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Abstract

The important task of tracking seismic activity requires both sensitive detection and accurate earthquake location. Approximate

earthquake locations can be estimated promptly and automatically; however, accurate locations depend on precise seismic phase

picking, which is a laborious and time-consuming task. We adapted a deep neural network (DNN) phase picker trained on local

seismic data to meso-scale hydraulic fracturing experiments. We designed a novel workflow, transfer-learning aided double-

difference tomography, to overcome the three orders of magnitude difference in both spatial and temporal scales between our

data and data used to train the original DNN. Only 3,500 seismograms (0.45% of the original DNN data) were needed to

re-train the original DNN model successfully. The phase picks obtained with transfer-learned model are at least as accurate

as the analyst’s, and lead to improved event locations. Moreover, the effort required for picking once the DNN is trained is a

small fraction of the analyst’s.
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Abstract 25 

The important task of tracking seismic activity requires both sensitive detection and accurate 26 

earthquake location. Approximate earthquake locations can be estimated promptly and 27 

automatically; however, accurate locations depend on precise seismic phase picking, which is a 28 

laborious and time-consuming task. We adapted a deep neural network (DNN) phase picker 29 

trained on local seismic data to meso-scale hydraulic fracturing experiments. We designed a 30 

novel workflow, transfer-learning aided double-difference tomography, to overcome the three 31 

orders of magnitude difference in both spatial and temporal scales between our data and data 32 

used to train the original DNN. Only 3,500 seismograms (0.45% of the original DNN data) were 33 

needed to re-train the original DNN model successfully. The phase picks obtained with transfer-34 

learned model are at least as accurate as the analyst’s, and lead to improved event locations. 35 

Moreover, the effort required for picking once the DNN is trained is a small fraction of the 36 

analyst’s.  37 

Plain Language Summary 38 

Seismic sensors are widely used to monitor many energy-related systems. To monitor these 39 

systems effectively, we need to process a very large amount of data, which is very labor-40 

intensive. A few deep learning models have been developed to perform these tasks for 41 

earthquake generated signals. We adopted one of these deep learning models developed for 42 

kilometer scale and updated it for signals recorded from a meter-scale project. This process not 43 

only allows us to overcome the significant spatial and temporal scale difference between our data 44 

and the data used by the original deep learning model, but also significantly reduces the amount 45 

of required training data. Our results show the updated model matches human performance, but 46 

with a much faster speed. A workflow that combines the deep learning algorithm with existing 47 

imaging technologies enables improvements for both monitoring small earthquakes and studying 48 

subsurface structure. 49 

1 Introduction 50 

Seismic monitoring plays a significant role in the oil and gas industry, underground 51 

mines, carbon capture and storage, and the geothermal industry due to its value for both reservoir 52 

management and for risk mitigation. Valuable information, such as fracture development and 53 

elastic properties of the subsurface, can be recovered from data recorded with seismic monitoring 54 

systems. For example, the spatial dimensions and temporal evolution of hydraulic and/or 55 

reactivated natural fractures are usually estimated by tracking seismic events. The location and 56 

origin time of these microseismic events are determined by arrival times of seismic phases at 57 

multiple seismic sensors. These same arrival times of primary (P) and secondary (S) waves are 58 

also used for subsurface seismic imaging to measure elastic properties of the subsurface. 59 

Manually picking arrival times of seismic phases is a very time-consuming task especially for 60 

small-scale projects since high temporal sampling rate is required. Therefore, reliable automatic 61 

phase pickers are essential for these projects. Traditional automatic pickers such as Short-Term 62 

Average/Long-Term Average (STA/LTA; Allen, 1978) and Auto Regression-Akaike 63 

Information Criterion (AR-AIC; Sleeman & van Eck, 1999) pickers require intensive human 64 

involvement and refinement, and they do not benefit from knowledge of previous picks because 65 

they treat each measurement individually. When applied to seismic data, the accuracy of 66 

traditional automatic pickers may not be satisfactory, particular for noisy data. Recent 67 

applications of deep-learning-based automatic seismic phase pickers (e.g. Y. Chen, 2018; Pardo 68 
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et al., 2019; Ross et al., 2018; Zhou et al., 2019; L. Zhu et al., 2019; W. Zhu & Beroza, 2018) 69 

have shown remarkable accuracy and processing speed for seismic signals originated from 70 

natural earthquakes; however, whether these deep-learning phase pickers can be used for seismic 71 

monitoring remains unclear, and training such deep-learning phase pickers from scratch requires 72 

a huge amount of data. 73 

We use seismic data from experiment 1 of the enhanced geothermal system (EGS) Collab 74 

project to test whether one of the deep-learning-based automatic phase pickers, PhaseNet (W. 75 

