Global Measurements of Brown Carbon and Estimated Direct Radiative Effects

Rodney J. Weber¹, Linghan Zeng², Aoxing Zhang², Yuhang Wang², Nicholas L. Wagner³, Joseph M. Katich⁴, Joshua Peter Schwarz⁴, Gregory P. Schill⁵, Charles A. Brock⁴, Karl Froyd⁶, Daniel M. Murphy⁴, Christina Williamson⁴, Agnieszka Kupc⁷, Eric Scheuer⁸, and Jack E. Dibb⁹

¹Georgia Institute Of technology
²Georgia Institute of Technology
³NOAA/ESRL/CSD
⁴NOAA Earth System Research Laboratory
⁵Earth System Research Laboratory
⁶National Oceanic and Atmospheric Administration (NOAA)
⁷NOAA ESRL
⁸University of New Hampshire-Durham
⁹University of New Hampshire

November 21, 2022

Abstract

Brown carbon (BrC) is an organic aerosol material that preferentially absorbs light of shorter wavelengths. Global-scale radiative impacts of BrC have been difficult to assess due to the lack of BrC observational data. To address this, aerosol filters were continuously collected with near pole-to-pole latitudinal coverage over the Pacific and Atlantic basins in three seasons as part of the Atmospheric Tomography Mission. BrC chromophores in filter extracts were measured. We find that globally, BrC was highly spatially heterogeneous, mostly detected in air masses that had been transported from regions of extensive biomass burning. We calculate the average direct radiative effect due to BrC absorption accounted for approximately 7 to 48% of the top of the atmosphere clear sky instantaneous forcing by all absorbing carbonaceous aerosols in the remote atmosphere, indicating that BrC from biomass burning is an important component of the global radiative balance.

Hosted file

zhang atom grl agusupporting-information_word_template.docx available at https://authorea. com/users/528434/articles/596870-global-measurements-of-brown-carbon-and-estimateddirect-radiative-effects

Global Measurements of Brown Carbon and Estimated Direct Radiative Effects

Linghan Zeng¹, Aoxing Zhang¹, Yuhang Wang¹, Nicholas L. Wagner^{2,3}, Joseph M. Katich^{2,3}, Joshua P. Schwarz³, Gregory P. Schill^{2,3}, Charles Brock³, Karl D. Froyd^{2,3}, Daniel M. Murphy³, Christina J Williamson^{2,3},

Agnieszka Kupc^{3,4}, Eric Scheuer⁵, Jack Dibb⁵, Rodney J. Weber¹

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA

- ³Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
- ⁴Faculty of Physics, University of Vienna, Vienna, Austria
- ⁵Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
- Correspondence to: Rodney J. Weber (rweber@eas.gatech.edu)

Key Points:

- Globally, biomass burning is a large source of light absorbing carbonaceous aerosol that directly affect • the planetary radiation balance.
- Transported over long distances, brown carbon is a significant component of these aerosols, but its contribution was highly variable.
 - For these data, brown carbon contributed up to 48% to the top of the atmosphere average clear sky instantaneous forcing by light absorption by carbonaceous aerosols.

30 Abstract

31 Brown carbon (BrC) is an organic aerosol material that preferentially absorbs light of shorter wavelengths. 32 Global-scale radiative impacts of BrC have been difficult to assess due to the lack of BrC observational data. To 33 address this, aerosol filters were continuously collected with near pole-to-pole latitudinal coverage over the 34 Pacific and Atlantic basins in three seasons as part of the Atmospheric Tomography Mission. BrC 35 chromophores in filter extracts were measured. We find that globally, BrC was highly spatially heterogeneous, 36 mostly detected in air masses that had been transported from regions of extensive biomass burning. We calculate 37 the average direct radiative effect due to BrC absorption accounted for approximately 7 to 48% of the top of the 38 atmosphere clear sky instantaneous forcing by all absorbing carbonaceous aerosols in the remote atmosphere, 39 indicating that BrC from biomass burning is an important component of the global radiative balance. 40

41 Plain Language Summary

42

43 Combustion produces light absorbing aerosols that can affect the global radiation balance. Black carbon, which 44 absorbs light over a broad wavelength range, has been extensively studied, but recent work shows that a 45 significant component of the light absorbing aerosol is brown, absorbing mostly in the lower end of the visible 46 and into the UV. Incomplete combustion, such as in wild fires, is known to produce substantial levels of brown 47 carbon. Here we report direct measurements of brown carbon determined from filter samples collected from 48 aircraft flights that extended from pole to pole over three seasons. We observed brown carbon in aerosols that 49 had been transported long distances from regions of wild fires at various locations across the globe. A radiative 50 transfer model indicated that this brown carbon can substantially contribute to the overall radiative forcing by 51 light absorbing aerosols.

52

53 1 Introduction

Atmospheric aerosols affect the global radiative balance by scattering and absorbing radiation [*Chýlek and Coakley*, 1974]. The main light absorbing component of aerosols is black carbon (BC) [*Bond and Bergstrom*, 2006; *Horvath*, 1993], however, some components of mineral dust [*Sokolik and Toon*, 1999] and organic aerosols (OA) also absorb visible light. Organic chromophores in aerosol particles are the least well understood and are overall referred to as brown carbon (BrC) because they absorb most strongly in the UV and near-visible wavelengths, resulting in a brownish or yellow appearance.

60

61 One known major source for BrC are products of incomplete combustion of fossil and biomass fuels [Chen and 62 Bond, 2010; Desyaterik et al., 2013; Hecobian et al., 2010; Hoffer et al., 2006; X Zhang et al., 2013]. The 63 complex molecular structures of organic chromophores are challenging to exactly determine, although nitro-64 aromatic compounds have been identified in urban and biomass burning aerosols [Claevs et al., 2012; P Lin et 65 al., 2016]. Other compounds, such as polycyclic aromatic hydrocarbon derivatives and polyphenols may 66 contribute to aerosol light absorption properties as well [P Lin et al., 2016]. Field observations of wildfires in 67 California [Forrister et al., 2015], the Amazon [Wang et al., 2016], and Crete [Wong et al., 2019] have 68 indicated that a large fraction of emitted BrC can be depleted over time by bleaching, with a half-life varying 69 between 9 and 24 hours. However, studies show a small fraction of emitted chromophores of high molecular 70 weight resist bleaching. Low molecular weight chromophores that rapidly bleach would then mainly contribute 71 to BrC absorption near sources, while high molecular weight chromophores with longer lifetimes could continue 72 to contribute to light absorption in aged biomass burning plumes over large spatial scales [Di Lorenzo and 73 Young, 2016; Wong et al., 2017].

