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Abstract

The variability of the sea level pressure in the North Atlantic sector is the most important driver of weather and climate in

Europe. The main mode of this variability, the North Atlantic Oscillation (NAO), explains up to 50% of the total variance.

Other modes, known as the Scandinavian index, East Atlantic and East Atlantic/West Russian pattern, complement the

variability of the sea level pressure, thereby influencing the European climate. It has been shown previously that a seasonal

prediction system with enhanced winter NAO skill due to ensemble subsampling entails an improved prediction of the surface

climate variables as well. Here, we show that a refined subselection procedure that accounts both for the NAO index and for

the three additional modes of sea level pressure variability, is able to further increase the prediction skill of wintertime mean

sea level pressure, near-surface temperature and precipitation across Europe.
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Abstract13

The variability of the sea level pressure in the North Atlantic sector is the most impor-14

tant driver of weather and climate in Europe. The main mode of this variability, the North15

Atlantic Oscillation (NAO), explains up to 50% of the total variance. Other modes, known16

as the Scandinavian index, East Atlantic and East Atlantic/West Russian pattern, com-17

plement the variability of the sea level pressure, thereby influencing the European cli-18

mate. It has been shown previously that a seasonal prediction system with enhanced win-19

ter NAO skill due to ensemble subsampling entails an improved prediction of the sur-20

face climate variables as well. Here, we show that a refined subselection procedure that21

accounts both for the NAO index and for the three additional modes of sea level pres-22

sure variability, is able to further increase the prediction skill of wintertime mean sea level23

pressure, near-surface temperature and precipitation across Europe.24

Plain Language Summary25

Atmospheric winter conditions in Europe are primarily controlled by the varying26

pressure field over the North Atlantic, inducing generally cold/mild and dry/wet weather27

in Europe. Current seasonal forecasts of European winter climate, though highly desir-28

able for society and economy, are as yet not fully reliable. There exist a number of au-29

tumn predictors, such as sea surface and stratospheric temperature, Eurasian snow depth,30

and Arctic sea ice, that impact on the upcoming pressure regimes in a predictable way.31

The present dynamical seasonal forecast systems respond still too weakly to these known32

seasonal predictors. But the relationship is reproduced quite well by means of statistics.33

In combination, statistical and dynamical forecasts have the potential to improve fore-34

casts of the North Atlantic pressure conditions and thereby affected variables like tem-35

perature and precipitation in Europe considerably. We extend an existing hybrid sea-36

sonal forecast procedure by considering more modes of variability of the Atlantic pres-37

sure regimes than just the North Atlantic Oscillation. In this way, we are able to improve38

the forecasts for temperature and precipitation over wider regions in Europe.39

1 Introduction40

Seasonal prediction is a field of active research with several meteorological insti-41

tutions worldwide issuing such seasonal forecasts to support environmental and economic42

decisions of a wide range of user groups. To date, the greatest success of such dynam-43
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ical ensemble forecast systems is the prediction of ENSO (El Niño Southern Oscillation)44

several months ahead, which is the most important mode of interannual variability of45

the global climate influencing atmospheric phenomena around the world. In general, the46

skill of seasonal forecasts is satisfactory in the tropics, whereas prediction of northern47

mid-latitude seasonal climate remains challenging, as recently evaluated by Baker, Shaf-48

frey, Sutton, et al. (2018). They show that the anomaly correlation coefficient (ACC)49

used to measure the prediction skill of mean sea level pressure (SLP) in a multi-model50

ensemble is low and not significant over most of the North Atlantic-European sector in51

most of the analyzed models.52

Cohen et al. (2019) argue that new statistical techniques can increase the accuracy53

of seasonal forecasts and advocate the development of hybrid dynamical-statistical fore-54

casts to produce more robust seasonal predictions. Hybrid forecasts based on circula-55

tion specification were presented for example by Baker, Shaffrey, and Scaife (2018) and56

Dobrynin et al. (2018).57

In boreal winter, European weather and climate is dominated by the zonal prop-58

agation of planetary and synoptic-scale waves. This large scale circulation is an extremely59

high-dimensional phenomenon in real space. The technique of Principal Component Anal-60

ysis (PCA), applied to the evolving sea level pressure (SLP) field, is one way to describe61

the states of this phenomenon in a sparse manner. The first principal component (PC)62

of SLP corresponds closely to the North Atlantic Oscillation (NAO) index, the impor-63

tance of which for wintertime temperature, wind and precipitation anomalies in the North64