Zhu & Beroza, 2018), is useful for mesoscale monitoring systems. The experiment was 76 

conducted at the 4850-foot level of the Sanford Underground Research Facility (SURF) located 77 

in Lead, South Dakota (Kneafsey et al., 2019). The testbed consists of one injection, one 78 

production, and six 60 m-long monitoring boreholes. The seismic monitoring system was 79 

equipped with multiple types of geophysical instruments including 24 hydrophones and 12 80 

accelerometers. An 8-core workstation with an automated processing flow was deployed at the 81 

experiment site. The processing scripts are capable of detecting seismic events (triggered), 82 

finding initial P-wave phase picks, and inverting for initial seismic event locations and origin 83 

times. Seismic event locations and origin times were improved with human reviewed and refined 84 

phase picks. The original seismic catalog was processed by Schoenball et al. (2020). Several 85 

hydraulic stimulations were performed since May 2018. We focused on seismic signals 86 

associated with stimulations between May 22
nd

 and December 21
st
 of 2018. These seismic 87 

signals have three orders of magnitude difference in spatial and temporal scales from the original 88 

training data used by the deep learning models mentioned earlier. 89 

In this paper, we directly applied the PhaseNet model (W. Zhu & Beroza, 2018) to the 90 

seismic data from experiment 1 of the EGS Collab project. Although the results are reasonable, 91 

we show that retraining the PhaseNet model significantly boosts performance. The process, 92 

called transfer learning (TL), requires only a few thousand seismograms because the weights of 93 

the DNN were trained initially by a different dataset of 0.7 million seismograms (from natural 94 

earthquakes). The performance of the resulting TL model was compared with a traditional 95 

automatic picker, the original PhaseNet model, and human analysts. We then applied the TL 96 

model to all the seismograms from the triggered seismic events. We used the resulting TL-97 

derived phase picks and double-difference tomography (tomoDD; Zhang & Thurber, 2003, 98 

2006) to constrain subsurface seismic velocities and update seismic event locations. The results 99 

were compared with those using manual picks. 100 

2 Data 101 

Our data consist of seismograms from triggered microseismic events between May 2018 102 

and December 2018 at the Experiment 1 site of the EGS Collab project, manually picked P-wave 103 

and S-wave arrival times, and the original seismic catalog from (Schoenball et al., 2020). We 104 

used 35 seismic sensors (one hydrophone was defective) with a 100 kHz sampling rate that were 105 

deployed in six 60m-long monitoring wells (Figure S1). We detected and located the 106 

microseismic events using a standard STA/LTA routine, the PhasePAPy package (C. Chen & 107 

Holland, 2016), and a modified version of Hypoinverse (Klein, 2002). We cut the triggered 108 

seismograms to 0.11 s long segments around the P-wave arrival times and filtered with a 109 

bandpass filter between 3 kHz and 20 kHz. The filtered seismograms show clear similarity with 110 

those used to train the original PhaseNet (Figure S2). We used a total of 69,444 waveform 111 

segments (from 1,932 seismic events). Initial P-wave arrival times were automatically measured 112 
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with the PhasePAPy package. We manually reviewed and refined the P-wave arrival times. We 113 

picked all S-wave arrival times manually. Additional details about the monitoring system and 114 

data preprocessing procedures of the original seismic catalog can be found in (Schoenball et al., 115 

2020). 116 

3 Method 117 

We designed a workflow (Figure 1), TL-aided double-difference tomography (TADT), 118 

that takes advantage of two existing technologies, deep neural networks (DNN) and seismic 119 

double-difference tomography. We started with the pre-trained DNN model, PhaseNet (W. Zhu 120 

