Glacial and hydrothermal sources of dissolved iron(II) in Southern Ocean waters surrounding Heard and McDonald Islands

Thomas Michael Holmes¹, Kathrin Wuttig¹, Zanna Chase², Christina Schallenberg³, Pier van der Merwe⁴, Ashley T Townsend², and Andrew Bowie²

¹Antarctic Climate and Ecosystems Cooperative Research Centre ²University of Tasmania ³ACE CRC ⁴Antarctic Climate and Ecosystem Cooperative Research Centre, University of Tasmania

November 23, 2022

Abstract

The Southern Ocean is the largest region in which iron limits the growth of phytoplankton. However, a phytoplankton bloom thousands of square kilometres in area forms each spring-summer in the Indian sector of the Southern Ocean, both above and to the east of the Kerguelen Plateau. The central region of the Kerguelen Plateau hosts the volcanically active islands, Heard and McDonald (HIMI), the former of which is largely covered by glaciers. The sources and processes governing supply of iron from HIMI to the region are relatively unknown. In the austral summer of 2016, the first voyage to focus on biogeochemical cycling in the HIMI region was undertaken (GEOTRACES process study GIpr05). Using iron redox measurements, we show here that each of the adjacent islands are strong sources of dissolved iron(II) (DFe(II)), though controlled by different supply mechanisms.

At Heard Island, the greatest DFe(II) concentrations (max 0.57 nmol L) were detected north of the island. An inverse correlation of DFe(II) concentrations with salinity suggests the origin is from a sea-terminating glacier on the island. At McDonald Islands, the greatest DFe(II) concentrations (max 1.01 nmol L) were detected east of the islands which, based on DFe(II) profiles from five targeted stations, appears likely to originate from shallow diffuse hydrothermalism. Elevated DFe(II) around HIMI may increase Fe availability for biota and indicate slower oxidation kinetics in the region, which has implications for transport of Fe away from the islands to the broader northern Kerguelen Plateau where the annual plankton bloom is strongest.

Glacial and hydrothermal sources of dissolved iron(II) in Southern Ocean waters surrounding Heard and McDonald Islands

Thomas M. Holmes^{1,2,†}, Kathrin Wuttig¹, Zanna Chase², Christina Schallenberg¹, Pier
van der Merwe¹, Ashley T. Townsend³, and Andrew R. Bowie^{1,2}

¹Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), University of
 Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia.

⁷ ²Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129,

- 8 Hobart, Tasmania, Australia.
- ³Central Science Laboratory (CSL), University of Tasmania, Private Bag 74, Hobart, TAS
 7001, Australia.
- 11 Corresponding author: Thomas M. Holmes (<u>Thomas.holmes@utas.edu.au</u>)

12 [†]Current address: School of Oceanography, University of Washington, Box 357940, Seattle,

13 WA 98105, USA.

14 Key Points:

- Remote Heard and McDonald Islands are distinct iron(II) sources in the Southern
 Ocean
- The main iron(II) source at Heard Island is glacial, while hydrothermal vents are the main source of iron(II) near McDonald Islands
- Results highlight complex iron cycling at a Southern Ocean biological hotspot, with
 implications for regional bioavailability of iron

21 Abstract

22 The Southern Ocean is the largest region in which iron limits the growth of phytoplankton. However, a phytoplankton bloom thousands of square kilometres in area forms each spring-23 24 summer in the Indian sector of the Southern Ocean, both above and to the east of the 25 Kerguelen Plateau. The central region of the Kerguelen Plateau hosts the volcanically active 26 islands, Heard and McDonald (HIMI), the former of which is largely covered by glaciers. 27 The sources and processes governing supply of iron from HIMI to the region are relatively 28 unknown. In the austral summer of 2016, the first voyage to focus on biogeochemical cycling 29 in the HIMI region was undertaken (GEOTRACES process study GIpr05). Using iron redox 30 measurements, we show here that each of the adjacent islands are strong sources of dissolved 31 iron(II) (DFe(II)), though controlled by different supply mechanisms. At Heard Island, the greatest DFe(II) concentrations (max $0.57 \text{ nmol } \text{L}^{-1}$) were detected north 32 33 of the island. An inverse correlation of DFe(II) concentrations with salinity suggests the 34 origin is from a sea-terminating glacier on the island. At McDonald Islands, the greatest DFe(II) concentrations (max 1.01 nmol L^{-1}) were detected east of the islands which, based on 35 DFe(II) profiles from five targeted stations, appears likely to originate from shallow diffuse 36 37 hydrothermalism. Elevated DFe(II) around HIMI may increase Fe availability for biota and indicate slower oxidation kinetics in the region, which has implications for transport of Fe 38

away from the islands to the broader northern Kerguelen Plateau where the annual planktonbloom is strongest.

41 Plain language summary

Phytoplankton form the base of the aquatic food web, produce comparable atmospheric
oxygen to terrestrial plants and help moderate global heating through uptake of CO₂. Thus, it
is vital to know what influences phytoplankton growth in the ocean. Along with nutrients
such as nitrate and phosphate, phytoplankton require iron for growth. Iron concentrations are

46 very low in the Southern Ocean, limiting the growth of phytoplankton. However, near the 47 Kerguelen Plateau in the Indian sector of the Southern Ocean, a phytoplankton bloom 48 thousands of square kilometres in area forms each spring-summer. There are two volcanically 49 active islands in the central region of the Kerguelen Plateau – Heard and McDonald. 50 Volcanic activity supplies iron in various forms to the ocean, yet these islands have not been 51 studied in detail. Iron(II) is a short-lived yet preferred form of iron for phytoplankton in the 52 ocean. Using iron(II), we show that these closely spaced islands supply iron in different ways. 53 Underwater volcanic vents supply iron near McDonald Island, while glacial runoff supplies 54 iron near Heard Island. Knowing these iron sources is essential for understanding what causes 55 this large phytoplankton bloom at the Kerguelen Plateau, an important ecological hotspot and 56 contributor for regulation of atmospheric CO₂.

57 1. Introduction

58 Iron (Fe) is a key limiting, or co-limiting, micronutrient for biological primary production 59 (Martin et al., 1990) in as much as half of the world's oceans (Moore et al., 2009), with 60 important implications for biogeochemical cycling and the drawdown of carbon from the 61 atmosphere (Boyd and Ellwood, 2010). The most energetically stable form of Fe in the 62 oxygenated ocean, Fe(III), has low solubility. The reduced form of Fe, Fe(II), is more soluble 63 in seawater and should be kinetically more bioavailable to phytoplankton (Shaked et al., 64 2005). However, Fe(II) is only present as a transient species in the oxygenated ocean, generally existing in vanishingly low concentrations (picomolar or less) due to rapid (minutes 65 66 to days) oxidation by oxygen (O_2) and hydrogen peroxide (H_2O_2) in surface waters (Millero 67 et al., 1987).

Nevertheless, continuous production of Fe(II) by several processes in the ocean can lead to
measurable quantities in both surface and deeper waters. In the surface ocean, concentrations
of Fe(II) are increased by photochemical reduction of organic-Fe(III) complexes (Rijkenberg

71 et al., 2005), wet and dry atmospheric deposition (Croot and Heller, 2012), glacial melt in 72 higher latitudes (Raiswell et al., 2018 and references therein) and biological production by 73 processes such as viral lysis of cells and grazing (Hansard et al., 2009 and references therein). 74 In the deeper ocean and on continental shelves, sources include benthic fluxes from anoxic 75 and sub-oxic sediments (Lohan and Bruland, 2008), hydrothermal fluids (Holmes et al., 2017; 76 Sedwick et al., 2015) and redox cycling induced by oxygen minimum zones (Lohan and 77 Bruland, 2008). Thus, given the rapid loss of Fe(II) in oxygenated seawater, measurements of 78 Fe speciation can be used as a near-field tracer of processes and sources of Fe 79 biogeochemistry in the ocean (Holmes et al., 2017). 80 The oxidation kinetics of Fe(II) in seawater are complex, depending on many factors 81 including pressure, temperature, salinity, O₂ concentration, H₂O₂ concentration and pH 82 (Millero et al., 1987; Millero and Sotolongo, 1989; Santana-Casiano et al., 2006). At the pH 83 of seawater, the oxidation rate of Fe(II) is heavily dependent on O₂ and H₂O₂ concentrations, with the relative influence of each species dependent on its concentration (Santana-Casiano et 84 85 al., 2006). Rainwater and biological production can contribute to the H₂O₂ inventory (Croot 86 et al., 2004). Rainwater scavenges H₂O₂ from the atmosphere (Cohan et al., 1999), increasing 87 surface ocean concentrations through direct deposition; however, this process is more 88 prevalent in lower latitudes (Weller and Schrems, 1993). Studies have also demonstrated 89 biological production of H₂O₂ in the water column (Palenik and Morel, 1988) but the major 90 source of H₂O₂ in the ocean is through photochemical reactions involving dissolved organic 91 matter and O_2 (Croot et al., 2004). When concentrations of H_2O_2 are less than 200 nmol L⁻¹, 92 Fe(II) is at nanomolar levels and pH is 8, O₂ becomes the most important oxidant. Therefore, 93 it is important to consider both of these oxidants when analysing Fe(II) cycling. 94 The Southern Ocean (SO) is the largest region of Fe deficiency in the World's oceans (Boyd

95 et al., 2007). However, within the Indian sector of the SO, there is an oasis of relatively Fe

96 rich waters overlaving the Kerguelen Plateau. At the southern part of the central Kerguelen 97 plateau is an active volcanic hotspot, hosting two active subaerial volcanic islands, Heard and McDonald (HIMI), the former of which is largely covered by glaciers. Waters in the region 98 99 are subject to an intense mixing regime, caused by strong winds, shallow bathymetry 100 characterised by many seamounts and ridges, and the location of the plateau in the path of 101 strong currents associated with the polar front to the north and Fawn Trough Current to the south of HIMI (Figure 1; Park et al., 2014). Fed by the Fe-rich waters formed on the plateau, 102 103 a plankton bloom on the order of thousands of square kilometres forms over and downstream 104 of the plateau each spring and summer (Blain et al., 2007). In the austral summer of 2016, the 105 first voyage to focus on biogeochemical cycling in the HIMI region was undertaken: Heard 106 Earth-Ocean-Biosphere Interactions (HEOBI). In the context of an interdisciplinary study 107 centred around hydrothermalism, we measured dissolved Fe(II) (DFe(II)) and hydrogen 108 peroxide (H₂O₂) to uncover which sources and processes were important for the distribution 109 and oxidation kinetics of DFe(II) around HIMI, with implications for Fe bioavailability and 110 transport of Fe to the northern plateau.

