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Abstract

Understanding future land-use related water demand is important for planners and resource managers in identifying potential

shortages and crafting mitigation strategies. This is especially the case for regions dependent on limited local groundwater

supplies. For the groundwater dependent Central Coast of California, we developed two scenarios of future land use and water

demand based on sampling from a historic land change record: a business-as-usual scenario (BAU; 1992–2016) and a recent-

modern scenario (RM; 2002–2016). We modeled the scenarios in the stochastic, empirically based, spatially explicit LUCAS

state-and-transition simulation model at a high resolution (270-m) for the years 2001-2100 across 10 Monte Carlo simulations,

applying current land zoning restrictions. Under the BAU scenario, regional water demand increased by an estimated ˜ 222.7

Mm by 2100, driven by the continuation of perennial cropland expansion as well as higher than modern urbanization rates.

Since 2000, mandates have been in place restricting new development unless adequate water resources could be identified.

Despite these restrictions, water demand dramatically increased in the RM scenario by 310.6 Mm by century’s end, driven by

the projected continuation of dramatic orchard and vineyard expansion trends. Overall, increased perennial cropland leads to

a near doubling to tripling perennial water demand by 2100. Our scenario projections can provide water managers and policy

makers with information on diverging land use and water use futures based on observed land change and water use trends,

helping better inform land and resource management decisions.
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Key Points: 10 

 Land-use related water demand increased an estimated average 222.7 and 310.6 million 11 

cubic meters across scenarios by 2100  12 

 Continued perennial cropland expansion leads to a near doubling and tripling of perennial 13 

water demand projections across scenarios 14 

 Recent policies limiting new development slow future urbanization, yet generate higher 15 

water demand overall, given perennial expansion 16 
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Abstract 36 

Understanding future land-use related water demand is important for planners and resource 37 

managers in identifying potential shortages and crafting mitigation strategies. This is especially 38 

the case for regions dependent on limited local groundwater supplies. For the groundwater 39 

dependent Central Coast of California, we developed two scenarios of future land use and water 40 

demand based on sampling from a historic land change record: a business-as-usual scenario 41 

(BAU; 1992–2016) and a recent-modern scenario (RM; 2002–2016). We modeled the scenarios 42 

in the stochastic, empirically based, spatially explicit LUCAS state-and-transition simulation 43 

model at a high resolution (270-m) for the years 2001-2100 across 10 Monte Carlo simulations, 44 

applying current land zoning restrictions. Under the BAU scenario, regional water demand 45 

increased by an estimated ~ 222.7 Mm
3
 by 2100, driven by the continuation of perennial 46 

cropland expansion as well as higher than modern urbanization rates. Since 2000, mandates have 47 

been in place restricting new development unless adequate water resources could be identified. 48 

Despite these restrictions, water demand dramatically increased in the RM scenario by 310.6 49 

Mm
3
 by century’s end, driven by the projected continuation of dramatic orchard and vineyard 50 

expansion trends. Overall, increased perennial cropland leads to a near doubling to tripling 51 

perennial water demand by 2100. Our scenario projections can provide water managers and 52 

policy makers with information on diverging land use and water use futures based on observed 53 

land change and water use trends, helping better inform land and resource management 54 

decisions. 55 
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 59 

1. Introduction 60 

Water availability and human land use are inextricably tied (Stonestrom et al., 2009). In water 61 

limited regions, available freshwater supplies can often dictate land use intensity. However water 62 

withdrawals and diversions to support land uses, especially for irrigated agriculture, directly 63 

impact freshwater supplies (Foley, 2005). Adding to the complexity are the associated feedbacks 64 

between land use, climate, and water supplies. Human land use has been attributed to widespread 65 

increases in average global temperatures, contributing to global warming (Diffenbaugh et al., 66 

2015; Ellis et al., 2010; Williams et al., 2015), losses in species diversity, (Fischer & 67 

Lindenmayer, 2007; Hansen & Rotella, 2002; Januchowski-Hartley et al., 2016; Klausmeyer & 68 

Shaw, 2009), changes in water quality (Charbonneau & Kondolf, 1993; Los Huertos et al., 2001; 69 

Scanlon et al., 2005), and groundwater depletion (Konikow & Kendy, 2005). Understanding 70 

potential future land-use related water demand in a region serves as a first step in assessing 71 

prospective outcomes and associated mitigation strategies to address potential vulnerabilities. 72 

California exemplifies these issues with water arguably the state’s most contentious resource. 73 

The state boasts one of the most productive agricultural regions in the world, worth ~$50 billion 74 

(California Department of Food and Agriculture, 2018), which consumes between 60–80% of all 75 

water supplies, while residential and industrial consumption is roughly 17% (Brandt et al., 2015; 76 

Cooley, 2014; Maupin et al., 2014). Surface water is over allocated, estimated at 400 billion 77 

cubic meters, 5 times the average annual runoff (Grantham & Viers, 2014). The state’s 78 



Mediterranean climate is highly variable, characterized by long-term droughts and atmospheric 79 

river flooding events (Dettinger et al., 2011), contributing to inter-annual water supply 80 

uncertainty. Moreover, water demand is highest in the dry, summer months. A statewide extreme 81 

drought from 2012–2016 led to water shortages, increased reliance on groundwater pumping, 82 

and subsequent well drying (Perrone & Jasechko, 2017), and also contributed to saltwater 83 

intrusion in some groundwater basins (Barlow & Reichard, 2010; Hanson, 2003; White & 84 

Kaplan, 2017).  85 

Efforts to plan for water resource sustainability are more challenging now than ever, as these 86 

drought and flood events increase in frequency and intensity due to a changing climate (Berg & 87 

Hall, 2015; Diffenbaugh et al., 2015; Swain, 2015). While the state has long experienced 88 

periodic droughts, many climate projections show increased drought occurrence in coming 89 

decades (AghaKouchak et al., 2015; Ault et al., 2014; Diffenbaugh et al., 2015; Famiglietti, 90 

2014; Konikow & Kendy, 2005; Trenberth et al., 2014). Reduced surface water during drought 91 

often leads to increased groundwater pumping in the state (Famiglietti et al., 2011; McEvoy et 92 

al., 2017; Ojha et al., 2018). Recent work also projects a 25-100% increase in extreme wet/dry 93 

events by century’s end, despite only modest changes in mean precipitation (Swain et al., 2018). 94 

Such extreme events, combined with increased evaporative water demand due to climate 95 

warming, as well as future population growth and agricultural expansion, will likely contribute to 96 

even greater water demand, posing additional challenges to an already unsustainable situation. 97 

This may lead to a pivotal juncture where water demand exceeds available supply. 98 

Oversight of California’s groundwater has historically been limited. While surface water 99 

withdrawals require permits, groundwater pumping has gone largely unregulated and is managed 100 

locally (Leahy, 2016). Several legislative attempts have been made to incentivize groundwater 101 

management and to better integrate land use in water supply planning. In 1992, AB 3030 passed, 102 

and was modified in 2002 by SB 1938, providing procedures and incentives for local agencies to 103 

voluntarily develop groundwater management plans (Costa, 1992; Machado, 2002). In 1995, 104 