74

75 Estimation of the global aerosol direct radiative effects in past studies treated OA as wholly non-absorbing 76 [Bellouin et al., 2005; Haywood and Boucher, 2000], whereas a variety of recent studies have attempted to 77 estimate the global radiative impact of BrC. These studies are limited by incomplete knowledge of BrC sources, 78 sinks, evolution, and chemical composition-driven optical properties, and there is little data to assess model 79 predictions. They estimate that the global average top of atmosphere (TOA) BrC direct radiative effect (DRE), 80 which is its instantaneous radiative impact on the Earth's energy balance [Heald et al., 2014], ranges from +0.04to +0.57 W m⁻², with BrC contributing from 20 to 40% of DRE from total carbonaceous absorbing aerosol (i.e., 81 82 BC+BrC) [Feng et al., 2013; Jo et al., 2016; G Lin et al., 2014; Saleh et al., 2015]. These model simulations 83 depend on parameterized BrC emissions, often based on the BC-to-OA ratio, or modified combustion efficiency 84 (MCE) [Jo et al., 2016; Saleh et al., 2014]. They also assumed an invariant (non-bleaching) BrC following 85 emission. In contrast, Wang et al. [2018] included BrC bleaching utilizing a one-day photochemical lifetime and predicted a global BrC DRE of +0.048 W m⁻² and a similar BrC contribution to DRE by all carbonaceous 86 87 aerosol absorption (23%). Other modeling studies that included both bleaching and the added effect of BrC 88 enhancement relative to BC with increasing altitude [Y Zhang et al., 2017], found that DRE due to upper troposphere BrC can largely offset BrC bleaching [A Zhang et al., 2020]. Model skill has often been assessed by comparison with BrC inferred from AERONET data, but this data has substantial uncertainty itself [Schuster et al., 2016]. Global-scale data sets of measured BrC are needed for evaluation of model predictions and an assessment of its importance on the radiative balance. Here, the first estimates of BrC DRE and importance relative to BC, based on direct observational data over large spatial scales, is reported.

94 **2 Method**

95 2.1 The ATom Mission (Atmospheric Tomography Mission)

96 The NASA DC-8 aircraft conducted research flights nearly pole to pole along the central Pacific (north to south)

97 and Atlantic (south to north) Oceans at altitudes systematically alternating from near surface (180 m) to ~13 km

98 above sea level over four deployments, one in each season (see Table 1), [Prather et al., 2017]. A map is shown

99 in Figure 1. (BrC measurements were made in ATom-2, 3, and 4 deployments).

100 2.2 Filter Sampling, Extraction and Analysis

101 The particle filter sampling system and offline analysis was identical to that used in two previous studies on the 102 DC-8, SEAC⁴RS and DC3 and the method described in those publications [Forrister et al., 2015; Liu et al., 103 2015; Liu et al., 2014; Y Zhang et al., 2017]. Particles with aerodynamic diameter less than nominally 4.1 µm 104 [*McNaughton et al.*, 2007] were collected onto Teflon filters over all altitudes at intervals typically <5 minutes 105 at altitudes below 3 km and a maximum of 15 minutes for higher altitudes. For all three missions, 1074 filters 106 were collected and analyzed, including two or three blank filters per flight. Only results from water extractions 107 are reported here due to high blanks in methanol extractions. Light absorption spectra of the extract was 108 measured with a spectrophotometer utilizing a 2.5 m long liquid waveguide. A schematic of the method is 109 shown in Supplemental Information Figure S1, along with a more detailed description of the method. Light 110 absorption coefficient of chromophores in solution was calculated following *Hecobian et al.* [2010]. In the 111 following, the absorption coefficient averaged between 360 and 370 nm (avg. 365 nm) was used as a measure of particle BrC levels (i.e., BrC = Abs_{365nm}). BrC Absorption Ångström Exponents (AAE; Abs_{λ} = $C \cdot \lambda^{-AAE}$) 112 113 were also determined from the measured spectra (see Figure S2 for example spectra). Note that all data 114 presented here are at standard temperature and pressure (273K & 1013 mb), however, these are converted to 115 ambient conditions for the radiative calculations discussed below.

Limit of detection (LOD) was determined by three times the standard deviation of field blank filters, combining all blanks from a given deployment (Table 1). (See also Figure S3 for frequency distribution of all water-soluble BrC data relative to calculated LODs for each mission). In the following analysis we focus on only watersoluble BrC (WS BrC) due to high blanks associated with methanol extractions. BrC measurement uncertainty was calculated by propagating the uncertainties from sample collection to data analysis and is estimated at 20%, where the uncertainty associated with subtracting the blank contributed 40 to 60% of this overall estimate.

124 The light absorption measured in this study are largely by individual chromophores (molecules) dissolved in 125 solution, not the absorption of suspended particulate. This technique was used since it exclusively measures BrC 126 optical properties (BC is not included), resulting in a highly sensitive approach required for this remote 127 atmosphere study, however when used for analysis of filters, the main limitation is blank variability, as noted 128 above. Past studies, based on measured BrC aerosol size distributions and Mie theory, indicate that a 129 multiplication factor of 1.8 to 2.1 (roughly 2 ± 0.2 , or $\pm10\%$) can be used to estimate the light absorption by 130 aerosol particles based on measurements of chromophores in the bulk liquid extracts [Liu et al., 2013; Shetty et 131 al., 2019; Washenfelder et al., 2015; Y Zhang et al., 2017]. We include this in the subsequent overall uncertainty 132 analysis, which is discussed more below.