Atlantic-European sector has been known for long time (J. W. Hurrell, 1995; J. Hurrell65

et al., 2003; Thompson et al., 2003). However, despite its importance, it would be mis-66

leading to consider the NAO in isolation. Although PCs are orthogonal by construction,67

the components are interwoven nonlinearly, and every PC represents just one aspect of68

the whole circulation.69

We therefore extend our notion of SLP variability considering three further modes70

of variability (2nd, 3rd and 4th PC) in addition to the NAO index. These modes, hence71

called circulation indices, correspond to the Scandinavian Index (SCAN), the East At-72

lantic/West Russian (EA/WR) and the East Atlantic (EA) pattern (although the de-73

nomination differs between authors, (Barnston & Livezey, 1987)). Together these indices74
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explain about 80% of SLP variability. We set aside the inclusion of even more circula-75

tion indices, as their identification in short time series is complicated by stochastic noise.76

Comas-Bru and McDermott (2014) show that higher-order circulation indices mod-77

ulate the relation between NAO and European climate by shifting the NAO dipole in78

the South-West/North-East direction or rotating it in a clockwise/anticlockwise move-79

ment. Moreover, Vihma et al. (2018) explore the effects of large scale atmospheric pat-80

terns besides NAO on European winter temperatures.81

Dobrynin et al. (2018) reported significant improvements in the seasonal predic-82

tion of surface temperature (TAS) and precipitation (PR) over a large area mostly in83

northern Eurasia: on the basis of an accurate prediction of the NAO index, ”good” dy-84

namical forecast members are selected from the forecast ensemble. But as the NAO in-85

dex explains no more than 50% of the SLP variance, even a perfect prediction of the win-86

ter NAO will not improve the seasonal prediction of temperature and precipitation be-87

yond certain limits (Dobrynin et al., 2018). The objective of the present paper is to ex-88

plore possible improvements facilitated by the specification of all four leading circula-89

tion indices in the Euro-Atlantic sector (NAO, SCAN, EA/WR, EA).90

To produce the mentioned accurate prediction of the NAO index, Dobrynin et al.91

(2018) developed a statistical estimator of the mean winter NAO index with a correla-92

tion of around 0.8 by taking into account autumn states of slowly varying boundary con-93

ditions of the ocean and atmosphere: arctic sea ice thickness, sea surface temperature,94

snow depth in Eurasia and stratospheric temperature in 100 hPa, see also Hall et al. (2017)95

and L. Wang et al. (2017). Similarly, Iglesias et al. (2014) and Ossó et al. (2018) pre-96

dict the seasonal evolution of the East Atlantic pattern based on sea surface tempera-97

ture. Rust et al. (2015) identify a linear relationship between temperature in Europe and98

several circulation indices, which allows the isochronic prediction of temperature anoma-99

lies given those indices.100

We are going to broaden the approach of Dobrynin et al. (2018) by including the101

above mentioned predictor fields in four multiple linear regressions to predict each of the102

four considered circulation indices. These fields have been corroborated as physically mean-103

ingful drivers of the Euro-Atlantic SLP variability independently using causal network104

methods by Kretschmer et al. (2016). We show that an ensemble selection technique sim-105

ilar to Dobrynin et al. (2018), applied to the hindcasts of the operational seasonal fore-106
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cast model of the German Meteorological Service GCFS2.0, accounting for four circu-107

lation indices, leads to substantial improvement in the forecasts of SLP, TAS and PR108

in the North Atlantic-European sector.109

2 Data110

We use data from the operational German Climate Forecast System, version 2 (GCFS2.0).111

GCFS2.0 is based on the MPI-ESM-HR (Müller et al., 2018; Mauritsen et al., 2018) with112

a horizontal resolution corresponding to 0.9◦ in the atmosphere and an ocean resolution113

of nominally 0.4◦. In cooperation, Universität Hamburg (UHH), Max Planck Institute114

for Meteorology (MPI) and Deutscher Wetterdienst (DWD) have developed the seasonal115

prediction system GCFS, issuing operational seasonal forecasts once a month since 2016,116

starting on the first day of each month covering the upcoming 6 months. The first month117

is discarded as spin up.118

The forecasts (both restrospective and real-time) are initialized with the state of119

the climate system inferred from the assimilation run using a continuous full-field nudg-120