111 **2.** Methods

112 2.1. Study area

113 Sampling and shipboard analyses were carried out aboard R/V Investigator during the

114 HEOBI voyage (GEOTRACES process study GIpr05) from January 8th to February 27th 2016

around Heard and McDonald Islands (HIMI) on the Kerguelen Plateau in the Indian sector of

116 the SO. Twenty-seven stations were successfully sampled for both DFe(II) and H₂O₂ (Figure

117 1), with an extra four stations sampled for H_2O_2 only (not shown). The same locations were

also occupied by Conductivity-Temperature-Depth rosette (CTD) casts, along with an

additional 22 CTD only stations (not shown).

120

Figure 1. DFe(II) integrated inventory in the upper 50 m at each station sampled for DFe(II) during HEOBI. Concentrations indicated by colour bar. TMR station numbers and regions are annotated. Location of study region is shown in top inset. Heard and McDonald Islands are shown zoomed in bottom inset. Transect C (dotted square) follows the first 150 km of 'Transect C' from a previous voyage (Kerguelen Ocean and Plateau Compared Study: KEOPS-1; Blain et al., 2008). The reference station was located to the south of HIMI in high-nutrient, low chlorophyll (HNLC) waters. Bathymetric isobaths are shown, with seabed <200 m depth shaded dark grey, <500 m shaded lighter grey and <1000 m shaded lightest grey. Major currents are shown in light blue arrows, adapted from Park et al., (2014). Downes and Ealey marine terminating glaciers are marked by a blue star on Heard Island.

129 Sample stations were divided into 4 regions: Transect C, Heard Island, McDonald Islands and

130 reference stations. Transect C was oriented in a northeast-southwest direction, with the aim of

highlighting the near shore to deep water gradient in biogeochemical tracers. Transect C
extends from Heard Island across Gunnari Ridge towards Shell Bank, crossing almost
perpendicular to the prevailing current, which flows northward along the plateau. This
transect followed the same trajectory as the previous KEOPS-1 'C' transect in 2005 (Blain et
al., 2008), though not reaching as far to the northeast as the previous transect, which extended
off the plateau into waters >3500 m deep.

137 Sampling station locations in the HIMI region were selected based on bathymetric features

138 (Watson et al., 2016) and acoustic flare signals detected with shipboard echosounders (Spain

139 et al., 2019) suggesting potential hydrothermal activity (see section 3.1). Acoustic flare

140 signals had distinct characteristics when caused by seafloor gas seepage (Spain et al., 2019).

141 Based on these criteria, two sites were chosen for an additional five stations located in a

142 crosshair pattern – one at McDonald Islands (stations 25 – 29) and one at Heard Island

143 (stations 36 - 40) – in an attempt to further delineate possible hydrothermal inputs.

144 A reference site, (station 18) was sampled ~100 km to the south of Heard Island, located in

145 waters more representative of HNLC conditions (max 0.81 mg m⁻³ Chla in upper 200 m;

146 Wojtasiewicz et al., 2019). Mean currents at this station were associated with the Fawn

147 Trough Current, moving from west (open ocean) to east (plateau; Figure 1; Park et al., 2014).

148 2.2. Sample collection

Briefly, all water column samples were collected in 12 L Niskin bottles modified for trace metal sampling, deployed using the Australian Marine National Facility trace-metal-clean rosette (TMR) equipped with a Seabird CTD unit and attached to a Dyneema rope. Once recovered, the Niskin bottles were rapidly transferred into a trace-metal-clean containerised laboratory for sub-sampling and sample processing. All sample manipulation and analyses were conducted following GEOTRACES guidelines (Cutter et al., 2014) under ISO 5 HEPA

filtered air within the containerised clean room. Both DFe(II) and H₂O₂ samples were 155 156 collected in acid-cleaned, dark brown (low-light transmittance), high-density polyethylene 157 (Nalgene) sample bottles. Dissolved Fe(II) samples were filtered through acid-washed Pall 158 Acropak Supor capsule filters (0.2 µm) while samples for H₂O₂ were not filtered. Samples 159 were immediately double bagged and put directly on ice. Samples were then transported into 160 a separate trace metal clean analytical container for immediate analysis (DFe(II) within 1 hour, H₂O₂ within 2 hours). To ensure that any oxidation of DFe(II) which occurred between 161 162 subsampling and analysis was consistent, every effort was made to keep the time between 163 subsampling and analysis as consistent as possible at each station.

164 2.3. Dissolved iron(II) analysis

165 Dissolved Fe(II) samples were analysed using flow injection - chemiluminescence analysis

166 (FIA-CL) with in-line preconcentration onto an 8-HQ resin adapted from the method of

167 Bowie et al., (2005, 2002) and recently described by Sedwick et al., (2015). Briefly, a 0.02

168 μ mol L⁻¹ DFe(II) stock solution was prepared before the voyage by dissolving trace metal

169 grade ammonium iron(II) sulfate hexahydrate (Aldrich) in 0.1 µmol L⁻¹ ultrapure

170 hydrochloric acid (Seastar Baseline) solution. The stock solution was kept in darkness for the

171 duration of the voyage. Working solutions of 200 μ mol L⁻¹ and 200 nmol L⁻¹ concentrations

172 were prepared daily via serial dilution with 0.1 mol L^{-1} HCl. All DFe(II) stock solutions

173 contained sodium sulphite as a stabilising agent. Calibration standards were also prepared

174 daily from the stock solution, in aged low-Fe seawater, buffered with 0.4 μ mol L⁻¹

ammonium acetate to a pH of ~6. Calibration standards covered a concentration range of 0 -

176 1.2 nmol L^{-1} (which was adequate for the majority of samples collected) and were analysed

177 before each block of samples from individual stations.

178 The blank solution used for the DFe(II) FIA analysis consisted of low Fe seawater collected

179 during the cruise. Triplicate blank measurements were taken both before and after each

- 180 analysis sequence. Analysis times were recorded for each sample. For instances where
- 181 instrument signal drift was noted between the initial and final blank measurements, a blank
- 182 value was calculated for each sample via linear interpolation.
- 183 The detection limit of the DFe(II) FIA-CL instrument was defined as the analyte
- 184 concentration equivalent to three times the standard deviation of the blank peak (n=3) (Bowie
- 185 et al., 2004). During the HEOBI voyage the detection limit was calculated each day and

186 ranged from 0.02 to 0.16 nmol L^{-1} with a mean of 0.06 nmol L^{-1} (n = 17).

187 2.4. Dissolved hydrogen peroxide analysis

188 Dissolved H₂O₂ samples were analysed using a FIA-CL reagent injection method (Yuan and

189 Shiller, 1999). Briefly, H₂O₂ catalyses the chemiluminescence of luminol in the presence of

190 Co^{2+} at alkaline pH. H₂O₂ standards were prepared by serial dilution from a 30% stock

191 solution (Seastar Baseline) and were determined by spectrophotometric measurements with a

192 10 cm Liquid Waveguide Capillary Flow Cell (LWCC, World Precision Instruments, E =

193 40.9 mol L^{-1} cm⁻¹; Hwang and Dasgupta, 1985). Each seawater sample was analysed at least

four times with a typical precision of 3-5% through the concentration range 0.5-75 nmol

195 L^{-1} and a typical detection limit (3 σ) of 0.6 nmol L^{-1} .

196 2.5. Modelling dissolved iron(II) half-lives

197 Shipboard pH data was unavailable during HEOBI. Therefore, using in-situ O_2 , H_2O_2 , salinity, 198 temperature and depth data, expected Fe(II) half-lives over the pH range 7.1 – 8.2 (the pH 199 range of historical observations in the region, taken from the World Ocean Database; Tanhua 200 et al., 2013) were modelled using a method modified from Hansard et al. (2009). The overall 201 rate of oxidation of Fe(II) is given by:

$$\frac{-dFe(II)}{dt} = k_{app,O_2}[Fe(II)][O_2] + k_{app,H_2O_2}[Fe(II)][H_2O_2]\#(1)$$

where $k_{app,O2}$ and $k_{app,H2O2}$ are the apparent rate constants (M⁻¹ min⁻¹) for oxidation by O₂ and H₂O₂, respectively. When oxidants are in excess, the reaction is pseudo first-order, and is given by:

$$\frac{-dFe(II)}{dt} = (k'_{O_2} + k'_{H_2O_2})[Fe(II)]\#(2)$$

where $k'_{O2}(\min^{-1}) = k_{app,O2}[O_2]$ and $k'_{[H2O2]}(\min^{-1}) = k_{app,h2O2}[H_2O_2]$. The overall half-life with respect to oxidation is:

$$T_{half} = 0.693(k'_{O_2} + k'_{H_2O_2})^{-1} \#(3)$$

207 The k'_{02} value was calculated following Millero et al. (1987) as follows:

$$\frac{-dFe(II)}{dt} = k'_{O_2}[Fe(II)]\#(4)$$

208 where

$$k'_{O_2} = k[OH]^2[O_2]\#(5)$$

209 The rate constant k can be calculated for a given temperature and ionic strength (see

210 equations in Millero et al., 1987). Similarly, k'_{H2O2} was calculated according to Millero and

211 Sotolongo (1989), with some assumptions:

$$\frac{-dFe(II)}{dt} = k'_{H_2O_2}[Fe(II)]\#(6)$$

212 where

$$k'_{H_2O_2} = k[H_2O_2][OH^-]#(7)$$

213 These calculations assume that $[H_2O_2] >> [Fe(II)]$, which makes the oxidation of Fe(II) by

 H_2O_2 pseudo-first order.

215 2.6. Hydrographic data and dissolved iron data

216 Temperature, salinity, pressure and oxygen data were taken from Sea-Bird Electronics

217 SBE3T, SBE4C, SBE9plus and SBE43 sensors respectively, which were mounted on the

218 primary CTD rosette. Total dissolved iron (DFe) data, including collection and analysis

219 methods are reported in Holmes et al., (2019).

220 **3. Results**

221 3.1. Dissolved Fe(II) distribution

222 3.1.1. Transect C

All Transect C stations were located above the plateau. The three most easterly stations (32,

33 and 34) had deep mixed layers, shoaling slightly towards the east (285, 254 and 245 m,

225 respectively). Surface DFe(II) concentrations were low (mean upper 50 m concentrations, \leq

 $226 \quad 0.15 \text{ nmol } L^{-1}$) compared to stations 30 and 23 at the western end of the transect (closer to

HIMI), increasing to 0.29 and 0.44 nmol L^{-1} mean in the upper 50 m, respectively (Figure 2).

228 A subsurface DFe(II) maximum was observed at Stations 31 – 34. Concentrations in this

maximum layer decreased from 0.21 to 0.15 nmol L^{-1} between stations 31 to 34, while the

depth of the layer increased from 97 to 297 m (Figure 2).