Senate Bill (SB) 901 required that local governments conduct water supply assessments during 105 

the environmental reviews for large projects (above 500 housing units) (Costa & Setencich, 106 

1995). In 2001, Senate Bills 610 and 221 required local land use authorities to demonstrate long-107 

term water supply availability before approving new, large development projects (Costa, 2001; 108 

Kuehl et al., 2001). Despite these restrictions, none of these laws regulated groundwater 109 

pumping. By 2014, rapidly falling groundwater tables combined with ongoing extreme drought 110 

led the state to pass the Sustainable Groundwater Management Act (SGMA; AB 1739, SB 1168, 111 

and SB 1319) (Dickinson, 2014; Pavley, 2014a, 2014b). Passage of SGMA marked the first time 112 

local agencies were required to regulate and sustainably manage groundwater resources of 113 

critically over-drafted groundwater basins. The implementation of SGMA is ongoing, with local 114 

agencies actively designing their groundwater sustainability plans. However, many of these 115 

agencies lack the ability to quantify sustainable groundwater yield driven by future land use 116 

related water demand.  117 

California’s Central Coast is an ideal system for examining the linkages between land use change 118 

and land use driven water demand over time and exploring the long-term impacts of water laws 119 

and policies on this process, as well as impacts on groundwater supplies, and resource and 120 

community sustainability. The region has major agricultural and residential areas that are entirely 121 

reliant on local groundwater. There is limited imported surface water, primarily in San Benito 122 

and Santa Barbara counties and groundwater overdraft (extraction exceeding recharge) occurs in 123 



an estimated 40% of basins in the region (Martin, 2014). Many of the coastal aquifers have 124 

seawater intrusion, exacerbated by the recent droughts, rendering local groundwater unsuitable 125 

for drinking or irrigation (Barlow & Reichard, 2010; Hanson, 2003; White & Kaplan, 2017). 126 

Many of its valley floors overly groundwater basins and support extensive agriculture, while the 127 

vast majority is largely undeveloped natural land, creating the potential for substantial new 128 

development. It is home to some of the wealthiest and poorest communities in the 129 

state, including several disadvantaged communities (annual median household incomes <80% of 130 

statewide MHI; California State Legislature, 2002). The city of Salinas is currently the largest 131 

city at 156,259 people (U.S. Census Bureau, 2018). By 2060, the Central Coast is projected to 132 

add nearly 300,000 more people to its population (State of California, Department of Finance, 133 

2018), likely increasing water demand. Water supplies may not be able to keep pace, which 134 

could exacerbate water insecurity in already vulnerable communities and potentially spark social 135 

conflict.  136 

 137 

To assess the trajectory of land use driven water demand for California’s Central Coast and 138 

explore whether the 1992 -2001 water laws and policies were correlated with the pattern of 139 

demand for the region, we ran two scenarios based on historical, empirical datasets of land use 140 

changes sampled. The first was a business-as-usual (BAU) scenario fit to land use change rates 141 

from the entire historic period, 1992–2016, while the second, recent-modern (RM) scenario only 142 

sampled from 2002–2016 rates (i.e., after the second set of laws were put in place in 2001). We 143 

simulated projected land use change and associated water demand for the years 2001–2100 at 144 

270-m across 10 Monte Carlo simulations across these two scenarios. Our model was based on 145 

the Land Use and Carbon Scenario Simulator (LUCAS) (Sleeter et al., 2015, 2017, 2019; Wilson 146 

et al., 2014, 2015, 2016, 2017), a stochastic, spatially-explicit state-and-transition simulation 147 

model. Spatial patterning of land use change was parameterized using local zoning datasets, 148 

identifying where land change would and would not occur giving current zoning ordinances and 149 

local mandates. Our goal was to understand the region’s unique potential water demand, 150 

assisting local water resource and land managers in understanding the impacts of past policies to 151 

better identify and mitigate for possible future vulnerabilities as they continue to develop and 152 

revise new groundwater sustainability plans for SGMA. While SGMA is too new to definitively 153 

determine its impact on future water demand, viewing an unregulated future with and without 154 

existing policy provides an important baseline for more targeted mitigation planning.  155 

 156 

2. Materials and Methods 157 

The LUCAS state-and-transition simulation model (STSM(Sleeter et al., 2017, 2019; Wilson et 158 

al., 2016, 2017) was developed and modified for our study region. The STSM divides the 159 

landscape up into spatially discrete simulation cells, each with assigned state classes and 160 

transition types. Each state class has pre-defined transition type pathways allowing or preventing 161 

cells to move between different state classes over time. What follows is a description of the 162 

model parameterization steps for the Central Coast region of California. For more 163 

comprehensive information on STSMs, see Daniel et al. (Daniel et al., 2016) 164 

We held three stakeholder meetings with individuals from regional municipal governments, 165 

water agencies, and community groups while developing our models. Meetings were held at the 166 

start of model development, the midpoint, and when presenting a draft version of the final model 167 



results. Stakeholders provided information on local spatial planning datasets that were 168 

assimilated into the models (see section 2.5) as well as interpretation of results in the context of 169 

local concerns about water sustainability and land use. 170 

2.1 State Variables and Scale 171 

The current study area encompasses 28,534 km
2
 of the 5-county region in California’s Central 172 

Coast (Figure 1a), covering Santa Cruz, San Benito, Monterey, San Luis Obispo, and Santa 173 

Barbara Counties. The region was divided into 270-m x 270-m simulation cells (391,421 total 174 

cells). Each cell was also assigned an initial LULC state class (Figure 1b) and three additional 175 

spatial identifiers including its 1) county, 2) groundwater sub-basin (Figure 1c; n = 61) 176 

(California Department of Water Resources, 2018) and 3) water service agency(s) (Figure 1d; n 177 

= 107), described below. Scenario simulations were initiated in 2001 and run through the year 178 

2100. The model tracks changes in state class, age, time-since-transition, and state attributes (i.e., 179 

water demand). For each scenario simulation we ran 10 Monte Carlo iterations to capture model 180 

variability and uncertainty in our projections.  181 

We utilized the National Land Cover Dataset 2001 (NLCD01; Homer et al., 2007) as our initial 182 

state class conditions, modified for our study region as follows: 1) all four developed classes 183 

were collapsed into a single developed class and urban core areas defined per Soulard and 184 

Acevedo 2017; 2) the three forest classes were combined into a single forest class; 3) the woody 185 

and emergent wetlands classes were combined into a single wetlands class; 4) the agriculture and 186 

hay pasture classes were combined into a single annual agriculture class; 5) we used data from 187 

