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Abstract

Cyclonic low-pressure systems (LPS) produce abundant rainfall in South Asia, where they are traditionally categorized as

monsoon lows, monsoon depressions, and more intense cyclonic storms. The India Meteorological Department (IMD) has

tracked monsoon depressions for over a century, finding a large decline in their number in recent decades, but their methods have

changed over time and do not include monsoon lows. This study presents a fast, objective algorithm for identifying monsoon LPS

in high-resolution datasets. Variables and thresholds used in the algorithm are selected to best match a subjectively analyzed

LPS dataset while minimizing disagreement between four atmospheric reanalyses in a training period. The streamfunction of

the 850 hPa horizontal wind is found to be the best variable for tracking LPS; it is less noisy than vorticity and represents the

complete non-divergent wind, even when flow is not geostrophic. Using this algorithm, LPS statistics are computed for five

reanalyses, and none show a detectable trend in monsoon depression counts since 1979. Both the Japanese 55-year Reanalysis

(JRA-55) and the IMD dataset show a step-like reduction in depression counts when they began using geostationary satellite

data, in 1979 and 1982 respectively; the 1958-2018 linear trend in JRA-55, however, is smaller than in the IMD dataset and

its error bar includes zero. There are more LPS in seasons with above-average monsoon rainfall and also in La Nin a years,

but few other large-scale modes of interannual climate variability are found to modulate LPS counts, lifetimes, or track length

consistently across all reanalyses.
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Abstract17

Cyclonic low-pressure systems (LPS) produce abundant rainfall in South Asia, where18

they are traditionally categorized as monsoon lows, monsoon depressions, and more19

intense cyclonic storms. The India Meteorological Department (IMD) has tracked20

monsoon depressions for over a century, finding a large decline in their number in21

recent decades, but their methods have changed over time and do not include monsoon22

lows. This study presents a fast, objective algorithm for identifying monsoon LPS in23

high-resolution datasets. Variables and thresholds used in the algorithm are selected24

to best match a subjectively analyzed LPS dataset while minimizing disagreement25

between four atmospheric reanalyses in a training period. The streamfunction of the26

850 hPa horizontal wind is found to be the best variable for tracking LPS; it is less27

noisy than vorticity and represents the complete non-divergent wind, even when flow is28

not geostrophic. Using this algorithm, LPS statistics are computed for five reanalyses,29

and none show a detectable trend in monsoon depression counts since 1979. Both the30

Japanese 55-year Reanalysis (JRA-55) and the IMD dataset show a step-like reduction31

in depression counts when they began using geostationary satellite data, in 1979 and32

1982 respectively; the 1958-2018 linear trend in JRA-55, however, is smaller than in33

the IMD dataset and its error bar includes zero. There are more LPS in seasons with34

above-average monsoon rainfall and also in La Niña years, but few other large-scale35

modes of interannual climate variability are found to modulate LPS counts, lifetimes,36

or track length consistently across all reanalyses.37

1 Introduction38

Cyclonic low pressure systems (LPS) are the dominant synoptic-scale phenomena39

that bring rain to India and surrounding regions during the boreal summer monsoon40

season. With outer diameters near 2,000 km, these monsoon LPS typically form over41

the northern Bay of Bengal then propagate to the northwest over India during the42

subsequent several days (Mooley, 1973; Godbole, 1977; Sikka, 1978). Although these43

storms have weak surface winds of order 10 m s�1, they produce abundant rainfall,44

with precipitation rates peaking at 3-5 cm day�1 in composite means and some storms45

producing 10-50 cm of rain along their tracks (Sanders, 1984; Sikka, 2006; Boos et al.,46

2015; Hunt et al., 2016). Monsoon LPS make a large contribution to the total summer47

monsoon rainfall of continental South Asia (Yoon & Chen, 2005) and have produced48

catastrophic floods there (Houze Jr et al., 2011).49

Given the importance of monsoon LPS, there is great interest in studying the50

variability of these storms. The India Meteorological Department (IMD) has kept51

records on LPS since the late nineteenth century (India Meteorological Department,52

2011). They traditionally categorized these storms by intensity, with the weakest53

systems called monsoon lows (surface wind speeds less than 8.5 m s�1 and mean sea54

level pressure (MSLP) at least 2 hPa lower than surrounding regions), stronger systems55

called monsoon depressions (wind speeds 8.5-13.5 m s�1 and MSLP anomalies 4-856

hPa), and even stronger vortices called deep depressions and cyclonic storms (the use57

of surface wind speed or surface pressure as a metric for categorization has varied over58

time (India Meteorological Department, 2011)). The historical IMD dataset includes59

only depressions and stronger storms, but Mooley and Shukla (1987) and Sikka (2006)60

produced a separate dataset of both lows and depressions by manually identifying61

LPS from hand-analyzed daily weather charts of the IMD. These datasets have been62

used in numerous studies of variations in the number of monsoon LPS. For example,63

the number of LPS forming each summer has been shown to be modulated by the El64

Niño-Southern Oscillation (ENSO) (Hunt et al., 2016), the Pacific Decadal Oscillation65

(PDO) (Vishnu et al., 2018), and the Indian Ocean Dipole (IOD) (Krishnan et al.,66

2011), all of which are also associated with interannual variations in the strength of67

the mean Indian summer monsoon.68
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Based on the two track datasets just discussed, numerous studies have reported69

a large decrease in the number of monsoon depressions forming each summer in recent70

decades, together with an increase in the number of monsoon lows (Rajendra Kumar71

& Dash, 2001; Prajeesh et al., 2013; Vishnu et al., 2016, and reference therein). When72

characterized as a linear trend, the decrease in depression counts amounts to a reduc-73

tion of around one per decade, from a mid-twentieth century value of about seven,74

although much of the decrease occurred as a step-wise reduction in the early 1980s75

(Vishnu et al., 2016). The years 2002, 2010, and 2012 contained the first summers, in76

over a century of record-keeping by IMD, with no monsoon depressions. The reduction77

in depression counts has been argued to be associated with a decrease in total summer78

rainfall in east-central India, the region of highest LPS track density (Vishnu et al.,79

2016). A decrease in overall LPS activity, including that of both lows and depres-80

sions, has been projected for the coming century as global mean temperature increases81

and the large-scale, seasonal mean monsoon circulation weakens (Sandeep et al., 2018;82

Rastogi et al., 2018). This projected decrease is accompanied by a poleward shift in83

the region of LPS genesis in next-century simulations using one global climate model84

(Sandeep et al., 2018), but the connection of such greenhouse gas-forced changes to85

past trends remains unclear, especially given the possible dominance of aerosol forcings86

in historical trends of mean monsoon strength (Ramanathan et al., 2005; Bollasina &87

Nigam, 2009).88

The existence of a large trend in monsoon depression counts was questioned by89

Cohen and Boos (2014), who showed that no such trend could be detected in two re-90

analyses when automated algorithms were used to track and classify low-level vorticity91

and MSLP anomalies. Furthermore, Cohen and Boos (2014) found depression-strength92

LPS in those reanalyses during the years when IMD recorded none (2002, 2010 and93

2012), and showed that satellite scatterometer data validated the intensity of the peak94

surface wind speeds near the centers of those particular storms. They also showed95

that there was no detectable trend in a satellite scatterometer record of synoptic-scale96

wind events over the Bay of Bengal, although that record extended back to only 1987.97

All of this raises numerous questions: are the two reanalyses examined by Cohen and98

Boos (2014) reliable tools for assessing trends in monsoon LPS, especially given that99

they extended back to only 1979, a few years before the step-wise reduction in IMD’s100

depression counts? Should we expect trends inferred from the IMD record of depres-101

sion counts to be unbiased, given the large changes since the late 19th century in the102

observing network, in methods used by IMD for identifying and classifying LPS, and103

possibly in practices used for creating the hand-drawn IMD weather charts?104

All of this would seem to call for a reanalysis of monsoon LPS track datasets,105

analogous to the large international e↵orts to improve track datasets of past tropical106

cyclones (Landsea et al., 2008; Hagen et al., 2012; Landsea et al., 2014; Delgado et107

al., 2018). This would be a massive undertaking, made more di�cult by the fact108

that IMD synoptic charts are not readily available and by the fact that monsoon109