Figure 2. Transect C DFe(II) concentrations, with neutral density (γ^n ; kg m⁻²) surfaces overlaid (white lines, calculated from continuous CTD data). Black dots represent sample locations. Station numbers for TMR deployments are shown above the top axis.

235 3.1.2. Heard and McDonald Islands

236 Concentrations of DFe(II) were elevated around HIMI relative to transect and reference 237 stations, with relatively homogeneous profiles throughout the water column (Figure 3). McDonald Islands had a significantly higher mean DFe(II) concentration (0.36 ± 0.16 nmol 238 L^{-1} , n = 56) compared to Heard Island (0.24 ± 0.14 nmol L^{-1} , n = 57; *t*-test, p<0.01). At Heard 239 Island, the maximum DFe(II) concentration (0.57 nmol L^{-1}) was located at station 24, north 240 241 of the island and near Downes and Ealey marine-terminating glaciers. At McDonald Islands, the maximum DFe(II) concentration (1.01 nmol L^{-1}) was located to the east of the island. 242 DFe(II) inventories calculated in the upper 50 m (minimum station depth at HIMI was ~48 m, 243 244 measured at station 24) are shown in Figure 1, along with arrows showing general circulation 245 features, adapted from Park et al., (2014). Stations to the south and east of Heard Island had lower DFe(II) inventories than stations to the north of Heard Island. Stations to the west of 246 247 McDonald Islands had lower DFe(II) inventories than stations to the east of McDonald 248 Islands. This distribution corresponds to higher concentrations on the shallower, plateau side of the islands. 249

Figure 3. Profiles of DFe(II), H₂O₂ and O₂ for a. Transect C, b. Heard Island, c. McDonald Islands, and d. Reference station.
 Stations are colour coded and shown in legends on the right hand side of each region. Samples that were below the
 calculated detection limit for each station are shown in black. Note that O₂ x-axis scales vary.

254 3.1.3. Reference station

250

- nmol L^{-1} mean in the upper 100m, n = 4, though two samples were below detection limit),
- increasing to a maximum $(0.10 \text{ nmol } \text{L}^{-1})$ at 197 m before decreasing with depth (Figure 3).

258 3.2. Dissolved H_2O_2 distribution

259 3.2.1. Transect C

260 Greater surface concentrations of H_2O_2 were observed at stations 31 - 34 (>48 nmol L⁻¹)

towards the east of transect C compared to stations 35, 30 and 23 $(41.9 - 25.3 \text{ nmol L}^{-1})$

262 towards the west of the transect, with the lowest surface concentration observed closest to

HIMI at station 23 (Figure 4). The distribution of H₂O₂ closely followed density layers, with

264 concentrations at stations 31 - 34 decreasing slightly with depth, while stations 35, 30 and 23

265 became increasingly homogenised over the water column towards HIMI.

 $[\]begin{array}{l} \begin{array}{l} \begin{array}{l} 267\\ 268\\ 269 \end{array} \end{array} \mbox{Figure 4. Transect C } H_2O_2 \mbox{ concentrations, with neutral density } (\gamma^n; kg m^{-2}) \mbox{ surfaces overlaid (white lines, calculated from continuous CTD data). Black dots represent sample locations. Station numbers for TMR deployments are shown above the top axis. \end{array}$

271 Surface concentrations of H₂O₂ around HIMI were highest at stations most likely affected by

272 open ocean waters flowing along the western edge of the plateau and associated with the

Fawn Trough Current: station 16, northwest of McDonald, and stations 20 and 21 south of

274 HIMI. All other stations had homogeneous H₂O₂ profiles, with surface concentrations

275 ranging between $13.5 - 31.0 \text{ nmol } \text{L}^{-1}$ at McDonald Islands and $20.8 - 29.3 \text{ nmol } \text{L}^{-1}$ at Heard

Island (Figure 3).

^{270 3.2.2.} Heard and McDonald Islands

277 3.2.1. Reference Station

278 The mean surface H_2O_2 concentration in the upper 100 m was $30.6 \pm 6.1 \text{ nmol } L^{-1}$, n = 4.

279 Hydrogen peroxide rapidly decreased with depth down to 200 m (the mixed layer depth) and

- then decreased more gradually to 1000 m (Figure 3).
- 281 3.3. Modelled DFe(II) half-lives
- Within the pH range 7.1 8.2 (the pH range of historical observations in the region, taken
- from the World Ocean Database; Tanhua et al., 2013), modelled DFe(II) half-lives ranged
- between 30 minutes 172 hours, decreasing with increasing pH (Figure 5).

289 **4. Discussion**

290 Dissolved Fe(II) concentrations as high as $0.57 \text{ nmol } \text{L}^{-1}$ were measured in waters north of 291 Heard Island and 1.01 nmol L^{-1} to the east of McDonald Islands. These concentrations are 292 higher than most existing DFe(II) measurements in open Southern Ocean surface waters,

which are generally below 0.03 nmol L^{-1} (Bowie et al., 2002; Sarthou et al., 2011). Peroxide

294 concentrations around HIMI $(13.5 - 31.0 \text{ nmol L}^{-1})$ were low relative to concentrations found

in lower latitude regions of the ocean (e.g. 300 nmol L^{-1} ; Yuan and Shiller, 2001), but

296 consistent with the closest Southern Ocean observations taken ~700 km west of the

297 Kerguelen Plateau $(4.9 - 20.2 \text{ nmol L}^{-1}; \text{ Sarthou et al., 1997}).$

298 Sources of DFe(II) near HIMI may include benthic fluxes from anoxic and sub-oxic

sediments (Lohan and Bruland, 2008), hydrothermal fluids (Holmes et al., 2017), glacial

300 runoff (Raiswell et al., 2018) and atmospheric deposition of aerosols (Croot and Heller, 2012).

301 Additional production mechanisms of DFe(II) in the surface ocean include photochemistry,

through the breakdown and reduction of Fe(III)-ligand complexes (Rijkenberg et al., 2005)

303 and biological production, through bioreduction of Fe(III)-ligand complexes, grazing or viral

305 collected during the HEOBI voyage in order to identify potential influences on the elevated

lysis of cells (Hansard et al., 2009). We now discuss each of these sources in relation to data

306 Fe(II) concentrations observed in the region.

307 4.1. Glacial runoff

304

308 At Heard Island, glacial runoff appears to be the most important source of Fe(II), with 309 evidence suggesting that the elevated DFe(II) signal at station 24 originates from Heard 310 Island glacial meltwaters. Comparing DFe(II) concentrations with salinity at stations north of Heard Island suspected of being influenced by glacial processes (stations 24, 23 and 36 - 40) 311 shows a significant inverse correlation ($R^2 = 0.57$, P < 0.01; Figure 6). Samples taken at the 312 313 station in front of Downes and Ealey marine terminating glaciers (station 24) are distinct 314 from the other Heard Island samples, higher DFe(II) concentrations (mean 0.53 nmol L^{-1}) compared to nearby stations (mean DFe(II) 0.18 nmol L^{-1} at stations 36 – 40). 315

316 The percentage of DFe(II) relative to DFe(total) can indicate the presence of a strong Fe(II) 317 source (e.g. Sedwick et al., 2015). Dissolved Fe(II) concentrations at the Heard Island station 318 closest to Downes and Ealey glaciers (station 24) were an order of magnitude higher than those observed at the reference station (below detection -0.05 nmol L⁻¹ range in the upper 319 100 m), i.e. regional open ocean conditions (Figure 3). Mean DFe(II) percentage over the 320 321 water column at station 24 was also high at 25% (Figure 7). This enrichment in DFe(II) 322 suggests that there was a strong DFe(II) source adjacent to the glacial outflow, which 323 supported the elevated concentrations observed to the north of Heard Island in well oxygenated waters (median 328 μ mol L⁻¹ O₂). 324

High DFe(II) (0.44 nmol L^{-1}) and DFe (1.88 nmol L^{-1}) concentrations were also observed in 325 326 the upper 30 m downstream to the east (7 km) of station 24 (station 23, Figure 3), where 327 targeted sampling was undertaken based on a large acoustic plume (Spain et al., 2019). This 328 area was later revisited and sampled in a crosshair pattern (stations 36 - 40) in an attempt to 329 delineate the signal source. However, these crosshair stations yielded lower DFe(II) and DFe concentrations (mean 0.15 ± 0.1 and 1.53 ± 0.19 nmol L⁻¹, n = 21, respectively) compared to 330 331 the elevated samples observed previously (station 23) or further to the west, towards the 332 glacier terminus (station 24). The two samples in the upper 30 m of station 23 were also 333 associated with water that was lower in salinity and higher in DFe(II) than revisited crosshair 334 stations 36 - 40, but slightly lower in DFe(II) than station 24 samples. This is likely laterally 335 advected, glacially influenced surface water that has diluted with distance from the Heard 336 Island source. Indeed, particle laden waters advecting away from Heard Island are visible in 337 satellite imagery of the region (van der Merwe et al., 2019). Furthermore, previous studies 338 have shown that glacial erosion and melting results in runoff enriched with DFe (Raiswell et 339 al., 2018). 'Dissolved' iron may also include particles $<0.4 \mu m$, including Fe(II)-enriched 340 nanoparticles (Hawkings et al., 2018; Shoenfelt et al., 2017), from which DFe(II) may be

released and stabilised by ligands (Hawkings et al., 2018; Hopwood et al., 2014) or

342 potentially consumed directly as particles (Shoenfelt et al., 2017).

343 Suspended particulate analysis from the HEOBI voyage provides additional evidence that 344 waters to the north of Heard Island are influenced by glacial runoff (van der Merwe et al., 345 2019). Immediately adjacent to the large marine terminating glacier on the north of Heard 346 Island, suspended particles were found to be highly labile, with higher proportions of Fe 347 oxyhydroxide nanoparticles, in contrast to less-labile, lithogenic Fe bearing mineral particles 348 observed at McDonald Islands (van der Merwe et al., 2019). Iron oxyhydroxide nanoparticles 349 can be formed from DFe(II) and can produce DFe(II) through dissolution enhanced by 350 photochemical reduction and grazing (Raiswell, 2011). This could be an important 351 mechanism in maintaining the observed DFe(II) and DFe enrichment at Heard Island.

Figure 6. DFe(II) versus Salinity at **a.** Heard Island station 24 and crosshair stations 23, 36 – 40 and **b.** McDonald Islands crosshair stations 25 – 29. Station numbers are annotated.

