Carbon storage and immobilization in a large scale aquifer -Guarani Aquifer System

Konrad Z Miotlinski¹ and Luk $\mathrm{Peeters}^2$

 $^1 \rm Universidade Federal de Santa Catarina<math display="inline">^2 \rm KULeuven$

November 21, 2022

Abstract

Giant aquifers are capable of storing significant amounts of carbon as a result of immense water volumes, substantial dissolved inorganic carbon (DIC) concentrations and its ubiquitous reactions with matrix, thus contributing the global carbon storage and cycle. However, concentrations of dissolved solutes vary significantly over a distance in the Guarani Aquifer System (GAS) which causes difficulties in process interpretation. To quantify the importance of controlling parameters, we performed reactive transport modeling which combines both hydrological and geochemical inputs. The paper presents a chemical evolution in a two-dimensional aquifer configuration, global sensitivity analysis along with estimates of the DIC flux through the system boundaries. We observed that the DIC flux at recharge as well as plagioclase and olivine hydrolysis rates play an overriding importance in controlling the solute patterns including the DIC concentrations, while soil pH, horizontal hydraulic conductivity, porosity, precipitation of secondary minerals, but calcite, and Mg ratio in carbonates are of minor significance. If released Ca undergoes ion exchange to Na, the storage is delayed in time and space. In conclusion, the capacity of GAS in receiving recharge CO is attributed to the hydrolysis along with advective transport while the global sensitivity analysis informs how the financial resources should be allocated to effectively reduce interpretative uncertainty in large-scale groundwater systems.

Carbon storage and immobilization in a large scale aquifer - Guarani Aquifer System

K. Miotliński¹, L. Peeters²

4	$^1 \mathrm{Universidade}$ Federal de Santa Catarina, Departamento de Engenharia Sanitária e Ambiental
5	2 CSIRO Land and Water
6	$^{1}\mathrm{Campus}$ Universitário Trindade, Florianópolis SC 88040970, Brazil
7	² Private Bag 2, Glen Osmond SA 5064, Australia

Key Points: 8

1

2

3

11

- Reactive transport modeling (RTM) shows that natural recharge of CO₂-rich wa-9 ter into an aquifer with aluminosilicate minerals is capable of providing negative 10 carbon feedback, although its efficiency declines with higher fluxes.
- The CO_2 flux, plagioclase and olivine hydrolysis rates play an important role in 12 dissolved solute concentrations and carbon storage, while ion exchange delays its 13 effect. 14
- Soil pH, horizontal hydraulic conductivity, porosity, secondary mineral precipita-15 tion reactions, but calcite precipitation and Mg²⁺ ratio in precipitating carbon-16 ates play a minor role in carbon feedback on this scale. 17

Corresponding author: Konrad Miotliński, konrad.miotlinski@gmail.com

18 Abstract

Giant aquifers are capable of storing significant amounts of carbon as a result of immense 19 water volumes, substantial dissolved inorganic carbon (DIC) concentrations and its ubiq-20 uitous reactions with matrix, thus contributing the global carbon storage and cycle. How-21 ever, concentrations of dissolved solutes vary significantly over a distance in the Guarani 22 Aquifer System (GAS) which causes difficulties in process interpretation. To quantify 23 the importance of controlling parameters, we performed reactive transport modeling which 24 combines both hydrological and geochemical inputs. The paper presents a chemical evo-25 lution in a two-dimensional aquifer configuration, global sensitivity analysis along with 26 estimates of the DIC flux through the system boundaries. We observed that the DIC flux 27 at recharge as well as plagioclase and olivine hydrolysis rates play an overriding impor-28 tance in controlling the solute patterns including the DIC concentrations, while soil pH, 29 horizontal hydraulic conductivity, porosity, precipitation of secondary minerals, but cal-30 cite, and Mg²⁺ ratio in carbonates are of minor significance. If released Ca²⁺ undergoes 31 ion exchange to Na⁺, the storage is delayed in time and space. In conclusion, the capac-32 ity of GAS in receiving recharge CO_2 is attributed to the hydrolysis along with advec-33 tive transport while the global sensitivity analysis informs how the financial resources 34 should be allocated to effectively reduce interpretative uncertainty in large-scale ground-35 water systems. 36

37 1 Introduction

The subsurface is an important inorganic carbon reservoir and groundwater is gain-38 ing attention as to which extent it contributes to the global carbon cycle. Estimates of 39 carbon fluxes in the subsurface are hugely uncertain due to difficulties in (1) calculat-40 ing groundwater and chemical fluxes (Fontaine et al., 2007; McCallum et al., 2012; Y. Li 41 et al., 2015), (2) subsurface conceptualization (Enemark et al., 2019; Vilhelmsen et al., 42 2018a), and (3) parametrization (Vilhelmsen et al., 2018b) as well as (4) the dynamic 43 role of soils in CO₂ storage and its downward leakage (Kessler & Harvey, 2001; Fontaine 44 et al., 2007; Sánchez-Cañete et al., 2018). 45

In-situ measurements of a CO_2 and O_2 couple in soils indicate that significant amounts of CO_2 produced in a shallow subsurface does not, at least immediately, return to the atmosphere due to (1) dissolution in groundwater, (2) transport in gaseous or dissolved forms, (3) mineral weathering (Sánchez-Cañete et al., 2018). Consequently, the CO_2 dis-

-2-

solution coupled with advective transport may lead to significant amounts of dissolved
inorganic carbon (DIC) stored in groundwater bodies (Y. Li et al., 2015; Zhang & Planavsky,
2020) that may be transported over long distances, undergo geochemical transformations
and, finally, be discharged to rivers (Gaillardet et al., 1999) or sea (Zhang & Planavsky,
2020).

Thus, when CO_2 passes through the soil profile the geochemical transformations 55 depend on reactivity of aquifer material. The carbonate and silicate minerals participate 56 in the transformation process (Zhong et al., 2017; Oelkers et al., 2018; Pogge von Strand-57 mann et al., 2019). The DIC reaction with aluminosilicate minerals, which is referred 58 as chemical rock weathering (CRW) may be associated with precipitation of secondary 59 minerals resulting in a long-term carbon storage (Berner, 1998; Steffen et al., 2007; Ma-60 her & Chamberlain, 2014; Oelkers et al., 2018). Nevertheless, the reaction pathways are 61 complex and heterogeneous and may depend on a variety of factors including: (1) ground-62 water flow velocity (Maher & Chamberlain, 2014), (2) thermodynamic equilibria and dis-63 solved ion availability (Zhang & Planavsky, 2020) or (3) rates of dissolution and precip-64 itation (Pogge von Strandmann et al., 2019). 65

Reactive transport models (RTM) may be useful in interpretation and quantifica-66 tion of the transformation patterns. The use of RTMs can be justified by a need to in-67 corporate a coupling between the chemical processes with groundwater flow and solute 68 transport (Steefel et al., 2005), to integrate various kinds of data into a single model (Bethke 69 et al., 2002; Jessen et al., 2017; Jakobsen et al., 2018) or to perform a global sensitiv-70 ity analysis to investigate the importance of controlling parameters (Dai et al., 2014). 71 Depending on an objective of modeling, RTMs may include groundwater flow/soil wa-72 ter infiltration rate, dispersive mixing and solute diffusion. These capabilities make RTMs 73 suitable in studying process understanding and quantification of geochemical fluxes (Bethke 74 et al., 2002; Jessen et al., 2017; L. Li et al., 2017; Bao et al., 2017; Jakobsen et al., 2018). 75

Although a deep groundwater drainage pathway is integrated into the evaluation of global rates, there is a little knowledge on how much carbon is stored in large aquifers, how much may get naturally immobilized through secondary precipitation and what parameters govern the carbon cycle. To estimate the carbon fluxes in the one of the world's most voluminous Guarani Aquifer System (GAS), we developed a coupled RTM in which we integrate physical properties of the aquifer with the geochemical reactions. We per-

-3-

formed global sensitivity analysis to identify the importance of individual parameters and we verified our model by comparing its results with the groundwater quality data ob-

served along the flow paths.