LPS have weak circulations compared to tropical cyclones. Furthermore, the wind110

maxima of LPS are typically elevated a few kilometers above the surface (Godbole,111

1977), rendering their identification and categorization using maps of MSLP even112

more di�cult. Here we take an alternate approach by devising an algorithm that113

can identify LPS using elevated winds as well as surface conditions as represented in114

five atmospheric reanalyses, including the most modern ones that represent climate115

forcings and that extend back in time to the 1950s. This does not eliminate bias that116

might be introduced by the temporal evolution of the observing network on which117

those reanalyses are based, and, indeed, we demonstrate that step-wise changes in118

depression counts coincide with dates on which geostationary satellite imagery begin119

to be incorporated into the atmospheric state estimates.120
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This study builds on previous attempts to compile LPS track datasets from121

reanalyses (Hurley & Boos, 2015; Praveen et al., 2015), but with greater attention122

paid to the optimality of the tracking algorithm, to uncertainty characterization, to123

separation of the datasets used for training and validation of the algorithm, and to124

application of the algorithm to a larger number of reanalyses and to more modern125

reanalyses. Past e↵orts to track LPS in atmospheric reanalyses used the TRACK126

algorithm (Hodges, 1995, 1998; Hurley & Boos, 2015), which runs serially and requires127

degrading the underlying dataset to T42 spectral resolution (Thorncroft & Hodges,128

2001; Manganello et al., 2019); both of those characteristics become problematic when129

working with modern atmospheric state estimates which often have horizontal grid130

spacings of 20-30 km. The algorithm we create for LPS identification builds on the131

TempestExtremes software (Ullrich & Zarzycki, 2017) and is thus fast, objective, and132

appropriate for high-resolution and variable grids. We hope to use this algorithm133

in future work to track monsoon LPS in large ensembles of high-resolution output134

from numerical weather prediction models and global climate models. In this study,135

the main focus is on constructing the algorithm, demonstrating its fidelity compared136

to existing, subjectively analyzed LPS datasets (Sikka, 2006), then examining the137

historical variability of LPS tracks on interannual and longer time scales.138

2 Data and methods139

2.1 Subjectively analyzed track datasets140

We use two subjectively analyzed datasets of LPS tracks and intensities in the141

northern Indian Ocean. The first was compiled by Sikka (2006) and Mooley and Shukla142

(1987) and runs from 1888-2003, for the months of June through September. We143

hereafter refer to this as the Sikka archive. As mentioned in the Introduction, the Sikka144

archive is the only subjectively analyzed track dataset for South Asia that contains145

both lows and depressions, and it was compiled by manually identifying minima in146

maps of MSLP from the IMD and then classifying those minima by intensity. The147

second dataset we use is the total number of depressions forming between June and148

September from 1891-2019, as recorded by the IMD (http://www.rmcchennaieatlas149

.tn.nic.in). We also use IMD best track data for depressions for 1982-2018.150

2.2 Reanalyses151

Five global atmospheric reanalyses are used for this study, with horizontal grid152

spacings ranging from 0.25-1.25� and temporal resolutions ranging from hourly to 6-153

hourly (Table 1). The variables used are MSLP, surface wind and surface height,154

and the 850 hPa horizontal wind and relative humidity. All of the reanalyses used155

here assimilated both satellite and conventional (e.g. surface station and radiosonde)156

observations that increased in number and type over time, with the greatest growth157

seen in satellite observations. For example, ERA-Interim, produced by the European158

Centre for Medium-Range Weather Forecasts (ECMWF), assimilated more than 106159

daily observations in 1989 and almost 107 per day in 2010; the great majority of these,160

by count, are from satellite, but surface and radiosonde observations from land and161

ship–based stations are also included, with a reasonable count over South Asia (Dee162

et al., 2011).163

The most recent reanalysis from ECMWF, ERA5, incorporates newly reprocessed164

observations and input from more recent instruments that were not assimilated into165

ERA-Interim (Hersbach & Dee, 2016; Hersbach et al., 2019). Similarly, the Modern–166

Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)167

(Gelaro et al., 2017) and the Climate Forecast System Reanalysis (CFSR) (Saha et168

al., 2010) both assimilate observations not included by their predecessors, with large169

increases in observation counts in recent decades. In MERRA-2, for example, the170
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number of assimilated aircraft observations increased gradually by a factor of about171

four from the late 1990s to 2015, eventually becoming the dominant source of direct172

measurements of upper-level winds, while large step-like increases in the number of173

assimilated satellite radiances occurred in 2002, 2008, and 2013 (McCarty et al., 2016).174

Since we are interested in the large changes in monsoon depression counts seen in IMD175

data in the late 1970s and early 1980s, we also use the Japanese 55-year Reanalysis176

(JRA-55) (Ebita et al., 2011; Kobayashi et al., 2015) which extends back to 1958. Only177

conventional observations were assimilated by JRA-55 before 1971, and the greatest178

increase in the number of assimilated satellite observations occurred after 1979.179

Some of the reanalyses we use include time-varying climate forcings that may180

influence trends in LPS activity. For example, ERA5 incorporates the Coupled Model181

Intercomparison Project 5 (CMIP5) radiative forcing, accounting in a self-consistent182

manner for changing greenhouse gases, volcanic eruptions, sea surface temperarture183

(SST), and sea-ice cover (Hersbach & Dee, 2016; Hersbach et al., 2019). This contrasts184

with ERA-Interim, which imposes a simple linear trend in greenhouse gas concentra-185

tions and uses a succession of di↵erent SST and sea ice datasets with some temporal186

discontinuities (Dee et al., 2011). CFSR incorporates time-evolving greenhouse gases,187

aerosols, and solar variations, while JRA-55 includes time-varying greenhouse gases188

but a two-dimensional monthly climatology of aerosol optical depth. MERRA-2 uses189

a sophisticated assimilation of aerosol observations, together with prescribed increases190

in carbon dioxide.191

2.3 Precipitation and SST data192

We employ several additional datasets to create indices used in assessing in-193

terannual variations of LPS activity. Indian summer rainfall is obtained from the194

Indian Institute of Tropical Meteorology (IITM; http://www.tropmet.res.in/Data\195

%20Archival-51-Page) and is used to identify pluvial and drought summer mon-196

soon years. The Oceanic Niño Index (ONI) is used as an ENSO indicator, and ob-197

tained from the Climate Prediction Center (https://origin.cpc.ncep.noaa.gov/198

products/analysis monitoring/ensostuff/ONI v5.php). Monthly mean SST from199

the Hadley Centre Global Sea Ice and Sea Surface Temperature version 2 dataset200

(HadISST2)(Rayner et al., 2003) is used to compute the Indian Ocean Dipole (IOD)201

index; specifically, we use a normalized index represented by the anomalous SST dif-202

ference between the western (10�S–10�N, 50�–70�E) and eastern (10�S–Equator, 90�–203

110�E) Indian Ocean.204

Table 1. Details of reanalysis data used in this study.