& Beroza, 2018), that was trained with over 0.7 million seismic recordings from in and around 121 

northern California for natural earthquakes. The PhaseNet model was trained using 30 s long 122 

seismograms sampled at 100 Hz. The earthquake-station distance for these data is on the order of 123 

10’s of kilometers. Our monitoring system for our data samples at 100 kHz and the source-sensor 124 

distance is on the order of 10 meters. Despite the three orders of magnitude differences in both 125 

sampling rate and source-sensor distance between the PhaseNet data and our data, we found that 126 

PhaseNet produced acceptable results when applied to our data. To improve the performance 127 

further, we updated the PhaseNet model with a subset of seismic data that meets the training data 128 

requirements (three-component seismograms with both P- and S-wave picks) for PhaseNet. We 129 

then applied the resulting TL model to all the triggered seismograms (30 ms long) to obtain TL 130 

derived P- and S-wave phase picks. We used the tomoDD package (Zhang & Thurber, 2003, 131 

2006) to update the seismic catalog and simultaneously image the subsurface tomographically. 132 

The TADT workflow allows us to reduce the human effort significantly. 133 



Manuscript submitted to Geophysical Research Letters 

 5 

 134 

Figure 1. A flowchart of TL-aided seismic tomography using PhaseNet (W. Zhu & Beroza, 135 

2018) and tomoDD (Zhang & Thurber, 2003, 2006). 136 

 137 

3.1 Transfer learning 138 

During the TL process, we use the same network architecture as PhaseNet and initialize 139 

the weights with the PhaseNet model. We visually inspected the selected seismograms and 140 

excluded 343 (9%) incorrect phase picks. The remaining 3,478 seismograms belong to 1,872 141 

distinct seismic events. The total number of seismograms we used is only 0.45% of that used by 142 

the original PhaseNet. We randomly divided the seismic events into training, validation, and test 143 

sets. The training set (2,443 waveforms) was used to retrain the DNN model, the validation set 144 

(345 waveforms) was used to select the optimal model from different training runs, and the test 145 

set (690 waveforms) was used to evaluate performance (Figure S3). Similar to W. Zhu & Beroza 146 

(2018), we used a Gaussian distribution with a standard derivation of 0.1 ms centered on the 147 

manual picks to represent manual pick uncertainty. We allowed the entire neural network to 148 

change during TL, and used the Adam optimizer (Kingma & Ba, 2014). We used a learning rate 149 

(determines the step size of each iteration) of 0.01 and a batch size (number of training samples 150 

used each time) of 20. Our tests indicate using filtered data leads to better performance than raw 151 

data. We applied a bandpass filter with corner frequencies of 3 kHz and 20 kHz to the 152 

seismograms before feeding them into the neural network for training, which is different from 153 

W. Zhu & Beroza (2018). For a fair comparison, the bandpass filter was applied to all the 154 

seismograms throughout this study. 155 
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3.2 Double-difference tomography 156 

The original seismic catalog was processed with a homogeneous seismic velocity model 157 

(Schoenball et al., 2019). Here we used the double-difference tomography package tomoDD 158 

(Zhang & Thurber, 2003, 2006) to simultaneously minimize the uncertainty in seismic event 159 

locations due to spatial seismic velocity variations and to constrain the 3D subsurface P-wave 160 

and S-wave velocity model for the seismically active region. Since the tomoDD package was 161 

originally designed for kilometer-scale problems, we made some modifications (e.g. input and 162 

output format, coordinate system) specifically for meter-scale projects. We estimated both P- and 163 

S-wave seismic velocity models. We relocated 1,743 seismic events and discretized a 3D volume 164 

of 77 m (easting), 83 m (northing), and 40 m (vertical) with nodes 1 m apart in each direction 165 

(then interpolated to 0.1 m by the tomoDD package). The initial model was homogeneous with a 166 

