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Abstract

The current approaches have known limitations to understanding the coupling of terrestrial ecosystem evapotranspiration (ET)

and photosynthesis (referred to as gross primary productivity, GPP). To better characterize the relationship between ET

and GPP, we developed a novel remote sensing (RS)-driven approach (RCEEP) based on the underlying water use efficiency

(uWUE). RCEEP partitions transpiration (T) from ET using a RS vegetation index (VI)-derived ratio of T to ET (VI-fT) and

then links T and GPP via RS VI-derived Gc (VI-Gc) rather than leaf-to-air vapor pressure difference. RCEEP and other two

uWUE versions (VI-T or VI-G), which only incorporate VI-fT or VI-Gc , were evaluated and compared with the original uWUE

model in terms of their performances (Nash-Sutcliffe efficiency, NSE) in estimating GPP from ET over 180 flux sites covering 11

biome types over the globe. Results revealed better performances of VI-T and VI-G compared to the original uWUE, implying

remarkable contributions of VI-fT and VI-Gc to a more meaningful relationship between ET and GPP. RCEEP yielded the best

performances with a reasonable mean NSE value of 0.70 (0.76) on a daily (monthly) scale and across all biome types. Further

comparisons of RCEEP and approaches modified from recent studies revealed consistently better performances of RCEEP and

thus, positive implications of introducing VI-fT and VI-Gc in bridging ecosystem ET and GPP. These results are promising

in view of improving or developing algorithms on coupled estimates of ecosystem ET and GPP and understanding the GPP

dynamics concerning ET on a global scale.
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Abstract 28 

The current approaches have known limitations to understanding the coupling of terrestrial 29 

ecosystem evapotranspiration (ET) and photosynthesis (referred to as gross primary productivity, 30 

GPP). To better characterize the relationship between ET and GPP, we developped a novel 31 

remote sensing (RS)-driven approach (RCEEP) based on the underlying water use efficiency 32 

(uWUE). RCEEP partitions transpiration (T) from ET using a RS vegetation index (VI)-derived 33 

ratio of T to ET (VI-f
T
) and then links T and GPP via RS VI-derived Gc (VI-Gc) rather than 34 

leaf-to-air vapor pressure difference. RCEEP and other two uWUE versions (VI-T or VI-G), 35 

which only incorporate VI-f
T
 or VI-Gc, were evaluated and compared with the original uWUE 36 

model in terms of their performances (Nash-Sutcliffe efficiency, NSE) in estimating GPP from 37 

ET over 180 flux sites covering 11 biome types over the globe. Results revealed better 38 

performances of VI-T and VI-G compared to the original uWUE, implying remarkable 39 

contributions of VI-f
T
 and VI-Gc to a more meaningful relationship between ET and GPP. 40 

RCEEP yielded the best performances with a reasonable mean NSE value of 0.70 (0.76) on a 41 

daily (monthly) scale and across all biome types. Further comparisons of RCEEP and approaches 42 

modified from recent studies revealed consistently better performances of RCEEP and thus, 43 

positive implications of introducing VI-f
T
 and VI-Gc in bridging ecosystem ET and GPP. These 44 

results are promising in view of improving or developing algorithms on coupled estimates of 45 

ecosystem ET and GPP and understanding the GPP dynamics concerning ET on a global scale.  46 

Plain Language Summary 47 

Evapotranspiration and photosynthesis processes of land ecosystems are mutually 48 

affected. Reasonable representations of the relationship between the two processes 49 
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are important for us to understand the way the environment changes under the 50 

background of climate change. However, existing models that represent the 51 

evapotranspiration-photosynthesis relationship have several known limitations. To 52 

better characterize the evapotranspiration-photosynthesis relationship, we developed 53 

a novel approach to bridging evapotranspiration and photosynthesis based on 54 

vegetation information remotely sensed by satellite. We found that the novel 55 

approach could present a more meaningful relationship between ecosystem 56 

evapotranspiration and photosynthesis than the existing methods over the globe. This 57 

finding reveals positive implications of introducing remotely sensed vegetation 58 

information in reasonably representing the evapotranspiration-photosynthesis 59 

relationship. Moreover, the novel approach we developed paves a way for more 60 

insightful understanding of the evapotranspiration and photosynthesis of land 61 

ecosystems and their relationship. 62 

 63 

Keywords: Remote sensing; Vegetation indices; Evapotranspiration; Gross primary 64 

productivity; Terrestrial ecosystems; Global 65 

1 Introduction 66 

Terrestrial ecosystem evapotranspiration (ET) and photosynthesis (referred to as gross 67 

primary productivity, GPP) play important roles in land-atmosphere material and energy 68 

exchanges. The two processes are also closely coupled (Beer et al., 2009; Zhou et al., 2014) due 69 

to the dominating role of transpiration (T) in evapotranspiration (ET) (Jasechko et al., 2013; Li et 70 



 

 4 

al., 2019; Stoy et al., 2019) and the combined relationship between T and carbon assimilation (A) 71 

due to the common stomatal pathway (Cowan and Farquhar, 1977; Medlyn et al., 2011) over 72 

global terrestrial biomes. Therefore, the knowledge of the quantitative correlation between 73 

ecosystem ET and GPP can provide insightful views on modeling and understanding the earth 74 

systems. However, the relationship between ET and GPP on an ecosystem level is still only 75 

partly understood (Boese et al., 2017), so that more robust and general approaches are urgently 76 

needed. 77 

Established theories to express the quantitative relationship between T and A are available 78 

from leaf to ecosystem-level (Beer et al., 2009; Medlyn et al., 2011; Zhou et al., 2014). 79 

Representing stomatal behavior is the key to couple the water and carbon exchanges between the 80 

plant and environment as both water loss and carbon up-taking are dominated by stomata 81 

(Cowan and Farquhar, 1977; Ball et al., 1987; Collatz et al., 1991; Leuning, 1995). The 82 

long-standing theory of optimal stomatal behavior (TOSB) (Cowan and Farquhar, 1977) and the 83 

experiment of Mott and Parkhurst (1991) indicate a direct response of stomatal conductance (g
s
) 84 

to leaf-to-air vapor pressure difference (D). Analytical stomatal conductance model of Medlyn et 85 

al. (2011) following this TOSB consistently demonstrated the response of g
s
 to √D and thus 86 

the dependence of the coupling of T and A on D on a leaf-level (see also Appendix C). The 87 

importance of D in coupling ecosystem-level ET and GPP was also widely recognized (Beer et 88 

al., 2009; Zhou et al., 2014, 2015; Cheng et al., 2017). Assuming steady-state environmental 89 

conditions with a constant value of ci ca⁄  allows for bridging ecosystem-level T and A (i.e., GPP) 90 

via the inherent water use efficiency (IWUE) (Beer et al., 2009), which is defined as IWUE =91 

GPP ∙ D T⁄ = ca(1 − ci ca⁄ ) 1.6⁄  (see also Appendix C), where ci and ca denotes the inner-leaf 92 
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and ambient CO2 partial pressure, D is substituted by VPD, and T is approximated by ET. To 93 

enhance the relationship between T and GPP under a changing environment, Zhou et al. (2014) 94 

approximated (1 − ci ca⁄ ) as a proportion to √D as indicated by Lloyd and Farquhar (1994) 95 

and introduced the concept of Underlying Water Use Efficiency (uWUE) to link T and GPP (see 96 

also Section 2.1). uWUE can lead to a more reliable relationship between ecosystem T (using ET 97 

as a surrogate) and GPP than did IWUE under changing environments, i.e., uWUE ∙ T =98 

