-2095 duration in Figure S6, S7 and S8 re-190

spectively. The difference between the upper and lower bound of RL100 is an indicator191

of the uncertainty of estimates. Thus, We analyse the difference between bounds for an192

individual model from MICE and MME for all grids over India. Similarly, IQR of dif-193

ference between bounds among both MICE and MME are analysed as an indicator of194

ICV and model uncertainty, which we find comparable for historical data. In contrast,195

we observe higher uncertainty bounds from a single model and IQR for MICE as com-196

pared to MME for 2006-2035 duration. The medium-term (2006-2065) and long-term197

(2006-2095) data analysis further indicates that uncertainty in the estimation of return198

levels for many grids over the central part of India is higher for MICE. We observe an199

increasing trend for uncertainty in the estimate of return levels and ICV. While model200

uncertainty does not show significant improvement by increasing the duration of the anal-201

ysis. Higher IQR indicates higher uncertainty so, ignoring it can lead to underestima-202

tion as well as a decrease in confidence. The multiplying effect of uncertainties results203

in larger uncertainty bands for DDF curves which can be ambiguous information for the204

stakeholders. We observe a similar kind of observation for PEVI and difference of return205

levels for the same models as shown for RL100 (Figure 1 (b-c)). Two randomly selected206

MICE shows higher PEVI values for the western and northern part of India as compared207

to MME. The difference between RLs also exhibits similar behaviour. Higher IQR in re-208

turn levels, PEVI and difference between return levels among MICE indicates that ig-209

noring ICV leads to underestimation of result.210

We perform uncertainty analysis to understand the spatial variability by dividing211

India into seven different zones. The uncertainty/IQR of RL100 estimated from a sin-212

gle model of MICE (IC1) and MME. The uncertainty/IQR of IQR values in RL100 from213

31 ensembles of MICE/MME are compared for each zone (Figure 2). Results of uncer-214

tainty bounds for MICE and MME are comparable for all zones except zone 3 and 4 for215

the historical data. (Figure 2 (a)). For the future period, IQR for single model indicates216

increase in MICE for all the zones except zone 7 (Figure 2 (b)) and IQR among 31 en-217

sembles of MICE is significantly higher with increased upper bound which indicates the218

importance of ICV as compared to model uncertainty.219
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Figure 1. ICV resulting from different ICs is comparable to model uncertainties and even

higher in some cases. In (a), First raw shows the RL100 for all grids over India for two randomly

selected runs from MICE and IQR among 31 MICE and second raw shows RL100 for all grids

over India for two randomly selected runs from MME and IQR among 31 MME. (b - c) shows

the results for PEVI and RL difference, respectively. These results for 2006−2035 demonstrate

the spatial variability and also among the different model variability for India. (similar results

for the historical period, 2006−2065 and 2006−2095 are shown in SI: Figure S6, S7, and S8

respectively)
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Figure 2. IQR for RL100 of single realization (spatial variability) and IQR among the 31

models (realization uncertainty) for all seven zones shows significant variability for the future

period, especially for MICE. (a) shows IQR for spatial daily RL100 for randomly selected single

model form MICE and MME and the second figure shows the IQR for IQR among the 31 models

for the historical period (1975−2004) indicating that uncertainty of MICE is comparable with

MME. (b) shows similar results for a future period (2006−2035) indicating that MICE shows

the higher uncertainty in RL100 as well as for IQR and also shows higher upper bounds for all

regions. The figure shows numerous outliers even above this limit (not shown here), indicates

that the number of models is required for better understanding.

Bhatia and Ganguly (2019) have shown more substantial variability in MME but220

significantly higher upper bounds from MICE for US hydro-meteorological zones. How-221

ever, higher uncertainty, as well as significantly higher upper limits in RL100, are observed222

from MICE for ISM extreme precipitation for all zones of India.223

Figure 3 validates of the hypothesis related to the concatenation of MICE. Aver-224

age uncertainties (upper bound - lower bound) in RL100 for all 31 ICs (Figure 3 (a)) are225

significantly higher for most of the grid points. Uncertainties from concatenated all 31226

ICs indicates significant reduction for almost all grid points (Figure 3 (b)). The distri-227

bution of the mean, upper bound and lower bound of estimated RL100 average over each228

zone also gives a clear indication of improvement in uncertainty reduction and the ef-229

fect of concatenation (Figure 3 (c - d)). Mean of concatenated data also gives agreement230

with observed data (3 (c)) indicating that it is trying to capture observation behaviour231

more precisely.232

The effect of data duration considered for the analysis are shown in Figure 4. This233

figure indicates return level average over a specific zone. The DDF curves for RL100 and234

RL30 with upper and lower bound (uncertainty bounds) with a 95 % confidence level235

for randomly selected three zones shows the effect of duration of the analysis. Uncertainty236

bounds of RL30 coincide with bound of RL100 for all the periods, which imparts diffi-237