⁸⁵ 2 Site description and methodology

86

2.1 Hydrogeology of the aquifer

The Guarani Aquifer System (GAS) is one of the most voluminous groundwater 87 bodies on the Earth due to its great geographical extend and a large thickness (Foster 88 et al., 2009). The study focuses on the NE part from where we compiled hydrogeolog-89 ical and geochemical information (Araujo et al., 1999; Gastmans et al., 2010; Hirata et 90 al., 2011). In this region, the system is a part of the Paraná Basin which consists of strat-91 ified sandstone series of Triassic (Piramboia unit) and Cretaceous (Botucatu unit) ages. 92 The formation is up to 832 meters thick, with the average thickness of 400 meters (Araujo 93 et al., 1999). Reported hydraulic conductivity and porosity values are in the range 0.0864 94 - 0.864 m/d (Rebouças, 1994; De Paula E Silva & Cavaguti, 1994) and 0.16-0.24 (Rebouças, 95 1976; Hirata et al., 2011), respectively. 96

About 10% of the formation outcrops, whereas the remaining part is confined by a sequence of basalts of the Serra Geral formation (Fernandes et al., 2016). The GAS is underlain by siltstones containing highly mineralized groundwater of the Passa Dois Group (Silva, 1983; Meng & Maynard, 2001).

Natural aquifer recharge of GAS dominates as direct percolation of precipitation 101 through the outcrop areas. The deep groundwater recharge estimated with the water level 102 fluctuation method accounts locally for up to 50 mm/year, which is 3.5% of the mean 103 annual precipitation (Wendland et al., 2007). No estimates have been performed for the 104 confined part of the aquifer, but since the basalt formation is intersected with dikes (Fernandes 105 et al., 2016) and groundwater samples contain ¹⁴C (Aggarwal et al., 2015), infiltration 106 of recent rainwater through the overlying basalt unit seems to be taking place. Down-107 stream, in the deeply confined part of the aquifer, elevated Cl⁻ concentrations along with 108 crust ⁴He gas dissolved in groundwater suggest recharge from the underlying formations 109 (Aggarwal et al., 2015). The groundwater flow is radially diverging and the discharge 110 takes place in the Paraná River valley, where artesian conditions are apparent (Rebouças, 111 1994). 112

-4-

Groundwater residence times evaluated using the ⁸¹Kr isotope vary in the broad range of 80 to 820 ky (Aggarwal et al., 2015). This indicates that the average linear groundwater velocities are from 0.15 to 1.25 m/year and, consequently, that GAS has been flushed at least 180 times since its deposition which was followed by a number of tectonic events with the most recent one between 88 and 65 million years ago (Araujo et al., 1999).

118

2.2 Hydrogeochemical evolution

The chemical composition of groundwater exhibits a zonation from fresh Ca-HCO₃ 119 and Ca-Mg-HCO₃ water types in unconfined/marginal parts of the basin towards brack-120 ish Na-HCO₃-Cl and Na-Cl in the central part (Fig. 1 and Gastmans et al. (2010)). The 121 evolution has been suggested to be a result of either aluminosilicate weathering (Silva, 122 1983; Gastmans et al., 2010) or cation exchange coupled to carbonate dissolution (Sracek 123 & Hirata, 2002). The mineral matrix, however, is composed of chalcedony near the out-124 crop and calcite cement in the deep confining zone (Hirata et al., 2011). There is evi-125 dence of aluminosilicate transformation including dissolution of plagioclase and K-feldspar 126 as well as formation kaolinite and smectites (Hirata et al., 2011). Labradorite is a dom-127 inant plagioclase, while both orthoclase and microcline represent K-feldspar (Gesicki, 128 2007). 129

The underlying sediments contain highly mineralized groundwater with Total Dissolved Solids (TDS) of up to 2,000 mg/L and H₂S in some boreholes (Hirata et al., 2011). The deep groundwater from Águas de São Pedro (22 ° 35 ′ 30 ° S, 47 ° 53 ′ 38 ° W) contains Na⁺ = Cl⁻ 29 mM (Soler i Gil & Bonotto, 2014). Highly mineralized waters may result in the increase in TDS from a few to 700 mg/L, $\delta^{13}C_{DIC}$ from -19 to -5 and from 4.7 to 9.5 per mille, respectively, in a depth profile (Appendix A1).

The $\delta^{13}C_{DIC}$ and pH are typical of a closed siliciclastic system in which the former is driven by dissociation of carbonic acid and the latter by the proton reaction with the aquifer material (Clark, 2015). The initial pH of 4.7 and low alkalinity (5 mg/L) suggest that if soil CO₂ is the only source of acidity in the infiltrating water, the dissolved inorganic carbon (DIC) concentrations may be as high as 3 mM with the corresponding log pCO₂ of -1.7 (Appelo & Postma, 2005).

Figure 1. Groundwater sampling locations in confined (ellipses) and unconfined (squares) parts of the aquifer. Hue indicates types as from the Piper diagram diamond. The Paraná river flows across the region from the NE to SW

Figure 2. Conceptual 2D model of the water flow in the GAS with shaded polygons depicting water fluxes through the boundaries. The upper boundary is divided into three sections: (1) 50 km outcrop, (2) 100 km recharge from basalt, (3) 150 km discharge to basalt

2.3 Conceptual and numerical models

142

We conceptualized a groundwater system as a two-dimensional (2D) vertical crosssection parallel to the direction of groundwater flow (Freeze & Witherspoon, 1968). The system is a rectangular with the dimensions 300 km and 400 m in length and thickness, respectively (Fig. 2). We imposed groundwater flow field by using the flux boundary condition along the upper and lower boundaries of the system.

The USGS PHAST code (Parkhurst et al., 2010) with PHREEQC database was used to simulate reactive transport in the 2D domain (Fig. 2). The domain was divided into 31 and 401 nodes in a vertical and horizontal direction, respectively, which correspond to the depth and distance. In addition to flux boundary conditions at the upper boundary (Fig. 2), we assigned a single node at 300 km with a constant boundary condition to assure a numerical stability of the solution. The model is run 1 million years to assure the system reaches steady-state.

Chemical fluxes through the system are products of water flux and concentrations. 155 The recharge water at the outcrop contains only CO_2 (log $pCO_2 = -1.7$, i.e. soil pH =156 4.6 and C = 3 mM), which is meant to react with the aquifer material. We consider the 157 basalt recharge as either CO_2 water or groundwater equilibrated with log $pCO_2 = -1.7$, 158 plagioclase, olivine and chalcedony. This is to explore whether groundwater recharge with 159 high concentrations of Ca^{2+} , Mg^{2+} , and SiO_2 through basalts is capable of changing the 160 water quality patterns in the GAS itself. The basement water is highly-mineralized Na-161 Cl groundwater of the Passa Dois Group (Meng & Maynard, 2001; Soler i Gil & Bonotto, 162 2014) which recharges the GAS (Hirata et al., 2011; Aggarwal et al., 2015) (Tab. 1). 163