GPP √D⁄ , which is robust from hourly to yearly scales (Zhou et al., 2014, 2015). 99 

However, the ecosystem-level relationships between ET and GPP over global terrestrial 100 

biomes are biased by the presence of the evaporation components of ET, e.g. soil evaporation 101 

(Es), and the difficulties to access the true value of D. uWUE uses ET to approximate T (Zhou et 102 

al., 2014, 2015), an approach prone to errors, since T is not a constant fraction of ET (Wang et al., 103 

2014; Wei et al., 2017; Lian et al., 2018; Stoy et al., 2019). Multiple studies revealed variable 104 

contributions of T or Es to ET over global biomes (Cavanaugh et al., 2011; Gu et al., 2018; Lian 105 

et al., 2018; Perez-Priego et al., 2018; Li et al., 2019). As Es is free from the effect of stomatal 106 

conductance (g
s
) which is in turn regulated by D (Leuning, 1995; Medlyn et al., 2011), uWUE 107 

may fail to represent the relationship between ET and GPP of ecosystems with changing Es ET⁄  108 

values. Since the true value of D is difficult to be obtained, uWUE uses VPD as an approximate 109 

(Zhou et al., 2014, 2015). However, VPD significantly deviates from D due to significant 110 

temperature differences between leaf (or canopy) and ambient air (Friedl, 1995; Nelson and 111 

Bugbee, 2015), under drought (Almeida, 1986; Olufayo et al., 1993), as well as under 112 

well-watered conditions (Jackson et al., 1981; Idso, 1982; Idso et al., 1982a; Idso et al., 1982b).  113 

The above issues relevant for a successful implementation of the uWUE approach can be 114 
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addressed using remote sensing (RS) techniques. Efforts devoted to partition T from ET revealed 115 

a great impact of vegetation information that can be remotely sensed on the value of Es ET⁄  or 116 

T ET⁄  (denoted as f
T
 thereafter) (Wang et al., 2014; Zhou et al., 2016; Wei et al., 2017; Gu et al., 117 

2018; Perez-Priego et al., 2018). For example, Wang et al. (2014) and Wei et al. (2017) showed 118 

tight correlations between the value of f
T
 and vegetation leaf area index (LAI). On the other end, 119 

the problem connected with a proper assessment of D was rarely focused (Drake et al., 2017; Li 120 

et al., 2019), due to the difficulty to acquire accurate canopy temperature or transpiration 121 

information over broad regions or long terms. Li et al. (2019) and Drake et al. (2017) used VPDl 122 

instead of VPD to approximate D; however, it should be noted that VPDl is also affected by soil 123 

evaporation. In the uWUE approach, D was harnessed for representing the stomatal effects on 124 

the photosynthesis-transpiration relationship. On the other hand, using g
s
 rather than D to 125 

couple ET and GPP could be more straightforward, while canopy level g
s
 (canopy conductance, 126 

dented as Gc) can be reasonably characterized by RS vegetation indices (VIs) (Yebra et al., 2013; 127 

Bai et al., 2017). 128 

uWUE presents a concise and effective approach to coupling ecosystem ET and GPP but its 129 

effectiveness is limited by the sensible differences between ET and T, and VPD and D. The two 130 

issues can be potentially addressed by application of RS VIs. We exploited RS-driven approaches 131 

to coupling ecosystem ET and GPP with three main objectives: 132 

(1) Modify the uWUE approach by linking T and GPP via Gc rather than D; 133 

(2) Propose a novel RS-driven approach to coupling ecosystem ET and GPP based on the 134 

modified uWUE as mentioned in (1) by characterizing f
T
 and Gc using RS VIs; 135 

(3) Compare the performances between the RS-driven approach, two uWUE-derived 136 

http://www.baidu.com/link?url=t1dHgPCTnfzbL1omluIKA6CHBPYbg_ZaYTr4-1uHwC_xdzRM6qAgji_7PeWKL1xQj-xQ-As12TClwHaJkQXIRKzKYqAglXgVeiLaEuwPpB3
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versions which only use RS-retrieved f
T
 or Gc, and the original version of uWUE, 137 

concerning reproducing daily and monthly-scale GPP from ET over 180 flux sites 138 

covering multiple biome types over the globe. 139 

(4) Furtherly explore the differences in performance between the novel RS-driven approach 140 

and other methods modified from recent studies, which aimed to reasonably partition T 141 

from ET or link ET and GPP on an ecosystem level, concerning estimating GPP from 142 

ET on a daily scale and over the flux sites used in (3). 143 

2 Materials and Methods  144 

2.1 An overview of the underlying water use efficiency 145 

The underlying water use efficiency (uWUE) proposed by Zhou et al. (2014) provides an 146 

easy approach to coupling ecosystem-level T and A and is robust from hourly to yearly scales 147 

(Zhou et al., 2015). The uWUE is derived from Inherent Water Use Efficiency (IWUE) (Beer et 148 

al., 2009), which incorporates D to link A and T under the steady-state condition with a 149 

constant ci ca⁄  value. Zhou et al. (2014) developed uWUE by integrating the expressions of A 150 

and T following the Fick’s law (Beer et al., 2009; Nobel, 2009) and assuming ci ca⁄ , to be 151 

proportional to √D (Lloyd and Farquhar, 1994), on the basis of the theory of optimal stomatal 152 

behavior (TOSB) (Cowan and Farquhar, 1977). The following equation represents the 153 

relationship between T and A through uWUE. 154 

w T A D   ,  (1) 155 

where w denotes the underlying water use efficiency (uWUE: μmol C (mol H2O)-1 kPa
0.5

), 156 

which is supposed to remain constant for a specific biome (Zhou et al., 2014); T is the 157 
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transpiration measured in mol m-2 s-1; and D represents the leaf-to-air vapor pressure deficit 158 

measured in kPa.  159 

At the ecosystem level, Eq.(1) can be expressed as the following equation: 160 

GPPw T D   ,  (2) 161 

where T is approximated by ET in Zhou et al. (2014). D is not an easily acquired factor on a 162 

regional scale, therefore Zhou et al. (2014) and Zhou et al. (2015) used VPD to approximate D, 163 

assuming leaf temperature is the same as air temperature, a hypothesis widely accepted (Medlyn 164 

et al., 2011; Zhang et al., 2016; Boese et al., 2017; Medlyn et al., 2017). However, VPD may fail 165 

to properly approximate D, as considerable differences in temperature between leaf and air are 166 

commonly found (Jackson et al., 1981; Idso et al., 1982b; Almeida, 1986; Olufayo et al., 1993; 167 

Nelson and Bugbee, 2015), which may induce substantial uncertainties in representing the 168 

transpiration-photosynthesis relationship.  169 

2.2 Remote sensing-driven approach to Coupling Ecosystem Evapotranspiration and 170 

Photosynthesis (RCEEP) 171 

2.2.1 Linking ecosystem ET and GPP via canopy conductance 172 

Stomata is the main pathway for water loss and carbon uptake of plant leaves (Cowan and 173 