ing for ocean, sea-ice and atmosphere (Baehr et al., 2015). ERA-Interim vorticity, di-121

vergence, temperature and sea level pressure are used for the atmosphere, ORAS5 sea-122

ice, temperature and salinity are used for the ocean and sea-ice model. In order to ac-123

count for uncertainties in initial conditions, an ensemble is established consisting of 50124

members.125

For each of the twelve forecasts per year, a hindcast data set (retrospective fore-126

casts) consisting of 30 members per start date is provided to derive the model climate,127

error metrics and skill scores. In GCFS2.0, hindcast data cover the monthly starting dates128

from 1990 through 2017. The present study concentrates on hindcasts starting in Novem-129

ber, which is when the upcoming boreal winter (December, January, February; DJF) is130

routinely forecasted.131

As a complement to the assimilation run of the GCFS2.0 seasonal forecast system,132

we will also need the assimilation of the decadal prediction system developed in the MiK-133

lip project (Pohlmann et al., 2019) because it extends 20 years farther into the past (1958-134

present). This system facilitates a slightly different initialization method compared to135

the seasonal prediction system. The atmosphere is nudged with ERA40 reanalysis full-136

field data until 1979 and ERA-Interim reanalysis data from 1980 onwards. The ocean137
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is nudged with ORAS4 reanalysis anomalies during the whole duration (1960-present)138

of the simulation. The sea-ice is nudged with NSIDC sea-ice concentration anomalies from139

1980 till present.140

3 Methods141

We adopt the idea of Dobrynin et al. (2018) to predict the NAO index of the up-142

coming winter (DJF) based on four predictors, autumn sea ice thickness (SIT), snow depth143

(SND), sea surface temperature (SST), and stratospheric temperature at 100 hPa (TA100),144

from the assimilation run of GCFS2.0. The actual values of the predictors are calculated145

as an area weighted mean of monthly grid cell values, taking into account only grid cells146

that show a significant correlation to the NAO index. We construct a multiple linear re-147

gression estimator for the NAO index that takes all four predictors into account simul-148

taneously.149

Multiple linear regression estimators for the three other circulation indices (SCAN,150

EA/WR, EA) are constructed analogously to the NAO prediction. The literature on driv-151

ing conditions influencing these indices is rather sparse. However, as already mentioned152

above, the large scale circulation in the North Atlantic-European sector is a complex in-153

teraction of many factors. Boundary fields like the chosen predictors do not impact ex-154

clusively on one or another circulation index, but the whole system, exerting a greater155

or lesser influence on all components. For these reasons, we use the same predictors for156

SCAN, EW/WR and EA as are proposed for the NAO in Dobrynin et al. (2018).157

After having predicted the four circulation indices statistically, in the second step158

we select the “best” members from the dynamical hindcast ensemble. “Best” is defined159

here in terms of the Euclidean distance between a dynamical hindcast member’s vector160

of indices (see subsection 4.1) and our statistically predicted index vector. The “best”161

members are selected to build a subensemble. The new seasonal hindcasts for SLP, TAS,162

PR etc. are based only on the subensemble instead of the complete dynamical hindcast163

ensemble.164

3.1 Predictors and Regression165

The dynamical seasonal hindcasts for DJF is initialized on November, 1st. We there-166

fore take the October monthly means of SST, SND and TA100 as predictors, as this is167
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the latest information known when the integration starts. For SIT, we use the Septem-168

ber monthly mean, because it reflects the annual minimum sea ice extension (Dobrynin169

et al., 2018).170

The correlation between the predictor values and the circulation indices is calcu-171

lated on grid cell basis. Grid cells, which show a significant positive correlation, are com-172

bined to an area weighted sum, as well as grid cells with significant negative correlation.173

Consequently, each predictor can contribute two exogenous variables to the multi-linear174

regression. Before entering the regression, the area weighted sums are centered and de-175

trended.176

The performance of the proposed estimation procedure is evaluated in subsection177

4.2 in the so-called backtesting mode (see Supporting Information), a realistic cross val-178

idation setting, where the prediction at a given time is based exclusively on information179

from its past. In the backtesting mode, we find a high year-to-year variation of the re-180

gions, where grid cells with significant correlations between SST and the circulation in-181

dices are detected. In some cases this effect leads to a failure in the prediction of the cir-182

culation indices. We assume that the relation between SST and the circulation indices183

is sensitive to the length of the time series, because this effect does not occur when all184

data is used for the detection. As a remedy, we replace the assimilation time series of185