355 4.2. Hydrothermal and sedimentary sources

356 At McDonald Islands, hydrothermal inputs appear to be the most important source of Fe(II),

357 with evidence suggesting that the elevated DFe(II) signal at stations 28 and 29 originated

358 from diffuse hydrothermal sources. Numerous acoustic flare signals detected by ship-board 359 echosounder and footage of bubbles emanating from the seafloor (Figure 8) at several locations around HIMI, were clues that hydrothermal vents were present in the region. The 360 361 presence of localised DFe(II) maxima (Figure 3), elevated DFe(II) to DFe(total) ratios (Figure 7), sharp DFe(II) spikes in the water column (Figure 9), along with observations of 362 excess ³He with clear hydrothermal origins (Lupton et al., 2017), indicate that shallow water 363 (<200 m) hydrothermalism was a likely source of DFe(II) at stations west of McDonald 364 365 Islands.

366 The first clue that hydrothermalism may be a dominant source of DFe(II) at McDonald 367 Islands is the presence of localised elevated DFe(II) maxima. Five stations (25 - 29) were 368 sampled to the east of McDonald Islands in a 'crosshair' pattern (Figure 1). These sampling 369 locations were selected in an attempt to further delineate elevated DFe concentrations 370 detected at a previous station (station 12; Holmes et al., 2019) and where strong acoustic flare 371 signals were observed (Spain et al., 2019). Mean DFe(II) concentrations at the McDonald crosshair stations were significantly higher (t-test, P < 0.01; Figure 9c) than the Heard 372 373 crosshair stations, and exhibited pronounced spikes in DFe(II) at various depths at two of the 374 stations.

375

376 377 Figure 7. Mean Fe(II) to Fe(III) percentage over the water column for each station near Heard and McDonald Islands. Note that station 20 is omitted as data are at detection limits, giving a falsely high ratio. 378 The station closest to McDonald Islands at the western side of the crosshair (station 29), had 379 the greatest DFe(II) concentration and DFe(II):DFe(total) percentage observed during HEOBI (1.01 nmol L^{-1} and 37%, respectively; Figure 7). The next highest maximum DFe(II) 380 concentration (0.66 nmol L^{-1}) was observed at the southernmost crosshair station (station 28). 381 382 These stations were separated by a distance of 780 m and ~1.5 hours between sampling. These spikes in maximum DFe(II) concentrations, located at varying depths, were unusual 383 384 compared to other stations around HIMI (Figure 3). The other three stations of the crosshair (25, 26 and 27; 630 m east-southeast, 730 m northeast and 1040 m east from station 29, 385 386 respectively) had lower overall DFe(II) concentrations and were more homogeneous over the water column (0.27 - 0.40, 0.31 - 0.43 and 0.30 - 0.46 nmol L⁻¹, respectively). The existence 387 388 of profiles with pronounced spikes in DFe(II) concentrations and profiles with homogenous 389 DFe(II) among the closely spaced crosshair stations may attest to the turbulent mixing and 390 rapidly oxidising conditions in the region and indicates that the DFe(II) originates from point 391 source(s) such as a vent or patch, rather than a larger area of the seafloor, such as might be 392 expected from benthic flux.

394 Figure 8. Bubbles rising from the seafloor at a site NE of Heard Island, captured using deep tow camera during the HEOBI 395 396 voyage. Though plumes were detected using echosounder around both islands, no bubble plumes were captured on camera near McDonald Islands. Photo courtesy of the Marine National Facility, CSIRO. 397 The presence of DFe(II) peaks at various depths in the water column at the two stations (28, 398 29) with the most elevated DFe(II) could indicate that TMR casts intercepted point source 399 plumes as the ship and/or rising plumes moved laterally with currents (e.g. Bennett et al., 400 2009). Due to the turbulent nature of waters surrounding HIMI, and the point source nature of 401 the observed elevated DFe(II) concentrations at the McDonald Islands crosshair stations, it is 402 unlikely that a TMR cast would stay within a plume for the duration of the cast (~1 hour). A 403 DFe(II) point source would also make sampling directly above the source challenging 404 without a remotely operated vehicle. 405 Sediments are another potential DFe(II) source in the HIMI region. Relatively high particle 406 backscattering was observed around HIMI (Wojtasiewicz et al., 2019) and wind-driven 407 mixing events often reached the seafloor around HIMI during the voyage resulting in a well-408 mixed water column homogeneous in properties such as temperature and salinity (R. 409 Robertson, pers. comm.). This mixing could disturb upper oxidising sediment layers,

- 410 resuspend sediments and potentially facilitate the escape of Fe(II) from underlying anoxic
- 411 sediments (e.g. Elrod et al., 2004). However, with the exception of stations 15 and 21, no
- 412 obvious maximum in DFe(II) was observed near the seafloor as would be expected if

413 sedimentary sources dominated (Figure 3). Sediments on continental shelves have been 414 identified as strong DFe(II) sources, especially in the presence of hypoxic bottom waters 415 (Lohan and Bruland, 2008). In the presence of oxygenated bottom waters, the upper layer of 416 sediment tends to form an oxidising barrier, meaning relatively little DFe(II) can penetrate 417 into the overlying water column (Homoky et al., 2016). However, an example of benthic flux 418 of Fe(II) to oxygenated bottom waters has been observed in a region of hydrothermal activity 419 in the Bransfield Straight, Southern Ocean (Aquilina et al., 2014). This flux was attributed to 420 infaunal tubeworms, the remains of which provided conduits for subsurface fluid to bypass 421 the upper sediment layer (Aquilina et al., 2014). Though there was no biologically focused 422 sampling program during the HEOBI voyage, bioturbation of surface sediments is likely, due 423 to the shallow bathymetry and biological productivity in the region – including a rich 424 diversity of benthic species (Améziane et al., 2011). However, If the source of elevated 425 DFe(II) at the McDonald crosshair stations was sedimentary in origin, we would expect to 426 see an increase in concentrations towards the seafloor over a larger area (Lohan and Bruland, 427 2008), which was not observed during HEOBI.

Numerous observations via deep tow camera of bubbles emitted from seafloor vents scattered around the entire region during the HEOBI voyage (Figure 8) and recent δ^3 He anomaly data (an unequivocal tracer of hydrothermalism; Lupton et al., 2017) add further evidence that diffuse hydrothermal venting is a likely source of DFe(II) at McDonald Islands. The greatest δ^3 He enrichment (10.1%) in the region was observed in the vicinity of the crosshair station group near McDonald Islands,

434

Figure 9. DFe(II) versus depth at a. Heard Island crosshair stations (36 – 40) and b. McDonald Islands crosshair stations 25
- 29. Station numbers are annotated. Note that due to analytical constraints, replicate measurements were unavailable for
some samples. Therefore, given the well mixed nature of the water around both islands, data from each of the crosshair sites
has been summarised in c. boxplots. The bottom and top limits of the boxes represent the 25th and 75th percentiles,
respectively. The horizontal line within the box represents the median. The lower and upper whiskers extend from the 25th and 75th percentiles to the lowest and highest values within the interquartile range, respectively. Solid circles represent
outlying values. Data lower than detection limits have been excluded.

442 compared to 1.7% close to station 37, near the northeast of Heard Island (Lupton et al., 2017).

- 443 Acoustic flares, detected by the shipboard echosounder, were observed at both Heard and
- 444 McDonald Islands (Spain et al., 2019). This may suggest that while there were stronger
- 445 glacial sources of DFe(II) at Heard Island, hydrothermalism may have contributed to elevated

background concentrations observed around both islands, along with sedimentary and othersources (discussed below).

448 4.3. Other DFe(II) sources and sinks

Photochemical processes, H₂O₂ and O₂ concentrations, atmospheric deposition of wet and dry 449 450 aerosols, biological processes and changes in seawater pH all represented potential sources 451 and sinks in the HIMI region during HEOBI. Production of Fe(II) through photochemical processes did not appear to be the strongest influence of DFe(II) concentrations around HIMI, 452 453 as comparison of shipboard surface photosynthetically active radiation (PAR) observations 454 with surface DFe(II) concentrations showed no correlation (Figure S1). Surface H_2O_2 concentrations also showed no correlation with PAR (Figure S1); however, concentrations in 455 surface waters were correlated with distance from land ($R^2 = 0.70$, P < 0.01), with greatest 456 457 surface H₂O₂ observed at stations furthest from HIMI (i.e. stations 9 and 10 on the central northern plateau and 30 - 35 on transect C; Figure 3, 4). These stations were deeper and 458 459 could thus form a stratified surface mixed layer, allowing H₂O₂ to accumulate above the pycnocline. Surface H₂O₂ showed a weak relationship ($R^2 = 0.18$, n = 26) with surface DFe(II) 460 461 concentrations (Figure S2). The low H₂O₂ concentrations and lack of correlation between 462 DFe(II) and either H₂O₂, O₂, or PAR around HIMI suggests that on-plateau DFe(II) distributions are predominantly governed by strong local DFe(II) sources. 463 464 Atmospheric deposition did not appear to be a major source of dissolved or particulate Fe 465 during HEOBI, and therefore not a major source of DFe(II), as DFe(II) represents a fraction 466 of total Fe. Wet deposition of DFe(II) and H_2O_2 was not apparent (Figure S1), possibly 467 because of the minimal precipitation during HEOBI. The mean aerosol soluble Fe observed during HEOBI (0.30 ± 0.12 ng m⁻³; n = 13, M. M. G. Perron, pers. comm.) was on the same 468

- 469 order as values found near Kerguelen Island to the north $(0.29 \pm 0.14 \text{ ng m}^{-3}; \text{Blain et al.},$
- 470 2008), which were not deemed to be a significant source of DFe to that region (Blain et al.,

471 2008). These values also fall in the range of baseline Southern Ocean aerosol soluble Fe (0.01) -0.3 ng m⁻³; Winton et al., 2015), where surface concentrations of DFe(II) are reported to 472 range from below detection to 30 pmol L^{-1} . Thus, we can assume that the contribution of dry 473 474 deposition aerosols to DFe(II) observations in the water column is probably minor. 475 Biological production by processes such as viral lysis of cells and grazing (Hansard et al., 476 2009 and references therein) likely contributed to background DFe(II) concentrations in 477 waters around HIMI. While no direct observations were taken to enable an estimate of the 478 biological production of DFe(II) during HEOBI, it can be inferred from our observations that 479 biological production was not the greatest source of elevated DFe(II) observed near Heard or 480 McDonald Islands. Indeed, Wojtasiewicz et al. (2019) showed that during HEOBI 481 phytoplankton communities around HIMI were limited by low light availability due to deep 482 mixing and shading by re-suspended sediment particles and augmented by dilution with 483 surrounding low chlorophyll waters of the Antarctic Circumpolar Current. 484 In addition, pH and temperature conditions should be considered in relation to Fe(II) half-life 485 in the HIMI region. Low temperatures, such as those found in waters around HIMI, extend 486 Fe(II) half-life in high-latitude waters by slowing oxidation reactions (Croot et al., 2001). Our 487 modelling results show that pH has a significant impact on Fe(II) half-life (Figure 5). Using 488 in-situ observations of variables required in the equations and changing pH in steps of 0.1 489 units shows the strong dependence of Fe(II) half-life on pH (Figure 5). These results indicate 490 that input of low pH fluids from diffuse hydrothermal sources could dramatically impact 491 Fe(II) speciation and half-life close to vent sources.