Farquhar, 1977; Beer et al., 2009; Medlyn et al., 2011), and D (Eq.(2)) in the uWUE approach is 174 

harnessed for representing the effect of stomatal conductance on the transpiration-photosynthesis 175 

relationship. Therefore, a more straightforward approach to coupling ET and GPP is to represent 176 

their relationship in terms of the g
s
 (Gc on a canopy or ecosystem level). Gc and D are linked 177 

by the following relationship, according to Fick’s law (Beer et al., 2009; Nobel, 2009): 178 
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c

a

D G
T

P


 ,  (3) 179 

where Gc is measured in mol m-2 s-1; Pa is the atmosphere pressure (kPa). We can integrate 180 

Eq.(2) with (3) to eliminate D and derive the following equations to represent the relationship 181 

between ET and GPP in terms of Gc. 182 

c

a

GPP
T G

w
P


  ,  (4) 183 

T ETT f  ,  (5) 184 

where f
T
 denotes the proportion of vegetation transpiration, T, in ET. 185 

2.2.2 Representing Gc and f
T
 using RS VIs 186 

2.2.2.1 Gc in terms of EVI 187 

Satellite-retrieved near-infrared vegetation indices are capable of characterizing the 188 

seasonal variations in Gc. (Zhang et al., 2009; Yebra et al., 2013; Bai et al., 2018). In this study, 189 

we incorporate a simple relationship between Gc and satellite-retrieved enhanced vegetation 190 

index (EVI). 191 

c G sEVIG k  ,  (6) 192 

   soilsEVI max EVI EVI ,0 1 p p     ,  (7) 193 

where kG is a multiplier scaling sEVI to Gc; sEVI denotes the scaled EVI value; EVIsoil 194 

denotes the EVI value of soil; p denotes the minimum value of sEVI and is fixed to 0.01 in this 195 

study. While Yebra et al. (2013) proposed a nonlinear correlation, we propose a linear 196 

relationship between EVI and Gc , because we found EVI could linearly correlate to 197 

GPP (Ca ∙ √VPD)⁄ , which is scaled with Gc, as indicated by Medlyn et al. (2011). We linearly 198 

fitted GPP (Ca ∙ √VPD)⁄ = slope × sEVI  to derive EVIsoil  using the least-square method 199 
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along with daily tower-derived GPP of 180 flux sites (see also Section 2.4.1), and the value of 200 

EVIsoil turned out to be 0.10 (R2 = 0.47). 201 

Canopy conductance, Gc, is also regulated by many environmental parameters, e.g. air 202 

temperature, solar radiation, and leaf water potential, in addition to EVI, and thus may be more 203 

reasonably estimated by a more complicated formulation of Gc, in which these factors were 204 

accounted for. Here, we considered such a formulation, Gc = k ∙ (sEVI ∙ ϕ)b (see also Text S1), 205 

where k and b are empirical coefficients and ϕ denotes the surface wetness, calculated as the 206 

ratio of actual ET to Priestley-Taylor equation derived ET potential (Priestley and Taylor, 1972). 207 

Previous studies have found ϕ  tightly and nonlinearly correlated to surface conductance 208 

(Baldocchi and Xu, 2007; Ryu et al., 2008; Ma et al., 2015). Therefore, ϕ can effectively 209 

represent the environmental constraints on Gc, and the term k ∙ (sEVI ∙ ϕ)𝑏 could be a better 210 

approximation for Gc than kG ∙ sEVI. However, we found that such a Gc formulation showed 211 

no tendencies to facilitate a more meaningful relationship between ET and GPP (see also Section 212 

4.2 and Text S1), as compared with that simply estimated using Eq.(6). 213 

2.2.2.2 f
T
 in terms of NDVI 214 

Ecosystem ET is by definition different from T as the contribution of soil evaporation is in 215 

most cases significant (Cavanaugh et al., 2011; Gu et al., 2018; Perez-Priego et al., 2018; Li et al., 216 

2019). T could be partitioned from ET based on Eq. (5), where f
T
 is unknown. Efforts have been 217 

devoted to estimate f
T
 and indicated the potential of resolving this issue using remote sensing 218 

techniques (Cavanaugh et al., 2011; Zhou et al., 2016; Gu et al., 2018; Perez-Priego et al., 2018; 219 

Li et al., 2019). In this study, we evaluate a simple RS approach to approximating f
T
. As ET is 220 
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primarily forced by solar radiation (Wang et al., 2010; Boese et al., 2017), we assume f
T
 is 221 

proportional to the Fraction of Absorbed Photosynthetically Active Radiation (f
PAR

) (Sims et al., 222 

2005) and estimate the former as follows:  223 

 PT TRT A 1.24 NDVI 0.168ff k k      ,  (8) 224 

where kT denotes the ratio of f
T
 to f

PAR
 (dimensionless). A similar approximation was made 225 

by Cheng et al. (2017), who also used f
PAR

 to approximate f
T
 but calculated f

PAR
 in terms of 226 

Beer’s Law along with RS-derived LAI. However, due to large uncertainties existing in 227 

nowadays’ LAI products (Yang et al., 2007; Jin et al., 2017), we used NDVI instead of LAI to 228 

compute f
PAR

. We symbolized f
T
 computed according to Eq. (8) as NDVI-f

T
.  229 

2.2.3 RS-driven coupling of ET and GPP 230 

Integrating Eq.(4) with Eq.(6) and (8), we can derive an original formulation linking 231 

ecosystem ET and GPP we termed ‘Remote sensing-driven approach to Coupling Ecosystem 232 

Evapotranspiration and Photosynthesis’ (RCEEP), representing a novel remote sensing-driven 233 

approach to coupling these two fluxes. We then compare the performances of RCEEP with the 234 

original version of the uWUE (Table 1), which uses ET and VPD to approximate T and D, 235 

respectively, for calculating GPP from ET. For better clarifying how RS VIs could facilitate more 236 

meaningful relationships between ET and GPP, we also evaluate two additional versions of 237 

RS-based approaches modified from the uWUE. The first one, formulated following Eq.(2) 238 

(VI-T in Table 1), incorporates the NDVI-derived f
T
 to calculate T from ET (Eq.(5) and (8)) and 239 

approximates D by VPD. The second one, formulated following Eq. (4) (VI-G in Table 1), only 240 

incorporates EVI-Gc (Eq. (6)) and approximate T by ET. If the use of either NDVI-f
T
 or EVI-Gc 241 
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plays a positive role in improving the coupling of ecosystem ET and GPP, then VI-T, VI-G, and 242 

RCEEP should all perform better than the uWUE, and RCEEP is supposed to perform the best. 243 

 244 

Table 1 Analytical expression of uWUE, VI-T, VI-G, and RCEEP models.a 245 

Model 

Name 

RS-derived factors 

considered 

Formulation 

uWUE - GPP ET VPDw   

VI-T NDVI-f
T
    T PARGPP ET VPDfw k    , 

VI-G EVI-Gc   1

G aGPP sEVI ETw k P      

RCEEP NDVI-f
T
 and EVI-Gc   PA

1

G aRTGPP sEVI ETw k k Pf         

2.3 Models’ Calibration and Evaluation 246 

Undetermined constants need to be estimated in order to numerically define the 247 

relationships linking GPP and ET according to the models presented in Table 1. These 248 

coefficients are determined by fitting each model (or equation) using the least-square method and 249 

on the basis of observed flux-derived (referred to as ‘observed’) daily-scale GPP (GPPobs) and 250 