Sleeter et al. 2019 for the 2001 perennial agriculture class, described in more detail below; and 6) 188 

the “Developed-Roads” class from Landfire’s Existing Vegetation Cover 2001 was used to 189 

designate a transportation class (LANDFIRE Program, 2019) (Figure 1b). All datasets were 190 

resampled from 30-m to 270-m and re-projected into NAD 1983 California Teale Albers map 191 

projection.  192 

The NLCD01 does not contain a perennial orchard and vineyard class. We used a 2001 perennial 193 

cropland cover map (Sleeter et al., 2019) which generated orchard and vineyard cover using a 194 

gradient boosting machine algorithm framework. Any NLCD01 pixel classified as agriculture 195 

which overlapped the 2001 perennial cover estimate was classified as perennial cropland.  196 



 197 

Figure 1 – California’s Central Coast Study Area including a) counties, b) land use and land 198 

cover in 2001, c) groundwater sub-basins, and d) aggregated water district and groundwater 199 

sustainability agency jurisdictions. Complete lists of regions included in c) and d) located in the 200 

Supplementary Materials Tables 1 and 2, respectively.  201 

The water agencies map (Figure 1d) was created by combining the Groundwater Sustainability 202 

Agency (GSA) Service Area dataset (California Department of Water Resources, 2019b) and the 203 

Water Districts dataset (California Department of Water Resources, 2019c). Because polygon 204 

boundaries did not line up precisely between the two shapefiles, polygons were manually edited 205 

to remove small slivers or gaps. Multiple agencies can also have overlapping jurisdictions (e.g., 206 

local city water systems and basin-wide GSAs), so each polygon in the final dataset was assigned 207 

0–2 GSAs and 0–2 water districts each. If GSAs were formed from pre-existing water districts 208 

with the same boundaries, we included them only as GSAs. Four county-wide water districts 209 

were not included as counties are already represented in the LUCAS model. Lastly, water 210 

districts servicing <20 km
2 

were removed, unless they were the only agency servicing that area. 211 

If so, they were included and labeled “other small water district.” This resulted in 107 unique 212 

jurisdictional combinations covering 29 GSAs and 40 water districts as well as “other small 213 

water district.”  214 

2.2 Model Formulation  215 

The LUCAS model was formulated to simulate changes in state class variables for pathways 216 

associated with urbanization, agricultural expansion and contraction, and agricultural change (i.e. 217 

intensification associated with conversions of annual to perennial cropland).  218 

2.3 Land Change Transitions Targets 219 



Data from the Farmland Mapping and Monitoring Program (FMMP) (California Department of 220 

Conservation, 2017) dataset was used to supply LULC transition targets for agricultural 221 

expansion, agricultural contraction, and urbanization. The FMMP gathers bi-annual land change 222 

data using aerial photography and human interpretation. We updated the existing historical land 223 

change record (1992-2012) from Wilson et al. (2016) with newly available data, extending the 224 

record to span 24 years (1992-2016), from which future scenarios could be sampled.  225 

Changes between annual and perennial crop types (i.e., agricultural change) are typically harder 226 

to quantify. Previous work used cropland statistics to set a single agricultural change transition 227 

target, applied across a broader study area (Wilson et al., 2016). To improve upon this method 228 

and to better capture regional variability in these trends, we used available spatial datasets, 229 

including our 2001 initial conditions map and the 2018 perennial cropland map described in 230 

Section 2.5.3. Any pixel which began as annual cropland in 2001 but converted to perennial 231 

cropland by 2018 was captured. This generated a 17-year, county-level annual to perennial 232 

conversion value (2001-2018), converted into annual transition targets of 0.12 km
2
 (Santa Cruz), 233 

0.60 km
2
 (San Benito), 2.59 km

2
 (Monterey), 1.37 km

2 
(San Luis Obispo) and 1.09 km

2 
(Santa 234 

Barbara). The same approach was used for calculating yearly perennial cropland expansion into 235 

rangelands, resulting in 0.28 km
2
 (Santa Cruz), 1.63 km

2
 (San Benito), 3.99 km

2
 (Monterey), 236 

10.58 km
2 
(San Luis Obispo) and 5.59 km

2 
(Santa Barbara).   237 

To calculate the rangeland to annual cropland transition targets, we subtracted the rangeland to 238 

perennial transition target from the overall agricultural expansion targets from FMMP. Where 239 

more rangeland to perennial occurred than was reported as agricultural expansion, it was 240 

assumed that 0 km
2
 of rangeland was converted into annual cropland. We recognize this 241 

approach introduces some data loss, however lacking wall-to-wall spatial and “from class – to 242 

class” conversion information at higher temporal resolution, it is the most defensible approach to 243 

capture the large scale, notable shifts of natural lands into perennial production, a trend 244 

uncommon for annual cropland in this region.  245 

2.4 Perennial Transition Probabilities 246 

Conversions out of the perennial cropland class are also challenging to quantify. Perennial crops are 247 
expensive to plant, cannot be fallowed, and take several years post-planting to reach maturation (Johnson 248 
& Cody, 2015). The average lifespan of vineyards and orchards in California is 25 years (Kroodsma & 249 
Field, 2006), after which productivity often declines. In order to capture this lifespan, we extracted age 250 
values for our 2001 perennial cropland from an age class map available from Sleeter et al. (2019). Since 251 
the LUCAS model can track pixel age and time since transition, we set the following model rules: 1) a 252 
perennial pixel must reach a minimum age of 20 years before it eligible for removal or conversion, in any 253 
model year or iteration, 2) the annual transition probability for orchard removal was sampled from a 254 
cumulative probability of 0.95 for ages 20 and 45, and 3) after removal pixel age is reset to 1 and the cell 255 
is free to be converted into new development, agricultural contraction, or annual cropland (with annual 256 
probability set at 0.05) . If the cell does not convert in this age reset year, the model assumes it is 257 
replanted as perennial. Any perennial crop over 20 years in age has a 0.05 probability of transitioning 258 
back to annual cropland.  259 



 260 

2.5 Adjacency & Spatial Multipliers 261 

For each potential LULC transition, adjacency multipliers were applied where the relative 262 

probability of any transition increased linearly with the number of existing, neighboring “from 263 

class” cells within a 405-m x 405-m moving window. A cell would be eligible to transition if it 264 

contained at least one neighbor of the destination class (or transitioning “to class”) within a 405-265 

m radius of the cell to be transitioned. The more neighbors of the “to class” increases the 266 

likelihood of transition which was linearly scaled between 0-1 based on the number of “to class” 267 

neighbors present. This parameter was updated every 5 timesteps for every possible LULC 268 

transition pathway.  269 

We developed region-specific LULC transition spatial multipliers for the each LULC transitions: 270 

1) urbanization 2) agricultural expansion and 3) agricultural change. Spatial multipliers are 271 

raster-based, probabilistic surfaces that either increase or diminish the likelihood of the specified 272 

LULC transition type. A probability of 1 ensures a transition will occur in that specified raster 273 

space if a transition target or multiplier is supplied, whereas a probability of 0 will prohibit the 274 

given transition from occurring in a cell. What follows is a discussion of the datasets used in the 275 

development of the LULC transition spatial multipliers.  276 

Overall, we used national and state level land protection data from PADUS (U.S. Geological 277 