492 Aerosol deposition, biological production and photochemical processes were not the

493 strongest sources of DFe(II) in the HIMI region. However, it is likely that these sources,

494 coupled with low water temperature and possibly localised lower pH in areas of the region,

495 contributed to the overall elevated DFe(II) concentrations observed at stations in the HIMI496 region.

497 4.4. Fe(II) transport

498 Using current velocities observed during HEOBI (R. Robertson, pers. comm.) and previous 499 voyages (Park et al., 2008), and our modelled Fe(II) half-lives, a rough estimate of the 500 distance Fe(II) might travel from HIMI can be calculated. Modelled half-lives ranged from 30 minutes to 172 hours. Current velocities over the plateau were slow ($\sim 6 \text{ cm s}^{-1}$), while 501 currents to the east of Heard Island were stronger ($\sim 40 \text{ cm s}^{-1}$), in agreement with previous 502 503 observations (Park et al., 2008). Both currents over the plateau and to the east of Heard Island 504 flowed in a northerly direction. Using these figures, the distance Fe(II) could theoretically 505 travel in one half-life over the plateau ranged from ~100 m to ~37 km. If Fe(II) reached the 506 stronger currents to the east of Heard Island, in one half-life Fe(II) could theoretically travel 507 between ~700 m and ~250 km. Considering that the greatest Fe(II) concentration observed at HIMI (~1 nmol L^{-1}) will take approximately 5 half-lives to reach surface Southern Ocean 508 background concentrations (~0.03 nmol L^{-1} ; Sarthou et al., 2011), it is plausible that Fe(II) 509 510 from hydrothermal and glacial sources at HIMI could travel the distances required to fertilise 511 the phytoplankton plume that forms over the plateau annually. This may have implications 512 for future Fe supply to the northern plateau, since under warming climate conditions, melting glacial waters may increase, potentially increasing the supply of DFe(II), and could then 513 514 rapidly decrease once glaciers have melted.

515 **5.** Conclusion

We show that the strongest sources of DFe(II) differ between adjacent, volcanically active
Heard and McDonald Islands. Maximum DFe(II) concentrations and varying mid-depth
maxima in the water column at adjacent, targeted stations at McDonald Islands suggest that

519 hydrothermalism is the strongest DFe(II) source. At Heard Island, the strongest DFe(II) 520 source correlates with low salinity waters and is near a marine-terminating glacier, suggesting 521 that glacial meltwater (and possibly associated glacial flour) is the major source of DFe(II). 522 Revisited stations to the east of the strongest signal showed a temporary freshwater and 523 elevated DFe(II) signal, which suggests that glacially fertilised waters may be transported offshore from Heard Island. These results are in agreement with preliminary δ^{3} He (Lupton et 524 525 al., 2017) and particulate Fe data (van der Merwe et al., 2019) also collected during the 526 HEOBI voyage.

527 Peroxide and PAR data shows that neither H₂O₂ or PAR correlate with DFe(II) 528 concentrations around HIMI, suggesting that on-plateau DFe(II) concentrations are 529 predominantly governed by strong local DFe(II) sources. Preliminary aerosol data collected 530 during the HEOBI voyage confirms that soluble aerosol concentrations were low. The 531 homogenous nature of most DFe(II) and H₂O₂ profiles around HIMI highlights the strong 532 mixing regime in the region but obscures some features that would allow direct attribution to 533 a source. Further research is necessary to determine exact mechanisms of decay and/or 534 consumption of DFe(II) in the water column. In addition to the strong sources from 535 hydrothermal and glacial inputs identified in this study, the overall elevated concentrations of 536 DFe(II) around HIMI are likely to be an accumulation of multiple sources (sedimentary 537 resuspension, surface irradiance, biological production and atmospheric deposition), in 538 addition to opposing controls on DFe(II) half-life from low temperature, highly oxygenated 539 waters and potentially lower pH, which have all been homogenised in the well mixed water 540 column. The elevated concentrations of DFe(II) around HIMI, a highly labile and 541 bioavailable form of Fe, may increase Fe availability for biota in the region. High DFe(II) 542 concentrations may also indicate slower oxidation kinetics in the region, which has

543 implications for transport of Fe away from the islands to the broader northern Kerguelen544 Plateau where the annual plankton bloom is strongest.

545 6. Acknowledgements

546 The authors would like to thank Rob Middag (University of Otago, New Zealand) for 547 supplying the FIA-CL instrument that was used to analyse H₂O₂ samples during the voyage, 548 Manon Tonnard (Laboratoire des sciences de l'Environnement MARin: LEMAR) and 549 Lavenia Ratnarajah (Antarctic Climate and Ecosystems Cooperative Research Centre and 550 Institute for Marine and Antarctic Studies: ACECRC, IMAS) for their assistance in collecting 551 and filtering samples on the HEOBI voyage. We would like to thank Mark Rayner and 552 Kendall Sherrin for their excellent oxygen analyses. We also thank the captain, officers and 553 crew of the RV Investigator (HEOBI voyage) and Chief Scientist Mike Coffin for their 554 support during the 53-day expedition. We wish to acknowledge the Australian Research Council (DP150100345 and LE0989539), the Australian Antarctic Science Program 555 556 (AAS4338) and the Australian Government Cooperative Research Centres Program through 557 the Antarctic Climate and Ecosystems CRC, who provided project funding and PhD 558 scholarship support. Dissolved Fe(II) and H₂O₂ data are publicly available online in the 559 CSIRO data repository (https://doi.org/COMINGSOON) and will also be available in the GEOTRACES 2021 Intermediate Data Product. 560

561 **7. References**

562 Améziane, N., Eléaume, M., Hemery, L.G., Monniot, F., Hemery, A., Hautecoeur, M., Dettaï,

A., 2011. Biodiversity of the benthos off Kerguelen Islands : overview and perspectives.
Kerguelen Plateau Mar. Ecosyst. Fish. 157–167.

565 Aquilina, A., Homoky, W.B., Hawkes, J.A., Lyons, T.W., Mills, R.A., 2014. Hydrothermal

sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica.

567	Geochim. Cosmochim. Acta 137, 64-80. doi:10.1016/j.gca.2014.04.003
568	Bennett, S.A., Rouxel, O., Schmidt, K., Garbe-Schönberg, D., Statham, P.J., German, C.R.,
569	2009. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic
570	Ridge. Geochim. Cosmochim. Acta 73, 5619–5634. doi:10.1016/j.gca.2009.06.027
571	Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet,
572	C., Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F.,
573	Fuda, JL., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S.,
574	Jeandel, C., Laan, P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer,
575	I., Park, YH., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G.,
576	Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J.
577	van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., Wagener, T., 2007.
578	Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature
579	446, 1070-4. doi:10.1038/nature05700
580	Blain, S., Sarthou, G., Laan, P., 2008. Distribution of dissolved iron during the natural iron-
581	fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean). Deep Sea Res.
582	Part II Top. Stud. Oceanogr. 55, 594-605. doi:10.1016/j.dsr2.2007.12.028
583	Bowie, A.R., Achterberg, E.P., Sedwick, P.N., Ussher, S., Worsfold, P.J., 2002. Real-Time
584	Monitoring of Picomolar Concentrations of Iron (II) in Marine Waters Using Automated
585	Flow Instrumentation. Environ. Sci. Technol. 36, 4600–4607. doi:10.1021/es020045v
586	Bowie, A.R., Achterberg, E.P., Ussher, S., Worsfold, P.J., 2005. Design of an automated flow
587	injection-chemiluminescence instrument incorporating a miniature photomultiplier tube
588	for monitoring picomolar concentrations of iron in seawater. J. Autom. Methods Manag.
589	Chem. 2005, 37–43. doi:10.1155/JAMMC.2005.37

Bowie, A.R., Sedwick, P.N., Worsfold, P.J., 2004. Analytical intercomparison between flow

590

- 591 injection-chemiluminescence and flow injection-spectrophotometry for the
- 592 determination of picomolar concentrations of iron in seawater. Limnol. Oceanogr.
- 593 Methods 2, 42–54. doi:10.4319/lom.2004.2.42
- Boyd, P.W., Ellwood, M.J., 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci.
 doi:10.1038/ngeo964
- 596 Boyd, P.W., Jickells, T., Law, C.S., Blain, S., Boyle, E. a, Buesseler, K.O., Coale, K.H.,
- 597 Cullen, J.J., de Baar, H.J.W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M.,
- 598 Owens, N.P.J., Pollard, R., Rivkin, R.B., Sarmiento, J., Schoemann, V., Smetacek, V.,
- 599 Takeda, S., Tsuda, a, Turner, S., Watson, a J., 2007. Mesoscale iron enrichment
- 600 experiments 1993-2005: synthesis and future directions. Science 315, 612–7.
- 601 doi:10.1126/science.1131669
- 602 Cohan, D.S., Schultz, M.G., Jacob, D.J., Heikes, B.G., Blake, D.R., 1999. Convective
- 603 injection and photochemical decay of peroxides in the tropical upper troposphere:
- 604 Methyl iodide as a tracer of marine convection. J. Geophys. Res. Atmos. 104, 5717–
- 605 5724. doi:10.1029/98JD01963
- 606 Croot, P.L., Bowie, A.R., Frew, R.D., Maldonado, M.T., Hall, J.A., Safi, K.A., La Roche, J.,
- 607 Boyd, P.W., Law, C.S., 2001. Retention of dissolved iron and Fe II in an iron induced
- 608 Southern Ocean phytoplankton bloom. Geophys. Res. Lett. 28, 3425–3428.
- 609 doi:10.1029/2001GL013023
- 610 Croot, P.L., Heller, M.I., 2012. The importance of kinetics and redox in the biogeochemical
- 611 cycling of iron in the surface ocean. Front. Microbiol. 3, 219.
- 612 doi:10.3389/fmicb.2012.00219
- 613 Croot, P.L., Streu, P., Peeken, I., Lochte, K., Baker, A.R., 2004. Influence of the ITCZ on
- H2O2 in near surface waters in the equatorial Atlantic Ocean. Geophys. Res. Lett. 31,

615 1–4. doi:10.1029/2004GL020154

- 616 Cutter, G., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan, M., Obata, H.,
- 617 Rutgers, M., 2014. Sampling and Sample-handling Protocols for GEOTRACES Cruises.
- 618 Elrod, V. a., Berelson, W.M., Coale, K.H., Johnson, K.S., 2004. The flux of iron from
- 619 continental shelf sediments: A missing source for global budgets. Geophys. Res. Lett. 31,
- 620 n/a-n/a. doi:10.1029/2004GL020216
- 621 Hansard, S.P., Landing, W.M., Measures, C.I., Voelker, B.M., 2009. Dissolved iron(II) in the
- 622 Pacific Ocean: Measurements from the PO2 and P16N CLIVAR/CO₂ repeat
- hydrography expeditions. Deep. Res. Part I Oceanogr. Res. Pap. 56, 1117–1129.
- 624 doi:10.1016/j.dsr.2009.03.006
- 625 Hawkes, J.J.A., Connelly, D.P., Rijkenberg, M.J.A., Achterberg, E.P., 2014. The importance
- of shallow hydrothermal island arc systems in ocean biogeochemistry. Geophys. Res.