We selected a number of geochemical reactions to be held in the aquifer that are 164 consistent with the conceptual understanding of silicate groundwater system and were 165 capable of controlling the observed concentrations. Firstly, we developed a simple model 166 of plagioclase $(Ca_{0.5}Na_{0.5}Al_{1.5}Si_{2.5}O_8)$ hydrolysis coupled with chalcedony (SiO₂), kaoli-167 nite $(Al_2Si_2O_5(OH)_4)$ and calcite (CaCO₃) precipitation as well as ion exchange to demon-168 strate 2D and profile average concentrations. Secondly, we included olivine (Mg_2SiO_4) 169 and K-feldspar $(KAlSi_3O_8)$ dissolution coupled with K-mica $(KAl_3Si_3O_{10}(OH)_2)$ and 170 illite $(K_{0.6}Mg_{0.25}Al_{2.3}Si_{3.5}O_{10}(OH)_2)$ precipitation to include Mg²⁺ and K⁺ in the anal-171 ysis as well as Mg^{2+} incorporation in the calcite 1. Thus, the weathering reactions were 172 kinetically controlled with the 0th order reaction rates. We justified the choice of the re-173 action order by a strong subsaturation of the minerals. The secondary reactions are equi-174 librium controlled (Postma & Jakobsen, 1996). 175

- The effect of ion exchange was studied in the simpler model and we used cation exchange capacity (CEC) 2.5 mM/L with Na⁺ initially filling the sorption sites. The value of CEC corresponds to values encountered in other siliciclastic aquifers (Appelo, 1994; Appelo & Postma, 2005; Walraevens et al., 2007).
- An ensemble of 1000 parameter combinations was generated with Latin Hypercube Sampling (Tab. 1) and evaluated with the RTM to carry out a global sensitivity analysis. We used the delta moment-independent measure technique developed by Borgonovo (2007); Plischke et al. (2013), as implemented in the SALib python library (Herman & Usher, 2017). The technique calculates a total sensitivity index value between a param-

analysis
sensitivity
global
in
s explored
range
with
models
transport
the reactive
of t
Parametrization (
Table 1.

	Simple		Complex	
		$ar{X}$	σ	$Comment/{ m distribution}$
Max rech. rate (outcrop)	0.0025	0.0017	0.0012	Log-normal
Outcrop rech. quality	C = 3 mM	C = 3 mM	ı	Fixed
Max rech. rate - basalt	0.0003	0.001	0.0008	Log-normal
Basalt rech. quality	C = 3 mM	C = 3 mM	Calcite + Kao + Chal	equilibrium
Basement rech. quality	5 mM NaCl	19 mM NaCl		$DeepGW^a$
Kx	$0.33 \ \mathrm{m/d}$	0.33 m/d	$0.1 \mathrm{m/d}$	Log-normal
Kz	$0.033~{ m m/d}$	0.17 m/d	0.1 m/d	f(recharge)
Porosity	0.22	0.22	0.1	Normal
Soil pH	4.6	5.5	0.5	Normal
$\log \mathrm{R}_{Plagioclase}$	-16.05	-16.3	0.8	Normal
$\log R_{K-feldspar}$		-17.2	0.8	Normal
$\log \mathrm{R}_{Olivine}$		-17.0	0.8	Normal
$\log K_{Calcite}$	-8.48	-8.48	0.25	Normal
SI_{Illite}	·	0	0.25	Normal
SI_{K-mica}	·	0	1.0	Normal
Mg ratio for Calcite		0.17	0.1	Uniform
Cation exchange cap.	$2.5~{ m mM/L}$	ı	I	ı
Average GW vel.	$0.56~{ m m/yr}$	$0.61 \mathrm{~m/yr}$	0.48 m/yr	f(recharge)
^{<i>a</i>} Águas de São Pedro (Sol	ler i Gil & Bon	otto, 2014)		

eter of the model and a model output. Higher values indicate that the model outcome is more sensitive to parameter values.

To compare the modeling results with the field data (Gastmans et al., 2010) we selected a number of monitoring wells that are located along interpreted flow paths and we calculated distances from the basin's margin (Tab. C1).

¹⁹⁰ 3 Results and discussion

191

3.1 Controls of plagioclase hydrolysis in a 2D siliciclastic system

Our results show that in a 2D aquifer receiving a CO_2 solution, plagioclase hydrolysis is capable of developing distinct peaks of Ca^{2+} and total alkalinity $(HCO_3^-+CO_3^{2-}+$ $H_3SiO4^- + H_2SiO4^{2-})$ as well as a gradual increase in pH (Fig. 3a, c and e). Average concentrations in a profile is a simplified depiction of the patterns, which allows one to compare with the observed GAS values.

¹⁹⁷ Plagioclase hydrolysis drives the stoichiometric increases in Ca^{2+} and Na^{+} and the ¹⁹⁸ intensity of the process depends on the chemical rate. Initially, the process directly con-¹⁹⁹ sumes CO₂ and protons producing silicic acid and carbonate alkalinity (Equation 1):

$$2Ca_{0.5}Na_{0.5}Al_{1.5}Si_{2.5}O_8 + CO_2 + 6.5H_2O + 2H^+ \rightarrow$$

$$1.5Al_2Si_2O_5(OH)_4 + 2H_4SiO_4^0 + Na^+ + Ca^{2+} + HCO_3^-$$
(1)

Once groundwater becomes saturated with respect to chalcedony, its precipitation takes place which prevents a continuous increase of SiO₂ in the solution (Equation 2):

$$2Ca_{0.5}Na_{0.5}Al_{1.5}Si_{2.5}O_8 + CO_2 + 2.5H_2O + H^+ \rightarrow$$

$$1.5Al_2Si_2O_5(OH)_4 + 2SiO_2 + Na^+ + Ca^{2+} + HCO_3^-$$
(2)

Next, at a pH \approx 7 groundwater becomes saturated with respect to calcite. At this pH value, the HCO₃⁻ is a dominant carbonate species which is being consumed, consequently, leading to calcite precipitation (Equation 3):

Figure 3. Profile average (measured and modelled) and 2D distribution of concentrations (mM) and pH due to plagioclase hydrolysis and associated secondary reactions

$$2Ca_{0.5}Na_{0.5}Al_{1.5}Si_{2.5}O_8 + HCO_3^- + 2.5H_2O + H^+ \rightarrow$$

$$1.5Al_2Si_2O_5(OH)_4 + 2SiO_2 + Na^+ + CaCO_3$$
(3)

The increase in pH causes carbonic acid to dissociate (Fig. 4a) and once groundwater becomes saturated with calcite, precipitation takes place (Fig. 4b). Mass balance indicates that 50% of carbon is being immobilized as CaCO₃ and this is reflected by saturation index (Appelo & Postma, 2005) for calcite (Fig. 4c).

Plagioclase continues on being dissolved at higher pH values producing the dissociated $H_3SiO_4^-$ (Equation 4):

$$2Ca_{0.5}Na_{0.5}Al_{1.5}Si_{2.5}O_8 + HCO_3^- + 5.5H_2O + H^+ \rightarrow$$

$$1.5Al_2Si_2O_5(OH)_4 + 2H_3SiO_4^- + Na^+ + CaCO_3 \tag{4}$$

Production of $H_3SiO_4^-$ (Equation 4) causes an increase in the total Si concentration (Fig. 3f).

Ion exchange, which replaces Ca^{2+} for Na^+ in a solution, tends to smooth out the reactions fronts, leading to a more subtle Ca^{2+} peak and, subsequent i.e. from 150 km downstream, the absence of Ca^{2+} as well as increases in alkalinity and Na^+ .

Nevertheless, the Na⁺ and Cl⁻ concentrations from 150 to 300 km are chiefly a result of the inflow from the underlying strata as the boundary concentations are 5 mM.
Since the bottom recharge Na:Cl ratio is 1, any number larger than 1 is a result of plagioclase hydrolysis and ion exchange.