133 2.3 Other Measurements on the DC-8, Back Trajectories and Fire Events

134 Refractory black carbon (rBC, or just BC here) content of individual particles was measured with a single 135 particle soot photometer (SP2). Integrated BC concentrations have been adjusted to account for accumulation-136 mode BC outside of the SP2's detection size range [Schwarz et al., 2008], and in-cloud measurements were 137 removed based on cloud-probe data. In the following analysis, solvent-extracted BrC and SP2 BC are assumed 138 to encompass all absorbing carbonaceous aerosols. Methanol has been shown to extract greater than 92% of BrC 139 from laboratory-generated smoke [Chen and Bond, 2010], but other forms of light absorbing aerosols from wild 140 fires may not be included in BrC by solvent extraction [Shetty et al., 2019], nor SP2 BC measurements, which 141 would lead to our under-measuring carbonaceous aerosol absorption in this study [Adler et al., 2019]. Aerosol 142 scattering was derived from particle number size distributions for dry sizes between 2.7 nm to 4.8 µm in 143 diameter which were measured at 1 Hz using a suite of particle counters [Brock et al., 2019]. The NOAA 144 Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was used to assess both the relative 145 contributions and mass concentrations of biomass burning sources to the ambient aerosol that encompasses 146 particles of sizes between 0.1 and 4.8 µm [Froyd et al., 2019; Schill et al., 2020].

148 Airmass 72 hr back trajectories were computed using the Hybrid Single-Particle Lagrangian Integrated 149 Trajectory (HYSPLIT) analysis method [Rolph et al., 2017; Stein et al., 2015]. Locations and fire radiative 150 power (FRP) of large biomass burning regions for each ATom deployment were obtained from the Fire 151 Information for Resource Management System (FIRMS, https://firms.modaps.eosdis.nasa.gov/map/). Fires of 152 FRP greater than 100 MW are only included in the analysis. Air mass transport time from fire emissions to the 153 point of aircraft sampling was estimated based on HYSPLIT back trajectories from the sampling location to the 154 nearest FIRMS-identified wildfire intersected by the trajectory. Type of fuel, or other variables that may affect 155 emissions, were not considered. More details are provided in the Supplemental Information.

156 2.4 Radiative Impact of BrC

157 Radiative transfer calculations were performed with the Santa Barbara DISORT Atmospheric Radiative 158 Transfer (SBDART) model [Ricchiazzi et al., 1998] to compute the direct short-wave (0.25-4 µm) radiative 159 effect at the top of the atmosphere (TOA). Accuracy of the model is discussed by *Obregón et al.* [2015] and 160 more details are described in Y Zhang et al. [2017]. Estimates of aerosol scattering from dry aerosol size 161 distributions, and measurements of BC and BrC collected during aircraft vertical profiling were used in the 162 calculations. In-cloud data were excluded. Either for a complete ATom mission, or for a given geographical 163 region, all vertical profile data were averaged (mean) and then used in the radiative calculation. The aerosol scattering coefficient (b_{scat}) was calculated at multiple wavelengths from the measured dry (usually < 20% RH) 164 165 size distribution spanning particle diameters of 2.7 nm to 4.8 µm. All aerosols were assumed to be solely 166 composed of ammonium sulfate (refractive index of 1.52+0i) [Brock et al., 2019], and then ambient size 167 estimated based on temperature, pressure and RH to obtain the overall ambient scattering coefficient. Data were fitted with a power law ($b_{scat} = A \cdot \lambda^{-SAE}$, A is a constant and SAE is the scattering Ångström exponent), which 168 169 was then used with light scattering data to determine the aerosol scattering over all wavelengths in the radiative 170 forcing calculation. The light absorption coefficient for BC (b_{BC}) was calculated from the measured BC mass concentration using a mass absorption cross-section (MAC) of $10.0 \text{ m}^2/\text{g}$ at 660 nm and AAE of 1 to compute 171 172 absorption at other wavelengths. This is equivalent to a factor of 1.6 lensing effect due to BC coatings (i.e., for uncoated BC a MAC of 6.25 m²/g at 660 nm is typically used) [Y Zhang et al., 2017]. If BC absorption is 173 174 actually larger than this due to greater lensing effects, or AAEs > 1, we will overestimate the BrC contribution 175 to radiative forcing. For BrC, measured absorption at 365 nm (Abs_{365nm}) and an AAE value of 5 (the average of the measured WS BrC AAE, discussed below), was used to compute absorption at all wavelengths (b_{BrC}) . 176

178 The water-soluble light absorption data were converted to an overall aerosol BrC absorption coefficient by the 179 combination of two factors. First, the factor to convert water-soluble BrC to total BrC in solution. Based on our 180 data (Table 1), the ratio of WS BrC to total BrC for all ATom data is $53\% \pm 17\%$. Other studies have reported 181 the WS BrC to total BrC ratio for aged aerosols to be in the range of 25% to 80% [Chen and Bond, 2010; Liu et 182 al., 2015; Phillips and Smith, 2017; Satish and Rastogi, 2019; Shetty et al., 2019; Wong et al., 2017; X Zhang et 183 al., 2013]. Here we assume the ratio is 0.5 with $\pm 40\%$ uncertainty, meaning the WS BrC is multiplied by 2 184 $(\pm 40\%$ uncertainty) to estimate the contribution of all chromophores to BrC. We then convert the chromophores 185 absorption to an aerosol light absorption coefficient. This factor depends on the particle size distribution of BrC, 186 which, as discussed above is, estimated to be a factor of 2 ± 0.2 (10%), meaning the overall conversion factor is 187 4. More recent simultaneous measurements in smoke plumes of aerosol absorption with a photoacoustic 188 instrument and the same BrC filter sampling system utilized here show an overall conversion ratio of 3.21 189 $(r^2=0.84)$ for WS BrC to aerosol absorption at a wavelength of 405 nm, consistent with the factor of 4 here, 190 considering uncertainly (see Figure S4). Including the uncertainty in BrC measurement of 20% (discussed 191 above), we estimate the overall BrC aerosol light absorption coefficient determined by this method has an 192 uncertainty of $\pm 46\%$.

193

To parse out the various aerosol contributions to TOA radiative effects, we performed 3 SBDART runs to determine: (1) DRE due to only scattering; (2) DRE due to scattering and BC absorption; (3) DRE due to scattering, BC absorption and BrC absorption. We estimated the DRE of BC by subtracting (1) from (2), and the DRE of BrC by subtracting (2) from (3). More model details are provided in the Supplementary Information.

198 3 Results and Discussion

199 **3.1 Global Distribution of Fires and BrC**

200 BrC measured in ATom-2, 3 and 4 is shown in Figure 1, along with air mass back trajectories for those regions

201 where WS BrC was above the LOD. Locations of burning are shown with indicated fire radiative power (FRP),

202 for fires with FRP >100 MW. We find that WS BrC was very low over vast areas (also see Table 1), however,

203 there were regions of significant WS BrC; these include the mid-Atlantic Ocean, northern Pacific Ocean, and

204 southern Pacific Ocean near islands in Oceania (Australia, New Zealand, etc.).