627 Lett. 41, 942–947. doi:10.1002/2013GL058817

- Hawkings, J.R., Benning, L.G., Raiswell, R., Kaulich, B., Araki, T., Abyaneh, M., Stockdale,
- 629 A., Koch-müller, M., Wadham, J.L., Tranter, M., 2018. Biolabile ferrous iron bearing
- 630 nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101.
- 631 doi:10.1016/j.epsl.2018.04.022
- Holmes, T.M., Chase, Z., Van Der Merwe, P., Townsend, A.T., Bowie, A.R., 2017. Detection,
- 633 dispersal and biogeochemical contribution of hydrothermal iron in the ocean. Mar.
- 634 Freshw. Res. 68, 2184–2204. doi:10.1071/MF16335
- 635 Holmes, T.M., Wuttig, K., Chase, Z., van der Merwe, P., Townsend, A.T., Schallenberg, C.,
- Tonnard, M., Bowie, A.R., 2019. Iron availability influences nutrient drawdown in the
- 637 Heard and McDonald Islands region, Southern Ocean. Mar. Chem. 211, 1–14.

- 639 Homoky, W.B., Weber, T., Berelson, W.M., Conway, T.M., Henderson, G.M., van Hulten,
- 640 M., Jeandel, C., Severmann, S., Tagliabue, A., 2016. Quantifying trace element and
- 641 isotope fluxes at the ocean–sediment boundary: a review, Philosophical Transactions of
- the Royal Society A: Mathematical, Physical and Engineering Sciences.
- 643 doi:10.1098/rsta.2016.0246
- Hopwood, M.J., Statham, P.J., Tranter, M., Wadham, J.L., 2014. Glacial flours as a potential
- source of Fe(II) and Fe(III) to polar waters. Biogeochemistry 118, 443–452.
- 646 doi:10.1007/s10533-013-9945-y
- Hwang, H., Dasgupta, P.K., 1985. Thermodynamics of the hydrogen peroxide-water system.
 Environ. Sci. Technol. 19, 255–258. doi:10.1021/es00133a006
- 649 Lohan, M.C., Bruland, K.W., 2008. Elevated Fe(II) and dissolved Fe in hypoxic shelf waters
- off Oregon and Washington: An enhanced source of iron to coastal upwelling regimes.
- 651 Environ. Sci. Technol. 42, 6462–6468. doi:10.1021/es800144j
- Lupton, J.E., Arculus, R.J., Coffin, M., Bradney, A., Baumberger, T., Wilkinson, C., 2017.
- 653 Hydrothermal venting on the flanks of Heard and McDonald islands, southern Indian
- Ocean, in: AGU Fall Meeting Abstracts. p. V51F–0435.
- Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature 345, 156–
 158. doi:10.1038/345156a0
- Millero, F.J., Sotolongo, S., 1989. The oxidation of Fe(II) with H2O2 in seawater. Geochim.
 Cosmochim. Acta 53, 1867–1873. doi:10.1016/0016-7037(89)90307-4
- Millero, F.J., Sotolongo, S., Izaguirre, M., 1987. The oxidation kinetics of Fe(II) in seawater.
- 660 Geochim. Cosmochim. Acta 51, 793–801. doi:10.1016/0016-7037(87)90093-7

661	Moore, C.M., Mills, M.M., Achterberg, E.P., Geider, R.J., LaRoche, J., Lucas, M.I.,
662	McDonagh, E.L., Pan, X., Poulton, A.J., Rijkenberg, M.J. a., Suggett, D.J., Ussher, S.J.,
663	Woodward, E.M.S., 2009. Large-scale distribution of Atlantic nitrogen fixation
664	controlled by iron availability. Nat. Geosci. 2, 867–871. doi:10.1038/ngeo667
665	Palenik, B., Morel, F.M.M., 1988. Dark production of H2O2 in the Sargasso Sea. Limnol.
666	Oceanogr. 33, 1606–1611. doi:10.4319/lo.1988.33.6part2.1606
667	Park, Y.YH., Durand, I., Kestenare, E., Rougier, G., Zhou, M., d'Ovidio, F., Cotté, C., Lee,
668	JH., 2014. Polar Front around the Kerguelen Islands: An up-to-date determination and
669	associated circulation of surface/subsurface waters. J. Geophys. Res. Ocean. 1-18.
670	doi:10.1002/2014JC010061.Received
671	Park, YH., Roquet, F., Durand, I., Fuda, JL., 2008. Large-scale circulation over and around the
672	Northern Kerguelen Plateau. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 566–581.
673	doi:10.1016/j.dsr2.2007.12.030
674	Raiswell, R., 2011. Iceberg-hosted nanoparticulate Fe in the Southern Ocean: Mineralogy,
675	origin, dissolution kinetics and source of bioavailable Fe. Deep. Res. Part II Top. Stud.
676	Oceanogr. 58, 1364–1375. doi:10.1016/j.dsr2.2010.11.011
677	Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Gerringa, L.J.A., Timmermans, K.R.,

- 678 Wolterbeek, H.T., De Baar, H.J.W., 2005. The influence of UV irradiation on the
- 679 photoreduction of iron in the Southern Ocean. Mar. Chem. 93, 119–129.
- 680 doi:10.1016/j.marchem.2004.03.021
- 681 Santana-Casiano, J.M., González-Dávila, M., Millero, F.J., 2006. The role of Fe(II) species
- on the oxidation of Fe(II) in natural waters in the presence of O_2 and H_2O_2 . Mar. Chem.
- 683 99, 70–82. doi:10.1016/j.marchem.2005.03.010

684	Sarthou, G., Bucciarelli, E., Chever, F., Hansard, S.P., González-Dávila, M., Santana-Casiano
685	J.M., Planchon, F., Speich, S., 2011. Labile Fe(II) concentrations in the Atlantic sector
686	of the Southern Ocean along a transect from the subtropical domain to the Weddell Sea
687	Gyre. Biogeosciences 8, 2461–2479. doi:10.5194/bg-8-2461-2011
688	Sarthou, G., Jeandel, C., Brisset, L., Amouroux, D., Besson, T., Donard, O.F.X., 1997. Fe
689	and H2O2 distributions in the upper water column in the Indian sector of the Southern
690	Ocean. Earth Planet. Sci. Lett. 147, 83-92. doi:10.1016/S0012-821X(97)00004-6
691	Sedwick, P., Sohst, B.M., Ussher, S.J., Bowie, A.R., 2015. A zonal picture of the water
692	column distribution of dissolved iron(II) during the U.S. GEOTRACES North Atlantic
693	transect cruise (GEOTRACES GA03). Deep Sea Res. Part II Top. Stud. Oceanogr. 116,
694	166–175. doi:10.1016/j.dsr2.2014.11.004
695	Shaked, Y., Kustka, A.B., Morel, M.M., 2005. A general kinetic model for iron acquisition
696	by eukaryotic phytoplankton. Limnol. Oceanogr. 50, 872-882.
697	Shoenfelt, E.M., Sun, J., Winckler, G., Kaplan, M.R., Borunda, A.L., Farrell, K.R., Moreno,
698	P.I., Gaiero, D.M., Recasens, C., Sambrotto, R.N., Bostick, B.C., 2017. High particulate
699	iron(II) content in glacially sourced dusts enhances productivity of a model diatom. Sci.

- 700 Adv. 3. doi:10.1126/sciadv.1700314
- 701 Spain, E.A., Johnson, S.C., Hutton, B., Whittaker, J.M., Lucieer, V., Watson, S.J., Fox, J.M.,
- Lupton, J., Arculus, R., Bradney, A., Coffin, M.F., 2019. Shallow seafloor gas emissions
- near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean.
- 704 Earth Sp. Sci. 1–19. doi:10.1029/2019ea000695
- 705 Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S., Schirnick, C., van Heuven, S.M.A.C.,
- 706 Velo, A., Lin, X., Kozyr, A., Álvarez, M., Bakker, D.C.E., Brown, P.J., Falck, E.,
- 707 Jeansson, E., Lo Monaco, C., Ólafsson, J., Pérez, F.F., Pierrot, D., Ríos, A.F., Sabine,

708	C.L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L.G., Bates, N., Bellerby,
709	R.G.J., Blindheim, J., Bullister, J.L., Gruber, N., Ishii, M., Johannessen, T., Jones, E.P.,
710	Köhler, J., Körtzinger, A., Metzl, N., Murata, A., Musielewicz, S., Omar, A.M., Olsson,
711	K.A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof,
712	R., Mintrop, L., Wallace, D.W.R., Key, R.M., 2013. Dissolved inorganic carbon,
713	alkalinity, pH, temperature, salinity, and other variables collected from profile
714	observations using CTD, discrete bottles, and other instruments from October 7, 1977 to
715	March 11, 2006 [WWW Document]. URL
716	https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html (accessed 7.18.18).
717	van der Merwe, P., Wuttig, K., Holmes, T., Trull, T.W., Chase, Z., Townsend, A.T.,
718	Goemann, K., Bowie, A.R., 2019. High Lability Fe Particles Sourced From Glacial
719	Erosion Can Meet Previously Unaccounted Biological Demand: Heard Island, Southern
720	Ocean. Front. Mar. Sci. 6, 1–20. doi:10.3389/fmars.2019.00332
721	Watson, S.J., Coffin, M.F., Whittaker, J.M., Lucieer, V., Fox, J.M., Carey, R., Arculus, R.J., Bowie,
722	A.R., Chase, Z., Robertson, R., Martin, T., Cooke, F., 2016. Submarine geology and
723	geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands, in: AGU
724	Fall Meeting Abstracts.
725	Weller, R., Schrems, O., 1993. H2O2 in the marine troposphere and seawater of the Atlantic
726	Ocean (48°N - 63°S). Geophys. Res. Lett. 20, 125–128. doi:10.1029/93GL00065
727	Winton, V.H.L., Bowie, A.R., Edwards, R., Keywood, M., Townsend, A.T., van der Merwe,
728	P., Bollhöfer, A., 2015. Fractional iron solubility of atmospheric iron inputs to the
729	Southern Ocean. Mar. Chem. 177, 20-32. doi:10.1016/j.marchem.2015.06.006
730	Wojtasiewicz, B., Trull, T.W., Clementson, L., Davies, D.M., Patten, N.L., Schallenberg, C.,
731	Hardman-Mountford, N.J., 2019. Factors Controlling the Lack of Phytoplankton

732	Biomass in Naturally Iron Fertilized Waters Near Heard and McDonald Islands in the
733	Southern Ocean. Front. Mar. Sci. 6. doi:10.3389/fmars.2019.00531
734	Yuan, J., Shiller, A.M., 2001. The distribution of hydrogen peroxide in the southern and
735	central Atlantic ocean 48, 2947–2970.
736	Yuan, J., Shiller, A.M., 1999. Determination of subnanomolar levels of hydrogen peroxide in
737	seawater by reagent-injection chemiluminescence detection. Anal. Chem. 71, 1975-
738	1980. doi:10.1021/ac981357c

739 **8.** List of Figures

Figure 1. DFe(II) integrated inventory in the upper 50 m at each station sampled for DFe(II) during HEOBI.