220

3.2 Sensitivity of the model output to selected parameters

Multiple runs of the complex model (Tab. 1) show that hydraulic head distribution is the most sensitive output. The output depends on flux through boundaries rather than horizontal hydraulic conductivity (Fig. 5). Chemical flux, which is a product of recharge and DIC concentration at inflowing boundaries, strongly affects pH (decline) and DIC concentration (increase). This means that if DIC concentration at inflow is high, the relative DIC removal is low.

Figure 4. Concentrations of (a) dissolved carbonate species and (b) precipitated calcite and (c) measured (points) and calculated (line) saturation index for calcite in a function of distance

From among the chemical variables pH and DIC concentrations are the most sensitive outputs, followed by SiO_2 , alkalinity and Ca^{2+} .

Plagioclase hydrolysis rate seems to be the most important parameter for several outputs (pH, Ca²⁺, alkalinity, Na⁺ and SiO₂). High rates result in augmenting pH and diminishing DIC. Moreover the said parameter affects Ca²⁺, Na⁺ and SiO₂ concentrations that are directly derived from this mineral. The elevated rate of olivine dissolution results in high Mg²⁺ concentration and pH and lower DIC concentration, with a negligible effect on alkalinity.

The DIC concentrations are dominated by chemical flux rates, plagioclase and olivine rates, but are not much influenced by stability of secondary minerals. Low sensitivity for calcite is somehow surprising and suggests that the complex model may be overconstrained.

Both secondary geochemical reactions and soil pH do not seem to play a significant role in solute concentrations. Although pH of infiltration water is very important in the small scale studies (Hansen & Postma, 1995; White & Brantley, 2003), its effect disappears on a larger scale.

Due to low influence of carbonate precipitation on DIC, Ca^{2+} , and pH, the Mg²⁺ ratio incorporated in freshly precipitated $CaCO_3$ does not significantly affects the results.

Similar outputs at distances 50, 150 and 250 km from the edge of the model indicate that it does not really matter which part of the aquifer we sample groundwater to identify the most influential parameters. Nevertheless, importance of weathering parameters keeps on increasing over the distance, as the concentrations derived from mineral hydrolysis increase too.

250

3.3 Distribution of carbon flux through the boundaries

The Upper Recharge Boundary is a principal source of carbon in the system (Tab. 2and Fig. 6, for the simple and complex models, respectively). In both models the highest flux occurs in the outcrop area which is related with highest flux of recharge water in combination with DIC concentrations. The Upper Discharge Boundary also receives significant C fluxes and in the complex model they are concentrated near the edge of the model domain (Fig. 6).

Figure 5. Results of global sensitivity analysis for different distances from the model edge. The values are given in Appendix B

257

The simple model indicates that 50% of DIC is effectively removed in the aquifer.

If the GAS area is 1,195,500 km², this corresponds to 4.08×10^{11} M/yr or 4.9×10^{6} T/yr.

Boundary		water flux [mm/year]	C flux $[M/m^2/year]$
Upper	left	2.42	7.266×10^{-3}
	outcrop	6.33	1.9×10^{-2}
	basalt	0.45	1.346×10^{-3}
Lower	left	-0.43	-1.300×10^{-3}
Upper	right	-2.42	-2.991×10^{-3}
Lower	right	0.43	0
Imbalance		0	-2.975×10^{-3}

Table 2. Water and carbon balance in the simple model

259 260 The lower boundaries participate in carbon fluxes too. Nevertheless, very few DIC is exchanged through the lower boundary due to low recharge rates and concentrations.

The Upper Discharge Boundary offers a sink for DIC. Although the fluxes are high (Fig. 6) due to water discharge rates, the total C outflux from the aquifer is smaller than

Figure 6. Carbon flux through the boundaries of the modelled system for 1000 model realisations. Positive values indicate downward direction and negative values indicate upward direction

Figure 7. Histograms of carbon flux at recharge and discharge

the total influx (Tab. 2 and Fig. 7). The imbalance is a result of carbon accumulation and precipitation in the aquifer.

265

3.4 Improvements to the conceptual model

The numerical modelling suggests that a significant amount of carbonate may precipitate in a plagioclase system recharged with CO₂-rich groundwater. Authigenic carbonates are consistent with the field observations (Gesicki, 2007; Hirata et al., 2011) and inconsistent with the suggestions of carbonate removal coupled with ion exchange as a result of groundwater freshening (Sracek & Hirata, 2002). If ion exchange is an important process, our modelling implies that Na⁺ is a dominant cation in the sorption sites.

We hipothesize that diffusion from the underlying strata has been occuring since the formation of the aquifer (Aggarwal et al., 2015), which could have caused the replacement of Ca^{2+} and Mg^{2+} with Na^{+} in the sites. An assumption of the constant recharge and carbon infiltration rates is motivated with a relatively small cyclical variations of climate in Brazil over the years (Cruz et al., 2005; Rodríguez-Zorro et al., 2020).

Recharge of Mg-rich water from the basalts does not seem to be capable of replacing the residing solution in the GAS to the extent of significantly modifying the water quality. However, locally, the process may be of importance. This would require dominance of advective flux from the basalts in relation to the outcrope along with contrasts in water quality.

The numerical model with its all simplifications underpins the importance of depth specific rather than depth integrated groundwater sampling for process identification (Appelo & Postma, 2005). Even in a relatively simple chemical configuration of an aquifer composed of plagioclase solely receiving CO₂ with a constant 0th order dissolution rate, the concentration patterns show unexpected complexity both laterally and vertically. The effect is exacerbated by low flow rates in the aquifer.

²⁸⁹ When the modeled mean groundwater velocities are compared with water residence ²⁹⁰ times derived from ⁸¹Kr data, it is clear that the simulations cover the range of the ob-²⁹¹ served values (Fig. 8). Nevertheless, there are observation points that show much slower ²⁹² flow velocity than the mean value from all models. In those points the concentrations ²⁹³ derived from weathering (Ca²⁺, Mg²⁺, Alkalinity) are likely to be higher than average ²⁹⁴ due to longer residence times.

²⁹⁵ 4 Conclusions

296 297 Natural recharge of CO_2 -rich water into an aquifer with aluminosilicate minerals is capable of providing negative carbon feedback.

Reactive transport modeling can be used to integrate groundwater flow with a com-298 plex suite of geochemical reactions taking place in a siliceous aquifer which receives dis-299 solved inorganic carbon (DIC) with recharge water. A simple conceptualization with a 300 plagioclase mineral only suggests that 50% of carbon is immobilized as CaCO₃. By us-301 ing global sensivitity analysis with a more complex model, we confirmed that the DIC 302 fluxes and weathering rates of aluminosilicate minerals have a major significance in con-303 trolling solute concentrations and, consequently, DIC outflux at the discharge zone. Sur-304 prisingly, other parameters including horizontal hydraulic conductivity, soil pH, poros-305

Figure 8. Groundwater residence times as a function of distance from basin margin derived from the isotopes (red points with uncertainty ranges, Aggarwal et al. (2015)) and groundwater model realizations (blue lines)

ity and stability of secondary minerals but Calcite play a minor or negligible role in con-trolling solute concentrations.

We anticipate that reactive transport models, combined with global sensitivity techniques, lead to improvements in understanding of the reactive patterns and reduce error of model predictions.

In order to better understand the role of large aquifers like GAS, the effort should be placed on:

- estimation of recharge rates using variety of methods and their integration,
- evaluation of DIC concentration in recharge water (Kessler & Harvey, 2001; Sánchez Cañete et al., 2018),
- incorporation of Ca²⁺ and Mg²⁺ isotopes to understand the weathering rates and
 pathways of DIC cycling in the subsurface (Pogge von Strandmann et al., 2019).
- distribution of CEC in the aquifer and composition of the sorption sites.