ET (λEobs) of the flux sites described in 2.4. To avoid the confounding effect of evaporation of 251 

rainfall intercepted by the canopy, we only use data from rain-free days. Data records with 252 

GPPobs ≤ 1 μmol m
-2

s-1 were also removed. Each value of w ∙ kT, w ∙ √kG, and w ∙ √kG ∙ kT in 253 

VI-T, VI-G, and RCEEP is treated as a single quantity. Coefficients for each model were 254 

determined by directly fitting corresponding equations and are reported in Appendix A.  255 

The four approaches presented in Table 1 are evaluated by comparing GPP estimated 256 

(GPPest) using these models, along with λEobs and other required inputs, against the observed 257 

GPP (GPPobs) of flux sites on a daily and monthly scale. Monthly GPPest is not the simple 258 

average of daily estimates but was rather estimated using the fitted equations with required 259 
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inputs. We use data of both rainy and rain-free days for the validations. We use the 260 

Nash-Sutcliffe efficiency, NSE, (Nash and Sutcliffe, 1970; Krause et al., 2005) to measure the 261 

performances of each model (Table 1), calculated as follows: 262 
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,  (9) 263 

where oi  and p
i
 denote observed and model-predicted values, �̅�  the average of observed 264 

values and N represents the total number of samples. The value of the index ranges from -∞ to 1 265 

(perfect fit). Large and positive NSE values relate to good performances of the model, while 266 

values lower than zero indicates that the mean of the observations would have been a better 267 

estimate than the value predicted by the model. 268 

The comparisons between the four models presented in Table 1 are carried out to 269 

demonstrate the importance of NDVI-f
T
 and EVI-Gc in the RCEEP. However, considering the 270 

recent efforts to partitioning T from ET or representing more meaningful relationships between 271 

ET and GPP on an ecosystem level, it is worthwhile to clarify the differences in performances 272 

between RCEEP and approaches modified from recent studies. Therefore, we compare RCEEP 273 

with three additional approaches modified from recent works that aimed to reasonably partition T 274 

from ET or link ET and GPP on an ecosystem level. We considered three approaches modified 275 

from recent studies, (1) RCEEP incorporating f
T

 derived from the Priestley-Taylor Jet 276 

Propulsion Laboratory (PT-JPL) (Fisher et al., 2008; Gu et al., 2018) (RCEEP-JPL), (2) WUE 277 

and ET-based carbon uptake model (WEC) (Cheng et al., 2017), and (3) uWUE incorporating 278 

solar radiation (Rg) (uWUE-Rg) (Boese et al., 2017). Details of the three approaches can be 279 

found in Appendix D. Both RCEEP-JPL and WEC are optimized and compared with RCEEP for 280 
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each biome types on a daily scale; while we optimize and run RCEEP and uWUE-Rg for each 281 

site on a daily scale, and the comparison between the two models is carried out on a biome level 282 

in terms of the values of their performance metric (i.e., NSE) aggregated from site-scale 283 

measurements. WEC considers canopy interception evaporation (Ei), however, modeling this ET 284 

component is beyond the scope of this study. For a fair comparison between RCEEP, 285 

RCEEP-JPL, and WEC, we used only rain-free days’ data. As uWUE-Rg is designed for only 286 

rain-free days (Boese et al., 2017), we also remove data of rainy days in the comparison between 287 

RCEEP and uWUE-Rg. 288 

2.4 Data and data processing 289 

2.4.1 Flux site data 290 

Site-scale observations of GPP, ET (derived from latent heat flux, λE) and required 291 

meteorological data in this study were retrieved from the FLUXNET2015 Tier 2 data (available 292 

at https://fluxnet.fluxdata.org/). This dataset provides hourly (or half-hourly), daily, weekly, 293 

monthly, and yearly water, carbon and energy fluxes as well as meteorological data. All network 294 

sites assess turbulent fluxes by means of the eddy covariance, a method that is often prone to 295 

energy imbalance issues, i.e., the sum of the observed latent heat flux and sensible heat flux is 296 

different from the available energy. We removed sites with an energy balance closure ratio (Ra) 297 

values that were smaller than 0.60 or greater than 1.30. The Ra is calculated as the following. 298 

a

n

E H
R

R G

 



  299 

where H, Rn, and G denote the site level sensible heat flux, surface net radiation, and soil heat 300 

flux respectively, all measured in W m
-2

. In addition, a site affected by prolonged snow cover 301 

https://fluxnet.fluxdata.org/


 

 15 

was also removed. Finally, we preserved 180 flux sites (Figure 1; see also supporting information 302 

in Table S1), which cover 13 different biome types and represent a wide range of climate 303 

conditions. 304 

Although FLUXNET2015 dataset also provides λE and H corrected for energy balance 305 

enclosure by partitioning the residual energy between the two main dissipative heat fluxes on the 306 

basis of the Bowen ratio (Twine et al., 2000), we used the original observations, since this 307 

approach may fail in the case of short eddy covariance towers, that primarily sample small eddies. 308 

Over a heterogeneous landscape, Bowen ratios of small eddies are different from those of large 309 

eddies, which makes the energy balance closure correction factor hardly applicable (Foken, 310 

2008). For GPP, we used the variable termed “GPP_NT_VUT_REF”, where NT indicates the 311 

nighttime data-based method (Reichstein et al., 2005; Lasslop et al., 2010), VUT denotes the 312 

varied friction velocity (u∗) threshold for filtering NEE data, and REF denotes the reference NEE 313 

value, which is the value most similar to the other 39 ones out of 40 NEE estimates. For more 314 

information concerning the derivation of GPP in FLUXNET2015 dataset, please refer to 315 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/.  316 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
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 317 
Figure 1 Distribution of the 180 flux stations used for this study over the globe (some sites appear overlapped). 318 

These sites are categorized into 13 groups in terms of biome types: CRO_C3 = C3 crops; CRO_C4 = C4 crops; 319 

CSH = close shrub; DBF = deciduous broadleaf forest; DNF = deciduous needleleaf forest; EBF = every green 320 

broadleaf forest; ENF = evergreen needleleaf forest; GRA = grassland; MF = mixed forest; OSH = open shrub; 321 

SAV = savannah; WET = wetland; and WSA = woody savannah. Frequency of each biome is as follows: 322 

CRO_C3: 8, CRO_C3_C4: 8, CRO_C4: 2, CSH: 2, DBF: 21, DNF: 1, EBF: 14, ENF: 41, GRA: 34, MF: 8, OSH: 323 

12, SAV: 8, WET: 15 and WSA: 6. ‘CRO_C3_C4’ denotes a crop site where both C3 and C4 crops were grown 324 

for at least one growing season. The Projection and Geographic Coordinate Systems of this map are ‘World 325 

Robinson’ and ‘WGS-84’ and the central meridian is 0°. 326 

We used daily data to calibrate and evaluate all models (see also section 2.3). Daily λE and 327 