Dataset Spatial
resolution

Temporal
resolution

Period Source

Era-Interim 0.75�⇥ 0.75� 6 hour 1979-2018 Dee et al. (2011)
JRA-55 1.25�⇥ 1.25� 6 hour 1958-2019 Ebita et al. (2011)
CFSR 0.5�⇥ 0.5� 6 hour 1979-2010 Saha et al. (2010)
MERRA-2 0.625�⇥ 0.5� 3 hour 1980-2019 Gelaro et al. (2017)
ERA5 0.25�⇥ 0.25� 1 hour 1979-2019 Hersbach et al. (2019)

2.4 TempestExtremes205

An automated Lagrangian pointwise feature tracker, TempestExtremes, is used206

for extracting LPS track information from the reanalyses (Ullrich & Zarzycki, 2017).207

TempestExtremes has been used for tracking features including tropical cyclones, ex-208
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tratropical cyclones, and tropical easterly waves (Ullrich & Zarzycki, 2017; Chavas et209

al., 2017; Zarzycki et al., 2017; Michaelis & Lackmann, 2019). The basic algorithm210

uses the MapReduce technique, which operates in two stages: first, parallel identifica-211

tion of suitable candidates at each time step through application of thresholds and/or212

criteria that enforce a closed contour around the candidate points; second, stitching213

of nearby candidates over successive time steps to develop object tracks, eliminating214

candidates that do not exhibit behavior consistent with a transiting feature. Here,215

we use the specific requirement that candidate points must be within 3 degrees of216

each other on successive time points to be linked. If no points exist within 3 degrees217

of an existing point in the succeeding 12 hour period, then the track is terminated.218

The criteria for initial identification of suitable candidates explored in this work re-219

quire identifying features that are local minima or maxima, tagging only the strongest220

candidate within 5 degrees great-circle distance, and testing for a closed contour in a221

specified search variable of specified magnitude and within a specified distance. The222

closed contour criterion is assessed via a depth-first search of grid points away from223

the nodal feature, ensuring that all possible paths away from the feature reaching the224

prescribed distance exhibit an increase (or decrease) in the search variable of su�cient225

magnitude. One minor additional modification is made to remove LPS that may ap-226

pear due to artifacts of the representation of high orography in reanalyses: we require227

the maximum surface geopotential within 2� of the LPS center to be less than 8000228

m2s�2 for at least 24 cumulative hours of the LPS track. That is, LPS that spend229

nearly their entire lifetime over elevated terrain are are not included in our dataset.230

Features identified using the above procedure are initially classified as LPS. Mon-231

soon depressions, which are strong LPS, are subsequently classified by requiring a232

closed contour magnitude of MSLP that is greater than or equal to 4 hPa and a233

maximum surface wind speed within 3� great-circle distance higher than 8.5 m s�1
234

sustained for at least six hours along the track, similar to the IMD classification of235

depressions. LPS that do not satisfy these criteria are categorized as lows.236

An LPS tracked using four di↵erent search variables is shown in Figure 1. The237

feature is tracked successfully for all four variables in both ERA-Interim and JRA-55,238

despite di↵erences in spatial resolution between these datasets. There are di↵erences239

in the track length compared to the Sikka archive. Visually, tracking performed with240

streamfunction, geopotential, and MSLP matches the Sikka track well, whereas track-241

ing performed using vorticity does not, producing a disjointed track in both reanalyses.242

We systematically evaluate the performance of di↵erent tracking variables in Section243

3.244

2.5 Skill metric245

To assess the agreement between LPS tracks obtained from our training datasets246

(the reanalyses) and the reference dataset (the Sikka archive), an event-matching al-247

gorithm is employed. Tracks are considered matched between two or more datasets248

when their points lie within 3� great-circle distance of each other for at least one day249

in their lifetime. The degree of match between tracks in the training and reference250

datasets is first quantified in terms of a hit ratio and false alarm ratio . The hit ratio251

is the fraction of matches in the reference dataset also detected in a training dataset.252

The false alarm ratio is the fraction of features in a training dataset without a match253

in the reference dataset.254

We also use the Critical Success Index (CSI) (Di Luca et al., 2015) to assess255

algorithm skill. This index accounts for both matches and non-matches using a single256

skill score,257

CSI(dataset, reference) =
hmatchesi

hmatchesi+ hnon-matchesi . (1)
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Figure 1. An illustration of LPS tracking using di↵erent search variables. The shaded region

is (a, e) mean sea level pressure in hPa, (b, f) vorticity at 850 hPa in 10�4 s�1, (c, g) geopoten-

tial at 850 hPa in 104 m2s�2 and (d, h) streamfunction at 850 hPa in 106 m2s�1 on 26–July–2003

00:00 UTC, corresponding to the point of maximum strength during the lifetime of an LPS. The

LPS genesis point and track obtained using the given search variable are shown as the magenta

dot and line, respectively. The blue dot and line are the Sikka archive LPS genesis point and

track, respectively. The top panel shows results from ERA–Interim and the bottom panel from

JRA-55.

Here hmatchesi is the count of matches between a training dataset and the reference258

dataset, and hnon-matchesi is the average count of non-matches in the training and259

reference datasets.260

Since the reference dataset (the Sikka archive) may contain errors, it is inadequate261

to simply choose a tracking algorithm that maximizes the CSI for this single reference262

dataset. Hence, we also consider the degree to which a track is represented similarly263

across all reanalyses. We create a combined CSI that weights agreement between all264

of the reanalyses with agreement between the reanalyses and the Sikka archive,265

CSIcombined =
CSIEJCM + CSIES+CSIJS+CSICS+CSIMS

4

2
. (2)

Here CSIEJCM is the CSI among all four reanalyses—namely, considering hmatchesi266

to be the count of LPS common in all four reanalyses and hnon-matchesi to be the267

average of non-matches among all four reanalyses. In the latter case, we define a non-268

match as occurring in a particular reanalysis when the LPS detected in that reanalysis269

is not identified in at least one other reanalysis. The terms CSIES , CSIJS , CSICS270

and CSIMS are the four CSI values of the four individual reanalyses (ERA-Interim,271

JRA-55, CFSR, and MERRA-2, respectively) compared with the Sikka archive. The272

combined CSI is employed to rank the performance of each tracking algorithm.273

3 An optimized tracking algorithm274

Since monsoon lows and depressions have weaker intensities than classic tropical275

cyclones, it has been a challenge to detect and classify these LPS in reanalyses. A276

variety of methods have been used for this task, with relatively low levels of agreement277

between the resulting track datasets. For example, Hurley and Boos (2015) and Hunt278
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et al. (2016) both identified LPS as cyclonic extrema of lower tropospheric relative279

vorticity having concurrent negative anomalies of MSLP relative to a 21-day mean.280

Those studies used only ERA-Interim data. Praveen et al. (2015) identified LPS in281

both ERA-Interim and MERRA with a detection algorithm designed to mimic the282

manual identification of LPS performed by IMD, thus using only MSLP. Even when283

mimicking the traditional detection methodology, Praveen et al. (2015) obtained only284

modest correspondence with the Sikka archive: correlation coe�cients for interannual285

variations of monsoon LPS counts were 0.4 and 0.5 for ERA-Interim and MERRA,286

respectively, referenced to the Sikka archive. All of the above studies chose thresholds287

(e.g. a 2 hPa MSLP anomaly) for their detection algorithms based on some combination288

of physical understanding and traditional identification methods, with little systematic289

assessment of those thresholds.290

3.1 Candidate variables and thresholds291

Here we assess multiple candidate variables and detection thresholds to obtain a292

tracking algorithm that is more nearly optimal across multiple reanalyses. Although it293

is possible that every reanalysis and every particular configuration of an atmospheric294

model will have a unique geophysical variable and set of thresholds that allow LPS295

identification to best match traditional methods (e.g. those used by IMD), retuning296

tracking algorithms in this way is undesirable from the perspectives of both practi-297

cality and scientific understanding. So we perform a sensitivity analysis using a set298

of candidate variables, with ranges of corresponding thresholds and the skill metric299

defined above (the CSI).300

We include MSLP and the 850 hPa relative vorticity (⇣) in this set of candidate301

variables because these have previously been used for tracking monsoon LPS and, more302

generally, tropical cyclones (for a relevant history see Bengtsson et al. (1982), Broccoli303

and Manabe (1990), and Appendix B of Ullrich and Zarzycki (2017)) Drawbacks exist304

for both of those variables, with peak values of vorticity depending on the horizontal305

resolution of the underlying dataset, and MSLP being only an indirect indicator of the306

circulation several kilometers above the surface, where monsoon LPS typically have307

strongest winds. For this reason, we also consider the 850 hPa geopotential, which308

provides the geostrophic circulation closer to the level of strongest winds. Additionally,309

we consider the streamfunction ( ) of the horizontal wind; through the relation r2 310