319 Acknowledgments

Prof. Dieke Postma (GEUS, Denmark) is acknowledged for friendly and very useful remarks on the previous version of the manuscript. Numerous discussions with Dr. Elias Terramoto and Prof. Hung Kung Chang from UNESP, Rio Claro helped to develop the conceptual model of Guarani Aquifer System. The numerical model repository is located on *https://www.hydroshare.org/resource/b0c0815fbc4949ad9d0c21102df93a39/*. Measured concentraions from GAS are from (Gastmans et al., 2010) and from the deeper formation at Águas de São Pedro from (Soler i Gil & Bonotto, 2014).

327 References

- Aggarwal, P. K., Matsumoto, T., Sturchio, N. C., Chang, H. K., Gastmans, D.,
- Araguas-Araguas, L. J., ... Torgersen, T. (2015). Continental degassing of
 4He by surficial discharge of deep groundwater. Nature Geoscience, 8(1),
 35–39. doi: 10.1038/ngeo2302
- Appelo, C. A. J. (1994). Cation and proton exchange , pH variations , and carbonate reactions in a freshening aquifer. *Water Resources*, 30(10), 2793–2805.
- Appelo, C. A. J., & Postma, D. (2005). Geochemistry, Groundwater and Pol-

-20-

335	lution, Second Edition. Taylor & Francis. Retrieved from https://www
336	.taylorfrancis.com/books/9781439833544 doi: $10.1201/9781439833544$
337	Araujo, L. M., Franca, A. B., & Potter, P. E. (1999). Hydrogeology of the Merco-
338	sul aquifer system in the Paraná and Chaco-Paraná Basins, South America,
339	and comparison with the Navajo-Nugget aquifer system, USA. $Hydrogeology$
340	Journal, 7, 317–336.
341	Bao, C., Li, L., Shi, Y., & Duffy, C. (2017, mar). Understanding watershed hy-
342	drogeochemistry: 1. Development of RT-Flux-PIHM. Water Resources Re-
343	<i>search</i> , 53(3), 2328-2345. Retrieved from http://doi.wiley.com/10.1002/
344	2016WR018934 doi: 10.1002/2016WR018934
345	Berner, R. A. (1998). The carbon cycle and CO2 over Phanerozoic time: The role of
346	land plants. Philosophical Transactions of the Royal Society B: Biological Sci-
347	ences, $353(1365)$, 75–82. doi: 10.1098/rstb.1998.0192
348	Bethke, C. M., Zhao, X., & Torgersen, T. (2002). Groundwater flow and the 4 He
349	distribution in the Great Artesian Basin of Australia . $Journal \ of \ Geophysical$
350	Research: Solid Earth, $104(B6)$, 12999–13011. doi: 10.1029/1999jb900085
351	Borgonovo, E. (2007). A new uncertainty importance measure. Reliability Engineer-
352	ing and System Safety, 92(6), 771–784. doi: 10.1016/j.ress.2006.04.015
353	Clark, I. (2015). Groundwater Geochemistry and Isotopes. CRC Press. Retrieved
354	from https://www.taylorfrancis.com/books/9781466591745 doi: $10.1201/$
355	b18347
356	Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O.,
357	\dots Viana, O. (2005, mar). Insolation-driven changes in atmospheric circu-
358	lation over the past 116,000 years in subtropical Brazil. $Nature, 434(7029),$
359	63-66. Retrieved from http://www.nature.com/articles/nature03365 doi:
360	10.1038/nature03365
361	Dai, Z., Keating, E., Bacon, D., Viswanathan, H., Stauffer, P., Jordan, A., & Pawar,
362	R. (2014). Probabilistic evaluation of shallow groundwater resources at
363	a hypothetical carbon sequestration site. $Scientific Reports, 4, 1-7.$ doi:
364	10.1038/srep04006
365	De Paula E Silva, F., & Cavaguti, N. (1994). A new stratigraphic and tectonic
366	characterization of the Mesozoic sequence in the city of Bauru - SP. Geocien-
367	cias (Sao Paulo), 13(1), 83-99. Retrieved from https://www.scopus.com/

368	inward/record.uri?eid=2-s2.0-0028603143{\&}partnerID=40{\&}md5=
369	18f89c8a25aba2729b13d124776f9143
370	Enemark, T., Peeters, L. J., Mallants, D., & Batelaan, O. (2019). Hydrogeological
371	conceptual model building and testing: A review. Journal of Hydrology, 569,
372	310–329. doi: 10.1016/j.jhydrol.2018.12.007
373	Fernandes, A. J., Maldaner, C. H., Negri, F., Rouleau, A., & Wahnfried, I. D.
374	(2016). Aspects of a conceptual groundwater flow model of the Serra Geral
375	basalt aquifer (Sao Paulo, Brazil) from physical and structural geology data.
376	Hydrogeology Journal, 24(5), 1199-1212.doi: 10.1007/s10040-016-1370-6
377	Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stabil-
378	ity of organic carbon in deep soil layers controlled by fresh carbon supply. Na -
379	ture, $450(7167)$, 277–280. doi: 10.1038/nature06275
380	Foster, S., Hirata, R., Vidal, A., Schmidt, G., & Garduño, H. (2009). The Guarani
381	Aquifer Initiative – Towards Realistic Groundwater Management in a Trans-
382	boundary Context. System(Figure 1), 28.
383	Freeze, R. A., & Witherspoon, P. A. (1968). Theoretical Analysis of Regional
384	Ground Water Flow: 3. Quantitative Interpretations. Water Resources Re-
385	search, $4(3)$, 581–590. doi: 10.1029/WR004i003p00581
386	Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999, jul). Global sil-
387	icate weathering and CO2 consumption rates deduced from the chem-
388	istry of large rivers. <i>Chemical Geology</i> , 159(1-4), 3–30. Retrieved from
389	https://linkinghub.elsevier.com/retrieve/pii/S0009254199000315
390	doi: $10.1016/S0009-2541(99)00031-5$
391	Gastmans, D., Chang, H. K., & Hutcheon, I. (2010). Groundwater geochemical
392	evolution in the northern portion of the Guarani Aquifer System (Brazil) and
393	its relationship to diagenetic features. Applied Geochemistry, $25(1)$, 16–33. Re-
394	trieved from http://dx.doi.org/10.1016/j.apgeochem.2009.09.024 doi:
395	10.1016/j.apgeochem.2009.09.024
396	Gesicki, A. L. D. (2007). Diagenetic Evolution of the Pirambóia and Botucatu
397	formations (Guarani Aquifer System) in the São Paulo state (in Portuguese).
398	(Unpublished doctoral dissertation). University of São Paulo.
399	Hansen, B., & Postma, D. (1995). Acidification, buffering, and salt effects in the un-
400	saturated zone of a sandy aquifer, klosterhede, denmark. Water Resources Re-