741 Concentrations indicated by colour bar. TMR station numbers and regions are annotated. Location of study

region is shown in top inset. Heard and McDonald Islands are shown zoomed in bottom inset. Transect C

743 (dotted square) follows the first 150 km of 'Transect C' from a previous voyage (Kerguelen Ocean and

744 Plateau Compared Study: KEOPS-1; Blain et al., 2008). The reference station was located to the south of

745 HIMI in high-nutrient, low chlorophyll (HNLC) waters. Bathymetric isobaths are shown, with seabed

746 <200 m depth shaded dark grey, <500 m shaded lighter grey and <1000 m shaded lightest grey. Major</p>

747 currents are shown in light blue arrows, adapted from Park et al., (2014). Downes and Ealey marine

terminating glaciers are marked by a blue star on Heard Island.

Figure 2. Transect C DFe(II) concentrations, with neutral density (γ^{n} ; kg m⁻²) surfaces overlaid (white lines,

calculated from continuous CTD data). Black dots represent sample locations. Station numbers for TMR
deployments are shown above the top axis.

Figure 3. Profiles of DFe(II), H₂O₂ and O₂ for **a.** Transect C, **b.** Heard Island, **c.** McDonald Islands, and **d.**

Reference station. Stations are colour coded and shown in legends on the right hand side of each region.

Samples that were below the calculated detection limit for each station are shown in black. Note that $O_2 x$ axis scales vary.

Figure 4. Transect C H₂O₂ concentrations, with neutral density (γ^{n} ; kg m⁻²) surfaces overlaid (white lines,

757 calculated from continuous CTD data). Black dots represent sample locations. Station numbers for TMR

758 deployments are shown above the top axis.

759 Figure 5. Scatter plot of all Fe(II) samples showing effect of pH on Fe(II) half-life, calculated from in-situ

760 DFe(II), H₂O₂ and O₂ measurements. The pH range reflects upper and lower bounds of observations made

during historical hydrographic voyages in the region, taken from the World Ocean Database (*Tanhua et al.*,
2013).

Figure 6. DFe(II) versus Salinity at **a.** Heard Island station 24 and crosshair stations 23, 36 – 40 and **b.**

764 McDonald Islands crosshair stations 25 – 29. Station numbers are annotated.

Figure 7. Mean Fe(II) to Fe(III) percentage over the water column for each station near Heard and McDonald
Islands. Note that station 20 is omitted as data are at detection limits, giving a falsely high ratio.

Figure 8. Bubbles rising from the seafloor at a site NE of Heard Island, captured using deep tow camera during

the HEOBI voyage. Though plumes were detected using echosounder around both islands, no bubble

plumes were captured on camera near McDonald Islands. Photo courtesy of the Marine National Facility,

770 CSIRO.

Figure 9. DFe(II) versus depth at a. Heard Island crosshair stations (36 – 40) and b. McDonald Islands crosshair
stations 25 – 29. Station numbers are annotated. Note that due to analytical constraints, replicate

measurements were unavailable for some samples. Therefore, given the well mixed nature of the water

around both islands, data from each of the crosshair sites has been summarised in **c.** boxplots. The bottom

and top limits of the boxes represent the 25th and 75th percentiles, respectively. The horizontal line within

the box represents the median. The lower and upper whiskers extend from the 25th and 75th percentiles to

the lowest and highest values within the interquartile range, respectively. Solid circles represent outlying

values. Data lower than detection limits have been excluded.

779

780 9. Supporting information

781 9.1. Figures

over the 2 hours prior to sampling. Stations are annotated and colour coded by region.

Figure S2. Surface DFe(II) vs surface H_2O_2 at all stations. Station numbers annotated.

GEOTRACE	Project	DATE_TIMITMR	BOTTL	E_NU	.AT	LON	PRESSURE	Fe_II_D_C	H2O2_D_C
Glpr05	HEOBI	########	2	12	-48.2798	79.36634	13.883	NaN	NaN
Glpr05	HEOBI	########	2	11	-48.2798	79.36634	28.616	NaN	NaN
Glpr05	HEOBI	########	2	10	-48.2798	79.36634	48.989	NaN	NaN
Glpr05	HEOBI	########	2	9	-48.2798	79.36634	68.699	NaN	NaN
Glpr05	HEOBI	########	2	8	-48.2798	79.36634	98.519	NaN	NaN
Glpr05	HEOBI	########	2	7	-48.2798	79.36634	148.284	NaN	NaN
Glpr05	HEOBI	########	2	6	-48.2798	79.36634	198.38	NaN	NaN
Glpr05	HEOBI	########	2	5	-48.2798	79.36634	298.326	NaN	NaN
Glpr05	HEOBI	########	2	4	-48.2798	79.36634	498.029	NaN	NaN
Glpr05	HEOBI	########	2	3	-48.2798	79.36634	697.813	NaN	NaN
Glpr05	HEOBI	########	2	2	-48.2798	79.36634	998.671	NaN	NaN
Glpr05	HEOBI	########	2	1	-48.2798	79.36634	1598.464	NaN	NaN
Glpr05	HEOBI	########	4	12	-50.24	77.72869	13.75	NaN	NaN
Glpr05	HEOBI	########	4	11	-50.24	77.72869	28.632	NaN	NaN
Glpr05	HEOBI	########	4	10	-50.24	77.72869	68.256	NaN	NaN
Glpr05	HEOBI	########	4	9	-50.24	77.72869	97.122	NaN	NaN
Glpr05	HEOBI	########	4	8	-50.24	77.72869	196.741	NaN	NaN
Glpr05	HEOBI	########	4	7	-50.24	77.72869	295.724	NaN	NaN
Glpr05	HEOBI	########	4	6	-50.24	77.72869	492.59	NaN	NaN
Glpr05	HEOBI	########	4	5	-50.24	77.72869	590.592	NaN	NaN
Glpr05	HEOBI	########	4	4	-50.24	77.72869	987.013	NaN	NaN
Glpr05	HEOBI	########	4	3	-50.24	77.72869	1971.293	NaN	NaN
Glpr05	HEOBI	########	4	2	-50.24	77.72869	2950.791	NaN	NaN
Glpr05	HEOBI	########	4	1	-50.24	77.72869	3317.002	NaN	NaN
Glpr05	HEOBI	########	5	12	-50.691	76.18671	13.572	NaN	25.15892
Glpr05	HEOBI	########	5	11	-50.691	76.18671	27.986	NaN	35.59774
Glpr05	HEOBI	########	5	10	-50.691	76.18671	68.373	NaN	22.25919
Glpr05	HEOBI	########	5	9	-50.691	76.18671	98.086	NaN	20.04955
Glpr05	HEOBI	########	5	8	-50.691	76.18671	147.752	NaN	10.99818
Glpr05	HEOBI	########	5	7	-50.691	76.18671	196.864	NaN	7.585468
Glpr05	HEOBI	########	5	6	-50.691	76.18671	294.875	NaN	2.922109
Glpr05	HEOBI	########	5	5	-50.691	76.18671	690.015	NaN	1.790626
Glpr05	HEOBI	########	5	4	-50.691	76.18671	986.243	NaN	1.253079
Glpr05	HEOBI	########	5	3	-50.691	76.18671	1970.959	NaN	1.333103
Glpr05	HEOBI	########	5	2	-50.691	/6.186/1	2951.099	NaN	1.633958
Glpr05	HEOBI	########	5	1	-50.691	76.18671	2974.75	NaN	0.252053
Glpr05	HEOBI	########	6	12	-50.7888	/5./8225	12.99	NaN	NaN
Glpr05	HEORI	########	6	11	-50.7888	/5./8225	28.012	NaN	NaN
Glpr05	HEORI	########	6	10	-50.7888	/5./8225	67.962	NaN	NaN
Glpr05	HEOBI	########	6	9	-50.7888	/5./8225	97.807	NaN	NaN
GIpr05	HEORI	########	6 C	8	-50.7888	/5./8225	196.296	NaN	NaN
GIpr05	HEORI	########	6 C		-50.7888	/5./8225	294.808	NaN	NaN
GIPr05	HEORI	########	b	6	-50.7888	/5./8225	492.79	NaN	NaN
GIPr05	HEORI	########	b	5	-50.7888	/5./8225	690.474	NaN	NaN
GIPr05	HEORI	#######	b	4	-50.7888	/5./8225	986.1/6	NaN	NaN
GIPr05	HEORI	########	Ь	3	-50./888	/5./8225	14/9.401	NaN	NaN