= ⇣, it has an exact relation to the relative vorticity but is much smoother than that311

variable. The geopotential and MSLP are similarly related to the vorticity only under312

conditions of low Rossby number, and monsoon depressions can easily achieve Rossby313

numbers of 2 (Boos et al., 2015). A practical challenge exists when computing  on314

a level of a vertical coordinate system that intersects the ground, because boundary315

conditions must be imposed on that intersection when inverting the winds (or vorticity)316

to obtain the streamfunction. Some reanalyses (e.g. ERA-Interim) extrapolate winds317

beneath Earth’s surface, and we choose to replace those extrapolated values with zero318

prior to inverting ⇣ to obtain  . More discussion of issues involved in calculating319

the streamfunction is provided in Appendix A. In summary, the set of variables used320

to create candidate tracking algorithms are MSLP, 850 hPa relative vorticity, 850321

hPa geopotential, and 850 hPa streamfunction (see also Table 2). We later test the322

sensitivity of the chosen geophysical variable to the choice of vertical level.323

Detection of LPS involves using TempestExtremes to locate minima of MSLP,324

geopotential, or streamfunction, or maxima of vorticity, then testing whether that ex-325

tremum is surrounded by a closed contour of the same field within a specified radius.326

Use of the closed contour criterion reduces the sensitivity of the method to resolution327

and furthermore resembles traditional methods, as discussed above. See Ullrich and328

Zarzycki (2017) for details on how TempestExtremes implements the closed contour329

criterion. We test eight closed contour magnitudes and two radii for identifying ex-330
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trema, with the closed contour magnitudes and radius together essentially specifying a331

minimum radial gradient that must exist for the extremum to be classified as an LPS.332

We use radii of 5� and 10� of great circle distance, with the eight closed contour mag-333

nitudes for each candidate variable shown in Table 2. This approach is analogous that334

used by Zarzycki and Ullrich (2017) in developing optimal criteria for identification of335

tropical cyclones using TempestExtremes.336

Table 2. Variables and closed contour magnitudes used for detecting low pressure systems.

Search variable Closed contour magnitudes

Mean sea level pressure (Pa) 25, 50, 75, 100, 125, 150, 175, 200
Geopotential at 850 hPa (m2s�2) 25, 50, 75, 100, 125, 150, 175, 200
Streamfunction at 850 hPa (105 m2s�1) 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 25.0
Relative Vorticity at 850 hPa (10�5 s�1) 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0

We additionally desire a criterion for distinguishing LPS from “heat lows”, which337

are non-precipitating low pressure systems trapped in the lower troposphere (Ramage,338

1971; Rácz & Smith, 1999). Heat lows frequently form over northwestern India dur-339

ing summer and over central India before monsoon onset there; they fulfill all the340

traditional kinematic criteria for LPS discussed in the Introduction, but seem to be341

traditionally excluded from LPS datasets by some implicit criteria that we suspect342

involves their geographic location or moisture content. We initially attempted to use343

a precipitable water criterion to distinguish heat lows from traditional LPS, but rec-344

ognized that the increase in precipitable water expected in a warming climate might345

create spurious trends in LPS counts. One alternative would be to require a minimum346

precipitation rate to distinguish heat lows from LPS, motivated by the fact that most347

interest in LPS exists because of their heavy precipitation. But precipitation rates348

have large variance on short time and space scales, and are also subject to trends in349

a warming climate. So we opt to distinguish LPS from heat lows using the 850 hPa350

relative humidity (RH), averaged within 3� of the LPS center. Eight RH thresholds351

ranging from 55% to 90%, with an interval of 5%, are used in the candidate tracking352

algorithms. The RH is required to exceed these thresholds for a cumulative period of353

at least one day over the disturbance lifetime to be considered an LPS, otherwise it354

is categorized as a heat low. This choice thus includes systems in our LPS dataset355

that spend much of their lifetimes as non-precipitating, low-RH disturbances but that356

achieve high lower-tropospheric RH for at least one day.357

3.2 Assessing candidate tracking schemes358

Using the above sets of candidate variables, closed contour magnitudes, radii,359

and RH criteria, we use TemepstExtremes to identify LPS in four reanalyses (ERA-360

Interim, JRA-55, CFSR, and MERRA-2; see Table 1) for the training period of 1990–361

2003. This 14-year training period is chosen to overlap with the Sikka archive, which362

ends in 2003, while leaving a substantial period for verification (1979-1989). A total of363

2,048 track datasets are thus created (4 reanalyses ⇥ 4 candidate variables ⇥ 8 closed364

contour magnitudes ⇥ 2 radii ⇥ 8 RH thresholds). The maximum surface wind speed365

within 3� of the center is used as the maximum sustained surface wind speed of a366

storm at a time step, and is used later to classify disturbances as lows and depressions.367

The land-sea ratio of the grid point at the center of each LPS is used for region-wise368

categorization, with storms treated as being over land when this ratio is higher than369

0.5. The TempestExtremes commands for tracking LPS using these criteria is provided370

in Appendix B.371
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We perform a sensitivity analysis by ranking the 512 tracking algorithms, for each372

of the four reanalyses, by the combined CSI (Figure 2). As described in the previous373

section, the combined CSI is a weighted average of the agreement of each reanalysis374

track dataset with the Sikka archive and the agreement between all reanalyses. The375

top 31 algorithms by this ranking all use the 850 hPa streamfunction. The top-ranked376

algorithm requires a disturbance to have an 850 hPa streamfunction that increases by377

1.25⇥106 from the center minimum within a radius of 10�, while achieving an 850 hPa378

RH of at least 85% for at least one day. The second-best variable for tracking LPS is379

the 850 hPa geopotential (closed contour magnitude of 125 m2 s�2 and RH higher than380

85%). The lower ranking (32 out of 512) of the geopotential comes mainly from greater381

disagreement between reanalysis tracks, i.e. a smaller value of CSIEJCM in Equation382

2, and algorithms based on geopotential are only slightly less skillful than those based383

on streamfunction (Figure 2). Since streamfunction is not included in most reanalyses384

and must be computed prior to running the tracking algorithm, the geopotential is385

a viable alternative for LPS tracking that requires only a slight compromise in skill.386

Algorithms based on MSLP have lower skill, with the highest rank of 133 (out of 512);387

the lower rank comes mainly from greater disagreement between reanalyses but with388

some contribution from disagreement with the Sikka archive (not shown). The least389

skillful algorithms all use the 850 hPa vorticity, with the highest rank of 359 out of390

512. The vorticity-based algorithms produce track datasets that disagree most strongly391

between reanalyses and that di↵er most with the Sikka archive. This is notable given392

the number of past studies that have used vorticity or potential vorticity to track393

synoptic-scale monsoon disturbances in Asia, Africa, and Australia (Hurley & Boos,394

2015; Hunt et al., 2016; Thorncroft & Hodges, 2001; Berry et al., 2012). Variables395

and thresholds for the top-five ranked algorithm and top algorithm of each searching396

variable are depicted in Table S1.397

Figure 2. Illustration of the greater skill of 850 hPa streamfunction in detecting LPS. Each

diamond marks the combined Critical Success Index (defined in text) for one combination of

closed contour magnitude, radius, and RH threshold. Shading represents consistency of the al-

gorithm across reanalyses. The tested variables were mean sea level pressure (SLP), 850 hPa

geopotential (GP850), streamfunction of the 850 hPa horizontal wind (STRF850), and 850 hPa

relative vorticity (VORT850). Each column within a variable represents one RH threshold, from

55% (left) to 90% (right) with an interval of 5%.
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Figure 3. Hit ratio vs. false alarm ratio (see text for definition) with respect to the Sikka

archive for all LPS algorithms, shaded by CSIXS for: (a) ERA-Interim, (b) JRA-55, (c) CFSR,

and (d) MERRA-2. The black circle represents the selected optimal algorithm (top-ranked by the

combined CSI).