GPP in the FLUXNET2015 dataset were the averages of hourly (or half-hourly, both hourly and 328 

half-hourly are referred to as hourly thereafter) values. However, if a large proportion of hourly 329 

values were unavailable, the daily value would be unreliable. For this reason, we removed daily 330 

λE or GPP data including more than 50% missing hourly values. 331 

2.4.2 Remote sensing vegetation indices 332 

Two vegetation indices, NDVI and EVI, were computed using the MODIS reflectance 333 
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where ρ
NIR

, ρ
RED

, and ρ
BLUE

 denote the reflectance of near-infrared, red, and blue bands, 337 

respectively, which were retrieved from the MOD09A1 product that has a temporal resolution of 338 

8 days and spatial resolution of 500 m. We used the ‘Global Subsets Tool’, available on the 339 

website of Oak Ridge National Laboratory (https://modis.ornl.gov/data.html), to retrieve the 340 

reflectance data for each location from the pixel where the site is located. We removed 341 

low-quality pixels (surface covered by snow or cloud) at each site and calculated NDVI and EVI 342 

from the remaining data. The quality-controlled 8-day NDVI or EVI was then linearly 343 

interpolated into daily values, using the nearest available data in the time sequence.  344 

3 Results 345 

3.1 Cross-biome evaluation and analyses of RCEEP 346 

Cross-validations were carried out to compare the performances of the uWUE, VI-T, VI-G, 347 

and RCEEP (Figure 2), parameterized with biome-specific factors (Appendix A) across all 348 

biomes (Figure 1) on a daily and monthly scale. The three RS-based approaches, VI-T, VI-G, and 349 

RCEEP, proved more efficient in reproducing daily and monthly GPP, featuring higher NSE 350 

values compared to uWUE, in which T and D are approximated by ET and VPD, respectively 351 

(Figure 3). On a daily scale, VI-T (NSE=0.52) and VI-G (NSE=0.71) featured better 352 

performances than the original version of uWUE (NSE=0.44), which uses no VI-derived factors, 353 

while RCEEP (using both NDVI-f
T
 and EVI-Gc) showed the best performance, with an NSE 354 

https://modis.ornl.gov/data.html
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value of 0.73. On a monthly scale, each model exhibited improved performance, while rankings 355 

in terms of NSE values were consistent, i.e., RCEEP > VI-G > VI-T > uWUE. Results provide 356 

evidence that incorporating both NDVI-f
T
 and EVI-Gc in the model can significantly contribute 357 

to improving the derivation of GPP on the basis of ET, at both daily and monthly scale. 358 

 359 

Figure 2 Comparison of Gross Primary Production estimated (GPPest) by four models (uWUE, VI-T, VI-G, and 360 

RCEEP) with GPP observed at the FLUXNET ecosystem sites (GPPobs) on a daily ((a1) – (a4)) and monthly ((b1) 361 

– (b4)) scale. 362 

3.2 Biome-level evaluation and analyses of RCEEP  363 

For each biome type, we again evaluated uWUE, VI-T, VI-G, and RCEEP (see also Table 1) 364 

parameterized with biome-specific parameters (Appendix A) with regard to reproducing GPP 365 

from ET on a daily and monthly scale (Figure 3 and Appendix B). Also, in this case, all four 366 

models featured better behavior at the monthly scale (Appendix B), since average monthly NSE 367 

values of the uWUE, VI-T, VI-G, and RCEEP were greater than daily values across all biome 368 

types, with the exception of CRO_C3 and C4 for VI-G, and RCEEP. Results highlight an 369 

inconsistent effect of incorporating NDVI-f
T

 and EVI-Gc  on coupling ET and GPP over 370 

different biomes. VI-T and VI-G performed better than uWUE for most biome types (Figure 3) 371 
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and RCEEP was the best across all biomes except for EBF and SAV at both the daily and 372 

monthly scale (Appendix B). However, NDVI apparently failed to reflect the seasonal variations 373 

in f
T
 of EBF, since the inclusion of NDVI-f

T
 degraded the performances of both VI-T and 374 

RCEEP, while VI-G performed the best. On the other hand, VI-T and VI-G showed respectively 375 

worse and better performances than uWUE, in relation to SAV and WSA, while RCEEP 376 

performed similarly or better than VI-G (Figure 3 and Appendix B). Therefore, the inclusion of 377 

the sole NDVI-f
T
 act negatively on coupling ET and GPP as compared to uWUE, but it needs to 378 

be implemented along with EVI-Gc. As a whole, RCEEP can perform better than uWUE, VI-T, 379 

and VI-G over most biome types and reasonably calculate GPP from ET across all biome types 380 

with mean NSE values of 0.70 and 0.76 on a daily and monthly scale.  381 

 382 
Figure 3 NSE values for validating GPPest by four models (uWUE, VI-T, VI-G, and RCEEP) against GPPobs 383 

over 11 biome types on a daily (a) and monthly (b) scale. Here, we refer CSH/OSH or ENF/DNF as a unique 384 

biome type, because a single DNF and two CSH sites only were present in the dataset. Abbreviations of biome 385 

type are as in Figure 1. 386 
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3.3 Comparing RCEEP with RCEEP-JPL, WEC, and uWUE-Rg 387 

The performances of RCEEP, RCEEP-JPL, and WEC parameterized with biome-specific 388 

factors are shown in Figure 4 for each biome type, while Figure 5 presents biome-level 389 

comparisons between RCEEP and uWUE-Rg. Both Figure 4 and Figure 5 revealed better 390 

performances of RCEEP to reproduce GPP from ET on a daily scale for each biome type, on the 391 

basis of significantly greater NSE values, compared with other approaches under investigation. 392 

The biome level NSE values of RCEEP, RCEEP-JPL, and WEC are 0.71 (±0.14), 0.67 (±0.13), 393 

and 0.55 (±0.19), respectively, where values in parentheses are ±1 standard deviation of NSE 394 

across all biome types. These results indicated that NDVI-f
T
 provided more effective estimates 395 

of the ‘real’ f
T
 than did the PT-JPL model. Although WEC used NDVI-f

T
, it performed worse 396 

than both RCEEP and RCEEP-JPL. This highlights the importance of a more reasonable 397 

representation of stomatal effects in the relationship between ecosystem ET and GPP. Due to the 398 

inclusion of the site-specific parameter, r, in WUE-Rg, we implemented WUE-Rg and RCEEP 399 

with site-specific parameters at each flux site for a fair comparison between the two models. The 400 

results of uWUE were also included in Figure 5 as a benchmark. The results showed that while 401 

both uWUE-Rg and RCEEP can perform better than the uWUE, the latter yielded the best 402 

performances across all biome types under investigation with larger mean values of NSE. 403 

 404 
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 405 
Figure 4 NSE values for RCEEP, RCEEP-JPL, and WEC with regard to reproducing GPP from ET over 11 biome 406 

types on a daily scale. ‘MEAN’ denotes the NSE values averaged across all biome types. Details of RCEEP-JPL 407 

and WEC can be found in Appendix D. All models are parameterized with biome-specified parameters. Refer to 408 