Survey, 2016) to prohibit any land change on protected lands and land owned by the Department 278 

of Defense. In addition, we incorporated available county-level land use zoning data to improve 279 

the regional accuracy of projected land change. This information was used to identify areas 280 

where LULC conversions are not currently allowed or where future development is already 281 

planned and zoned for. Land use zoning has been shown to be a strong predictor of urban growth 282 

and more accurately represents land change (Onsted & Chowdhury, 2014). For land change 283 

modeling, inclusion of spatial planning information generates better informed analyses 284 

(Dieleman & Wegener, 2004; Hersperger et al., 2018; Poelmans & Van Rompaey, 2010). Such 285 

an approach has been used by land change modelers to test alternative zoning scenarios 286 

(Geneletti, 2013) and as factors in LULC transition decision rules (Abdolrassoul & Clarke, 287 

2012). We acknowledge that zoning data can and will change over time and land area can be re-288 

zoned with new designations. However, many zoning designations are likely to persist into the 289 

future, including open space and resource conservation areas. Alternatively, planned 290 

development areas are not likely to remain undeveloped for decades. Table 1 shows the 291 

additional zoning datasets used in the development of the spatial multipliers and their unique 292 

zoning designations. Zoning categories listed as No Conversion in Table 1 were applied as 0 293 

values in all LULC spatial multiplier probability surfaces. We next describe each spatial 294 

multiplier in detail. 295 

2.5.1 Urbanization  296 

Additional constraints on the placement of new developed lands were derived from U.S. Census 297 

Bureau (U.S. Census Bureau, 2015) data and county-level land use zoning information (Table 1). 298 

For conversions into new developed lands, we used the Urban Areas in 2011 dataset (U.S. 299 



Census Bureau, 2015), with areas designated as core urban areas (population > 50,000) assigned 300 

a probability of 1 for urbanization transitions, while secondary urban areas or clusters 301 

(population 2,500 < > 50,000) were assigned a probability of 0.5. All remaining areas not 302 

classified as 0 were given a 0.25 probability of conversion. See Table 1 for a full list of data used 303 

to prohibit urbanization transitions (i.e. “No Conversion) or promote urbanization transitions (i.e. 304 

“To Developed”).  305 

Table 1. Spatial datasets and zoning categories used in land use and land cover transition spatial 306 

multipliers for designating regions as “No Conversion” and regions of potential development or 307 

“To Developed” with data sources listed for the Central Coast study region and for each county.  308 

Region No Conversion To Developed Data Sources 

 

Central 

Coast 

 

Protected Areas Database – 

GAP Status 1,2,3 

 

Department of Defense 

lands 

U.S. Census Bureau Urban Areas  (U.S. Census 

Bureau, 2015; U.S. 

Geological Survey, 

2016) 

 

 

 

 

 

 

 

Santa Cruz 

Any land use which 

included once of the 

following categories: 

 

(L) Historic Landmark 

(D) Designated park 

(O) Open Space Easement 

(P) Agricultural Preserve 

(SP) Salamander Protection 

(W) Watsonville Utility 

Prohibition  

(PR) Parks, Recreation 

Open Space 

Beach 

 

Multi-Family Residential, Neighborhood 

Commercial, Professional-Administrative 

Office, Single-Family Residential, Light 

Industrial, Heavy Industrial, Public and 

Community Facilities, and Single-Family 

Ocean Beach Residential 

Santa Cruz Zoning 

(County of Santa 

Cruz, 2019) 

 

* (Corelogic, 2018f) 

 

 

 

San Benito 

 

Parks 

 

San Benito County General Plans 2016 data 

for Planned Unit Development (PUD), 

including: 

 

Ag Productive/PUD  

Single Family Residential/PUD 

Rural Transitional/PUD 

Rural/PUD 

 

San Benito County 

General Plan 2016 

and San Benito 

County Zoning 

(County of San 

Benito, 2016a, 

2016b) 

 

*(Corelogic, 2018c) 

 

 

 

 

 

 

 

 

Monterey 

Agriculture conservation 

(AC) 

Coastal Agriculture  

Preserve (CAP) 

Open Space Recreation 

(OR) 

Resource Conservation (RC) 

Historic Resources (HR) 

 

 (County of 

Monterey, 2018b) 

 

 

 

Open Space 

Open Space Forest 

Open Space Recreation 

Commercial, General Commercial, 

Castroville Community Plan, Heavy 

Commercial, Heavy Industrial, Industrial, 

Master Plan, Neighborhood Commercial, 

(County of 

Monterey, 2018a) 
 



Resource Conservation 

Areas (additional) 

 

Residential - High Density 5 - 20 Units/Acre, 

Residential - Medium Density 1 - 5 

Units/Acre, RESIDENTIAL 2.4U/AC, 

RESIDENTIAL 2U/AC, RESIDENTIAL 

4U/AC, or Visitor 

Accommodations/Professional Offices.  

 

* (Corelogic, 2018b) 

 

San Luis 

Obispo 

 

Open Space 

Public Facilities 

Recreation 

 

 

Urban Lands, excluding Open Space and 

Recreation zones.  

 

(County of San Luis 

Obispo, 2017) 

 

*(Corelogic, 2018d) 

 

 

 

 

 

 

Santa 

Barbara 

Parks, Recreational Acreage Apartment, Auditorium, Auto Sales, Bowling 

Alley, Commercial Building, Commercial 

Condominium, Dance Hall, Department 

Store, Drive In Theater, Financial Building, 

Food Processing, Heavy Industrial, Hospital, 

Hotel, Industrial Condominium, Light 

Industrial, Medical Building, Medical Condo, 

Misc. Building, Misc. Commercial Services, 

Mobile Home Park, Multi-Family Dwelling, 

Nursery School, Nursing Home, Office 

Building, Parking Lot, Race Track, Religious, 

Restaurant Building, Schools, Service Station, 

Shopping Center, Storage, Store Building, 

Stores and Offices, Supermarket, and 

Warehouse* 

Santa Barbara 

County parcel 

dataset, Homeland 

Infrastructure 

Foundation Level 

Data 
 
(Corelogic, 2018e) 
 

* All 5 Counties utilized the same data for To Developed conversions as listed for Santa Barbara County from the 309 
Homeland Infrastructure Foundation Level Data (Corelogic, 2018a-f). 310 

 311 

2.5.2 Agricultural Expansion 312 

Areas designated as protected in the urbanization multiplier were also considered unavailable for 313 

transitions into new agricultural lands. For county-level zoning datasets, this included open 314 

space, public recreation facilities, parks, protected lands, preserves, and more. See Table 1 “No 315 

Conversion” category for all areas prohibited from conversion into agricultural land uses for 316 

more detail. Agricultural expansion transitions into new perennial croplands were supplied the 317 

spatial multipliers described in Section 2.5.3.  318 

2.5.3 Conversions to Perennial – Historical and Projected  319 

Historical perennial cropland expansion in the Central Coast has been spatially disparate and has 320 

not occurred near existing cropland areas. Most new perennial crops have been planted in 321 

previously open rangeland and valley uplands. In order to capture this spatially anomalous 322 

historical trend with observed data, we developed a “To Perennial 2018” spatial multiplier for 323 

the historical period (through 2018) by combining two spatial datasets. We used the Crop 324 