–7–
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culty in selecting appropriate precipitation intensity for the design, maintenance and op-238

erations of hydraulic infrastructure and for water resources planning and management.239

The 2006-2035 period shows the highest uncertainty as compared to other duration. For240

medium-term duration to long-term duration data, there is a decrease in uncertainty bounds241

with overlapping of both DDF curves.242

Figure 3. The validation of reduction in uncertainty due to concatenation of the data from

the 31 MICE is shown. (a - b) shows the average uncertainties (upper bound - lower bound)

over 31 MICE data and compared with the uncertainties of concatenated data for historical data

for each grid. (c - d) shows the uncertainty bounds for average over 31 MICE (red) and for con-

catenated data (green) for each zone and compared it with observation (blue) for historical data

(c).
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Figure 4. The DDF curves developed using for different period data (1975−2004, 2006−2035,

2006−2065, 2006−2095) for 3 randomly selected zones out of 7 zones of India for RL100 and

RL30 with upper and lower bounds are shown. (curves for 7 zones are shown in SI: fig S4).

The effect of the concatenation of MICE in the form of DDF curves for randomly243

selected three zones out of seven is shown in Figure 5. The uncertainty bounds of RL100244

and RL30 becomes narrower and significantly distinguished from each other as a result245

of concatenation, which can be more useful and valuable for the stakeholders for taking246

decisions.247

Figure 5. The DDF curves for future data (2006−2035) for randomly selected 3 zones are

shown. The first raw (a) provides the estimated DDF average over particular zonal grids with

upper and lower bound for RL100 and RL30 for IC1 model before concatenation. The second

raw (b) shows the results for zonal average estimates results after concatenation of all 31 MICE

data.(The DDF curves generated from concatenated 31 MICE for all 7 zones with all 4 periods

are shown in SI, fig S5)
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5 Conclusions248

We have analyzed the uncertainties in 100-year and 30-year return levels using ex-249

treme value theory for ISM precipitation. MME (one initial condition, multiple models)250

and MICE (one model, various initial conditions) are used to handle model uncertainty251

and internal climate variability, respectively. These climate models are widely used to252

forecast extreme rainfall events. We consider 31 MICE and 31 MME, the same number253

of ensembles to remove the sampling bias. The estimates of RL100 from both MICE and254

MME shows that there is significant spatial variability. The uncertainty bounds estimated255

using historical data indicate that ICV is comparable with model uncertainty. However,256

the uncertainty bounds calculated using future data shows an increasing trend with sig-257

nificantly higher uncertainty as compared to model uncertainty. The time series of av-258

erage return level over 30-years moving window also supports the growing trend. This259

trend becomes more intense as we consider long-term data (2006-2095). The MICE shows260

increasing PEVI and difference in RLs, indicating that infrequent and high-intensity events261

are approaching towards frequent and low-intensity events. The uncertainty among the262

ensembles for future periods is more prominent for many points in MICE analysis. This263

CESM-LE (MICE) captures key oscillatory coupled climate patterns, such as the inter-264

annual variability in tropical Pacific sea surface temperatures associated with the El Niño265

Southern Oscillation (ENSO), Pacific decadal variability, Atlantic multidecadal variabil-266

ity, etc. Such events largely influence the ISM extreme precipitation, which results in higher267

uncertainty. This study reveals that ignoring ICV results in an underestimation of ex-268

treme precipitation for the Indian Subcontinent. The uncertainty analysis considers fixed269

duration data for investigation using historical duration and future periods such as 2006-270

2035, 2006-2065, and 2006-2095. Thus, the future scope includes the trend analysis for271

PEVI and the difference in RL values to analyze the severity of RL selection for design-272

ing hydraulic structures. RL calculation is computationally expensive, although we have273

only considered one maximum value, block maxima approach, rather than all the extreme274

events of the year. However, Generalized Pareto Distribution (GPD) accounts for all the275

activities above the threshold with a high probability of violating IID assumption, which276

is considered as a critical assumption. This GPD is out of the scope of this paper. We277

observed that even using GPD, it does not make a significant difference in RL100. The278

DDF curves show the considerable overlapping of average estimated RL100 and RL30279

for all seven zones, which can create confusion for the decision-makers. The concatena-280

tion of MICE shows a significant reduction in uncertainty bounds. It is also capable of281

distinguishing the RL100 and RL30 uncertainty bounds, which is essential information282

to the stakeholders for making decisions. The results from the concatenated MICE from283

one model and its comparison with MME recommends using multiple models with con-284

catenated multiple initial condition data. With more and more initial condition ensem-285

bles being made available as a part of forthcoming CMIP6 data, there is a need to in-286

form and incorporate the estimates of internal variability to furnish a clear picture for287

the stakeholders for making essential decisions for mitigation and adaptation.288
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