Figure 1 for the explanation of each biome type. 409 

 410 
Figure 5 Distributions of the site-level NSE values of three models (uWUE, uWUE-Rg, and RCEEP) to 411 

reproducing GPP from ET based on site-specific parameters on a daily scale. Negative NSE values were forced 412 

to be 0. The details of uWUE-Rg are presented in Appendix D. Data are retrieved from rain-free days’ of 160 413 

sites with more than 300 observations. Four cropland sites (FR-Gri, IT-BCi, US-Ne2, and US-Ne3) shares 414 

CRO_C4 and CRO_C3 biomes. Refer to Figure 1 for the explanation of the biome types. 415 

4 Discussion 416 

4.1 VI-derived f
T
 417 

Assuming a constant f
T
 when building the relationships between ecosystem ET and GPP is 418 



 

 22 

challenged by the variability of this parameter in relation to vegetation dynamics (Wang et al., 419 

2014; Zhou et al., 2016; Wei et al., 2017; Perez-Priego et al., 2018). We addressed this issue by 420 

appraising f
T

 using NDVI-derived f
PAR

 and found that this approximation provides more 421 

effective estimates than the complex ecophysiological ET model (Figure 4), PT-JPL, which is 422 

driven by RS VIs and meteorological factors (Fisher et al., 2008). NDVI-f
T
 facilitated a better 423 

relationship between ecosystem ET and GPP across all biome types except for EBF. However, 424 

the usefulness of NDVI-f
T
 was impaired by the relatively high LAI value of dense canopies of 425 

EBF, which is generally found in tropical and subtropical regions. Satellite-retrieved NDVI is 426 

affected by canopy structure as well as by leaf chlorophyll content (Chl) (Wu et al., 2009; Croft 427 

et al., 2017), thus NDVI of a thick canopy is dominated by Chl and may fail to represent the 428 

variations in f
T
. 429 

We also found that NDVI-f
T
 seemed to act negatively on coupling ET and GPP of SAV and 430 

WSA, since VI-T, which uses NDVI-f
T
 and approximates D by VPD, yielded smaller NSE 431 

values than uWUE in reproducing GPP. On the other hand, NDVI-f
T
 always played a positive 432 

role when used in combination with EVI-Gc (Figure 3). To find the reason for this interesting 433 

result for SAV and WSA, we investigated the distributions of the errors in GPPest from uWUE 434 

at high and low VPD values over the two biome types (Figure 6), and found uWUE tended to 435 

yield negative errors at low VPD and positive errors at high VPD values. Therefore, VPD could 436 

be a driving force of the errors in uWUE. The leaf-to-air temperature difference can fall below 437 

zero and show a negative correlation with VPD under unstressed conditions (Almeida, 1986; 438 

Olufayo et al., 1993; Nelson and Bugbee, 2015), while savannah trees show comparable 439 

well-watered conditions across both wet and dry seasons, due to their ability to access water 440 
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from deep soil layers (Herrera et al., 2012). Therefore, we speculate that the high VPD values, 441 

which generally appear in the dry season (Figure 6 (c)), could overestimate the actual value of D 442 

of SAV or WSA, and then degraded the performances of VI-T. For these biomes, high VPD 443 

values are also accompanied by low NDVI (Figure 6 (b)), which can amplify the errors induced 444 

by VPD in VI-T and thus result in worse performances. However, our study demonstrates the 445 

importance of including f
T
 in the model, as we found NDVI-f

T
 combined with EVI-Gc can 446 

lead to better performances of RCEEP compared with VI-G (see also Section 3.1 and 3.2). 447 

Perez-Priego et al. (2018) also supported our findings, who revealed significant seasonal 448 

variations in f
T
, but its value rarely exceeded 80%, even in the case of a Mediterranean savannah 449 

ecosystem. 450 

 451 

 452 

Figure 6 Distributions of (a) errors of GPPest from uWUE, (b) NDVI, and (c) precipitation rate on a monthly 453 

scale for high (green boxes) and low (yellow boxes) VPD values over two biomes (SAV and WSA). The solid 454 

black diamonds represent the mean values. Kolmogorov-Smirnov tests yielded significant differences in the 455 

distributions of each variable (errors of GPPest, NDVI, and precipitation rate) between low and high-VPD values 456 

over each biome. The p-value of each test is smaller than 0.001. High and Low VPD values are divided by the 457 

50th percentile of monthly VPD values in each site-year. 458 

4.2 VI-derived Gc 459 

The above discussion and the comparisons between RCEEP and VI-T/WEC revealed the 460 
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negative implications of approximating D by VPD. While previous studies discussed this issue 461 

(Boese et al., 2017; Lin et al., 2018; Li et al., 2019), RCEEP addresses it by coupling ET and 462 

GPP via VI-derived Gc (VI-Gc) rather than VPD. Efforts made by Boese et al. (2017) to 463 

improve the performance of uWUE used a different approach, which was found to perform 464 

worse than RCEPP (see also Section 3.3), however. As RS VIs were extensively used for 465 

characterizing the photosynthetic features of vegetation (Yuan et al., 2010; Yuan et al., 2014; Yan 466 

et al., 2015; Zhang et al., 2015), we speculate that the advantages of RCEEP are associated with 467 

the ability of RS VIs to characterize biophysical features of terrestrial ecosystems, e.g. canopy 468 

structure and greenness, which are important for quantifying photosynthesis of the vegetation 469 

canopy, but cannot be successfully estimated in terms of VPD or Rg. Especially when T is highly 470 

coupled to the atmosphere with a large value of Gc Ga⁄  for the vegetation canopy, where Ga 471 

denotes the aerodynamic conductance, T is hardly biophysically (i.e., Gc) controlled (Mallick et 472 

al., 2016) and thus may be decoupled from photosynthesis. The success of using VIs discloses 473 

then the potential of further improving the coupling of biome ET and GPP by considering more 474 

biophysical features of ecosystems. 475 

However, the use of VI-Gc may be impeded by the complicated effects of environmental 476 

factors in addition to the RS VI. A more complicated formulation of Gc, the effects of multiple 477 

environmental factors were accounted for, could be more useful. To clarify this issue, we 478 

performed a comparison between the RCEEP version developed in this study and an alternative 479 

version that uses a more complex formulation of Gc to account for various environmental 480 

effects regarding estimating GPP from ET (Text S1). Interestingly, the result featured comparable 481 

performances between the two RCEEP versions (see also Text S1), which revealed no tendencies 482 
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of the complex Gc to facilitate a better performance of RCEEP as compared to the VI-Gc. 483 

Therefore, the simple formulation of Gc, as indicated by Eq.(6), is sufficient for quantifying GPP 484 

using RCEEP along with ET. But this result can only be restricted to the applications of RCEPP. 485 

Because the ability of ecosystem ET to indicate environmental controls (Baldocchi and Xu, 2007; 486 

Ryu et al., 2008; Ma et al., 2015) on Gc can make up for the shortage of VI-Gc, which explains 487 

the success of the application of RCEEP with VI-Gc.  488 

4.3 The potential use of RCEEP and its limitations 489 

RCEEP provides a straightforward approach to understanding the dynamics of GPP in 490 

relation to ET. RS-based biophysical process models on coupled estimates of GPP and ET (Chen 491 

and Liu, 2020), e.g. the Boreal Ecosystem Productivity Simulator (BEPS) (Chen et al., 2012), 492 