206 In the tropical or mid-Atlantic region, enhanced levels of WS BrC were recorded in all three missions. FIRMS-207 identified wildfires and back trajectories suggest that the BrC source for this region was either fires in South 208 America or Africa. In ATom-2 (Jan.-Feb.), most fires were in equatorial regions in northern South America and 209 Africa, coinciding with the dry period for these regions (Jan.-Apr.). These measurements accounted for a 210 majority of the observed BrC above LOD for the complete ATom-2 mission. During ATom-3 (Sept.-Oct.), the 211 fires in South America were found further south, following the movement of dryer regions southward, dictated 212 by the annual movement of the Inter-Tropical Convergence Zone. Compared to ATom-2, the wildfires were also 213 more extensive in ATom-3 in terms of both fire density and radiative power (FRP). In the last mission, ATom-4 214 (Apr.-May), the extent of fires in these regions decreased to the lowest levels relative to the ATom-2 and 3 215 missions. Levels of BrC recorded in the mid-Atlantic tracked these seasonal trends.

216

217 For the North Pacific Basin in Figure 1, WS BrC was observed in ATom-3 and 4 and back trajectories indicated 218 that the BrC was from northeastern China, but occasionally from fires in western North America. Nearly no WS 219 BrC was above the LOD in ATom-2 in this region, which could be due to differences in emissions and transport 220 with season. BrC from biofuels or other forms of incomplete combustion may also contribute, but would not be 221 evident from the FRP data. For the tropical mid-Pacific Ocean (Figure 1), BrC above LOD was only observed in 222 ATom-3 and 4, possibly from scattered islands in the region, such as Hawaii. In the south Pacific, BrC was 223 observed downwind of Indonesia, Australia and New Zealand (Oceania), mainly during ATom-3, suggesting it 224 was also highly seasonal. For example, the Oceania region fire counts with FRP greater than 100 MW during 225 ATom-2 was 419, while there were 6721 and 3749 counts during ATom-3 and 4, respectively. BrC was 226 occasionally above LOD when sampling near or within polar regions (Antarctic and Arctic) during ATom-3 and 227 4, where back trajectories show the air masses were mainly from high latitude regions, although it was difficult 228 to locate specific sources for this region. BrC in polar regions may persist longer due to low sunlight limiting 229 BrC photochemical bleaching.

230

As can be seen in Figure 1, the number of fire events identified from FIRMS varied significantly with region and season (i.e., ATom deployment). In general, trends of fire counts and levels of WS BrC were similar; highest fire counts were mainly seen in ATom-3 and highest BrC levels were generally recorded in that mission (Table 1). However, significant scatter in this relationship can be expected since the aircraft did not necessarily sample plumes from all fires identified by FIRMS and there are uncertainties in both WS BrC and fire events identified by MODIS [*Schroeder et al.*, 2008]. Overall, we conclude that biomass burning appears to be the 237 predominant source for BrC in the remote atmosphere since most regions of recorded BrC could be traced to a

238 burning region. (We also found regions where measured BrC<LOD did not intercepted burning regions, see

239 Figure S5). Given that the smoke plumes were transported over great distances (>10,000 km), some portion of

240 the fire-emitted BrC persisted for at least 3 days, the limit of our back trajectory analysis, consistent with

241 laboratory studies that high molecular weight BrC species resist photobleaching.

242 **3.2 BrC Correlation with BC**

243 Correlations provide further evidence that the BrC was associated with mainly biomass burning. Biomass 244 burning emits BC and BrC, although there are differences in emissions rates depending on fuel and burning 245 temperature, and how these species may be altered with atmospheric age. More BrC is emitted per fuel burned 246 in smoldering compared to flaming fires [Chakrabarty et al., 2016], whereas more BC is emitted in flaming than 247 smoldering [Echalar et al., 1995]. Some fraction of BrC will bleach over time, whereas BC is chemically stable, 248 and only undergoes removal from the air with an estimated lifetime of about <5 to 10 days globally [Cooke and 249 Wilson, 1996; Koch et al., 2009; Lund et al., 2018]. Also, there is evidence that BrC is lofted to higher altitudes 250 by convection more efficiently than BC [Y Zhang et al., 2017], thus some scatter between BrC and BC is 251 expected even if both are emitted from wild fires in a given region. The Pearson correlation (r) between BrC and 252 BC was 0.86, 0.75 and 0.53 for Atom-2, 3 and 4, respectively (for scatter plots, see supplemental material 253 Figure S6, also see Table S1). Despite high correlations, there is significant variability at lower levels, 254 suggesting that BC cannot solely be used to infer BrC optical effects. Data with moderate to low WS BrC, but 255 very low BC, were mostly observed at higher altitudes (>9 km), possibly due to differences in advection of these 256 species through clouds [Y Zhang et al., 2017], whereas periods (filter samples), that contained moderate to low 257 BC, but very low WS BrC were mainly found in the mid-Atlantic Ocean region. Causes may be different 258 burning conditions (smoldering/flaming) and processing during transport.

259

Comparing amongst separate ATom missions, the highest correlations between BrC and BC was found in ATom-2 (0.86); the correlations were weaker in ATom-3 (0.75) and lowest in ATom-4 (0.53). A similar, although somewhat stronger correlation trend was found for BrC vs. estimated biomass burning potassium (K^+_{BB}), and between K^+_{BB} vs. BC (see Table S1 and supplemental material discussion for calculation of K^+_{BB}). The trend was also seen in BrC and the PALMS estimate of biomass burning particle mass (See Figure S6). A possible explanation is BrC observed in ATom-2 was mainly from two concentrated regions of burning (see Figure 1a), whereas in ATom-3 and 4, data were from fires located in differing geographic regions. Thus, 267 although the total impact of fires may be higher for ATom-3 and 4, the characteristics of the emissions and 268 effects during transport might be broader and more complex, which weakened the correlations.