Mapping 2014 dataset from the California Natural Resources Agency for orchard and vineyard 325 

classes (California Department of Water Resources, 2019a). We combined this with parcel-level 326 

orchard and vineyard data, aggregating avocado groves, citrus groves, orchards, and vineyards 327 

into a single perennial class with a probability of 1 for conversion into perennial cropland during 328 



this timeframe (Corelogic, 2018a). All other pixels were set with a probability of 0 to force new 329 

perennial crops into known locations.  330 

In 2019 or the first projection year (i.e. year for which we do not know where new perennial 331 

crops occurred), we developed a “To Perennial 2019” multiplier, based on the 2018 multiplier to 332 

include probabilities of 0 for the “No Conversion” regions identified in Table 1, and 1’s for the 333 

known historical locations. In addition, all other pixels classified as annual cropland or rangeland 334 

in 2001 were assigned a probability of conversion into perennial cropland. We calculated these 335 

probabilities of perennial conversion for each county based on the proportion of historical 336 

conversion from each class, based conversion rates defined in Section 2.3. 337 

2.6 Water Demand 338 

In addition to tracking state class variables, the model was parameterized to track water use by 339 

county and state class type using data from Wilson et al. (2016). They calculated average county 340 

level applied water use for the annual and perennial cropland classes by reclassifying the USDA 341 

Cropland Data Layer (CDL) (United States Department of Agriculture, 2011) by cropland 342 

categories associated with the California Department of Water Resources (CDWR) Agricultural 343 

Land & Water Use 1998–2010 dataset (CDWR, 2014). These were then aggregated into annual 344 

and perennial cropland classes and assigned an area-weighted average applied water use value 345 

for each combination of county and state class type. For the developed class, they derived 346 

applied water use from a national dataset of water use in 2010 by various sectors (Maupin et al., 347 

2014). Applied water use for the developed state class was calculated as a sum of public supply 348 

freshwater and industrial self-supplied water and divided by the total developed area in each 349 

county based on the NLCD 2011 (Homer et al., 2015). The NLCD 2011 most closely aligned 350 

with the 2010 water data to get a use per unit area estimate.  351 

2.7 Land Use and Land Cover Scenarios 352 

Two LULC change scenarios were modeled to examine how projections of future land change 353 

based on longer term land change would compare to projections based only on modern land 354 

change trajectories. The first scenario, referred to hereafter as the Business-As-Usual (BAU) 355 

scenario, randomly samples from the full 1992–2016 FMMP land change record beginning in 356 

projected year 2017. The second Recent-Modern (RM) scenario which samples from 2002–2016 357 

FMMP record alone. The RM scenario is intended to both capture more restrictive land use 358 

policies implemented in 2001 to restrict development in some regions, while also capturing 359 

recent drought-related trends. For any simulation year, LUCAS randomly samples from one of 360 

these historic years, sampling all associated LULC transitions, preserving LULC change 361 

covariance. 362 

3. Results 363 

3.1 Projected Land Use and Land Cover Change  364 

General LULC change trajectories were similar between scenarios but the overall magnitude of 365 

change was markedly different (Figure 2). In both scenarios rangelands and annual cropland 366 



declined, being outcompeted by development and perennial cropland expansion through 2100. 367 

The declines were dramatic with BAU annual cropland declines averaging 80.0% (1,029 km
2
) 368 

across Monte Carlo simulations, while the RM lost 81.4% (1,046 km
2
). The BAU projected 369 

greater increases in developed land, yet lower losses of rangeland overall. In comparison, the 370 

RM scenario projected lower rates of development and greater increases in perennial cropland. 371 

Perennial expansion in the region continued its robust historic trend, with planting of these 372 

specialty crops nearly doubling in the BAU and nearly tripling in the RM scenario. On average, 373 

the BAU was projected to gain 710 km
2 

of new perennial cropland by 2100 with the RM scenario 374 

gaining 1,084 km
2
 (Figure 2). Overall cropland totals—the sum of both annual and perennial 375 

cropland—increased slightly (37.4 km
2
) in the RM scenario but declined an average 19.3% in the 376 

BAU (Figure 2). Developed lands increased in both scenarios across simulations but were 377 

approximately 11.7% higher in the BAU (843.3 km
2
) than in the RM (666.6 km

2
) (Figure 2).  378 

 379 

 380 

Figure 2. Projected land use and land cover change from 2001-2100 under a business-as-usual 381 

(BAU; red) and recent modern (RM; blue) scenarios for the California Central Coast, including 382 

Annual Cropland, Cropland (sums Annual Cropland and Perennial Cropland), Developed, 383 

Rangeland, and Perennial Cropland. Dark center trendline is the mean for each scenario and 384 

shaded area represents the minimum and maximum value ranges across 10 Monte Carlo 385 

simulations. 386 

At the county scale, the greatest declines in annual cropland were projected in Monterey and 387 

Santa Barbara counties (Figure 3). The greatest increases in both developed and perennial 388 



cropland occurred in Monterey and San Luis Obispo counties, predominantly at the expense of 389 

rangeland (Figure 3) which declined between 181-186 km
2
 (BAU-RM) and 365-479 km

2
 (BAU-390 

RM) respectively. In Monterey County, developed land increased between 21.6% (RM) and 391 

28.0% (BAU) by 2100. In both scenarios, development in San Luis Obispo increased an average 392 

28.5%. County-level trends varied greatly between scenarios losses in rangelands. When 393 

accounting for overall percent loss from 2001-2100, Santa Cruz County was projected to lose 394 

between an average 25.9% (RM) and 27.4% (BAU) of its rangelands. Conversely, San Benito 395 

County had projected increased natural lands in rangeland, following recent FMMP trends in 396 

agricultural contraction. Figure 4 shows the mapped LULC projections under the RM scenario to 397 

demonstrate spatial placement of change.  398 

  399 

 400 
Figure 3. Projected change in land use and land cover from 2001-2100 under a business-as-usual 401 

(BAU) and recent modern (RM) scenario for each county in the California’s Central Coast 402 

region, expressed as average net change in annual cropland (orange), perennial cropland 403 

(brown), development (blue), and rangeland (yellow) across the modeled period and 10 Monte 404 

Carlo simulations.  405 

 406 

 407 



 408 

 409 

Figure 4. Projected land-use and land-cover (LULC) change from 2001-2100 in 50-year 410 

increments for California's Central Coast region under the Business-As-Usual (BAU) and Recent 411 

Modern (RM) scenario. Each map represents one out of 10 possible Monte Carlo simulations 412 

modeled for each time step.  413 

 414 

3.2 Projected Future Water Demand 415 

From 2001 to 2100, overall land-use related water demand was projected to increase between 416 

222.7 and 310.6 million cubic meters (Mm
3
) in the BAU and RM scenarios, respectively (Figure 417 

5). In 2001, the Central Coast water demand estimate was approximately 1.3 billion cubic meters 418 