SST and SLP (for the calculation of circulation indices) from GCFS2.0 by the respec-186

tive time series from the latest MiKLip assimilation, which start as early as 1958. The187

Miklip assimilation is utilized exclusively to detect the significant grid cells. For the cal-188

culation of the predictor values we return to the GCFS2.0 assimilation time series.189

An ordinary least squares algorithm is performed to estimate the regression coef-190

ficients. In order to avoid overfitting, the combination of predictor variables is selected191

so as to minimize the Mean Squared Error (MSE) of the predicted index in the back-192

testing mode (see Supporting Information), using a maximum of four predictors.193

3.2 Subselection194

The subselection of members from the dynamical seasonal hindcast ensemble is based195

on the statistically predicted circulation indices. To compute the circulation indices re-196

alized by each ensemble member, we use the principal components calculated from the197

assimilation SLP fields. It is very probable that, when applying a PCA to the union of198
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all dynamical seasonal hindcast ensembles, the principal components will not coincide199

with the GCFS2.0 assimilation. However, for a meaningful comparison between statis-200

tically predicted circulation index and its counterpart in a dynamical forecast run, the201

indices have to refer to the same principal component pattern. We therefore project the202

dynamical forecast members onto the patterns from the assimilation.203

We can now fix the number of circulation indices to be included in the subselec-204

tion (only one index [NAO], or more than one up to 4). The Euclidean distance is cal-205

culated between the index vectors of the dynamical hindcast ensemble members and the206

vector of statistically predicted indices for a given winter. The Euclidean distance is weighted207

by the Eigenvalues of the principal components to emphasize the importance of the re-208

spective circulation index. Subsequently, the members with the smallest distance to the209

statistical prediction are selected to build the subensemble. We reiterate the post pro-210

cessing for this subensemble, like generating the ensemble mean, terciles and skill scores211

for variables of interest like TAS and PR as we have done before on the complete ensem-212

ble.213

3.3 Selection by Machine Learning Procedures214

Further refinements of the subselection that make use of various machine learning215

procedures are conceivable. We would like to name but a few, details and results of which216

are described in the Supporting Information. A most obvious refinement would be the217

weighted mean of the hindcast members according to their proximity to the statistically218

predicted circulation indices. More sophisticated, a clustering of the vectors of circula-219

tion indices would allow for nonlinear interdependencies between the four circulation in-220

dices, apart from linear orthogonality imposed by PCA. To improve the achieved strat-221

ification of the clusters with respect to TAS (or any other selected parameter), a semi-222

supervised clustering algorithm or a discriminant analysis could be applied.223

4 Results224

4.1 Circulation Indices225

In this section, we examine our assumption that the seasonal hindcast skill ben-226

efits from the inclusion of further circulation indices in the ensemble subselection pro-227
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cedure of Dobrynin et al. (2018). To this end, we repeat their perfect-NAO prediction228

experiment and compare it to an analogue perfect-circulation indices experiment.229

The assimilation run from the current seasonal forecast model GCFS2.0 starts in230

1980, hindcasts were provided for start dates in 1990-2017. We consider seasonal means231

for winter (DJF), such that our time series starts in winter 1980/81 and runs through232

winter 2017/18, a total of 38 time steps. In order to calculate the winter circulation in-233

dices, singular value decomposition is applied to the area-weighted non-standardized anoma-234

lies of seasonal SLP over the North Atlantic-European sector (20−85◦N and 90◦W-60◦E),235

Figure 1. Note that the subsequent standardization of the indices does not affect our com-236

putations.237

Likewise, the ensemble members of the seasonal hindcast ensembles are projected238

onto the same principal components extracted from the assimilation to calculate the re-239

spective circulation indices.240

Now, we select those members from the hindcast ensembles, which reproduce the241

true circulations indices most closely – first only for the NAO index, after that for NAO,242

SCAN, EA/WR and EA indices. The forecast skill of the full and of the two subensem-243

bles is plotted in figure S1 in the Supporting Information.244

The improvement in anomaly correlation coefficients (ACC) for SLP in the Euro-245

Atlantic sector when selecting for all four indices, taken over time at each point sepa-246

rately, is strong. In particular, the zonal band of low predictability between 50◦N and247

60◦N, that stands out in the perfect NAO only ensemble, is completely recovered in the248

four indices ensemble. The ACCs for TAS and PR show considerable improvements, too249