269 3.3 Direct Radiative Effect of BrC Aerosol

Light absorption over the full spectral wavelength range is necessary to simulate the radiative impact of BrC aerosol. As noted in the Methods, we use a constant BrC AAE of 5, the mean for all missions. For the three ATom missions, AAE values ranged from 2.5 to 8.6 (10th and 90th percentile) and the mean AAE was similar for ATom-2 and 3, but higher for ATom-4 (Table 1). No geographical dependence for AAE was observed, but higher AAE values were always found at high altitude or near the surface. The cause for variability in AAEs is not clear but adds uncertainty to model predictions of radiative effect, which we include in the overall estimated uncertainty.

277

278 A summary of the radiative calculations is shown in Figure 2, where we compare averages for each ATom 279 mission for different groups of data. (DREs of each aerosol component for various latitudes ranges can be found 280 in Table S2). Figure 2a shows the DRE for scattering, and BC and BrC absorption, for data in which the 281 measured WS BrC was above the LOD. For just these data, BrC accounted for 19 to 59% of the carbonaceous 282 aerosol absorption instantaneous forcing, and carbonaceous aerosol absorption DRE offset total light scattering 283 DRE by ~5%. These are periods (BrC>LOD) of sampling in plumes of fairly strong biomass burning influence, 284 as confirmed by the PALMS tracer analysis; for the three ATom missions when BrC>LOD the median 285 contribution of biomass burning to aerosol mass was 30% and median aerosol mass from biomass burning was 286 0.24 µg m⁻³. This contrasts with periods when BrC<LOD shown in Figure 2b, where the magnitudes of the 287 TOA DRE was much smaller for scattering and absorption (contrast scales in Figure 2a and 2b). Based on the 288 PALMS data, for these periods only 8% of the aerosol mass was from biomass burning and the concentration 289 median was 0.03 µg m⁻³ (see bar and whisker plot in Supplemental Material Figure S7). BC concentration 290 followed a similar trend, BC was substantially higher when BrC>LOD (i.e, periods of smoke sampling), 291 especially in ATom-2 (Figure S8).

292

The average DRE for each mission was also calculated. Figure 2c shows the mean instantaneous DRE at TOA that includes all data, and where BrC < LOD was set to ½ LOD. The ratio of averaged DRE due to BrC was 44% of the averaged total light absorption by carbonaceous aerosols among three ATom missions. The mission average was 38% when BrC set equal to 0 for BrC<LOD, (not plotted). The mean results are similar to those periods of BrC>LOD (Figure 2a) since the mean is dominated by the higher magnitude values. Figure 2d gives the DRE results for smoke detected in just the mid-tropical Atlantic, and Table S2 summarizes results from other latitude ranges. These data show that the BrC contribution can be substantial, but with significant variation, ranging from 21% to 59% of the total carbonaceous absorption DRE for the three ATom missions.

301

302 The fraction of carbonaceous aerosol DRE due to BrC for these data are similar to or surpasses the high end of 303 the range reported by other studies [Feng et al., 2013; Jo et al., 2016; P Lin et al., 2015; Saleh et al., 2014; 304 Wang et al., 2016; A Zhang et al., 2020]. A possible reason is the models are truly global averages, whereas this 305 is data only from where the aircraft sampled. Another possible reason is the sensitivity of DRE to the vertical 306 distribution of BrC and BC, which most modeling studies may not correctly simulate. Throughout this study, 307 BC was mainly found from near the surface to mid altitudes, whereas BrC was observed to decrease less slowly 308 with altitude compared to BC, resulting in an increasing of BrC/BC with altitude (Figure S9), as has been seen 309 in continental aerosols [Liu et al., 2014].

310

311 The approach used to investigate BrC based on dissolving aerosol in a solvent and measuring the molecular 312 chromophores exclusive of BC generally has higher sensitivity than instrumentation that measures aerosol light 313 absorption without altering the particle, such as the multi-wavelength photo-acoustic measurement. Even so, the 314 majority of samples in the remote atmosphere were below detection limit using the solvent method. However, 315 measuring dissolved chromophores and then estimating aerosol optical effects introduces uncertainty, as 316 discussed in the Methods section. Sensitivity tests indicate there is nearly a 1:1 correspondence between the 317 change in BrC absorption coefficient and its DRE, implying the uncertainty in BrC TOA DRE is roughly \pm 318 45%, similar to the overall BrC absorption coefficient uncertainty at 365nm. The use of a constant BrC AAE of 319 5, based on the average of all ATOM data, also adds uncertainty to the DRE; the mean DRE due to BrC 320 increases by about 10% for a BrC AAE of 3 instead of 5 and decreases by about 30% for an AAE of 7. 321 Combining these uncertainties, we estimate the overall uncertainty in BrC DRE is roughly 50%. Assuming the 322 uncertainty of DRE due to BC is significantly smaller, the fraction of BrC DRE to total carbonaceous DRE is 323 estimated to be 7 to 23% for ATom-2, 45 to 48% for ATom-3, and 39 to 47% for ATom-4 (range for setting 324 BrC below LOD to zero or $\frac{1}{2}$ LOD) with $\pm 24\%$ uncertainty.

325

In summary, the smoldering combustion of wildfires is known to be a significant source of BrC. We find on a global scale, based on the regions measured during ATom-2, 3 and 4 deployments (Jan./Feb., Sept./Oct.,

Manuscript submitted to Geophysical Research Letters

Apr./May), that measurable amounts of BrC were associated with tracers of smoke such as BC, potassium, and PALMS single particle composition. Such smoke contained variable amounts of BrC, which was often detected great distances from the burning regions (greater than 10,000 km), persisting for more than 3 days following emissions. This BrC made a significant contribution to the overall absorption by carbonaceous aerosols and the top of atmospheric direct radiative effect, however the spatial distribution of the BrC forcing was highly heterogeneous.

336

337 Acknowledgements:

Research by Georgia Tech was supported by the National Aeronautics and Space Administration's under grant NNX15AT90G and UNH by grant NNX15AG62A. The authors thank all pilots and crew of NASA DC-8 for their role in obtaining the data. We also thank to Dr. Bernadett Weinzierl and her group for the contribution of the cloud data.

342

343 Data Availability:

344 The ATom data are available as described by in Wofsy et al. [2018], and may also be accessed at

345 <u>https://doi.org/10.3334/ORNLDAAC/1581</u>. More detailed data (BrC and WSOC raw data) can be provided by

346 contacting with the corresponding author.