Although the consistency of an algorithm across reanalyses constitutes a large398

part of its skill score, the top-ranking algorithm also captures more than 80% of LPS in399

the Sikka archive, our reference dataset. The fraction of LPS in the Sikka archive that400

are detected in reanalyses (the hit ratio) is plotted against the fraction of LPS detected401

in reanalyses that do not exist in the Sikka archive (the false alarm ratio) in Figure 3.402

Tracking algorithms using the 850 hPa streamfunction and 850 hPa geopotential have403

higher CSI values with higher hit ratios and lower false alarm ratios in all reanalyses.404

In most reanalyses, algorithms based on MSLP have smaller hit ratios than those based405

on streamfunction or geopotential. Vorticity-based algorithms have lower CSI values406

mainly due to higher false alarm ratios in all reanalyses. The top-ranked algorithm by407

the combined CSI (marked by black circles in Figure 3) compares well with the Sikka408

dataset in all reanalyses, with hit ratios of about 0.8 and false alarm ratios around 0.3.409

We also compute the skill scores outside the training period (in the validation410

period of 1979–1989), finding that there is little change in the level of agreement411

between each reanalysis and the Sikka archive; the CSI of ERA-Interim, JRA-55,412

CFSR and MERRA-2 are 0.79, 0.80, 0.79 and 0.71, respectively, in the training period413
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and 0.78, 0.78, 0.77 and 0.72, respectively, in the validation period. Remarkably,414

ERA5, which was not used for training, has a higher CSI (0.83), a higher hit ratio,415

and a lower false alarm ratio than the other reanalyses. This is true despite the fact416

that ERA5 has hourly, 0.27� resolution while the reanalyses used for algorithm training417

have grid spacings coarser by factors of 2-6.418

For completeness, we also checked whether combining MSLP and 850 hPa vor-419

ticity might improve the tracking algorithm, since previous studies used such com-420

binations of variables (Hurley & Boos, 2015; Hunt et al., 2016). Algorithms using421

a combination of MSLP and vorticity had CSI values around 0.6, similar to those422

based on MSLP alone. Furthermore, combining streamfunction and vorticity did not423

noticeably improve the skill scores. Finally, we tested whether the skill score would424

improve by using a variable from a di↵erent vertical level. Using the streamfunction425

of horizontal wind at 1000 hPa, 700 hPa, and 500 hPa yielded CSI values lower than426

those obtained for the 850 hPa streamfunction.427

Using the top-ranked algorithm, we track LPS in all available years of all reanal-428

yses (Table 1). This includes ERA5, which was not used for training.429

3.3 Are non-matches real systems?430

We now check whether the “false alarms”—LPS identified in reanalyses by our431

top-ranking algorithm but missing in the Sikka archive—exist due to some error or432

artifact in the tracking algorithm. We do this by comparing composites of the struc-433

tures of reanalysis LPS that match those in the Sikka archive with composites of those434

missing from the Sikka archive. We do this separately for monsoon lows and monsoon435

depressions, since the implications of a false alarm are di↵erent when the LPS is a436

weak LPS compared to a strong one. We furthermore only include a reanalysis LPS in437

our composites of false alarms when it is completely missing from the Sikka archive, as438

opposed to when it is categorized di↵erently (e.g. here we ignore LPS that are classified439

as a depression in a reanalysis but a low in the Sikka archive). These composites are440

made using ERA5, since that reanalysis was not used in tuning the tracking algorithm.441

There are 57 lows and 10 depressions in ERA5 that are missing from the Sikka archive.442

Composites are created by averaging, in a storm-centered reference frame, the three443

time steps having the largest central MSLP anomaly.444

The composites of lows and depressions have structures consistent with those445

seen in prior studies (Godbole, 1977; Hurley & Boos, 2015), and these exhibit rel-446

atively little di↵erences between matches and non-matches (Figure 4). The LPS all447

consist of a column of cyclonic potential vorticity (PV) that extends from the sur-448

face to the upper troposphere, with primary maxima near 500 hPa and secondary449

peaks around 850 hPa. The composite relative vorticity is more bottom-heavy, peak-450

ing near 800 hPa. Both the PV and relative vorticity tilt slightly westward with451

height and are stronger in depressions than in lows, as expected. For lows, the non-452

matches (i.e. those present in ERA5 but missing from the Sikka archive) are weaker453

than the matches, perhaps because the 850 hPa streamfunction in ERA5 represents454

weaker systems than were contained in the MSLP maps on which the Sikka archive455

was based, or perhaps because our tracking algorithm was better able to detect weak456

systems than the subjective analysis used by the Sikka archive. There is no clear dif-457

ference between the composites of matching and non-matching depressions, with any458

quantitative di↵erences in magnitude likely not significant considering the low number459

(10) of non-matches. Comparisons of composites of winds, relative humidities, and460

temperatures yielded similar results (not shown).461

We furthermore obtained the daily MSLP charts from the IMD, which are thought462

to be similar to those on which the Sikka archive was based, and manually inspected463

these to search for the ten depressions present in ERA5 but missing in the Sikka464
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Figure 4. Composite of the vertical cross-section of potential vorticity (shaded) and relative

vorticity (contours), through the central longitude of the system, for (a) matches in lows, (b)

non-matches in lows, (c) matches in depressions and (d) non-matches in depressions.

archive. At the times and locations of all ten of these missing depressions, we found465

LPS-like features in the pressure charts, with three of the charts clearly showing dis-466

turbances marked on the charts as depressions or a more intense category of LPS.467

We conclude that the ten additional depressions in ERA5 are real and were somehow468

missed when the Sikka archive was created.469

4 Assessing the LPS climatology in reanalyses470

We now examine the climatological mean distributions of genesis density, track471

density, disturbance lifetime, and track length, with the goal of assessing whether the472

overall statistics of disturbances identified in reanalyses agree with the well-known473

statistics of monsoon LPS.474

4.1 Genesis475

The boreal summer (June-September) distributions of genesis frequency for all476

LPS are broadly similar among all reanalyses and the Sikka archive (Figure 5). The477

latter has genesis more concentrated over the northern Bay of Bengal, but with a total478

number of LPS—14 per summer—similar to that in most of the reanalyses. The total479

count is higher in MERRA-2 and CFSR, around 18 per summer.480

There is general agreement amongst the reanalyses, and between the reanalyses481

and the Sikka archive, regarding the partitioning of LPS into lows and depressions,482

the rate of genesis over land compared to that over ocean, and the seasonal cycle of483
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Figure 5. Genesis density of LPS for the period of 1980–2003 in the Sikka archive and re-

analyses. Kernel density estimates are used to calculate the genesis density. Numbers in the

bottom-left corner represent the mean number of LPS in a season for the period.

genesis (Figure 6). The most notable outlier is MERRA-2 which, unlike the other four484

reanalyses and the Sikka archive, has more depressions than lows.485

Consistent with the spatial distributions of genesis shown in Figure 5, most486

reanalyses also represent a larger fraction of LPS forming over land, compared to487

the Sikka archive (Figure 6). ERA5 has the fewest LPS of all the reanalyses, though488

the di↵erence is relatively small, and the ERA5 total count is an almost exact match489

to the Sikka archive. The match with the Sikka archive is notable because ERA5490

was not included in the algorithm’s training dataset. All the reanalyses also capture491

the greater frequency of LPS in the middle of summer, although ERA5 shows slightly492

greater frequency in July while all other reanalyses and the Sikka archive show greatest493

frequency in August. This seems to be an improvement over previous reanalysis-based494

tracking algorithms, which showed genesis occuring more frequently in June than in495

August in ERA-Interim (Hurley & Boos, 2015).496

4.2 Track density and lifetime of LPS497

All the reanalyses show a similar track density distribution to that seen in the498

Sikka archive, although the reanalyses extend further westward toward northwestern499

India (Figure 7). The highest track density over land is found in MERRA-2; that500

reanalysis also has the highest number of days with an LPS present, which is due to501

both the high genesis frequency and high LPS lifetime in MERRA-2 (Figure 8).502

Lifetimes are generally longer in the reanalyses, with the longest found in ERA5,503

which has LPS lasting one to two days longer than the Sikka archive. The distributions504

of lifetimes for all LPS are more strongly skewed in the reanalyses than in the Sikka505

archive, with the median lifetime being almost a full day longer than the mean lifetime506

(Figure 8a). Track lengths (in great circle distance between start and end points) are507

similar between the reanalyses and Sikka archive, implying a slower translation speed508

in the reanalyses: 2.3 m s�1 in the Sikka archive and 1.6 m s�1 - 1.91 m s�1 in the509

reanalyses. In all datasets, depressions have longer tracks and lifetimes than lows, and510

tracks and lifetimes are longer over ocean than over land.511
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Figure 6. (a) The summer monsoon season (JJAS) climatology, for the Sikka archive and

reanalyses, of the number LPS formed over the north Indian Ocean basin and subregions of

the Bay of Bengal (BoB), Arabian Sea (AS), and Indian land mass (Land). (b) Climatological

monthly variation of LPS. monsoon lows and monsoon depressions are represented as squares and

diamonds respectively. The period of analysis is 1980–2003.