Breathing Earth System Simulator (BESS) (Ryu et al., 2011; Jiang and Ryu, 2016), and the 493 

coupled diagnostic biophysical model (PML-V2) (Zhang et al., 2019), incorporate process-based 494 

modules to simulate GPP and then calculate T in terms of the first or second-order 495 

Penman-Monteith equation (Monteith, 1965; Paw U and Gao, 1988) along with GPP-derived g
s
 496 

(Ball et al., 1987). Such a framework for simulating ET and GPP was also adopted in multiple 497 

land surface models (De Kauwe et al., 2013; De Kauwe et al., 2015; Kala et al., 2015). These 498 

models can reasonably simulate the variation in ET as a result of GPP but hardly show the 499 

responses of GPP to the variations in ET. By contrast, RCEEP proved successful in calculating 500 

GPP from ET and can thus provide a reliable and straightforward approach to understanding the 501 

responses of GPP to the change of ET. Besides, RCEEP was proved to be more effective than an 502 

analogous approach (see also Section 3.3), WEC, which is developed recently (Cheng et al., 503 
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2017). To date, numerous methods have been developed to reasonably reproduce ET on a 504 

regional or global scale (Michel et al., 2016; Chen and Liu, 2020; Fisher et al., 2020), therefore, 505 

RCEEP can provide an easy approach to estimating regional or global-scale GPP by combing 506 

these existing approaches, especially some thermal-driven models which can robustly compute 507 

ET based on the energy balance theory in the absence of biome-specific parameters (Long and 508 

Singh, 2012; Chen et al., 2013; Mallick et al., 2015; Mallick et al., 2016; Bhattarai et al., 2019). 509 

Our analyses also evidenced that the performances of RCEEP are limited by the ability to 510 

characterize the variations in f
T

 and Gc  and could be potentially improved using more 511 

appropriate RS factors. First, RCEEP can only be implemented on a daily or larger temporal 512 

scale, because the sub-daily variations in Gc are dominated by meteorological factors, which 513 

limits the use of VI-Gc on such a time scale. Second, we did not exhaust all the possible RS 514 

factors, because this was beyond the scope of this study. Multiple VIs have been explored to 515 

represent the biophysical features of vegetation (Wu et al., 2010; Yebra et al., 2013; Zhang et al., 516 

2015; Badgley et al., 2017). All these VIs have the potential of improving RCEEP. For example, 517 

leaf chlorophyll concentration (Chl) is known to play an important role in regulating stomatal 518 

conductance (Matsumoto et al., 2005), while some RS VIs are capable of characterizing the 519 

variations in canopy Chl (Wu et al., 2009). Specific remotely sensed products are tightly 520 

correlated with ecosystem photosynthesis. Satellite-retrieved vegetation near-infrared reflectance 521 

(NIRV) (Badgley et al., 2017) and solar-induced chlorophyll fluorescence (SIF) (Mohammed et 522 

al., 2019) are further examples of RS retrieved parameters capable of characterizing 523 

photosynthesis rate of terrestrial ecosystems for a wide range of biomes (Li et al., 2018; Badgley 524 

et al., 2019; Zhang et al., 2020), as they are potentially useful for explaining part of the 525 
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photosynthesis dynamics that is independent of transpiration.  526 

5 Conclusion  527 

We developed RCEEP, an RS-driven approach aimed at coupling ecosystem ET and 528 

photosynthesis (GPP) on a global scale. RCEEP did not use VPD to approximate D in the model 529 

as did other generic methodologies but rather estimates ET on the basis of satellite EVI-derived 530 

Gc. Besides, to remove the effect of soil evaporation, ET was scaled to T using a satellite 531 

NDVI-derived f
T
. As the newly established approach was developed as an improvement of 532 

uWUE model, we compared the performances of RCEEP with uWUE and two additional 533 

modified RS-driven versions (VI-T and VI-G), which only incorporate VI-derived f
T
 (VI-f

T
) or 534 

Gc (VI-Gc). Relative performances were assessed in terms of the NSE values for reproducing 535 

GPP from ET on a daily and monthly scale over 180 flux sites covering 11 biome types over the 536 

globe. In addition, considering the recent efforts to partitioning T from ET or representing more 537 

meaningful relationships between ET and GPP on an ecosystem level, we furtherly compare 538 

RCEEP with another three approaches modified from recent studies concerning estimating GPP 539 

from ET. The results lead us to the following conclusions: 540 

(a) VI-derived f
T

 and Gc  can help to provide more meaningful relationships between 541 

ecosystem ET and GPP, as the three RS-driven approaches, VI-T, VI-G, and RCEEP, 542 

exposed more reasonable estimates of GPP compared to the uWUE, which relies on 543 

VPD to approximate D  544 

(b) RCEEP, incorporating both VI-derived f
T

 and Gc , yielded the best results and 545 

performed better than uWUE over all biome types under investigation on a daily or, with 546 
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an exception of EBF, on a monthly scale.  547 

(c) RCEEP featured reliable relationships between ecosystem GPP and ET, with NSE values 548 

of 0.73 and 0.78 for reproducing daily and monthly GPP across all sites under 549 

investigation. 550 

(d) RCEEP was also found to perform better than another three models, RCEEP-JPL, WEC, 551 

and uWUE-Rg, which are modified from recent studies, concerning estimating GPP 552 

from ET. 553 

The above results are encouraging in view of a reasonable relationship between 554 

ecosystem-level ET and GPP and the coupled modeling of the two fluxes on a global scale, 555 

because all RS data used in this study is worldwide available. We did not exhaust all the possible 556 

RS factor which are potentially useful for representing plant biophysical features in developing 557 

the RCEEP. The model can be further improved in future work, by introducing new RS factors to 558 

characterize f
T
 and Gc and assessing a photosynthesis term that is independent of ET. 559 

 560 
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Appendix 561 

Appendix A Biome-specific values of the estimated coefficients pertaining to the 562 

four approaches presented in Table 1, aimed at coupling ecosystem GPP and ET.
 

563 

 uWUE VI-T VI-G RCEEP 

Biome type Coefficients a 

w w ∙ kT  w ∙ √kG  w ∙ √kG ∙ kT 

CRO_C3 3049  5060  3002  3808  

CRO_C4 4689  6701  4249  5038  

DBF 3820  4594  3078  3367  

EBF 3243  4176  3171  3606  

ENF/DNF 3165  4683  3435  4136  

CSH/OSH 2179  3970  2220  2963  

GRA 2698  3999  2717  3314  

MF 3827  4838  3193  3562  

SAV 3054  5745  2507  3602  

WET 2060  3313  2326  2830  

WSA 2866  4751  2376  3209  

MEAN 3150  4712  2934  3585  
a Refer to Figure 1 for the definition of each biome type. kT is dimensionless, and the units of the other two 564 

coefficients are kG: mol m-2 s-1; and w: μmol C (mol H2O)-1 kPa
0.5

. But one cannot calculate the value of an 565 

individual multiplier using coefficients from different models. For example, we cannot divide the value of w ∙ kT 566 

from VI-T by the w of uWUE, because the averaged effect of kT ∙ f
T
 in VI-T has been accounted for by the value 567 

of w of uWUE. Values of w, w ∙ kT, w ∙ √kG , and w ∙ √kG ∙ kT can only be adopted for the formulations they 568 