348 References

- Adler, G., et al. (2019), Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon, *Aerosol Science and Technology*, 53(9), 976-989,
- 351 doi:10.1080/02786826.2019.1617832.
- Andrews, E., et al. (2006), Comparison of methods for deriving aerosol asymmetry parameter, *Journal of Geophysical Research: Atmospheres*, 111(D5), doi:10.1029/2004jd005734.
- Bellouin, N., O. Boucher, J. Haywood, and M. S. Reddy (2005), Global estimate of aerosol direct radiative
 forcing from satellite measurements, *Nature*, 438(7071), 1138-1141, doi:10.1038/nature04348.
- Bond, T. C., and R. W. Bergstrom (2006), Light Absorption by Carbonaceous Particles: An Investigative
 Review, *Aerosol Science and Technology*, 40(1), 27-67, doi:10.1080/02786820500421521.
- Brock, C. A., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom):
 methods, uncertainties, and data products, *Atmos. Meas. Tech.*, *12*(6), 3081-3099, doi:10.5194/amt-12-3081-2019.
- Chakrabarty, R. K., et al. (2016), Brown carbon aerosols from burning of boreal peatlands: microphysical
 properties, emission factors, and implications for direct radiative forcing, *Atmos. Chem. Phys.*, *16*(5), 3033 3040, doi:10.5194/acp-16-3033-2016.
- Chen, Y., and T. C. Bond (2010), Light absorption by organic carbon from wood combustion, *Atmos. Chem. Phys.*, 10(4), 1773-1787, doi:10.5194/acp-10-1773-2010.
- 366 Chýlek, P., and J. A. Coakley (1974), Aerosols and Climate, *Science*, *183*(4120), 75, doi:10.1126/science.183.4120.75.
- Claeys, M., R. Vermeylen, F. Yasmeen, Y. Gómez-González, X. Chi, W. Maenhaut, T. Mészáros, and I. Salma
 (2012), Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning
 environments using liquid chromatography with UV/vis photodiode array detection and electrospray
 ionisation mass spectrometry, *Environmental Chemistry*, 9(3), 273-284.
- Cooke, W. F., and J. J. N. Wilson (1996), A global black carbon aerosol model, *Journal of Geophysical Research: Atmospheres*, *101*(D14), 19395-19409, doi:10.1029/96JD00671.
- Desyaterik, Y., Y. Sun, X. Shen, T. Lee, X. Wang, T. Wang, and J. L. Collett Jr (2013), Speciation of "brown"
 carbon in cloud water impacted by agricultural biomass burning in eastern China, *Journal of Geophysical Research: Atmospheres*, *118*(13), 7389-7399, doi:10.1002/jgrd.50561.
- Di Lorenzo, R. A., and C. J. Young (2016), Size separation method for absorption characterization in brown
 carbon: Application to an aged biomass burning sample, *Geophysical Research Letters*, 43(1), 458-465,
 doi:10.1002/2015GL066954.
- Echalar, F., A. Gaudichet, H. Cachier, and P. Artaxo (1995), Aerosol emissions by tropical forest and savanna
 biomass burning: Characteristic trace elements and fluxes, *Geophysical Research Letters*, 22(22), 3039 3042, doi:10.1029/95GL03170.
- Feng, Y., V. Ramanathan, and V. R. Kotamarthi (2013), Brown carbon: a significant atmospheric absorber of
 solar radiation?, *Atmos. Chem. Phys.*, 13(17), 8607-8621, doi:10.5194/acp-13-8607-2013.
- Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, *Geophysical Research Letters*, 42(11),
 4623-4630, doi:10.1002/2015GL063897.
- Froyd, K. D., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft
 platforms using single-particle mass spectrometry, *Atmos. Meas. Tech.*, *12*(11), 6209-6239,
 doi:10.5194/amt-12-6209-2019.

- Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric
 aerosols: A review, *Reviews of Geophysics*, 38(4), 513-543, doi:10.1029/1999rg000078.
- Heald, C. L., D. A. Ridley, J. H. Kroll, S. R. H. Barrett, K. E. Cady-Pereira, M. J. Alvarado, and C. D. Holmes
 (2014), Contrasting the direct radiative effect and direct radiative forcing of aerosols, *Atmos. Chem. Phys.*,
- 394 *14*(11), 5513-5527, doi:10.5194/acp-14-5513-2014.
- Hecobian, A., X. Zhang, M. Zheng, N. Frank, E. S. Edgerton, and R. J. Weber (2010), Water-Soluble Organic
 Aerosol material and the light-absorption characteristics of aqueous extracts measured over the
 Southeastern United States, *Atmos. Chem. Phys.*, 10(13), 5965-5977, doi:10.5194/acp-10-5965-2010.
- 398 Hoffer, A., A. Gelencsér, P. Guyon, G. Kiss, O. Schmid, G. P. Frank, P. Artaxo, and M. O. Andreae (2006),
- Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, *Atmos. Chem. Phys.*,
 6(11), 3563-3570, doi:10.5194/acp-6-3563-2006.
- Horvath, H. (1993), Atmospheric light absorption—A review, Atmospheric Environment. Part A. General
 Topics, 27(3), 293-317, doi:https://doi.org/10.1016/0960-1686(93)90104-7.
- Jo, D. S., R. J. Park, S. Lee, S. W. Kim, and X. Zhang (2016), A global simulation of brown carbon:
 implications for photochemistry and direct radiative effect, *Atmos. Chem. Phys.*, 16(5), 3413-3432,
 doi:10.5194/acp-16-3413-2016.
- Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, *Atmos. Chem. Phys.*,
 9(22), 9001-9026, doi:10.5194/acp-9-9001-2009.
- Lin, G., J. E. Penner, M. G. Flanner, S. Sillman, L. Xu, and C. Zhou (2014), Radiative forcing of organic aerosol
 in the atmosphere and on snow: Effects of SOA and brown carbon, *Journal of Geophysical Research: Atmospheres*, *119*(12), 7453-7476, doi:10.1002/2013JD021186.
- Lin, P., P. K. Aiona, Y. Li, M. Shiraiwa, J. Laskin, S. A. Nizkorodov, and A. Laskin (2016), Molecular
 Characterization of Brown Carbon in Biomass Burning Aerosol Particles, *Environmental Science & Technology*, 50(21), 11815-11824, doi:10.1021/acs.est.6b03024.
- Lin, P., J. Liu, J. E. Shilling, S. M. Kathmann, J. Laskin, and A. Laskin (2015), Molecular characterization of
 brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, *Physical Chemistry Chemical Physics*, *17*(36), 23312-23325, doi:10.1039/C5CP02563J.
- Liu, J., M. Bergin, H. Guo, L. King, N. Kotra, E. Edgerton, and R. J. Weber (2013), Size-resolved
 measurements of brown carbon in water and methanol extracts and estimates of their contribution to
 ambient fine-particle light absorption, *Atmos. Chem. Phys.*, *13*(24), 12389-12404, doi:10.5194/acp-1312389-2013.
- Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance,
 and radiative forcing, *Atmos. Chem. Phys.*, *15*(14), 7841-7858, doi:10.5194/acp-15-7841-2015.
- Liu, J., et al. (2014), Brown carbon in the continental troposphere, *Geophysical Research Letters*, 41(6), 2191-2195, doi:10.1002/2013GL058976.
- Lund, M. T., B. H. Samset, R. B. Skeie, D. Watson-Parris, J. M. Katich, J. P. Schwarz, and B. Weinzierl (2018),
 Short Black Carbon lifetime inferred from a global set of aircraft observations, *npj Climate and*
- 427 *Atmospheric Science*, *1*(1), 31, doi:10.1038/s41612-018-0040-x.
- McNaughton, C. S., et al. (2007), Results from the DC-8 Inlet Characterization Experiment (DICE): Airborne
 Versus Surface Sampling of Mineral Dust and Sea Salt Aerosols, *Aerosol Science and Technology*, 41(2),
 136-159, doi:10.1080/02786820601118406.
- 431 Obregón, M. A., A. Serrano, M. J. Costa, and A. M. Silva (2015), Validation of libRadtran and SBDART
- models under different aerosol conditions, *IOP Conference Series: Earth and Environmental Science*, 28, 012010, doi:10.1088/1755-1315/28/1/012010.