P-wave speed of 5.9 km/s and an S-wave speed of 3.5 km/s. These two velocities were obtained 167 

from curve fitting of travel-time observations (travel-time versus distance). Numerous previous 168 

studies (e.g. Chai et al., 2019; Syracuse et al., 2016) have shown that appropriate inversion 169 

parameters are required for a well-constrained seismic velocity model. We used an L-curve 170 

analysis (similar to Hansen, 1992) to find the optimal set of inversion parameters. An optimal 171 

weight of 10 was used for smoothing and 200 for damping (see Zhang & Thurber, 2003 for 172 

definition). We obtained the final velocity models and updated seismic catalog after eight 173 

iterations. The final models fit the observations better than the starting homogeneous model 174 

(Figure S4 and S5).  175 

4 Results 176 

Our results are new phase picks, updated seismic event locations, and 3D seismic 177 

velocity models. Hyper Text Markup Language (HTML) based interactive visualizations (similar 178 

to Chai et al., 2018) were used to inspect seismic event locations and seismic velocity models. 179 

4.1 Phase picks 180 

The TL model we obtained measures phase picks from seismograms with high accuracy. 181 

Some randomly selected waveforms and associated phase picks from the test dataset are shown 182 

in Figure S6. We can see that the TL results agree with manual picks even when the background 183 

noise level is high. Inspecting the data when TL results differ from manual picks, we noticed that 184 

the TL model is able to correct some human errors or skip difficult-to-pick signals (more often 185 

for P-waves than for S-waves). The difference between TL results and manual picks is just 186 

slightly larger than the threshold (0.1 milliseconds), for many cases in Figure S6. The TL model 187 

is more prone to error when signals are very complex. 188 

We compared the TL results with those using the Obspy (Beyreuther et al., 2010) 189 

implementation of an AR picker (Akazawa, 2004), the original PhaseNet, and human analysts 190 

(Figure 2). We use precision, recall, and F1 score (see Text S1 for definition) to quantify and 191 

compare the performance. We estimated the performance of human analysts by having three 192 

analysts manually pick the phase arrival times from the same 100 three-component seismograms 193 

(to reduce time cost). For each seismogram, we considered the median of the three manual picks 194 

as the ground truth. We also measured the human performance for each analyst by comparing 195 

results from each analyst against the ground truth. The human performance in Figure 2a and 3b 196 

was the average of the three analysts. The original PhaseNet produced much better results than 197 

the AR picker for both P and S waves. The TL model outperformed the original PhaseNet with 198 
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an improvement of roughly 0.1 in precision and 0.3 in recall, highlighting the importance of re-199 

training the DNN with our data. The TL model is the only one among the three automatic pickers 200 

that has a performance comparable to human analysts. The TL model performed slightly better 201 

on S waves than human analysts, which could be due to the larger SNRs compared to P waves. 202 

The TL model achieved human performance in a fraction of the time. 203 

We used a 5-fold cross-validation to measure the uncertainties in the performance 204 

matrices. We divided all the available waveforms (including training, validation, and test set) 205 

into five folds (equal parts). Five TL models were trained using one of the five combinations of 206 

four folds for each training and validated with the other fold. The performance of these five TL 207 

models was used to compute the uncertainty of the performance. The performance improvement 208 

is larger than the measurement uncertainty (Figure 2c). We also trained TL models with different 209 

number of training waveforms and tested the TL models with the same test dataset. As expected, 210 

F1 scores of the TL models for both P and S waves improve as more training data were included 211 

(Figure 2d). 212 

When we apply the TL model to all the triggered seismograms, the TL model finds more 213 

S-wave picks than the human expert. We performed 3D double-difference tomography using 214 

manual picks and TL derived picks with the same inversion parameters. Although fewer P-wave 215 

picks were obtained by the TL model compared to the human analyst, the updated seismic 216 

locations using TL-derived picks show a more compact distribution compared to that using 217 

manual picks (see the next section for details). Specifically, we found 18,543 acceptable P-wave 218 

picks and 8,935 S-wave picks from the human expert using a total of 69,444 seismograms. The 219 

TL model identified 12,050 acceptable P-wave picks (20% of which were included in the 220 

training dataset) and 13,297 S-wave picks (18% of which were included in training dataset). 221 
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 222 