(Figure S1).250

We therefore conclude that the subselection for more than one circulation index251

is worthwhile–as long as we are able to construct reliable predictors for them.252

4.2 Regression253

We evaluate the whole estimation and subselection procedure in the backtesting254

mode, as this is the most realistic setting possible in view of prospective operationaliza-255

tion (see Supporting Information), and the most challenging at the same time. In the256

following, we will evaluate our predictions and the resulting hindcast skill against the257
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Figure 1. Circulation indices from winters 1980/81-2017/18. Left column: PC loadings for

SLP anomalies. Right column: yearly winter PC scores. Black line: GCFS2.0 assimilation, grey

line: ensemble mean, grey dots: ensemble members, red line: statistical prediction.
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Table 1. Correlation of dynamically hindcasted and statistically predicted to assimilated

circulation indices, respectively

dyn hc stat pr SST SND SIT TA100

NAO 0.26/0.15 0.59/0.93 + − − +

SCAN 0.35/0.56 0.66/0.88 − − + −

EA/WR 0.35/0.40 0.68/0.73 + − + −

EA 0.23/0.21 0.47/0.80 + − + −

Periods of correlation (DJF 1990/91-2017/18)/(DJF 2003/04-2017/18); Selected predictors: + positively

correlated grid cells selected, − negatively correlated grid cells selected

assimilation run of GCFS2.0. We choose the assimilation run over the obvious alterna-258

tive ERA-Interim for the following reasons: The GCFS assimilation and ERA-Interim259

are both model assimilations, but the GCFS assimilation was produced with the same260

model as the hindcasts as opposed to ERA-Interim. The mismatch of the hindcasts will261

therefore be a priori smaller to the GCFS assimilation, independently of the quality of262

the hindcasts. Here, we aim to evaluate the relative differences in skill generated by the263

subselection, so for the moment we set aside model differences between GCFS and ERA-264

Interim.265

The selected predictors and respective correlations between assimilated and sta-266

tistically predicted circulation indices (as described in subsection 3.1) are listed in Ta-267

ble 1, along with the correlation of the full ensemble mean indices for comparison. Both268

the algorithm that detects significant predictor grid cells and the least squares estima-269

tion are statistical procedures which need a minimum of training data to achieve a cer-270

tain goodness-of-fit. For early prediction times in the backtest setting, there is only a271

small amount of data available to train the procedures, which results in poor predictions.272

We observe that the correlation between the predicted indices and the assimilation strongly273

depends on the time interval on which the correlation is calculated, with higher values274

towards the end of the time period. For the purpose of illustration, we give two corre-275

lation values for each circulation index in Table 1, one for the winter seasons 1990/91-276

2017/18, the second for 2003/04-2017/18. A corresponding improvement over time is not277

apparent in the dynamical ensemble.278
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In the following we will solely refer to the evaluation period of winters 2003/04-2017/18279

to highlight the potential of the proposed procedure. We note that all statistical esti-280

mators perform quite well, see Figure 1.281

4.3 Subselection282

To evaluate whether the subselection leads to an improvement in the seasonal hind-283

cast, we first analyse the anomaly correlation coefficients (ACC) between the ensemble284

mean of the two hindcasts (subensemble vs. complete ensemble) and the GCFS2.0 as-285

similation values. Varying the number of selected hindcasts between 4 and 20, we ob-286

tained the highest increases in ACC for subensembles of 8 members.287

We furthermore varied the number of circulation indices considered in the subs-288

election. It turns out that already the inclusion of the NAO index alone greatly improves289

the association between hindcast and assimilation (Figure 2). As expected, for the hind-290

cast fields SLP, TAS and PR the ACC increases with each additional circulation index291

included. The area-weighted average ACC over Europe (10◦W-30◦E and 35◦N-65◦N) for292

SLP is calculated for the full ensemble/NAO-only subselection/4-indices subensemble:293

0.24/0.63/0.73. Analogous mean ACCs for TAS amount to 0.41/0.49/0.58 and for PR294

to 0.22/0.33/0.41.295

4.4 Spatial Evaluation of Individual Hindcasts296

To further explore the improvement in our temperature hindcasts obtained by sub-297

selecting for circulation indices, we compare the individual hindcasts for winter seasons298

2008/09, 2009/10 and 2015/16 with the respective GCFS2.0 assimilation in Figure 1. Win-299

ters 2009/10 and 2015/16 represent distinctive atmospheric conditions showing unusual300

values in their circulation indices (2009/10 - very low NAO and low EA, 2015/16 - high301