- Phillips, S. M., and G. D. Smith (2017), Spectroscopic comparison of water- and methanol-soluble brown
 carbon particulate matter, *Aerosol Science and Technology*, 51(9), 1113-1121,
 doi:10.1080/02786826.2017.1334109.
- Pio, C. A., M. Legrand, C. A. Alves, T. Oliveira, J. Afonso, A. Caseiro, H. Puxbaum, A. Sanchez-Ochoa, and A.
 Gelencsér (2008), Chemical composition of atmospheric aerosols during the 2003 summer intense forest
 fire period, *Atmospheric Environment*, 42(32), 7530-7543, doi.
- 440 Pio, C. A., et al. (2007), Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a
 441 west-east transect across Europe, *Journal of Geophysical Research: Atmospheres*, *112*(D23),
 442 doi:10.1029/2006JD008038.
- 443 Prather, M. J., et al. (2017), Global atmospheric chemistry which air matters, *Atmos. Chem. Phys.*, *17*(14), 9081-9102, doi:10.5194/acp-17-9081-2017.
- Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998), SBDART: A Research and Teaching Software Tool
 for Plane-Parallel Radiative Transfer in the Earth's Atmosphere, *Bulletin of the American Meteorological Society*, *79*(10), 2101-2114, doi:10.1175/1520-0477(1998)079<2101:Sarats>2.0.Co;2.
- Rolph, G., A. Stein, and B. Stunder (2017), Real-time Environmental Applications and Display sYstem:
 READY, *Environmental Modelling & Software*, 95, 210-228, doi:https://doi.org/10.1016/j.envsoft.2017.06.025.
- Saleh, R., M. Marks, J. Heo, P. J. Adams, N. M. Donahue, and A. L. Robinson (2015), Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions, *Journal of Geophysical Research: Atmospheres*, *120*(19), 10,285-210,296, doi:10.1002/2015JD023697.
- Saleh, R., et al. (2014), Brownness of organics in aerosols from biomass burning linked to their black carbon
 content, *Nature Geoscience*, 7, 647, doi:10.1038/ngeo2220
- 457 https://www.nature.com/articles/ngeo2220#supplementary-information.
- 458 Satish, R., and N. Rastogi (2019), On the Use of Brown Carbon Spectra as a Tool to Understand Their Broader 459 Composition and Characteristics: A Case Study from Crop-residue Burning Samples, *ACS Omega*, 4(1),
- 460 1847-1853, doi:10.1021/acsomega.8b02637.
- Schill, G. P., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, *Nature Geoscience*, *Accepted*, doi:10.1038/s41561-020-0586-1.
- Schroeder, W., E. Prins, L. Giglio, I. Csiszar, C. Schmidt, J. Morisette, and D. Morton (2008), Validation of
 GOES and MODIS active fire detection products using ASTER and ETM+ data, *Remote Sensing of Environment*, 112(5), 2711-2726, doi:https://doi.org/10.1016/j.rse.2008.01.005.
- Schuster, G. L., O. Dubovik, A. Arola, T. F. Eck, and B. N. Holben (2016), Remote sensing of soot carbon –
 Part 2: Understanding the absorption Ångström exponent, *Atmos. Chem. Phys.*, *16*(3), 1587-1602, doi:10.5194/acp-16-1587-2016.
- Schwarz, J. P., et al. (2008), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, *Journal of Geophysical Research: Atmospheres*, *113*(D3), doi:10.1029/2007JD009042.
- Shetty, N. J., A. Pandey, S. Baker, W. M. Hao, and R. K. Chakrabarty (2019), Measuring light absorption by
 freshly emitted organic aerosols: optical artifacts in traditional solvent-extraction-based methods, *Atmos. Chem. Phys.*, 19(13), 8817-8830, doi:10.5194/acp-19-8817-2019.
- Sokolik, I. N., and O. B. Toon (1999), Incorporation of mineralogical composition into models of the radiative
 properties of mineral aerosol from UV to IR wavelengths, *Journal of Geophysical Research: Atmospheres*,
 104(D8), 9423-9444, doi:10.1029/1998JD200048.
- 477 Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan (2015), NOAA's
 478 HYSPLIT Atmospheric Transport and Dispersion Modeling System, *Bulletin of the American*479 *Meteorological Society*, 96(12), 2059-2077, doi:10.1175/BAMS-D-14-00110.1.
 - 15