Figure 2. A comparison of performance between human (three analysts), the ObsPy AR picker, 223 

the original PhaseNet, and the TL model for (a) P waves and (b) S waves. The human 224 

performance was measured with a smaller data set (100 waveforms) due to cost. (c) shows 225 

uncertainty (2 sigma) of the performance matrices for the original PhaseNet model and the TL 226 

model measured with a 5-fold cross-validation. (d) shows the F1 score as a function of the 227 

number of training waveforms used for TL. 228 

4.2 Updated seismic locations 229 

We examine seismic locations associated with the May 2018 stimulations (May 22-25), 230 

June 2018 stimulation (June 25), and December 2018 stimulations (December 21 & 22) in Figure 231 

3. Details of these stimulations can be found in Schoenball et al. (2020). Compared to the 232 

original seismic locations, the updated locations from double-difference tomography using either 233 

manual picks or the TL-derived picks show more detailed geometry of the fractures. For the May 234 

2018 stimulations (Figure 3a-c), the updated seismic locations show two parallel fractures that 235 

are not obvious in the original locations. Since these two fractures intercepted one monitoring 236 

borehole, we were able to confirm these fractures with independent temperature data recorded in 237 

the borehole using distributed temperature sensing with 0.25 m spatial resolution (Fu et al., 238 

2020). Using the TL-derived picks leads to more tightly clustered seismic locations. For the June 239 

2018 stimulation (Figure 3d-f), both the original and updated seismic locations show two 240 

fractures. Compared to the original, the updated locations show a slightly tighter pattern 241 

delineating the activated fractures. For the December 2018 stimulations (Figure 3g-i), the 242 

original locations show two intersecting fractures, but the geometry of these fractures was not 243 
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well constrained, especially near the two ends of the fractures. When we relocated the seismic 244 

event locations using the manual picks, these two fractures showed a tighter pattern. When TL-245 

derived picks were used for relocation, these two fractures were constrained even better and we 246 

can see the two ends of the fractures more clearly. As indicated by the updated seismic event 247 

locations, the TL-derived picks are equivalent to or better than the manual picks in imaging the 248 

activated fractures. 249 

 250 

Figure 3. A comparison of original (c, f, and i) and updated (a, b, d, e, g, and h) microseismic 251 

event locations associated with stimulations in May 2018 (a, b, and c), June 2018 (d, e, and f), 252 

and December 2018 (g, h, and i). Seismic events in the left panel (a, d, and g) show locations 253 

updated with TL-derived phase picks using tomoDD. The middle panel (b, e, and h) shows 254 

locations updated with manual picks using tomoDD. Fractures are clearly visible with TL-255 

derived phase picks. The lines are boreholes. 256 

  257 
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4.3 3D seismic velocity model 258 

We constrained both P-wave and S-wave seismic velocities with double-difference 259 

tomography. The P-wave velocity model shows significant spatial heterogeneity when either 260 

manual picks or TL-derived picks were used in the tomographic inversion. Slices of the 3D P-261 

wave and S-wave velocity models obtained using TL-derived picks are shown in Figure 4. The 262 

P-wave velocity model contains some small-scale high-velocity anomalies. To first order, the P-263 

wave velocity is lower at a greater depth. The S-wave velocity model shows a smoother pattern 264 

with a low-velocity zone imaged at an elevation below 105 meters. The average P-wave velocity 265 

agrees with that obtained from active source surveys (Schoenball et al., 2020). 266 

To identify the volume that we can reliably image, we performed checkerboard tests 267 

using data simulated according to both manual picks and TL-derived picks. For the checkerboard 268 

tests, we started with an artificial model with alternating high and low velocities. Synthetic P-269 

wave and S-wave phase picks were computed using the artificial model matching the actual 270 

observations between seismic event and seismic sensor pairs. The synthetic phase picks were 271 

then used in tomography with a uniform starting model. The recovered (inverted) model is 272 

compared to the true model to identify the volume that is well-constrained by the data. To 273 

measure the volume, we first compute the absolute difference between the recovered model and 274 

the true model at each grid cell. A grid cell is considered well-constrained when the recovered 275 

seismic velocities are less than 0.1 km/s away for P waves or 0.06 km/s for S waves from the 276 

ground truth. The well-constrained volume is smoothed by applying a 3D spatial Gaussian filter 277 

with a standard derivation of 1 m in each direction to all of the well-constrained grid cells. Slices 278 