401	search, 31(11), 2795-2809.
402	Herman, J., & Usher, W. (2017, jan). SALib: An open-source python library for sen-
403	sitivity analysis. The Journal of Open Source Software, $2(9)$. Retrieved from
404	https://doi.org/10.21105/joss.00097 doi: 10.21105/joss.00097
405	Hirata, R., Gesicki, A., Sracek, O., Bertolo, R., Giannini, P. C., & Aravena, R.
406	(2011). Relation between sedimentary framework and hydrogeology in the
407	Guarani Aquifer System in São Paulo state, Brazil. Journal of South American
408	Earth Sciences, $31(4)$, 444–456. doi: 10.1016/j.jsames.2011.03.006
409	Jakobsen, R., Kazmierczak, J., Sø, H. U., & Postma, D. (2018). Spatial Variability
410	of Groundwater Arsenic Concentration as Controlled by Hydrogeology: Con-
411	ceptual Analysis Using 2-D Reactive Transport Modeling. Water Resources
412	Research, 54(12), 10,254-10,269.doi: 10.1029/2018WR023685
413	Jessen, S., Postma, D., Thorling, L., Müller, S., Leskelä, J., & Engesgaard, P.
414	(2017). Decadal variations in groundwater quality: A legacy from nitrate
415	leaching and denitrification by pyrite in a sandy aquifer. Water Resources
416	Research, $53(1)$, 184–198. doi: 10.1002/2016WR018995
417	Kessler, T. J., & Harvey, C. F. (2001). The global flux of carbon dioxide
418	into groundwater. $Geophysical Research Letters, 28(2), 279-282.$ doi:
419	10.1029/2000GL011505
420	Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C.,
421	Beisman, J. (2017). Expanding the role of reactive transport models in critical
422	zone processes. Earth-Science Reviews, 165 (January 2017), 280–301. doi:
423	10.1016/j.earscirev.2016.09.001
424	Li, Y., Wang, Y. G., Houghton, R. A., & Tang, L. S. (2015). Hidden carbon sink be-
425	neath desert. Geophysical Research Letters, $42(14)$, 5880–5887. doi: 10.1002/
426	2015GL064222
427	Maher, K., & Chamberlain, C. P. (2014). Hydrologic regulation of chemical weath-
428	ering and the geologic carbon cycle. Science, $343(6178)$, $1502-1504$. doi: 10
429	.1126/science.1250770
430	McCallum, J. L., Cook, P. G., Berhane, D., Rumpf, C., & McMahon, G. A.
431	(2012). Quantifying groundwater flows to streams using differential flow
432	gaugings and water chemistry. Journal of Hydrology, 416-417, 118–132. Re-
433	trieved from http://dx.doi.org/10.1016/j.jhydrol.2011.11.040 doi:

434	10.1016/j.jhydrol.2011.11.040
435	Meng, S. X., & Maynard, J. B. (2001). Use of statistical analysis to formulate
436	conceptual models of geochemical behavior: Water chemical data from the
437	Botucatu aquifer in São Paulo state, Brazil. Journal of Hydrology, $250(1-4)$,
438	78–97. doi: 10.1016/S0022-1694(01)00423-1
439	Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., & Schott, J. (2018).
440	Olivine dissolution rates: A critical review. Chemical Geology, 500 (October),
441	1-19. doi: $10.1016/j.chemgeo.2018.10.008$
442	Parkhurst, D. L., Kipp, K. L., & Charlton, S. R. (2010). PHAST Version 2 - A
443	program for simulating groundwater flow, solute transport, and multicompo-
444	nent geochemical reactions (Vol. 6–A35; Tech. Rep.). U.S. Geological Survey
445	Techniques and Methods 6-A35. Retrieved from http://pubs.usgs.gov/tm/
446	06A35/
447	Plischke, E., Borgonovo, E., & Smith, C. L. (2013). Global sensitivity measures
448	from given data. European Journal of Operational Research, 226(3), 536–550.
449	Retrieved from http://dx.doi.org/10.1016/j.ejor.2012.11.047 doi: 10
450	.1016/j.ejor.2012.11.047
451	Pogge von Strandmann, P. A., Burton, K. W., Snæbjörnsdóttir, S. O., Sigfússon, B.,
452	Aradóttir, E. S., Gunnarsson, I., Gislason, S. R. (2019). Rapid CO 2 min-
453	eralisation into calcite at the CarbFix storage site quantified using calcium iso-
454	topes. Nature Communications, $10(1)$, 1–7. doi: 10.1038/s41467-019-10003-8
455	Postma, D., & Jakobsen, R. (1996). Redox zonation: Equilibrium constraints on the
456	Fe(III)/SO4-reduction interface. Geochimica et Cosmochimica Acta, $60(17)$,
457	3169–3175.
458	Rebouças, A. C. (1976). Recursos Hídricos Subterrâneos da Bacia do Paraná -
459	Analise de Pre-Viabilidade (Unpublished doctoral dissertation). Université de
460	Strasbourg.
461	Rebouças, A. C. (1994). Sistema Aqüífero Botucatu no Brasil. In Viii congresso
462	brasileiro de águas subterrâneas (pp. 500–509).
463	Rodríguez-Zorro, P. A., Ledru, MP., Bard, E., Aquino-Alfonso, O., Camejo, A.,
464	Daniau, AL., Thouveny, N. (2020). Shut down of the South American
465	summer monsoon during the penultimate glacial. Scientific Reports, $10(1)$,
466	1–11. doi: $10.1038/s41598-020-62888-x$

-24-

467	Sánchez-Cañete, E. P., Barron-Gafford, G. A., & Chorover, J. (2018). A considerable
468	fraction of soil-respired CO2 is not emitted directly to the atmosphere. $Scientian$
469	tific Reports, $8(1)$, 2–11. doi: 10.1038/s41598-018-29803-x
470	Silva, R. B. G. (1983). Hydrogeochemical and isotopic study of ground-water of the
471	Botucatu Aquifer, in São Paulo state (in Portuguese). (Unpublished doctoral
472	dissertation). University of São Paulo.
473	Soler i Gil, A., & Bonotto, D. M. (2014). Hydrochemical and stable isotopes (H,
474	O, S) signatures in deep groundwaters of Paraná basin, Brazil. Environmental
475	Earth Sciences, 73(1), 95–113. doi: 10.1007/s12665-014-3397-0
476	Sracek, O., & Hirata, R. (2002, dec). Geochemical and stable isotopic evolution
477	of the Guarani Aquifer System in the state of São Paulo, Brazil. Hydrogeol-
478	ogy Journal, 10(6), 643-655. Retrieved from http://link.springer.com/
479	10.1007/s10040-002-0222-8 doi: 10.1007/s10040-002-0222-8
480	Steefel, C. I., DePaolo, D. J., & Lichtner, P. C. (2005, dec). Reactive transport
481	modeling: An essential tool and a new research approach for the Earth sci-
482	ences. Earth and Planetary Science Letters, $240(3-4)$, $539-558$. Retrieved from
483	https://linkinghub.elsevier.com/retrieve/pii/S0012821X05005984
484	doi: 10.1016/j.epsl.2005.09.017
485	Steffen, W., Crutzen, J., & McNeill, J. R. (2007). The Anthropocene: are humans
486	now overwhelming the great forces of Nature? $Ambio, 36(8), 614-21$. Re-
487	trieved from http://www.ncbi.nlm.nih.gov/pubmed/18240674 doi: 10.1579/
488	0044-7447(2007)36[614:taahno]2.0.co;2
489	Vilhelmsen, T. N., Maher, K., Da Silva, C., Hermans, T., Grujic, O., Park, J., &
490	Yang, G. (2018a). The earth resources challenge. In <i>Quantifying uncer</i> -
491	tainty in subsurface systems (p. 1-27). American Geophysical Union (AGU).
492	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
493	10.1002/9781119325888.ch1 doi: 10.1002/9781119325888.ch1
494	Vilhelmsen, T. N., Maher, K., Da Silva, C., Hermans, T., Grujic, O., Park, J., &
495	Yang, G. (2018b). Quantifying uncertainty in subsurface systems. In $Quan$ -
496	tifying uncertainty in subsurface systems (p. 217-262). American Geophysical
497	Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/
498	doi/abs/10.1002/9781119325888.ch8 doi: 10.1002/9781119325888.ch8
499	Walraevens, K., Cardenal-Escarcena, J., & Van Camp, M. (2007). Reac-