NAO and very high SCAN), whereas winter 2008/09 shows average values in all four in-302

dices. We find that the assimilation values are poorly reflected in the full ensemble mean303

indices, except for EA/WR in 2008/09, but they are estimated well by our statistical pro-304

cedure (Figure 1).305

The assimilation temperature anomalies in the three selected winters are quite pro-306

nounced. In contrast, the hindcasts anomalies for 2009/10 and 2015/16 from the full en-307

semble appear quite pale (we concentrate on 10◦W-30◦E and 35◦N-65◦N, a region that308
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Figure 2. Anomaly correlation coefficients between hindcast ensemble means and assimilation

for winters 2003/04-2017/18. 1st row: complete ensemble, 2nd row: subselection for NAO, 3rd

row: subselection for NAO, SCAN, EA/WR, EA. Left column: SLP, center column: TAS, right

column: PR. Regions, where the ACC is significantly positive to the 95% level (critical value

0.441), are contoured in dark red.
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Figure 3. Temperature anomalies for 2008/09 (1st row), 2009/10 (2nd row) and 2015/16 (3rd

row). Left column: GCFS2.0 assimilation, center column: full ensemble, right column: subensem-

ble. Black contoured rectangle: the target area 10◦W-30◦E, 35◦N-65◦N

constitutes a natural target for the German Meteorological Service, see Figure 3). For309

2008/09 the full ensemble mean hindcast fails completely to capture the generalized cold310

anomaly. After subselection, in 2009/10 the spatial pattern of anomalies is very well re-311

produced and also the warm hindcast anomalies for 2015/16 are increased and much closer312

to the analysed ones. For winter 2008/09, the subselected forecast shows a cold anomaly313

reversing the full ensemble hindcast. However, all subselected anomalies are still weakly314

pronounced in amplitude comparing to the assimilation run (Figure 3).315
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To quantify the goodness-of-fit of the individual full and subselected ensemble hind-316

casts, we evaluate the Structural Similarity Index (SSIM) (see Supporting Information317

and Z. Wang et al. (2004)) over the target region (Figure 3). Within this region, we weight318

grid cell contributions to the SSIM by area. As might be suspected from visual inspec-319

tion, SSIM between TAS hindcasts and assimilations is markedly increased by subsam-320

pling. A further improvement is obtained by simple rescaling, which results in an am-321

plification of both the cold and warm anomalies towards more realistic values, opening322

prospects for more sophisticated bias correction methods (see Table S1 in the Support-323

ing Information).324

Although the SSIM increase by subselection with regard to TAS is most pronounced325

in the selected years, the average skill for TAS SSIM in 2004-2018 has also more than326

doubled (Supporting Information Table S2). For SLP and PR the increase obtained by327

subselection is even more and slightly less pronounced, respectively. The results obtained328

using other selection procedures (subsection 3.3), which partly surpass the improvements329

of the simple subselection by far, are listed in the Supporting Information (Table S2).330

5 Summery and Discussion331

We have constructed an ensemble selection procedure based on the statistical pre-332

diction of the four leading principal components of SLP in the North Atlantic-European333

sector, which leads to a substantial improvement of seasonal hindcast skill for winter (DJF)334

hindcasts of SLP, TAS and PR compared to the full ensemble mean hindcasts. This method335

is evaluated in the backtesting mode, with average anomaly correlation over Europe for336

SLP, TAS and PR of 0.73, 0.58 and 0.41, respectively. The statistical predictions rely337

solely on the autumn states of four drivers of atmospheric circulation, which are known338

at the time the dynamical model integration starts. The procedure is therefore fully ap-339

plicable to operational forecasts.340

The presented subsampling method is tailored to improve the seasonal hindcasts341

in winter over Europe, only. Skill over other regions and seasons is thus possibly degraded.342

Nonetheless, an analogue approach aiming at other regions and seasons is conceivable.343

We have to assume that the relationships between the predictors, the circulation344

indices and the seasonal climate that we exploit in our subselection might be subject to345
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climate variability as well as climate change. In the long run, strategies accounting for346

such non-stationarity have to be developed.347
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statistical probabilistic forecasts of the winter nao. Weather and Forecasting ,380