Figure 7. Track density of LPS for the period of 1980-2003 in the Sikka and reanalyses. Ker-

nel density estimates are used to calculate the track density of LPS. Numbers in the bottom-left

corner represent the mean number of days in which LPS are present in a season for the period.

5 Interannual and long term variations512

5.1 Interannual correlations between datasets513

The interannual variability of seasonal total counts of LPS, lows, and depressions514

has a similar magnitude across reanalyses and the Sikka archive, but these variations515
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Figure 8. Box-and-whisker plots of (a) lifetime (b) track length of LPS in Sikka archive and

all reanalyses. The horizontal line within the boxes indicates the median, boundaries of the boxes

indicate the 25th and 75th percentile, the whiskers indicate the 5th and 95th percentile values,

and the solid square represents the mean value. The period of analysis is 1980–2003.

exhibit low to modest correlation between data products (Figure 9a). The correlations516

between di↵erent reanalyses of seasonal LPS counts range from about 0.5 to 0.75,517

higher than the 95% confidence level of 0.34 for this sample size, with the two ECMWF518

reanalyses being most strongly correlated. The dataset having the weakest correlations519

with all others is the Sikka archive; the LPS dataset of Hurley and Boos (2015) also520

showed little interannual correlation with the Sikka archive. This might arise due521

to di↵erences in the geophysical observations on which each dataset is based, on the522

variables used for tracking, and on other methodological details. In particular, LPS in523

the Sikka archive were identified through manual analysis of surface pressure charts,524

which were in turn obtained through manual analysis of station observations; such525

subjective methods might introduce random and/or systematic errors (e.g., a bias526

toward identifying LPS over land).527

Some brief statistical modeling illustrates the e↵ect of such errors on interannual528

correlations. We state in Section 3.3 that 67 LPS are present in ERA5 but not in the529

Sikka archive; these non-matching storms reduce the interannual correlation between530

those two datasets. We test the sensitivity of the interannual correlations to miss-531

ing storms by removing random LPS from the Sikka archive between 1979 and 2003,532

adding the same number of “false alarm” LPS to random years in that archive, then533

recalculating the interannual correlation with the original Sikka archive. Removing534

67 random storms (20% of the archive) and adding the same number of false alarms535
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degrades the correlation coe�cient from 1.0 to an average of 0.62 (with a 95% con-536

fidence interval of 0.36-0.81, empirically sampled from 1,000 iterations). Increasing537

the fraction of randomly replaced storms to 30% of those in the Sikka archive further538

degrades the correlation coe�cients, in this statistical model, to the range of 0.1-0.2539

seen for correlations between the Sikka archive and most reanalyses. Thus, the rel-540

atively low interannual correlation each reanalysis has with our reference dataset is541

consistent with the hit ratios and false alarm ratios seen in Figure 3. We note that the542

interannual correlation between the Sikka archive and ERA–Interim (0.53) is higher543

than reported by Praveen et al. (2015) (0.2 to 0.4); those authors detected LPS using544

surface pressure, which we show in Section 3.2 produces worse skill than detectors545

based on streamfunction (which was used in the tracking algorithm examined here).546

Interannual correlations between datasets are weaker for the individual categories547

of lows and depressions (Figures 9b, c). These lower correlation values are likely related548

to di↵erences in the categorization of lows and depressions in the Sikka archive and549

reanalyses. Even though the reanalyses capture more than 80% of LPS in the Sikka550

archive, one in three depressions in the Sikka archive are categorized as a low in the551

reanalyses and vice-versa. Yet there is clearly some agreement: all datasets, including552

the Sikka archive, capture the high number of depressions in 2006 (Figure 9d), which553

coincides with an Indian Ocean Dipole event (Krishnan et al., 2011).554

Figure 9. Interannual correlation of the number of Indian summer (JJAS) (a) monsoon

low-pressure systems (b) lows and (c) monsoon depressions between the datasets includes Sikka

archive and the reanalyses during 1980-2003, the years in which all LPS dataset available. (d)

Year to year varaition in the number of monsoon depression in all renalysis datasets, Sikka

archive and from IMD.

5.2 Relation to interannual climate modes555

Given the large contribution of LPS to India’s total summer rainfall (Yoon &556

Chen, 2005), some studies have explored whether interannual variations in LPS activ-557
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ity are associated with interannual variations in total Indian summer rainfall (Sikka,558

2006; Krishnamurthy & Ajayamohan, 2010). We build on this by analyzing how LPS559

count, mean lifetime, and track length vary between pluvial and drought years in the560

Sikka archive and reanalyses. We define “pluvial” years as years when seasonal total561

rainfall is more than one standard deviation above the mean, and “drought” years as562

those when rainfall is more than one standard deviation below the mean. LPS counts563

are significantly higher in pluvial than drought years in four out of five reanalyses (Fig-564

ure 10a), but there are no significant changes in lifetime and track length in four of five565

reanalyses (Figure S1a and S2a). Although the Sikka archive shows no change in LPS566

counts between pluvial and drought years between 1979 and 2003, Krishnamurthy and567

Ajayamohan (2010) performed the same analysis of the Sikka archive for 1901-2003568

and found a higher number of LPS and a higher number of days with LPS conditions569

in pluvial compared to drought years. When examining how counts of the individual570

categories of lows and depressions change between pluvial and drought years, most571

reanalyses and the Sikka archive show no detectable signal (Figure 10b, c).572

Figure 10. Di↵erence of (a) LPS, (b) lows and (c) monsoon depression mean counts in

pluvial-drought summer monsoon years, La Niña-El Niño years, and positive-negative Indian

Ocean Dipole years. The vertical lines represent the 95% confidence interval for the di↵erence in

the mean counts. Analysis of each dataset set includes all available period of that datsets (see

Table 1)

Interannual variation of the Indian summer monsoon is highly linked to ENSO,573

with an increased propensity for drought years in the warm phase of ENSO (El Niño)574

and pluvial years in its cold phase (La Niña). We find that LPS counts are higher575

in La Niña years than El Niño years (Figure 10a), and the di↵erences are significant576

in all datasets except the Sikka archive and JRA-55. When assessing ENSO-related577
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variations in lifetimes and track lengths, the only detectable signal is in ERA-Interim578

and ERA5, which exhibit LPS lifetimes that are higher in El Niño years than La Niña579

years (contrasting with their lower average counts in those years; Figure S1a). The580

fact that a signal is sometimes detected in only one or two out of six datasets shows581

that it may be important to reexamine results from prior studies that relied on a582

single dataset. For example, Krishnamurthy and Ajayamohan (2010) used only the583

Sikka archive when showing that LPS activity is roughly equal in El Niño and La Niña584

years. Hunt et al. (2016) relied on only ERA-Interim when finding that depression585

activity is 16% higher in El Niño than La Niña years.586

Finally, we examine covariations of LPS with the Indian Ocean Dipole (IOD),587

an SST pattern associated with variations in Indian summer monsoon circulation and588

rainfall (Saji et al., 1999; Webster et al., 1999). Krishnan et al. (2011) found that589

depressions have higher track lengths in positive IOD years, and Hunt et al. (2016)590

found that depression lifetime is 12% higher in positive IOD years. We find that only591

one reanalysis (JRA-55) shows a change in LPS counts between positive and negative592

IOD years, and another reanalysis (CFSR) shows longer depression lifetimes (Figure593

S1c and S2c). For all other datasets, the 95% confidence interval on the IOD-related594

changes in counts, lifetimes, and track lengths includes zero.595

5.3 Trends in LPS596

5.3.1 Linear trend analysis597

Based on the Sikka archive and the IMD dataset of depression counts, previous598

studies discussed an apparent increase in the number of lows and a decrease in the599

number of depressions forming each summer (Jadhav & Munot, 2009; Prajeesh et al.,600