-25-

500	tion transport modelling of a freshening aquifer (Tertiary Ledo-Paniselian
501	Aquifer, Flanders-Belgium). Applied Geochemistry, $22(2)$, 289–305. doi:
502	10.1016/j.apgeochem.2006.09.006
503	Wendland, E., Barreto, C., & Gomes, L. H. (2007). Water balance in the Guarani
504	Aquifer outcrop zone based on hydrogeologic monitoring. Journal of Hydrol-
505	ogy, 342(3-4), 261–269. doi: 10.1016/j.jhydrol.2007.05.033
506	White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of
507	silicate minerals: Why do weathering rates differ in the laboratory and field?
508	Chemical Geology, 202(3-4), 479–506. doi: 10.1016/j.chemgeo.2003.03.001
509	Zhang, S., & Planavsky, N. J. (2020). Revisiting groundwater carbon fluxes to the
510	ocean with implications for the carbon cycle. Geology, $XX(Xx)$, 1–5. doi: 10
511	$.1130/{\rm G46408.1/4870418/g46408.pdf}$
512	Zhong, J., Li, S. L., Tao, F., Yue, F., & Liu, C. Q. (2017). Sensitivity of chem-
513	ical weathering and dissolved carbon dynamics to hydrological conditions
514	in a typical karst river. Scientific Reports, 7(October 2016), 1–9. doi:
515	$10.1038/\mathrm{srep}42944$

Figure A1. Variations in water quality parameters over depth with a color depicting a water type. Black points pertain to samples whose water type was not determined (Gastmans et al., 2010)

- ⁵¹⁶ Appendix A Variations in selected water quality parameters over depth
- 517 Appendix B Sensitivity indexes and confidence intervals
- 518 Appendix C Groundwater well location

Table B1.Sensitivity indexes for outputs and corresponding parameters, Part 1/2

	$Distance,\ km$	К	Mg	heads	Ca	Ηd	alk	C	Na	Si
	50	1.11e-02	6.41e-02	8.16e-01	4.49e-02	2.92e-01	7.02e-02	2.45e-01	4.94e-02	6.93e-02
C recharge	150	1.32e-02	5.04e-02	8.16e-01	5.60e-02	2.26e-01	8.25e-02	1.86e-01	5.96e-02	8.39e-02
	250	1.24e-02	2.84e-02	8.15e-01	4.44e-02	1.67e-01	6.34e-02	1.34e-01	4.40e-02	6.50e-02
	50	5.45e-03	1.50e-03	6.72e-03	4.18e-03	7.69e-04	3.90e-03	4.25e-03	4.06e-03	3.83e-03
$\mathbf{K}_{calcite}$	150	5.88e-03	8.12e-04	6.71e-03	4.67e-03	9.02e-04	4.60e-03	2.14e-03	4.57e-03	4.56e-03
	250	5.57e-03	3.64e-04	6.61e-03	5.24e-03	8.43e-04	5.21e-03	2.44e-03	5.18e-03	5.13e-03
	50	3.85e-03	5.99e-03	5.08e-03	2.89e-03	2.51e-02	2.80e-03	2.11e-02	3.14e-03	2.70e-03
Kx	150	3.86e-03	4.93e-03	5.07e-03	2.46e-03	3.02e-02	3.40e-03	2.39e-02	2.73e-03	3.47e-03
	250	4.03e-03	4.21e-03	5.00e-03	2.25e-03	2.88e-02	3.44e-03	2.38e-02	2.44e-03	3.62e-03
	50	5.01e-03	3.71e-03	1.73e-02	9.82e-03	8.04e-03	9.63e-03	6.69e-03	9.70e-03	9.54e-03
Mg_{ratio}	150	4.24e-03	4.81e-03	1.73e-02	9.60e-03	8.69e-03	9.08e-03	1.28e-02	9.07e-03	9.01e-03
	250	3.55e-03	7.54e-03	1.72e-02	9.08e-03	6.63e-03	8.41e-03	1.04e-02	8.27e-03	8.38e-03
	50	4.49e-03	5.10e-03	5.51e-03	6.12e-03	2.86e-03	5.46e-03	6.76e-04	6.11e-03	5.58e-03
Porosity	150	4.54e-03	3.79e-03	5.51e-03	5.71e-03	5.30e-03	4.96e-03	2.80e-03	5.63e-03	4.92e-03
	250	4.61e-03	3.25e-03	5.46e-03	5.11e-03	4.78e-03	4.53e-03	2.95e-03	5.10e-03	4.46e-03

$^{/2}$
N)
Part
corresponding parameters,
outputs and
for
indexes
Sensitivity
Table B2.

	Distance, km	К	Mg	heads	Ca	Ηd	alk	C	Na	Si
	50	1.75e-02	3.82e-04	3.12e-03	4.76e-03	1.73e-02	4.68e-03	1.07e-02	4.86e-03	4.63e-03
$\Gamma K-feldspar$	150	3.06e-02	2.73e-04	3.12e-03	6.65e-03	3.05e-02	6.36e-03	7.63e-03	6.58e-03	6.24e-03
	250	4.46e-02	7.36e-04	3.09e-03	7.69e-03	3.47e-02	7.49e-03	5.78e-03	7.64e-03	7.32e-03
	50	5.18e-03	1.93e-01	4.44e-04	6.20e-03	1.20e-01	5.31e-03	1.10e-01	5.96e-03	5.54e-03
$\Gamma Olivine$	150	4.73e-03	2.55e-01	4.44e-04	3.61e-03	1.55e-01	3.14e-03	9.71e-02	3.54e-03	3.31e-03
	250	4.56e-03	2.75e-01	4.37e-04	3.26e-03	1.68e-01	2.23e-03	1.26e-01	3.19e-03	2.48e-03
	50	5.13e-03	3.68e-03	6.13e-03	7.82e-02	3.98e-01	8.91e-02	2.27e-01	8.34e-02	8.86e-02
$\Gamma Plagioclase$	150	4.74e-03	4.69e-03	6.13e-03	1.45e-01	3.56e-01	1.63e-01	3.93e-01	1.52e-01	1.68e-01
	250	4.13e-03	4.83e-03	6.10e-03	1.87e-01	3.52e-01	2.09e-01	4.14e-01	1.94e-01	2.15e-01
	50	3.99e-03	6.39e-03	2.40e-04	3.13e-03	1.50e-03	2.72e-03	2.16e-03	3.15e-03	2.79e-03
SI_{illite}	150	3.39e-03	7.56e-03	2.41e-04	2.48e-03	3.93e-03	2.36e-03	4.00e-03	2.44e-03	2.40e-03
	250	2.93e-03	7.55e-03	2.47e-04	1.60e-03	4.07e-03	1.65e-03	3.73e-03	1.52e-03	1.65e-03
	50	5.84e-03	1.58e-03	1.24e-02	1.43e-02	9.07e-03	1.46e-02	5.49e-03	1.45e-02	1.44e-02
SI_{K-mica}	150	6.08e-03	1.67e-03	1.24e-02	1.75e-02	1.14e-02	1.66e-02	6.85e-03	1.77e-02	1.64e-02
	250	5.88e-03	2.03e-03	1.25e-02	1.75e-02	1.30e-02	1.64e-02	9.71e-03	1.75e-02	1.64e-02
	50	5.05e-03	4.44e-03	4.87e-03	3.42e-03	2.03e-03	2.54e-03	5.17e-03	3.41e-03	2.53e-03
Soil pH	150	4.51e-03	4.69e-03	4.88e-03	4.94e-03	2.36e-03	4.03e-03	4.91e-03	4.87e-03	4.03e-03
	250	4.33e-03	4.54e-03	4.88e-03	5.46e-03	4.70e-03	4.62e-03	7.20e-03	5.40e-03	4.60e-03