32 (4), 1585-–1601.381

Hurrell, J., Kushnir, Y., Ottersen, G., & Visbeck, M. E. (2003). The north atlantic382

oscillation: Climatic significance and environmental impact. Washington, DC:383

American Geophysical Union.384

Hurrell, J. W. (1995). Decadal trends in the north atlantic oscillation: Regional tem-385

peratures and precipitation. Science, 269 (5224), 676–679.386

–17–



manuscript submitted to Geophysical Research Letters

Iglesias, I., Lorenzo, M., & Taboada, J. (2014). Seasonal predictability of the east387

atlantic pattern from sea surface temperatures. PLoS ONE , 9 (1), e86439.388

Kretschmer, M., Coumou, D., Donges, J., & Runge, J. (2016). Using causal effect389

networks to analyze different arctic drivers of midlatitude winter circulation.390

Journal of Climate, 29 (11), 4069-4081.391

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., . . .392

Roeckner, E. (2018). Developments in the mpi-m earth system model ver-393

sion 1.2 (mpi-esm1.2) and its response to increasing co2. J. Adv. Modelling394

Earth Syst. (JAMES), 11 , 998–1038. doi: 10.1029/2018MS001400395

Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich,396

R., . . . Marotzke, J. (2018). A higher-resolution version of the max397

planck institute earth system model (mpi-esm1.2-hr). Journal of Advances398

in Modeling Earth Systems, 10 (7), 1383-1413. Retrieved from https://399

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017MS001217 doi:400

10.1029/2017MS001217401
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Backtesting

Backtesting is a causal type of cross-validation, in which the forecasting procedure is

applied only to data prior to the forecast time. In order to reforecast a circulation index

at time t, we perform the whole procedure of selection of significant predictors and least

squares estimation on the data for s = 1 . . . t− 1.

We note that the Principal Component Analysis is not included in the backtesting mode.

That is because PCA is essentially a transformation of coordinates with the objective to

aggregate as much variance as possible into a small number of directions. A unique “true”

set of principal components does not exist. Furthermore the estimation procedure is not

affected by small changes in the principal components as long as the correlation between

the predictors and the indices is preserved. So we use fixed circulation indices calculated

from the whole time series of SLP fields to investigate the properties of the proposed

subselection.
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Structural Similarity Index

To summarize the performance of the hindcasts, we introduce the Structural Similarity

Index (SSIM), a concept developed in the context of image processing (Wang et al., 2004).

The SSIM is used to measure the similarity between two images, in our case the similarity

between the hindcast and assimilation fields. It combines three important aspects of

spatial goodness-of-fit, which in climatological forecast validation are usually measured

and assessed separately: mean, variance and correlation.

Let x and y be the two fields to compare, c1 and c2 small constants. Then

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µx, µy are the respective spatial means, σ2
x, σ2

y the spatial variances and σxy is

the spatial covariance.

SSIM satisfies the non-negativity, identity of indiscernibles, and symmetry properties.

The resultant SSIM index is a decimal value between -1 and 1, and value 1 is only reached

for two identical fields and therefore indicates perfect structural similarity. A value of 0

indicates no structural similarity.

As the SSIM includes terms of mean and variance, it is improved by linear bias-

adjustment (rescaling), although this does not alter the ACC.

SSIM values of the full, subselected and rescaled-subselected ensemble hindcasts

corrsponding to the winter seasons 2008/09, 2009/10 and 2015/16 for the variables TAS,

SLP and PR, calculated over certain regions, are listed in Table S1. As the smoothness

and spatial correlation of these climatological parameters are very different, we choose

larger/smaller regions for the spatial average, which are nevertheless all centered over
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Germany as it constitutes the natural target for the German Meteorological Service. For

TAS this is the region between 10◦W-30◦E and 35◦N-65◦N, for SLP 50◦W-47◦E and 23◦N-

85◦N, and for PR 6◦-16.5◦E and 46.75◦N-56◦N.
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Selection by Machine Learning Procedures

A weighted subselection is realized by the application of a radial Epanechnikov-kernel

to the (Eigenvalue-weighted) Euclidian distances between statistically predicted and dy-

namically hindcasted circulation-index vectors xs and xd. Let W be the diagonal matrix

of Eigenvalues of the circulation indices obtained from the principal component analysis,

then the Epanechnikov-kernel with bandwidth h is defined as

Kh(xs, xd) =
3

4h

(
1− ‖xs − xd‖

2
2W

h2

)
, where ‖xs − xd‖22W = xTsW

1/2xd

The weighted subensemble is realized by the weighted sum of all hindcast ensemble

members. Best results where obtained with three circulation indices and a bandwidth of

h = 87 (see Table S2).