of the recovered P- and S-wave velocity models using manual picks and TL-derived picks are 279 

shown in Figure S7 and S8. For the P-wave velocity model, the well-constrained volume is 2,678 280 

m
3
 for manual picks and 2,465 m

3
 (8% decrease) for TL-derived picks. For the S-wave velocity 281 

model, the well-constrained volume is 815 m
3
 for manual picks and 1,895 m

3
 (133% increase) 282 

for TL-derived picks. 283 

 284 

Figure 4. The final (a) P- and (b) S-wave velocity models inverted using TL picks. The lines are 285 

boreholes. The dots represent seismic sensors. 286 

5 Discussion and Conclusions 287 

We present a workflow that integrates TL and seismic double-difference tomography. As 288 

demonstrated with the EGS Collab data, the workflow can produce better seismic event 289 
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locations, improve subsurface imaging capabilities, and reduce the overall time cost compared to 290 

the original labor-intensive workflow. Our results also show that the TL model obtained by 291 

retraining the PhaseNet DNN leads to human-level performance despite the significant 292 

differences in the study area size, sensor geometry, and sampling rate between the data used to 293 

develop and train PhaseNet and our data. Other types of geophysical observations such as P-294 

wave receiver functions, surface-wave measurements, and gravity observations (e.g. Chai et al., 295 

2015; Maceira & Ammon, 2009; Syracuse et al., 2016) can be inverted together with TL-derived 296 

phase picks when data are available. 297 

Since phase picks are the basis for both locating seismic events and imaging the 298 

subsurface, it is valuable to determine seismic phase picks quickly and reliably. The PhaseNet 299 

model leads to better picks than many traditional auto-pickers such as the ObsPy implementation 300 

of the AR picker (W. Zhu & Beroza, 2018). A TL model initialized with the PhaseNet model and 301 

retrained with only around 3,600 three-component seismograms and associated manual picks 302 

outperforms the original PhaseNet model by over 10% in terms of precision and recall. The TL 303 

model performs equally to or slightly better than a human expert. The TL model found fewer 304 

(32%) P-wave picks but more (48%) S-wave picks than the human expert. Since the double-305 

difference tomography results that used these TL-derived phase picks show better seismic event 306 

locations compared to those using manual picks, it is likely the TL model removed low-quality 307 

P-wave picks and added high-quality S-wave picks. The speed of the TL model (or PhaseNet) is 308 

about 1,900 times (excluded training time) faster than the human expert. Weights of the TL 309 

model show first-order similarities and small differences compared to the PhaseNet model 310 

(Figure S9-S11). A comparison (Figure S12 and S13) of convolutional features of hidden layers 311 

for an example input using the PhaseNet model and the TL model suggests that these small 312 

changes lead to better hidden features (more impulsive peaks).  313 

Double-difference tomography tests using manual picks and TL derived picks show that 314 

the latter lead to better seismic event locations and a larger (133% increase) well-constrained 315 

volume for the S-wave velocity model. Even though we obtained fewer P-wave picks with the 316 

TL model compared to the human expert, the well-constrained volume for the P-wave velocity 317 

model only decreased slightly. The improved seismic event locations allow us to see detailed 318 

structures of the fracture planes, which in turn will help us better constrain the fracture geometry. 319 

Two parallel fracture planes were confirmed with independent borehole observations (Fu et al., 320 

2020). 321 

Our results show that we can reduce the time cost significantly, and improve results, by 322 

adding TL into the proposed workflow. Seismic phase picking is labor intensive and thus 323 

expensive. It took on the order of several days to determine all the seismic phase picks from the 324 

69,444 seismograms recorded. For the presented workflow, the analyst would only need to 325 

manually pick around 3,500 high-quality seismograms. Retraining the PhaseNet model took 326 

around one hour (using 32 2.1 GHz Intel Xeon cores). Processing all the seismograms with the 327 

TL model took only nine minutes on a laptop computer (with six 2.9 GHz Intel i9 cores). Even 328 

including the retraining time, the presented workflow takes much less time than human labor. 329 

The speed can be increased with greater computational power. Moreover, the TL model can be 330 

directly used on future seismic data from the same recording system without retraining. The 331 

proposed workflow is an economical way to monitor subsurface fracture evolution and image 332 

subsurface seismic structure with high resolution. The workflow is also applicable to new study 333 

areas. 334 
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Figure S7. Checkerboard tests using (a) TL-derived phase picks and (b) manual phase picks for P-
wave velocities. The inverted velocities are less than 0.1 km/s different from the true values in 
the highlighted area. 