2013; Vishnu et al., 2016, and references therein). However, Cohen and Boos (2014)601

questioned the existence of a decrease in the number of depressions in the past 40602

years, based on their finding that no trend in depression counts could be detected in603

ERA-Interim and on their discovery of depressions in that reanalysis that were missing604

in the IMD dataset. Here we examine whether a trend in the number of LPS overall,605

or in the number of lows or depressions, can be detected in any of the track datasets606

created using our tracking algorithm. We first assess the period since 1979, since four607

of our reanalyses start in that year, then compare to results starting in 1958 (for which608

only JRA-55, the Sikka archive, and the IMD dataset provide values).609

Consistent with previous studies, the Sikka archive shows no trend in the seasonal610

counts of all LPS since 1979, together with an increasing trend in lows and a decreasing611

trend in depressions (Figure 11). Any decreasing trend in depressions in the IMD612

dataset is weaker and has an error bar that includes zero. None of the reanalyses show613

any appreciable trend in lows or depressions.614

Vishnu et al. (2016) noted that the trend in depressions is not linear, but consists615

mainly of a large reduction around 1980, which lies at the beginning of the records616

discussed in the previous paragraph. Since JRA-55 is the only reanalysis with data617

prior to 1979, we compute the trend in depressions for the more extended period618

starting from 1958 in JRA-55, and compare this with trends from the IMD and Sikka619

datasets (Figure 11). The IMD and Sikka datasets show depression counts decreas-620

ing at a rate of �0.096 year�1 and �0.14 year�1, respectively (with 95% confidence621

intervals of ±0.032 year�1 and ±0.043 year�1; Figure 11, and see the time series in622

Figure 9d). The long-term decrease in depressions in the Sikka archive is opposed by623

a long-term increase in lows, resulting in no trend in total LPS. Any trend in JRA-55624

is substantially smaller than in the Sikka or IMD datasets and is not significant at625

the 95% confidence level (Figure 11); the JRA-55 trend is �0.021 year�1 with a 95%626

confidence interval of ±0.024 year�1). No statistically significant trend is seen in the627

total number of LPS forming each summer in JRA-55.628
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Figure 11. Linear trends in LPS, lows, and depression in the Sikka archive and reanlyses.

The white shaded region shows trends from 1979 onwards, while gray shaded region shows trends

for 1958 onwards. Error bars represent the 95% confidence interval for these trends. Blue dots

and error bars represent the trend and 95% confidence interval, respectively, for the extended

season of May to October. The 95% confidence intervals assume a normal distribution and thus

are 1.96 times the standard error.

Although the Indian summer monsoon season is commonly defined as occurring629

June-September, with the Sikka archive available for only those months, it is possible630

that the results of our trend analysis would change if we used an extended season of631

May-October. Indeed, Xavier et al. (2007) argued that the primary e↵ect of ENSO632

on Indian rainfall occurs via its influence on the duration of the rainy season, with La633

Niña events allowing it to extend into May and October. Including May and October634

in our trend analysis for the period starting in 1958 yields an increase in the magnitude635

of the depression count trends found in JRA-55 and the IMD dataset, with the JRA-55636

trend becoming significant at the 95% confidence level (Figure 11). The total number637

of LPS forming in this extended summer season in JRA-55 also shows a decreasing638

trend that is significant at the 95% confidence level, but there is no discernible trend in639

lows in JRA-55. We also repeated the trend assessment, using the longer May-October640

season, for all reanalyses for the shorter period starting in 1979, with little change in641

the results: only ERA-Interim LPS show an increasing trend significant at the 95%642

confidence level.643

We also analyze storm count trends using multiple detection algorithms, in order644

to explore the influence of parametric and structural uncertainty in the algorithm on645

our trend assessment. Specifically, we examine LPS counts obtained using the top five646

streamfunction-based algorithms, the top three geopotential height-based algorithms,647

and the top three MSLP-based algorithms. No algorithms applied to any reanalysis648

show a significant trend starting in 1979 (Figure S3). However, two of the nine algo-649

rithms applied to JRA-55 show a statistically significant decrease in LPS from 1958,650

and one of the nine shows a significant decrease in depression counts in that period.651

All of these trends are of similar magnitude to the those found in JRA-55 with our652

primary algorithm (Figure 11).653
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Figure 12. Illustration of a shift in depression count around 1980. Year-to-year variation of

depression count (black line) in (a) Sikka archive, (b) IMD and (c) JRA-55. The vertical dash

line is the mean shift in the depression count using binary change point detection. The star

symbol represents the introduction of the geostationary satellites in the respective dataset. The

horizontal grey line shows the annual mean value of depression count in the given epoch, and

shading shows the 95% confidence interval of the mean value.

5.3.2 Change point detection654

Like any reanalysis, JRA-55 assimilated data from an observational network that655

evolved over time, and we wish to consider whether this might a↵ect any detected656

trends. For example, satellite data first started to be assimilated by JRA-55 around657

1980, and there is a large reduction in depression counts in JRA-55 in that year658

(Figure 9d). We calculate the year and magnitude of a single long-term shift in the659

summer mean depression count using a binary change point detection method (Truong660

et al., 2019), and find that the mean depression count undergoes a systematic reduction661

in the early 1980s all datasets: 1983 in IMD and the Sikka archive and 1980 in JRA-55662

(Figure 12). The shift in the mean values is larger in the IMD dataset (decreasing from663

7.5± 0.7 year�1 to 3.6± 0.7 year�1 ) and the Sikka archive (decreasing from 7.6± 0.6664

year�1 to 3.0±0.6 year�1) and smallest in JRA-55 (decreasing from 5.5±0.6 year�1 to665

4.2±0.5 year�1). The shifts in all three data sets are statistically significant at the 95%666

confidence level. The shift in JRA-55 in 1980 is contemporaneous with the introduction667

of geostationary satellites observations to that reanalysis system in 1979 (Ebita et al.,668

2011), the date marked by the star in Figure 12c. Similarly, the IMD started using669

Indian geostationary satellite data in 1982, which is contemporaneous with the 1983670

shift in depression counts in both the Sikka archive and the IMD dataset (recall that671

the Sikka archive was constructed by analyzing MSLP maps obtained from the IMD).672
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This suggests that the shift, and by association the linear trends discussed above, might673

be an artifact of changes in observational data sources. Formal attribution of these674

early-1980’s shifts is beyond the scope of this manuscript, but these results suggest675

that further study is warranted.676

6 Summary and conclusions677

Synoptic–scale monsoon LPS produce abundant rainfall over South Asia, making678

the identification of LPS in estimates of past and future atmospheric states an impor-679

tant task. Yet previous methods for tracking LPS have relied on subjective or auto-680

mated methods not systematically assessed for skill or optimality (Mooley & Shukla,681

1987; Sikka, 2006; Praveen et al., 2015; Hurley & Boos, 2015; Hunt et al., 2016). For682

example, multiple previous LPS datasets were based entirely on MSLP, even though683

LPS are known to have peak intensities several kilometers above the surface (Godbole,684

1977). These issues become especially salient when examining multi-decadal trends in685

LPS activity, because unintentional changes in a subjective method or trends in the686

observing network on which an underlying dataset is based could bias an analyzed687

trend.688

This study builds on previous literature by introducing a fast and objective track-689

ing algorithm able to identify monsoon LPS in high-resolution datasets. The method690

is based on the feature tracking capabilities of the TempestExtremes package. A sensi-691

tivity analysis was performed to choose an optimal algorithm using multiple reanalyses692

of various spatial and temporal resolutions. A total of 512 algorithms (defined by dif-693

ferent search variables and values for the closed contour criteria) are applied to four694

reanalyses for the training period of 1990-2003. Based on a skill score, the CSI, that695

compares the reanalyses with each other and with the Sikka archive (our reference696

dataset), the optimal algorithm was found to use the 850 hPa streamfunction. The697

LPS identified with this algorithm in reanalyses are found to match more than 80% of698

LPS in the Sikka archive. The reanalyses track datasets also contain LPS not present699

in the Sikka archive. For instance, the ERA5 dataset includes 57 lows and 10 depres-700

sions that are entirely missing in the Sikka archive. Composites of these LPS and the701