The clustering of circulation indices allows for nonlinear interdependencies between the

four circulation indices, apart from linear orthogonality imposed by PCA.

To obtain an unsupervised classification of the vectors of circulation indices, a K-means

algorithm (with Egenvalue-weighted Eucliadian distance) is applied to the circultion-index

vectors x1a...x
T
a for all winters from the assimilation run. The algorithm is initialized

by intermediate index values. Subsequently, the statistically predicted and the dynami-

cally hindcasted vectors for a specified winter are assigned to their nearest cluster. The

subensemble is then composed of those hindcast members that pertain to the cluster

indicated by the statistical prediction. The resulting improvements w.r.t SSIM(TAS),

achieved for three index vectors and five clusters, are listed in table S2.
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Algorithm of clustered selection

1. The circulation-index vectors from assimilation x1a...x
T
a are clustered, clusters

C1...CK are obtained

2. The statistically predicted index vector xs for the specified winter is assigned to the

nearest cluster Ck – this is the staistically predicted cluster

3. The hindcasted index vectors x1d...x
30
d for the specified winter are assigned each to

their nearest cluster

4. The subensemble is composed of those hindcast members that fall into the staistically

predicted cluster Ck

To improve the stratification of the clusters w.r.t. some target variable (TAS in our

case), in semi-supervised clustering the training sample is augmented by the values of the

target variable assumed in the training sample y1a...y
T
a , such that x̃ta = (xta, y

t
a). The clus-

tering procedure is otherwise identical to the unsupervised clustering. In the classification

of a statistical prediction xts, the target value is of course unknown and the assignment

is based on the circulation indices only. In our case, we generate the target variables

from the TAS field by principal component analysis. The resulting scores of the lead-

ing TAS PCs are introduced as target variables into the K-means algorithm, in addition

to the circulation indices resulting from the PCA of the SLP fields. The hindcasts are

processed analogously to the un-supervised clustering (see results for the best parameter

combination [4 circulation indices, 2 TAS PCs, 4 clusters] in Table S2).
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Linear distcriminant analysis is a supervised classification procedure that optimally

seperates two or more classes of objects on the basis of observable variables. The clas-

sification of the training sample has to be known in advance. We define three classes

w.r.t. the same two TAS PCs used above. The algorithm finds the linear partition in the

space of circulation indices that best predicts the given classification. According to the

statistically predicted circulation indices, a class is selected along with the corresponding

hindcasts. Best discrimination results where obtained using all 4 circulation indices (Table

S2).

All selection results in Table S2 have been generated in the Backtesting mode.
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Table S1. SSIM of hindcasted to assimilation anomalies in selected winters of

full/subselected/subselected+rescaled ensemble

DJF 2008/09 DJF 2009/10 DJF 2015/16

TAS 0.01/0.24/0.30 0.27/0.75/0.82 0.42/0.62/0.70

SLP -0.09/0.51/0.54 0.08/0.32/0.39 0.25/0.61/0.68

PR 0.01/0.25/0.24 0.30/0.35/0.37 0.18/0.54/0.69
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Table S2. Average SSIM of hindcasted to assimilation anomalies during winters from

2003/04 through 2017/18

full Sub SubR SubWR ClAnaR sClAnaR DisAnaR

TAS 0.12 0.29 0.31 0.36 0.34 0.33 0.38

SLP 0.11 0.34 0.37 0.45 0.40 0.33 0.41

PR 0.06 0.10 0.10 0.07 0.17 0.12 0.12

Selection types: full-full ensemble, Sub-subselection of 8 best members, SubR-rescaled

subselection of 8 best members, SubWR-rescaled weighted subselection, ClAnaR-rescaled

subselection according to unsupervised cluster analysis, sClAnaR-rescaled subselection

according to semi-supervised cluster analysis, DisAnaR-rescaled subselection according to

discriminant analysis
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Figure S1. Anomaly correlation coefficients between ensemble means and assimilation.

1st row: complete ensemble, 2nd row: subselection for perfect NAO, 3rd row: subselection

for perfect NAO, SCAN, EA/WR and EA. Left column: SLP, center column: TAS, right

column: PR. Regions, where the ACC is significantly positive to the 95% level (critical

value 0.271), are contoured in dark red.
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