 

Figure S8. Checkerboard tests using (a) TL-derived phase picks and (b) manual phase picks for S-
wave velocities. The inverted velocities are less than 0.06 km/s different from the true values in 
the highlighted area. The highlighted area in (a) is larger than that in (b), indicating that the TL-
derived phase picks have better data coverage.  
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Figure S9. The neural network architecture as inherited from the PhaseNet model (W. Zhu & 
Beroza, 2018) with the layers used in Figure S10-S13 identified. The layers are numbered from -9 
(left) to 9 (right) with layer 0 located at the bottom of the U shape. 
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Figure S10. A comparison of convolutional filters of Layer -9 from (left) the TL model and (right) 
the PhaseNet model. The filters are two dimensional so that information from multiple channels 
is integrated. See Figure S9 for the layer location. 
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Figure S11. A comparison of convolutional filters of Layer 8 from (left) the TL model and (right) 
the PhaseNet model. See Figure S9 for the layer location. 
  



 
 

5 
 

 

 

Figure S12. Example input, convolutional features of selected hidden layers, and output using 
the PhaseNet model. Dashed lines indicate zero. See Figure S9 for the layer location. In the 
output panel, the top curve corresponds to S waves; the middle curve corresponds to P waves; 
the bottom curve corresponds to “noise” (meaning neither P nor S waves). 
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Figure S13. Example input, convolutional features of selected hidden layers, and output using 
the TL model. Dashed lines indicate zero. See Figure S9 for the layer location. 
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Text S1. 

For classification tasks, a prediction is defined as true positive when both the predicted 
label and ground truth are positive; as true negative when both the predicted label and 
ground truth are negative; as false positive when the predicted label is positive but the 
ground truth is negative; as false negative when the predicted label is negative but the 
ground truth is positive. For our case, true positive means the difference between a 
deep-learning-derived (or TL-derived) pick (P-wave or S-wave) and the corresponding 
manual pick is less than the assumed measurement error. True negative means both the 
deep learning model (or TL model) and the human analyst were not able to find a pick 
from a seismic waveform. False negative means that the human analyst found a pick 
from a seismic waveform but the deep learning model (or TL model) was not able to find 
a pick. False positive means the deep learning model (or TL model) found a pick from a 
seismic waveform but the human analyst did not, or the time difference is larger than 
the assumed error. Precision, recall, and F1 score were computed using the following 

formulas. 
 
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐹1 = 	
2	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  
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Figure S1. Seismic sensors (purple dots) and boreholes (lines). The blue line is the injection well 
(E1-I), and the yellow line is the production well (E1-P). Black lines represent monitoring wells. 
 

 

Figure S2. A comparison of seismograms used for (a) TL and (b) the original PhaseNet.  
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Figure S3. Number of waveform samples of training, validation and test set used for TL.  
 
 

 

Figure S4. Histograms comparing the P-wave residual difference between the initial velocity 
model and the final velocity model for (a) manual picks and (b) TL model picks. The vertical lines 
indicate the assumed uncertainty of phase picks. 
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Figure S5. Histograms comparing the S-wave residual difference between the initial velocity 
model and the final velocity model for (a) manual picks and (b) TL model picks. The vertical lines 
indicate the assumed uncertainty of phase picks. 
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Figure S6. Randomly selected example waveforms and TL-derived phase picks that agree with 
(left) and differ from (right) the manual picks. Only one component seismogram is shown here, 
but three component seismograms were used for phase picking. Red vertical lines represent P-
wave picks. Blue vertical lines are for S-waves. Solid vertical lines are TL-derived picks. Dashed 
lines are manual picks. When the time difference between TL results and manual picks is larger 
than 0.1 ms or one of the picks is missing, we consider the results to be different. 
 