belong to. 569 

Appendix B NSE values of four models to reproduce GPP from ET over multiple 570 

biomes on a daily and monthly scale. MEAN denotes the average across all biome 571 

types. Please refer to Figure 1 for the explanation of each biome type. 572 

 Daily     Monthly    

Biome type uWUE VI-T VI-G RCEEP  uWUE VI-T VI-G RCEEP 

CRO_C3 0.45  0.61  0.64  0.70   0.51  0.67  0.62  0.69  

CRO_C4 0.65  0.78  0.78  0.83   0.71  0.82  0.76  0.83  

DBF 0.56  0.64  0.81  0.83   0.69  0.77  0.85  0.88  

EBF 0.15  -0.02  0.42  0.32   0.48  0.27  0.53  0.41  

ENF/DNF -0.02  0.15  0.60  0.65   0.47  0.61  0.68  0.75  

CSH/OSH 0.41  0.50  0.70  0.72   0.67  0.73  0.77  0.80  

GRA 0.55  0.64  0.73  0.77   0.66  0.75  0.77  0.83  

MF 0.43  0.47  0.69  0.69   0.70  0.72  0.78  0.78  

SAV 0.57  0.48  0.70  0.71   0.77  0.63  0.77  0.77  

WET 0.33  0.48  0.60  0.64   0.40  0.57  0.64  0.69  

WSA 0.70  0.62  0.81  0.82   0.85  0.74  0.88  0.89  

MEAN 0.43  0.49  0.68  0.70   0.63  0.66  0.73  0.76  
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Appendix C The analytic water use efficiency (WUE) and inherent water use 573 

efficiency (IWUE). 574 

(1) Analytic WUE 575 

Medlyn et al. (2011) proposed a theoretical stomatal conductance model based on the TOSB, 576 

assuming that stomatal behavior was optimized for the photosynthesis limited by RuPB 577 

generation. The TOSB and the expression of photosynthesis rate as limited by RuPB generation 578 

(Arneth et al., 2002) were coupled to derive the ‘optimal stomatal control model’.  579 

1

s 0

a

1.6 1
g A

g g
CD

 
    

 
,  (C1) 580 

where g
s
 denotes the stomatal conductance (mol m-2 s-1); g

0
 the minimum value of g

s
; D is 581 

the leaf to air vapor pressure difference (kPa); A the net photosynthesis rate (μmol m-2 s-1); Ca 582 

the CO2 concentration on the leaf surface (μmol mol
-1

); and g
1
 is a factor controlling the slope 583 

of variations in g
s
 in relation to A. g

1
 has an explicit physiological expression, g

1
 ∝ √𝛤∗𝜆m, 584 

and is a key factor in Eq.(C1)), where Г 
*
 is the CO2 compensation point in the absence of dark 585 

respiration, and λm is the marginal water use efficiency. While assuming g
0
 to be 0, integrating 586 

Eq. (C1) with the transpiration rate expressed following the Fick’s law (Beer et al., 2009; Nobel, 587 

2009): 588 

s

a

D
T g

P
  ,  (C2) 589 

where T denotes the transpiration rate (mol m-2 s-1), and Pa denotes the atmospheric pressure 590 

(kPa); we can derive the following equation (Medlyn et al., 2012), representing the analytic 591 

WUE. 592 
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(2) IWUE 594 
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IWUE was proposed by Beer et al. (2009) to represent the relationship between 595 

ecosystem-level ET and GPP. The value of IWUE is supposed to remain constant for a given 596 

biome type under steady-state environmental conditions with a constant value of ci ca⁄ . It was 597 

defined as follows (Beer et al., 2009): 598 

 a i a1GPP
IWUE

1.6

c c cD

T

 
   ,  (C4) 599 

where T and D are approximated by ET and VPD, respectively. 600 

Appendix D Three approaches bridging ecosystem ET and GPP, modified from 601 

recent studies: comparisons with RCEEP. 602 

(1) RCEEP-JPL: RCEEP incorporating f
T

 derived from the Priestley-Taylor Jet 603 

Propulsion Laboratory (PT-JPL) 604 

The ET model Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) (Fisher et al., 2008) is 605 

useful for computing f
T
 and then partitioning T from ET (Gu et al., 2018). PT-JPL is an 606 

RS-based ecophysiological ET model, which computes ET as a sum of T, Ei, and Es, where Ei 607 

denotes the canopy interception evaporation. Therefore, f
T
 can be calculated based on the 608 

PT-JPL derived T (TJPL) and ET (ETJPL): 609 

JPL

T

JPLET

T
f  ,   (D1) 610 

Compared with f
T
 computed in terms of Eq. (8) along with NDVI in RCEEP, PT-JPL derived f

T
 611 

(PT-JPL-f
T
) explains more physical processes in partitioning T from ET and may have the 612 

potential of improving RCEEP. To clarify this issue, we compare the performances between an 613 

alternative RCEEP version incorporating PT-JPL-f
T
 (RCEEP-JPL) and the original version using 614 

NDVI-f
T
. By substituting kT ∙ f

PAR
 with PT-JPL-f

T
 in RCEEP, we derive the alternative version 615 
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with PT-JPL-f
T
, RCEEP-JPL, such that: 616 

  1JPL

G a

JPL

GPP sEVI ET
ET

T
w k P     ,   (D2) 617 

(2)  WEC: WUE and ET based carbon uptake model  618 

WEC that estimates GPP using the analytic water use efficiency (WUE) (see also Appendix 619 

C-(1)) (Medlyn et al., 2011) and ET was employed by Cheng et al. (2017), to understand the 620 

response of the inter-annual dynamics of global carbon uptake in relation to the water cycle. 621 

Such that: 622 
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GPP
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,   (D3) 623 

 T PAR EiET ET 1T = f f f      ,   (D4) 624 

where f
Ei

 denotes the proportion of Ei, to ET, and we fix f
Ei

 to 0 for rain-free days. Cheng et al. 625 

(2017) computed f
PAR

 in terms of Beer’s Law along with RS-derived LAI. In this study, we 626 

estimated this variable on the basis of NDVI, according to Eq. (8). D in WEC is approximated by 627 

VPD. The WEC is analogous to VI-T and also useful for bridging ecosystem ET and GPP, but it 628 

adopts the framework of analytic WUE that is different from uWUE.  629 

(3) uWUE-Rg: uWUE incorporating Solar radiation (Rg) 630 

For representing a more meaningful relationship between ecosystem ET and GPP, Boese et 631 

al. (2017) modified the uWUE by introducing an additional term, r ∙ Rg, where r is an empirical 632 

factor and Rg denotes the solar radiation, to account for additional ET components, such that:  633 

g

GPP
ET r R

D
   ,   (D5) 634 

where D is approximated by VPD. We could modify this equation to express GPP as a function 635 
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of ET: 636 

 gGPP ET r R D    ,   (D6) 637 

We denoted this method as uWUE-Rg. The term r ∙ Rg is associated with the variations in 638 

stomatal conductance, equilibrium evaporation, and the difference between D and VPD and is 639 

independent of uWUE term GPP √D⁄ . This method is suitable to be applied at the site-scale due 640 

to the significant spatial variability of the site-specific factor, r, a key parameter for a better 641 

coupling of ET and GPP. 642 
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