(Bm
3
) with a projected to rise between 1.5 - 1.6 Bm

3 
on average across Monte Carlo simulations 419 



and scenarios by 2100 (Figure 5). This represents a 16.4% to 22.8% increase in water demand by 420 

the end of this century. Continuing trends in perennial cropland expansion led to a projected 421 

222.7 Mm
3
 increase in water demand in the BAU (Figure 6). This increase is small in 422 

comparison to the near tripling of perennial water demand in the RM scenario over 2001 use 423 

levels, rising by an estimated 359.2 Mm
3
, concentrated primarily

 
in Monterey, San Luis Obispo, 424 

and Santa Barbara counties (Figure 6). Water demand from developed land uses was projected to 425 

increase 290.4 Mm
3
 (53.8%) in the BAU and 230.8 Mm

3
 (42.7%) in the RM scenario. The only 426 

demand declines projected were for annual cropland cover, with dramatic projected decreases 427 

from between 339.3 Mm
3 
(77.9%) in the BAU and 344.8 Mm

3
 (79.2%) in the RM in all counties 428 

(Figure 6). Opposite demand increase trends are seen between the BAU and RM scenarios, as the 429 

BAU shows increased demand higher for development than for perennial crops, whereas the RM 430 

shows higher perennial demand and lower demand by developed land uses.  431 

 432 

Figure 5. Projected land-use related water demand in billions of cubic meters (Bm
3
) from 2001-433 

2100 in California’s Central Coast under a business-as-usual (BAU; red) and recent modern 434 

(RM; blue) scenarios. Darker center lines represent the mean and shaded area represents the 435 

maximum and minimum values across 10 Monte Carlo simulations.  436 



 437 

Figure 6. Net change in water demand in millions of cubic meters (Mm
3
) from 2001-2100 by 438 

land use and land cover class and county for the business-as-usual (BAU) and recent modern 439 

(RM) scenarios.  440 

 441 

3.2.1 Potential changes in groundwater basin overdraft  442 

Projections of future land-use related water demand showed some groundwater sub-basins 443 

experiencing much greater increases than others. Figure 7 shows the percent change in total 444 

water demand per sub-basin, calculated as (Demand - Demand2001) / (Demand2001 + 10).  Table 445 

2 summarizes these results for each groundwater sustainability agency (GSA) and Table 446 

3 summarizes them for other Non-GSA water districts. 447 

Across both scenarios, increased water demand by 2100 was greatest in San Luis Obispo County 448 

(Figure 7). This is largely due to perennial agriculture replacing rangeland in many areas, 449 

creating unprecedented (percent increases >1000%) new perennial cropland water demand in 450 

Carrizo Plain basin and other small basins in the area, and roughly doubling total water demand 451 

in the Paso Robles area. In general, increasing urban water demand was uniformly spread across 452 

the study area, with median increases of ~50% per sub-basin (range 0–215%). In the major sub-453 

basins around Monterey Bay, many of which are already critically overdrafted (Figure 7b), total 454 

water demand increased only slightly. An exception was the critically overdrafted “180/400-455 

foot” sub-basin of the Salinas Valley, which underlies part of the disadvantaged city of Salinas 456 

and experienced a decrease in water demand of -11% in both scenarios. This restrained growth or 457 

even reduction in total water demand was due to urban expansion into previous annual 458 

agriculture resulting in a net loss of water. The greatest decreases in total water demand was in 459 

San Benito county. This was particularly notable in the RM scenario, where dramatically 460 



declining annual agriculture coupled with modest increases in urban water demand, led to an 461 

overall decreasing water demand in most sub-basins (median decrease of -8% in both scenarios). 462 

Increasing water demand was projected in basins where encroachment of water-dependent 463 

human land uses occurred in previously open rangeland (Figure 1b, Figure 7). 464 

 465 

Figure 7. Projected change in water demand for groundwater sub-basins from the a) business-as-466 

usual (BAU) by 2050, b) BAU by 2100, c) recent modern (RM) by 2050, and d) RM by 2100. 467 

Hatched lines shown in b) represent existing state-regulated groundwater basins already 468 

experiencing overdraft.  469 

 470 



Table 2. Projected percent (%) change in water demand for SGMA groundwater sustainability 471 

agencies of the Central Coast by 2050 and 2100 under two scenarios, a Business-as-Usual (BAU; 472 

fit to 1992-2016 land use change rates) and Recent-Modern (RM; fit to 2002-2016). 473 

Groundwater Sustainability Agency BAU  RM  

2050 2100 2050 2100 

Arroyo Seco GSA -7.10  -8.40  -9.74  -11.54  

Atascadero Basin GSA 30.39  58.03  18.42  42.30  

City of Arroyo Grande GSA 47.55  68.24  47.84  70.63  

City of San Luis Obispo GSA 0.00  0.00  0.00  0.00  

Cuyama Basin GSA 9.24  12.94  8.02  11.06  

Goleta Fringe GSA -2.28  -3.47  -2.11  -2.96  

Montecito Groundwater Basin GSA 17.71  17.64  16.80  16.85  

Paso Basin - County of San Luis Obispo GSA 6.77  10.57  6.90  10.07  

Salinas Valley Basin GSA 23.43  19.88  26.72  24.11  

San Antonio Basin GSA 15.49  17.01  15.66  18.82  

San Benito County Water District GSA 8.61  11.06  7.63  11.06  

San Luis Obispo Valley Basin - County of San 

Luis Obispo GSA 11.15  11.90  10.85  11.90  

Santa Maria Basin Fringe Areas - County of San 

Luis Obispo GSA 9.24  9.81  9.14  10.03  

Santa Maria Basin Fringe in Santa Barbara 

County GSA 1.51  1.51  1.51  1.51  

Santa Ynez River Valley Basin Central 

Management Area GSA -4.15  0.38  -5.53  -2.87  

Santa Ynez River Valley Basin Eastern 

Management Area GSA 9.52  11.37  8.64  11.37  

Santa Ynez River Valley Basin Western 

Management Area GSA 53.43  76.80  53.13  77.10  

Shandon-San Juan GSA 15.89  20.76  15.57  20.23  

City of Paso Robles 12.50  14.09  12.23  14.37  

County of San Luis Obispo 6.00  7.33  4.78  6.66  

County of Santa Cruz 3.34  3.34  3.34  3.34  

Heritage Ranch Community Services District 15.34  15.20  14.74  14.75  

Marina Coast Water District 69.04  82.00  77.80  81.97  

Monterey Peninsula Water Management District 44.75  40.83  84.96  102.01  

Pajaro Valley Water Management Agency 9.79  10.38  9.49  10.38  

San Miguel Community Services District 19.59  25.80  16.24  24.16  

Santa Clara Valley Water District 178.78  383.94  157.66  374.79  

Santa Cruz Mid-County Groundwater Agency 2.28  2.54  2.28  2.54  

Santa Margarita Groundwater Agency 26.33  35.41  24.47  34.50  

 474 



Table 3. Projected percent (%) change in water demand in water districts of the Central Coast 475 