Table B3.Confidence intervals for outputs and corresponding parameters, Part 1/2

	Distance, km	Mg	K	heads	C	alk	Si	Ca	Na	Hq
	50	3.62e-02	2.01e-02	2.78e-02	8.79e-02	3.08e-02	1.69e-02	1.56e-02	2.01e-02	4.77e-02
C recharge	150	3.29e-02	1.68e-02	1.87e-02	4.07e-02	3.17e-02	2.04e-02	3.54e-02	2.43e-02	6.06e-02
	250	3.00e-02	1.22e-02	2.19e-02	2.96e-02	1.84e-02	2.99e-02	1.84e-02	2.74e-02	3.28e-02
	50	8.29e-03	5.05e-03	8.57e-03	8.04e-03	5.64e-03	5.17e-03	9.69e-03	5.94e-03	1.22e-02
$\mathbf{K}_{calcite}$	150	6.31e-03	6.84e-03	5.76e-03	1.36e-02	7.62e-03	1.27e-02	1.07e-02	8.49e-03	5.79e-03
	250	6.74e-03	4.99e-03	1.37e-02	6.23e-03	1.17e-02	1.23e-02	9.04e-03	9.07e-03	7.67e-03
	50	6.66e-03	1.16e-02	1.04e-02	1.90e-02	6.61e-03	1.04e-02	7.01e-03	6.77e-03	1.62e-02
Kx	150	6.18e-03	6.38e-03	1.18e-02	2.04e-02	1.45e-02	1.02e-02	7.31e-03	1.62e-02	1.88e-02
	250	1.11e-02	7.60e-03	4.58e-03	2.01e-02	6.68e-03	7.05e-03	7.06e-03	1.16e-02	1.99e-02
	50	5.78e-03	9.16e-03	2.50e-02	1.25e-02	1.21e-02	9.13e-03	6.00e-03	1.26e-02	1.15e-02
Mg_{ratio}	150	8.95e-03	6.20e-03	1.39e-02	1.37e-02	1.37e-02	1.35e-02	9.38e-03	8.87e-03	1.58e-02
	250	1.21e-02	5.59e-03	7.98e-03	1.61e-02	9.41e-03	9.87e-03	1.33e-02	9.83e-03	1.33e-02
	50	1.06e-02	5.86e-03	8.50e-03	7.39e-03	7.24e-03	8.36e-03	8.26e-03	7.38e-03	3.84e-03
Porosity	150	1.18e-02	8.76e-03	7.19e-03	1.05e-02	3.29e-03	1.12e-02	1.30e-02	1.05e-02	7.39e-03
	250	9.50e-03	6.99e-03	1.13e-02	8.19e-03	8.47e-03	8.69e-03	7.56e-03	1.29e-02	6.39e-03

Table B4. Confidence intervals for outputs and corresponding parameters, Part 2/2

	Distance, km	Mg	К	heads	C	alk	Si	Ca	Na	Hq
	50	8.80e-03	8.70e-02	1.00e-02	1.25e-02	6.94e-03	9.47e-03	7.74e-03	3.60e-03	1.73e-02
${\Gamma}K-feldspar$	150	8.38e-03	1.04e-01	1.06e-02	1.46e-02	1.50e-02	1.39e-02	8.50e-03	8.14e-03	1.56e-02
	250	5.81e-03	6.69e-02	4.96e-03	1.48e-02	1.10e-02	1.13e-02	1.24e-02	9.59e-03	1.90e-02
	50	8.41e-02	4.34e-03	7.43e-03	2.71e-02	9.37e-03	6.78e-03	6.22e-03	1.01e-02	4.81e-02
$\Gamma Olivine$	150	6.84e-02	4.62e-03	3.89e-03	3.56e-02	1.15e-02	1.70e-02	6.39e-03	5.30e-03	4.08e-02
	250	8.58e-02	6.17e-03	5.27e-03	3.05e-02	1.12e-02	5.47e-03	7.86e-03	7.69e-03	2.43e-02
	50	6.30e-03	9.25e-03	9.75e-03	6.47e-02	3.57e-02	3.54e-02	4.27e-02	9.21e-02	8.59e-02
$\Gamma Plagioclase$	150	9.33e-03	9.17e-03	1.45e-02	4.59e-02	4.42e-02	7.53e-02	3.16e-02	5.41e-02	5.09e-02
	250	8.66e-03	1.64e-02	8.03e-03	5.05e-02	3.24e-02	4.44e-02	3.68e-02	4.03e-02	5.18e-02
	50	1.06e-02	1.04e-02	1.02e-02	3.68e-03	7.51e-03	7.66e-03	7.09e-03	1.08e-02	7.87e-03
SI_{illite}	150	7.87e-03	8.48e-03	7.96e-03	8.38e-03	5.23e-03	5.80e-03	8.26e-03	7.15e-03	1.13e-02
	250	9.72e-03	8.00e-03	4.62e-03	1.44e-02	7.30e-03	8.41e-03	7.69e-03	9.16e-03	7.30e-03
	50	7.59e-03	7.89e-03	1.24e-02	7.94e-03	1.09e-02	1.07e-02	1.11e-02	1.49e-02	7.94e-03
SI_{K-mica}	150	5.33e-03	5.55e-03	1.33e-02	8.96e-03	1.66e-02	1.96e-02	1.82e-02	1.13e-02	1.38e-02
	250	8.91e-03	1.07e-02	1.54e-02	1.58e-02	3.00e-02	1.80e-02	2.11e-02	1.63e-02	1.13e-02
	50	4.50e-03	1.17e-02	1.23e-02	6.24e-03	7.77e-03	6.63e-03	8.83e-03	9.75e-03	7.07e-03
Soil pH	150	1.57e-02	6.42e-03	1.32e-02	1.14e-02	4.90e-03	8.50e-03	1.13e-02	6.19e-03	5.58e-03
	250	9.16e-03	5.18e-03	9.74e-03	1.42e-02	8.60e-03	7.62e-03	1.05e-02	3.59e-03	8.72e-03

in
ıarg
in n
basi
the
om
h fr
. pat
flow
ater
1dw
rour
ne g
ıg tl
aloı
km)
es (]
tanc
dis
eted
erpr
inte
the
with
ells .
ه ه
ulin
san
ater
'mpu
rou
G
C1.
ble
$\mathbf{T}\mathbf{a}$

Well ID	Location	Latitude (S)	Longitude (W)	Flow path symbol	Distance (km)
SP104	Itirapina	-22.30	-47.80		0.0
SP095	São Carlos	-22.07	47.90		30.04
SP083	Ibaté	-21.97	-47.98		45.63
SP080	Araraquara	-21.78	-48.15		71.25
SP065	Matão	-21.60	-48.37		99.9
SP061	Itáopolis	-21.58	-48.80		146.0
SP044	Novo Horizonte	-21.47	-49.23		191.6
${ m SP149}$	Botucatú	-22.92	-48.45		46.6
SP135	Macatuba	-22.47	-48.77		108.1
SP117	Pederneiras	-22.35	-48.77		118.5
SP111	Bauru	-22.17	-49.03		154.6
SP059	Lins	-21.67	-49.77		245.6
SP902	Araçatuba	-21.17	-50.40		332.3
SP160	Sarutaiá	-23.27	-49.48	\triangleleft	8.2
SP105	Paraguaçu Pta	-22.42	-50.60	\triangleleft	98.3
SP087	Pres. Prudente	-22.11	-51.42	\triangleleft	251.2
PEP	Pres. Epitácio	-21.76	-52.10	\triangleleft	333.2
SP085	Descalvado	-21.87	-47.63	0	0.0
SP049	Guatapará	-21.50	-48.03	0	59.1
SP900	Guariba	-21.35	-48.22	0	84.2
SP025	Jaboticabal	-21.25	-48.30	0	98.0
SP023	Catanduva	-21.12	-48.97	0	168.4