- Wang, X., C. L. Heald, J. Liu, R. J. Weber, P. Campuzano-Jost, J. L. Jimenez, J. P. Schwarz, and A. E. Perring
 (2018), Exploring the observational constraints on the simulation of brown carbon, *Atmos. Chem. Phys.*,
 18(2), 635-653, doi:10.5194/acp-18-635-2018.
- Wang, X., C. L. Heald, A. J. Sedlacek, S. S. de Sá, S. T. Martin, M. L. Alexander, T. B. Watson, A. C. Aiken, S.
 R. Springston, and P. Artaxo (2016), Deriving brown carbon from multiwavelength absorption
 measurements: method and application to AERONET and Aethalometer observations, *Atmos. Chem. Phys.*, *16*(19), 12733-12752, doi:10.5194/acp-16-12733-2016.
- 487 Washenfelder, R. A., et al. (2015), Biomass burning dominates brown carbon absorption in the rural 488 southeastern United States, *Geophysical Research Letters*, 42(2), 653-664, doi:10.1002/2014GL062444.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, edited, ORNL
 Distributed Active Archive Center, doi:10.3334/ornldaac/1581.
- Wong, J. P. S., A. Nenes, and R. J. Weber (2017), Changes in Light Absorptivity of Molecular Weight
 Separated Brown Carbon Due to Photolytic Aging, *Environmental Science & Technology*, 51(15), 84148421, doi:10.1021/acs.est.7b01739.
- Wong, J. P. S., M. Tsagkaraki, I. Tsiodra, N. Mihalopoulos, K. Violaki, M. Kanakidou, J. Sciare, A. Nenes, and
 R. J. Weber (2019), Atmospheric evolution of molecular-weight-separated brown carbon from biomass
 burning, *Atmos. Chem. Phys.*, *19*(11), 7319-7334, doi:10.5194/acp-19-7319-2019.
- Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman (2005), Retrieval of biomass combustion rates
 and totals from fire radiative power observations: FRP derivation and calibration relationships between
 biomass consumption and fire radiative energy release, *Journal of Geophysical Research: Atmospheres*, *110*(D24), doi:10.1029/2005JD006318.
- Zhang, A., Y. Wang, Y. Zhang, R. J. Weber, Y. Song, Z. Ke, and Y. Zou (2020), Modeling the global radiative
 effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black
 carbon, *Atmos. Chem. Phys.*, 20(4), 1901-1920, doi:10.5194/acp-20-1901-2020.
- Zhang, X., A. Hecobian, M. Zheng, N. H. Frank, and R. J. Weber (2010), Biomass burning impact on PM2.5
 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS
 fire counts and PMF analysis, *Atmos. Chem. Phys.*, *10*(14), 6839-6853, doi:10.5194/acp-10-6839-2010.
- Zhang, X., Y.-H. Lin, J. D. Surratt, and R. J. Weber (2013), Sources, Composition and Absorption Ångström
 Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin,
 Environmental Science & Technology, 47(8), 3685-3693, doi:10.1021/es305047b.
- 510 Zhang, Y., et al. (2017), Top-of-atmosphere radiative forcing affected by brown carbon in the upper 511 troposphere, *Nature Geoscience*, *10*, 486, doi:10.1038/ngeo2960.

- 516 Figure 1. Water-soluble (WS) BrC (Absorption coefficient at 365 nm) global distribution measured in ATom-2
- 517 (a), ATom-3 (b), and ATom-4 (c). Filled circles are colored by the magnitude of WS BrC for data above the
- 518 LOD and open circles represent data below the LOD, sized by relative magnitude. Fire dots with greater than
- 519 100 MW fire radiative power (FRP) are colored by FRP magnitude in all plots. HYSPLIT air mass back
- 520 trajectories are shown for up to 72 hours, where black dots indicate locations every 24 hours.

521

Figure 2. Instantaneous clear-sky DRE at the top of atmosphere (TOA) computed with ATom data (a) for the average of each ATom mission when BrC data are above LOD, (b) average of each ATom mission when BrC data are below LOD, (c) global average of each ATom mission for all data with BrC < LOD set to ½ LOD, and (d) just for data in the mid-Atlantic (see Figure 1). The percentages shown in the scattering bar are the fraction of DRE due to carbonaceous aerosol absorption relative to scattering, Abs(BC+BrC)/Scat., and the percentages shown to the right of the bar are the fraction of DRE due to BrC of all carbonaceous absorbing species, Abs(BrC)/Abs(BC+BrC). Note the scale changes at the point zero since aerosol scattering dominates TOA DRE in remote regions.

539540 Table 1. ATom data summary. BrC absorption data are for only water-soluble species.

	ATom-2	ATom-3	ATom-4
Deployment dates	26 Jan. to 21 Feb. 2017	8 Sept. to 27 Oct. 2017	24 Apr. to 21 May 2018
Number of filters analyzed	323	380	362
BrC LOD, Mm ⁻¹	0.05	0.15	0.10
% of filters above LOD	5.1	28.4	27.3
BrC Mean: Data below LOD set to 1/2 LOD, Mm ⁻¹	0.003	0.172	0.099
BrC Median: No adjustment for below LOD (Median for only data above LOD), Mm ⁻¹	-0.001 (0.098)	0.066 (0.276)	0.042 (0.172)
Water-soluble BrC to Total BrC Ratio	N.A.	57%±17%	50%±16%
AAE mean: wavelength ranges from 300 to 500 nm	4.1	4.3	6.5
Number of FIRMS identified fire counts with FRP greater than 100 MW globally	13,905	33,070	18,408
BrC mean DRE, (BrC set to zero for data below LOD), W $\ensuremath{m^{-2}}$	+0.033	+0.29	+0.15
	(+0.01)	(+0.25)	(+0.11)
BC mean DRE, W m ⁻²	+0.11	+0.31	+0.17
Scattering Mean DRE, W m ⁻²	-8.07	-17.02	-8.99

541

542 To estimate corresponding aerosol absorption coefficients, liquid absorption coefficients should be multiplied by

543 a factor of 1.8 to 2 (see text). The Direct Radiative Effect (DRE) was based on water-soluble BrC multiplied by

544 a factor of 4 to account for conversion of liquid measurement of chromophores to particle absorption and

545 convert water-soluble BrC to total BrC absorption (see WS BrC/Total BrC row above).

546

547