LPS present in the Sikka archive show similar dynamical structures, so we conclude702

that the algorithm correctly captures LPS in the atmospheric states represented by703

the reanalyses.704

Characteristics of the LPS, including distributions of genesis frequency, track705

density, intensity, lifetime, and track length, are consistent across all reanalyses and706

are similar to results from the Sikka archive. The new reanalysis track datasets also707

reproduce previously reported monthly and basin-wise climatological variations of LPS708

characteristics. On interannual time scales, LPS counts in the reanalyses have weak709

correlation with the Sikka archive. This result may be due, in part, to LPS that are710

missing from the Sikka archive but that exist in most of the reanalyses. The better711

correspondence between the track datasets based on five di↵erent reanalyses, with712

horizontal resolutions ranging from 0.25� to 1.25�, gives confidence that the algorithm713

can consistently capture LPS in datasets with di↵erent resolutions.714

Our examination of interannual variations in LPS genesis frequency, track length,715

and lifetimes illustrate the importance of assessing signals in multiple datasets. For716

the period starting in 1979, we find significantly higher LPS counts in pluvial years717

compared to drought years in four out of five reanalyses, in agreement with the longer718

period (1901-2003) analysis of Krishnamurthy and Ajayamohan (2010). We also find719

significantly higher LPS counts in La Niña years relative to El Niño years, again in720

four of five reanalyses and consistent with Krishnamurthy and Ajayamohan (2010).721

Associations between LPS counts and the Indian Ocean Dipole are detected in only722

one reanalysis, despite the fact that Krishnan et al. (2011) and Hunt et al. (2016)723
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reported enhanced depression activity in positive IOD years. The higher depression724

activity in El Niño years reported by Hunt et al. (2016) was also not seen in any of725

the reanalyses we examined.726

Past studies of long-term trends in the IMD and Sikka datasets have found in-727

creases in the number of lows and decreases in the number of depressions (Rajendra Ku-728

mar & Dash, 2001; Prajeesh et al., 2013; Vishnu et al., 2016). Here, however, we do not729

detect statistically significant trends in summer counts of lows or depressions in any730

reanalysis for the period from 1979 onwards (the Sikka archive has a strong decrease731

in depression counts and an increase in lows for that period). The JRA-55 reanaly-732

sis, which provides data starting in 1958, shows a statistically significant reduction in733

depression counts only when using an extended summer season (May-October), and734

this trend is about one-quarter the magnitude of the trend seen in the IMD dataset735

and Sikka archive. Furthermore, a binary change point detection analysis shows that736

the long-term decrease is consistent with a step-wise reduction in depression counts737

in the year following the introduction of geostationary satellite data into the datasets738

underlying the IMD, Sikka, and JRA-55 products. This suggests the possibility that739

no long-term reduction in depressions has occurred, and trends seen in existing data740

products may be artifacts of change in the observing network; further analysis is war-741

ranted.742

The new and objective LPS datasets developed here have been made publicly743

available, together with the tracking algorithm, to allow their broad use in characteriz-744

ing LPS activity and understanding LPS dynamics (doi:10.5281/zenodo.XXXXX) [the745

datasets will be finalized and uploaded, and a DOI obtained, after addressing reviewer746

comments that may require modification of the datasets]. These datasets and the track-747

ing algorithm may also be useful in assessing LPS activity in ensembles of global748

climate models and in characterizing and correcting bias in forecasts made by numer-749

ical weather prediction models. The future release of new reanalysis data for years750

preceding 1979, such as is expected for ERA5 (Hersbach & Dee, 2016), will also pro-751

vide new opportunities to reexamine long-term trends in LPS activity, especially since752

those reanalyses include representations of historical climate forcings by greenhouse753

gas, aerosol, and land use changes.754

Appendix A Boundary conditions for streamfunction inversion755

A practical challenge exists when computing the streamfunction,  , of the hor-756

izontal wind, ~u on a level of a vertical coordinate system that intersects the ground:757

boundary conditions must be imposed on that intersection when inverting the winds758

(or vorticity) to obtain  . That is, the uniqueness of the Helmholtz decomposition that759

holds in a spherical domain without boundaries breaks down, and a class of harmonic760

functions can be added to  while still allowingr2 to correctly represent the local ver-761

tical vorticity. Numerous ways of dealing with this nonuniqueness have been proposed762

in the context of atmospheric and oceanic flow (Lynch, 1988). One method requires763

the velocity potential, � to vanish on the boundaries, minimizing the kinetic energy in764

the divergent part of the flow (Sangster, 1960; Pedersen, 1971). Another method re-765

quires  to be constant along a boundary (Watterson, 2001); this is appropriate when766

there is zero horizontal divergence along the boundary but is invalid in many cases767

having large vertical motion along physical boundaries, such as up–welling in coastal768

ocean regions (Li et al., 2006) or strong orographic ascent in the atmosphere. Lynch769

(1989) proposed a three–component partitioning into nondivergent, irrotational, and770

harmonic flow, while Li et al. (2006) made the two-component decomposition unique771

by introducing a constraint to the inversion problem that implicitly determines the772

boundary condition by minimizing the joint amplitude of  and �.773
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Here we are concerned with domain boundaries created by the intersection of a774

pressure surface with topography, with the pressure surface lying at a su�ciently high775

altitude that the boundaries surround relatively small holes in the otherwise global,776

spherical domain. Unlike the regional atmospheric model problem in which  and777

� are obtained in a subdomain of global, nonzero atmospheric flow, we know that778

no wind exists outside of our domain (i.e. beneath Earth’s surface). We thus follow779

the suggestion of Morse and Feshbach (1953) and set the total wind outside the do-780

main boundaries to zero and invert ~u to obtain unique distributions of  and � in781

the unbounded global domain. Some reanalyses (e.g. ERA-Interim) extrapolate winds782

beneath Earths surface, so our choice involves replacing those extrapolated values with783

~u = 0. This choice results in nonzero values of the nondivergent and irrotational wind784

beneath Earths surface; these two components sum to zero in that region. This con-785

trasts with methods that assumed nondivergent flow along the boundaries (Watterson,786

2001), because we recognize that winds can horizontally converge along the topographic787

boundary at the grid scale of the data; such convergence is common along the Himalaya788

and Arakan mountains in the summer monsoon. An important point is that our choice789

of ~u beneath Earths surface, or equivalently of the boundary condition for  , has only790

minor e↵ects on our numerical identification of vortices because that choice alters  791

only by addition of a function with zero curvature, and our identification algorithm792

involves finding local minima (i.e. regions of positive curvature) in the discretized793

streamfunction.794

Appendix B LPS detection program795

The command line syntax to obtain LPS tracks from a six-hourly dataset using796

for TempestExtremes is:797

#candidate searching; $infile is the netcdf file containing input variables.798

799

./DetectNodes --in_data $infile --out $candidatefile800

--searchbymin "PSI" --mergedist 5.0801

--closedcontourcmd "PSI,12.5e5,10,0"802

--outputcmd "PSI,min,0;msl,min,3;RH,avg,3;zhi,max,2;lsm,max,0;803

_VECMAG(u10,v10),max,3;msl,minix,3.0"804

#Sticting candidates to make track805

./StitchNodes --in $candidatefile --out $outfile806

--format "i,j,lon,lat,strf850,slp,rh,zhi,lsm,sp,minmslix"807

--range 3.0 --minlength 5 --maxgap 2808

--threshold "zhi,<=,8000.,4;rh,>=,85,4"809

# Calculating some derived quantities using track data810

#$mslfile is the netcdf file containing mean sea level pressure and surface wind.811

./NodeFileEditor --in_file $outfile --out_file $trackfile812

--in_data $mslfile813

--in_fmt "lon,lat,strf850,slp,rh,zhi,lsm,sp,minmslix"814

--calculate "deltaslp=max_closed_contour_delta(msl,10,minmslix);815

acepsl=eval_acepsl(msl,10.0);816

ace=eval_ace(u10,v10,3.0);817

pdi=eval_pdi(u10,v10,3.0);818

ike=eval_ike(u10,v10,3.0)"819

--out_fmt "lon,lat,strf850,slp,deltaslp,sp,rh,zhi,lsm,acepsl,ace,pdi,ike"820
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