(excluding GSAs and county agencies) by 2050 and 2100 under two scenarios, a Business-as-476 

Usual (BAU; fit to 1992-2016 land use change rates) and Recent-Modern (RM; fit to 2002-477 

2016). 478 

Water District BAU RM 

2050 2100 2050 2100 

Alco Water Service -7.10  -8.40  -9.74  -11.54  

Aromas Water District 30.39  58.03  18.42  42.30  

Atascadero Mutual Water Company 47.55  68.24  47.84  70.63  

CA Parks and Recreation Department - Hollister 

Hills SVRA 0.00  0.00  0.00  0.00  

California American Water Company - 

Monterey District 9.24  12.94  8.02  11.06  

California Water Service Company - Salinas -2.28  -3.47  -2.11  -2.96  

California Water Service Company - Salinas 

Hills 17.71  17.64  16.80  16.85  

Cambria Community Services District 6.77  10.57  6.90  10.07  

Carpinteria Valley Water District 23.43  19.88  26.72  24.11  

Central Coast Water Authority 15.49  17.01  15.66  18.82  

Central Water District 8.61  11.06  7.63  11.06  

City of Arroyo Grande 11.15  11.90  10.85  11.90  

City of Goleta   9.24  9.81  9.14  10.03  

City of Grover Beach 1.51  1.51  1.51  1.51  

City of Lompoc -4.15  0.38  -5.53  -2.87  

City of Morro Bay 9.52  11.37  8.64  11.37  

City of Paso Robles 53.43  76.80  53.13  77.10  

City of Pismo Beach 15.89  20.76  15.57  20.23  

City of San Luis Obispo 12.50  14.09  12.23  14.37  

City of Santa Barbara 6.00  7.33  4.78  6.66  

City of Santa Cruz 3.34  3.34  3.34  3.34  

City of Watsonville 15.34  15.20  14.74  14.75  

Golden State Water Company - Edna 69.04  82.00  77.80  81.97  

Golden State Water Company - Lake Marie 44.75  40.83  84.96  102.01  

Golden State Water Company - Los Osos 9.79  10.38  9.49  10.38  

Golden State Water Company - Orcutt 19.59  25.80  16.24  24.16  

Heritage Ranch Community Service District 178.78  383.94  157.66  374.79  

Los Osos Community Services District 2.28  2.54  2.28  2.54  

Montecito Water District 26.33  35.41  24.47  34.50  

Monterey County Recycling Project -7.06  -16.89  -6.74  -16.49  

Oceano Community Service District 5.20  5.81  5.40  5.60  

Other Small Additional District 21.05  30.90  18.79  29.33  

Pajaro Community Service District -8.23  -13.46  -9.60  -17.05  

San Lorenzo Valley Water District 4.46  5.46  4.05  5.46  



Santa Lucia Preserve Water System 0.00  0.00  0.00  0.00  

Santa Maria Valley Water Conservation District -22.80  -37.25  -27.00  -37.78  

Scotts Valley Water District 1.44  1.80  0.99  1.80  

Soquel Creek Water District 4.38  4.38  4.38  4.38  

Templeton Community Services District 58.51  73.66  54.91  73.19  

Unmanaged -7.10  -8.40  -9.74  -11.54  

 479 

4. Discussion and Conclusions 480 

Overall, our scenario results suggest that water supply challenges, overdraft, and overdraft-481 

driven seawater intrusion in the Central coast region are likely to continue absent changes in 482 

groundwater and/or land-use management. 483 

4.1 Projected water demand trends 484 

Projections show increasing land-use related water demand by 2100 of between 222.7 and 310.6 485 

Mm
3 
in the BAU

 
and RM scenarios, respectively. Increased demand was driven by continued 486 

agricultural intensification (i.e., increasing perennial cropland) and urbanization, even as annual 487 

cropland water use declined. Additional increased demand was driven by continued urbanization, 488 

generating additional per capita use needs. For the BAU scenario development-related increases 489 

in water demand outpaced increased demand from perennial cropland, while the opposite was the 490 

case in the RM. This difference illuminated trends noted in the historical FMMP dataset, 491 

showing marked declines in urbanization beginning around 2003. The RM scenario only 492 

sampled from FMMP-based LULC change years 2002-2016, thus capturing land use changes 493 

likely associated with legislative mandates which imposed water use restrictions for new 494 

development. We sought to capture this declining urbanization trend as well as the 495 

unprecedented 2011–2016 drought in our RM scenario projections. Despite slower rates of 496 

development and a historic drought, the RM scenario showed a 22.8% increased water demand 497 

overall, much higher than the 16.3% increase projected in the BAU. It is important to note that 498 

despite an historically unprecedented drought, perennial cropland expansion was projected to 499 

nearly double (BAU) and triple (RM), which may be cause for concern in a predominantly 500 

groundwater dependent region with already strained water supplies.  501 

These same trends in agriculture intensification have been occurring statewide for decades. 502 

Between 1960 and 2009, while the amount of harvested acreage in California declined by more 503 

than a half million acres, the proportion of fruit and nut crops (i.e., not field crops, vegetable, or 504 

melons) more than doubled from 14% to 33% of all acres harvested (Johnson & Cody, 2015). 505 

Between 2004 and 2013 alone, statewide harvested acres for almonds, pistachios, grapes, 506 

cherries, berries, and olives nearly doubled as well (Johnson & Cody, 2015). Cropland reports 507 

for the Central Coast show annual field and row crops dominating the landscape, however, grape 508 

acreage between 2002 and 2017 expanded by nearly 25,000 acres (~100 km
2
) (United States 509 

Department of Agriculture, 2019).  510 

Neither the perennial or urban expansion trends are likely to persist indefinitely, particularly 511 

given new water limitations under SGMA. Shifts in future development patterns due to other 512 



local economic factors, changing dietary preferences, and a warming climate are likely to further 513 

deviate future rates from simply continuing historic trajectories. Specialty perennial crops could 514 

slow their expansion, as high value annual crops retain their value and market demand. Despite 515 

these limitations, these scenarios projections do provide an understanding of the challenges 516 

facing the region if current trends persist, providing a baseline from which additional mitigation 517 

scenarios can be developed, to explore alternative potential futures. 518 

4.2 Land use and water use sustainability implications 519 

Many orchard and vineyard crops have higher water demand than their annual row crop 520 

relatives, and most perennial crops require year-round watering. Our estimates show perennial 521 

cropland water demand is generally higher than annual cropland water demand in all but 522 

Monterey County where it is slightly lower, possibly due to cooler temperatures in the region and 523 

lower evapotranspiration loss. Monterey County also relies almost solely (95%) on groundwater 524 

(County of Monterey, 2019) and much of the agriculture occurs in the Salinas River Valley, a 525 

region prone to saltwater intrusion and significant water limitations. Given limited water 526 

supplies, regional growers have had to increasingly rely on advanced technology for watering 527 

vineyards, such as pressure chambers to detect water needs through leaf moisture, soil moisture 528 

probes, and groundwater moisture meters (Joseph, 2015) as well as water recycling (Shea, 2019). 529 

Implementation of the Sustainable Groundwater Management Act could also exacerbate the 530 

situation, creating even greater limitations on groundwater pumping for perennial growers.  531 

Given the 20–30 year lifespan of most of specialty perennial crops, their resilience to a changing 532 

climate and shifting water availability is also limited (Lobell & Field, 2011). Central Coast 533 

specialty crops show high sensitivity to changing temperature under future climate projections 534 

(Kerr et al., 2018). Specifically, wine grapes, strawberries, and lettuce—dominant crops in the 535 

Central Coast—had higher relative magnitude of negative impacts from increased temperatures 536 

of the top 14 value-ranked specialty crops in the state (Kerr et al., 2018). Yield declines have 537 

also been predicted with warmer winters and hotter summers (Lobell & Field, 2011). However, 538 

agricultural intensification also has many benefits. It often leads to 1) a higher investment and 539 

return per acre, 2) the creation of more jobs and demand for related support industry and 540 

housing, 3) the creation of more land use conflicts at the agriculture/urban interface, 4) 541 

technological innovation, and 5) improvements in irrigation efficiency (County of San Luis 542 

Obispo, 2010). These competing factors could influence a market-driven demand for improved 543 

water use efficiency.  544 

New developed lands often generate additional water demand, potentially creating increased 545 

competition over ever-limited water resources. Well-drying and self-reported water supply 546 

shortages were already reported during the 2011-2016 drought and through 2019, and were 547 

highest in San Luis Obispo, with 201 reports submitted since 2014 (State of California, 2019). 548 

By all accounts this represents only a small fraction of the total number households which likely 549 

experienced shortages, as vast under-reporting is suspected given limited outreach (State of 550 

California, 2019). By contrast, where urban growth was projected to spread into existing 551 

cropland, such transitions were demand-neutral and sometimes even led to reduced overall water 552 

demand as seen in areas around the Monterey Bay and San Benito County. Unfortunately, such 553 

growth patterns conflict with the conservation of prime agricultural lands, a major goal of 554 

regional and state land management (California Department of Food and Agriculture, 2015) and 555 



also reported by stakeholders. Future development patterns over time may include urban 556 

redevelopment and infill with higher density which would better preserve existing farmland. 557 

New upland regions in non-prime farmland could also be targeted for additional housing. 558 

The region’s vulnerable populations in disadvantaged communities will be least resilient in a 559 

water limited future. The combined pressures of climate variability, water quality, and aging 560 

infrastructure which will likely lead to price increases up to four times current rates in coming 561 

decades (Baird, 2010). If extreme climate event trends continue with changing climate, 562 

additional costs to improve wastewater infrastructure for storm water treatment will be incurred 563 

and passed on to consumers. These price increases often disproportionately affect the least 564 

resilient communities (Feinstein et al., 2017; Mack & Wrase, 2017), as higher prices consume a 565 

larger proportion of monthly income.  566 

4.3 Assessment of historic policy impacts 567 

Between 1990-2006, over two–thirds of cities and counties in coastal California’s metropolitan 568 

areas adopted policies explicitly aimed at limiting urban development by restricting housing 569 

growth (Legislative Analyst Office, 2015). Additionally, laws adopted between 1992-2001 570 

required the demonstration of a sustainable water supply for new suburban and urban housing 571 

developments. Our projections showed a clear drop in rates of development following the 572 

passage of these laws, suggesting that they were effective. 573 

Our scenarios illustrated that while likely limiting development, these policies were nevertheless 574 

unable to achieve long-term groundwater sustainability in the Central Coast. FMMP data was not 575 

available prior to 1992, and thus the impact of these laws on different LULC rates could not be 576 

directly assessed, but they did not prevent LULC from increasing water demand overall in 577 

overdrafted basins. Thus, the 1992-2001 water laws restricting urban development, while 578 

effective at slowing rates of urban growth, were unable to promote water sustainability because 579 

they did not impact the agricultural expansion, particularly of perennial crops. More concerning, 580 

stakeholders in meetings expressed a serious concern about local housing shortages, particularly 581 

around the critically overdrafted Monterey Bay. These laws may have contributed to this 582 

shortage by both throttling the development of new housing units and consequently increasing 583 

housing costs.  584 

Our results can be used to inform the development of groundwater sustainability plans by local 585 

groundwater sustainability agencies (Table 2) in critically overdrafted basins, as required under 586 

SGMA (AB 1739, SB 1168, and SB 1319, passed in 2014; Leahy, 2016). In 2012 the California 587 

legislature also passed AB 685—the Human Right to Water Bill—becoming the first state to 588 

declare access to safe, clean, affordable, and accessible water adequate for human consumption 589 

as a basic human right (Fong et al., 2012). However, this doesn’t account for potential impacts 590 

from changing supplies, increasing demand, or a changing climate. Our results indicate the 591 

previous approach of regulating urban and suburban development is unlikely to address water 592 

demand challenge posed by the expansion of perennial agriculture. If perennial water demand 593 

projections continue to rise, multi-pronged conservation and technology implementation 594 

strategies will be needed to avoid continued groundwater depletion and to meet the sustainability 595 

goals outlined in SGMA (Dickinson, 2014; Pavley, 2014a, 2014b).  596 



4.4 Future directions 597 

Additional scenario development, which includes continued feedback from local and regional 598 

stakeholders, including individual land holders and farmers, will be needed to test alternative 599 

regional mitigation strategies and their associated outcome on water demand change. Projections 600 

of future land change and water demand would also greatly benefit from more advanced, fully 601 

coupled modeling approaches, involving climate-driven hydrological models and the LUCAS 602 

land change model. Such an integrated system would facilitate more informed, process-based 603 

interactions and feedbacks between models during a model run, between timesteps and iterations. 604 

This would enable the direct utilization of established climate projections with hydrologic 605 

modeling to examine human-environment system feedbacks and stressors. The LUCAS 606 

framework is already based on the open source ST-Sim model platform (Daniel et al., 2016), 607 

which includes a module to facilitate information passing between integrated systems using a 608 

Python or R code interface (R Core Team, 2017). Such an approach could include more accurate, 609 

process-based analysis of cropland water demand, a more detailed cropland classification 610 

scheme, and could serve to identify couplings between human land-use related water demand 611 

and forcings on the regional hydrologic system.  612 
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water sector as a “lifeline sector” as the Most Significant Risk to water infrastructure.  635 

http://apexrms.com/
http://geography.wr.usgs.gov/LUCC/
https://www.sciencebase.gov/catalog/
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Table S1. List of Groundwater Sub-Basins, their numeric ID, and the map legend for Figure 1c.  959 
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Table S2. List of water districts and groundwater sustainability agencies represented in Figure 961 

1d. The map unit designations are an aggregate value of the associated water service district 962 

grouped with any existing groundwater sustainability agency in a single spatial unit, to identify 963 

jurisdiction-level projected water demand changes. A total of 107 discrete units were classified.   964 
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