Glpr05	HEOBI	########	6	2	-50.7888	75.78225	1577.708 N	laN NaN
Glpr05	HEOBI	########	6	1	-50.7888	75.78225	1627.844 N	laN NaN
Glpr05	HEOBI	########	7	12	-50.8996	75.37746	13.768 N	laN NaN
Glpr05	HEOBI	########	7	11	-50.8996	75.37746	27.59 N	laN NaN
Glpr05	HEOBI	########	7	10	-50.8996	75.37746	67.576 N	laN NaN
Glpr05	HEOBI	########	7	9	-50.8996	75.37746	97.671 N	laN NaN
Glpr05	HEOBI	########	7	8	-50.8996	75.37746	147.009 N	laN NaN
Glpr05	HEOBI	########	7	7	-50.8996	75.37746	197.766 N	laN NaN
Glpr05	HEOBI	########	7	6	-50.8996	75.37746	246.005 N	laN NaN
Glpr05	HEOBI	########	7	5	-50.8996	75.37746	295.014 N	laN NaN
Glpr05	HEOBI	########	7	4	-50.8996	75.37746	345.101 N	laN NaN
Glpr05	HEOBI	########	7	3	-50.8996	75.37746	394.025 N	laN NaN
Glpr05	HEOBI	########	7	2	-50.8996	75.37746	414.187 N	laN NaN
Glpr05	HEOBI	########	7	1	-50.8996	75.37746	434.647 N	laN NaN
Glpr05	HEOBI	########	9	12	-51.2871	73.80983	14.116 N	laN 57.85064
Glpr05	HEOBI	########	9	11	-51.2871	73.80983	23.794 N	laN 50.71496
Glpr05	HEOBI	########	9	10	-51.2871	73.80983	38.729 N	laN 16.72643
Glpr05	HEOBI	########	9	9	-51.2871	73.80983	67.481 N	laN 15.7856
Glpr05	HEOBI	########	9	8	-51.2871	73.80983	96.781 N	laN 16.74272
Glpr05	HEOBI	########	9	7	-51.2871	73.80983	146.734 N	laN 14.39615
Glpr05	HEOBI	########	9	6	-51.2871	73.80983	195.713 N	laN 11.57648
Glpr05	HEOBI	########	9	5	-51.2871	73.80983	245.553 N	laN 7.712186
Glpr05	HEOBI	########	9	4	-51.2871	73.80983	295.364 N	laN 6.42497
Glpr05	HEOBI	########	9	3	-51.2871	73.80983	345.164 N	laN 5.673204
Glpr05	HEOBI	########	9	2	-51.2871	73.80983	373.865 N	laN 6.234043
Glpr05	HEOBI	########	9	1	-51.2871	73.80983	394.853 N	laN 6.83727
Glpr05	HEOBI	########	10	12	-51.5064	72.99996	13.926 N	laN 73.57338
Glpr05	HEOBI	########	10	11	-51.5064	72.99996	27.638 N	laN 45.6466
Glpr05	HEOBI	########	10	10	-51.5064	72.99996	48.288 N	laN 33.8083
Glpr05	HEOBI	########	10	9	-51.5064	72.99996	72.306 N	laN 28.22148
Glpr05	HEOBI	########	10	8	-51.5064	72.99996	118.034 N	laN 15.29694
Glpr05	HEOBI	########	10	7	-51.5064	72.99996	146.932 N	laN 10.52844
Glpr05	HEOBI	########	10	6	-51.5064	72.99996	200.319 N	laN 5.792809
Glpr05	HEOBI	########	10	5	-51.5064	72.99996	249.995 N	laN 3.52822
Glpr05	HEOBI	########	10	4	-51.5064	72.99996	300.868 N	laN 4.624608
Glpr05	HEOBI	########	10	3	-51.5064	72.99996	316.094 N	laN 4.71675
Glpr05	HEOBI	########	10	2	-51.5064	72.99996	349.314 N	laN NaN
Glpr05	HEOBI	########	10	1	-51.5064	72.99996	358.374 N	laN 3.004176
Glpr05	HEOBI	########	11	12	-52.9275	71.36159	13.106 N	laN 30.19517
Glpr05	HEOBI	########	11	11	-52.9275	71.36159	28.641 N	laN 33.39405
Glpr05	HEOBI	########	11	10	-52.9275	71.36159	67.823 N	laN 32.64753
Glpr05	HEOBI	########	11	9	-52.9275	71.36159	98.108 N	laN 17.73527
Glpr05	HEOBI	########	11	8	-52.9275	71.36159	197.196 N	laN 6.01594
Glpr05	HEOBI	########	11	7	-52.9275	71.36159	295.385 N	IaN 2.746298
Glpr05	HEOBI	########	11	6	-52.9275	71.36159	493.073 N	laN 1.413807
Glpr05	HEOBI	########	11	5	-52.9275	71.36159	689.369 N	laN 1.94688
Glpr05	HEOBI	########	11	4	-52.9275	71.36159	986.512 N	laN 1.447222

Glpr05	HEOBI	########	11	3	-52.9275	71.36159	1577.817	NaN	1.453966
Glpr05	HEOBI	########	11	2	-52.9275	71.36159	2559.788	NaN	1.347548
Glpr05	HEOBI	########	11	1	-52.9275	71.36159	2658.453	NaN	1.158779
Glpr05	HEOBI	########	12	6	-53.0323	72.65818	13.138	NaN	NaN
Glpr05	HEOBI	########	12	5	-53.0323	72.65818	28.272	NaN	NaN
Glpr05	HEOBI	########	12	4	-53.0323	72.65818	47.471	NaN	NaN
Glpr05	HEOBI	########	12	3	-53.0323	72.65818	66.55	NaN	NaN
Glpr05	HEOBI	########	12	2	-53.0323	72.65818	87.496	NaN	NaN
Glpr05	HEOBI	########	12	1	-53.0323	72.65818	102.059	NaN	NaN
Glpr05	HEOBI	########	13	10	-52.9988	72.62552	13.573	0.5	30.9583
Glpr05	HEOBI	########	13	9	-52.9988	72.62552	28.897	0.31	20.60596
Glpr05	HEOBI	########	13	8	-52.9988	72.62552	48.619	0.36	20.7981
Glpr05	HEOBI	########	13	7	-52.9988	72.62552	67.37	0.35	19.42686
Glpr05	HEOBI	########	13	6	-52.9988	72.62552	96.928	0.35	21.55899
Glpr05	HEOBI	########	13	2	-52.9988	72.62552	117.577	0.32	20.66585
Glpr05	HEOBI	########	13	1	-52.9988	72.62552	132.135	0.25	19.7409
Glpr05	HEOBI	########	14	7	-53.0351	72.55227	13.189	0.03057	22.7589
Glpr05	HEOBI	########	14	6	-53.0351	72.55227	28.556	0.056044	19.31646
Glpr05	HEOBI	########	14	5	-53.0351	72.55227	47.805	0.101899	17.45076
Glpr05	HEOBI	########	14	4	-53.0351	72.55227	97.631	0.282769	15.14302
Glpr05	HEOBI	########	14	3	-53.0351	72.55227	122.492	0.229272	16.82578
Glpr05	HEOBI	########	14	2	-53.0351	72.55227	157.154	0.315886	16.06095
Glpr05	HEOBI	########	14	1	-53.0351	72.55227	172.227	0.254746	14.83105
Glpr05	HEOBI	########	15	6	-53.0726	72.5929	13.53	0.427981	25.73479
Glpr05	HEOBI	########	15	5	-53.0726	72.5929	28.565	0.537465	24.82952
Glpr05	HEOBI	########	15	4	-53.0726	72.5929	48.532	0.547418	24.93982
Glpr05	HEOBI	########	15	3	-53.0726	72.5929	68.211	0.497653	21.98645
Glpr05	HEOBI	########	15	2	-53.0726	72.5929	98.274	0.338404	24.81739
Glpr05	HEOBI	########	15	1	-53.0726	72.5929	117.496	0.517559	23.09538
Glpr05	HEOBI	########	16	6	-52.9846	72.55511	13.3	0.128819	35.1506
Glpr05	HEOBI	########	16	5	-52.9846	72.55511	28.356	0.110417	33.03102
Glpr05	HEOBI	########	16	4	-52.9846	72.55511	67.882	0.184028	29.02345
Glpr05	HEOBI	########	16	3	-52.9846	72.55511	121.723	0.220833	25.11476
Glpr05	HEOBI	########	16	2	-52.9846	72.55511	175.822	0.257639	18.38147
Glpr05	HEOBI	########	16	1	-52.9846	72.55511	187.19	0.147222	0
Glpr05	HEOBI	########	18	12	-54.1674	73.66494	12.621	-3.43E-17	34.94551
Glpr05	HEOBI	########	18	11	-54.1674	73.66494	27.79	0.042798	33.83229
Glpr05	HEOBI	########	18	10	-54.1674	73.66494	67.787	0.027984	32.01916
Glpr05	HEOBI	########	18	9	-54.1674	73.66494	96.889	0.054321	21.55846
Glpr05	HEOBI	########	18	8	-54.1674	73.66494	147.647	0.097119	4.046461
Glpr05	HEOBI	########	18	7	-54.1674	73.66494	197.004	0.098765	7.756472
Glpr05	HEOBI	########	18	6	-54.1674	73.66494	294.459	0.083951	2.209019
Glpr05	HEOBI	########	18	5	-54.1674	73.66494	491.785	0.077366	2.004212
Glpr05	HEOBI	########	18	4	-54.1674	73.66494	690.635	-0.01152	1.602537
Glpr05	HEOBI	########	18	3	-54.1674	73.66494	987.414	0.014815	1.8537
Glpr05	HEOBI	########	19	6	-53.0599	73.98966	13.634	0.230366	29.34913
Glpr05	HEOBI	########	19	5	-53.0599	73.98966	28.061	0.307155	26.43874

Glpr05	HEOBI	########	19	4	-53.0599	73.98966	48.381	0.244328	27.07139
Glpr05	HEOBI	########	19	3	-53.0599	73.98966	68.133	0.272251	26.25336
Glpr05	HEOBI	########	19	2	-53.0599	73.98966	78.164	0.230366	28.38649
Glpr05	HEOBI	########	19	1	-53.0599	73.98966	88.034	0.237347	28.59244
Glpr05	HEOBI	########	20	6	-53.2133	73.63984	13.756	0.293194	33.14566
Glpr05	HEOBI	########	20	5	-53.2133	73.63984	28.439	0.321117	32.40409
Glpr05	HEOBI	########	20	4	-53.2133	73.63984	47.896	0.223386	27.98615
Glpr05	HEOBI	########	20	3	-53.2133	73.63984	67.178	0.244328	29.29488
Glpr05	HEOBI	########	20	2	-53.2133	73.63984	88.051	0.268761	27.47886
Glpr05	HEOBI	########	20	1	-53.2133	73.63984	93.088	0.279232	26.53593
Glpr05	HEOBI	########	21	8	-53.2808	73.31556	13.271	0.024931	37.01473
Glpr05	HEOBI	########	21	7	-53.2808	73.31556	28.651	0.124098	34.44433
Glpr05	HEOBI	########	21	6	-53.2808	73.31556	48.765	0.215488	22.88427
Glpr05	HEOBI	########	21	5	-53.2808	73.31556	68.321	0.074794	14.49503
Glpr05	HEOBI	########	21	4	-53.2808	73.31556	88.306	0.093742	12.79084
Glpr05	HEOBI	########	21	3	-53.2808	73.31556	98.136	0.130142	13.49046
Glpr05	HEOBI	########	21	2	-53.2808	73.31556	107.543	0.06183	23.37634
Glpr05	HEOBI	########	21	1	-53.2808	73.31556	112.6	0.218399	16.53867
Glpr05	HEOBI	########	22	6	-52.9604	73.23888	13.757	0.438672	25.29686
Glpr05	HEOBI	########	22	5	-52.9604	73.23888	27.955	0.415584	25.80142
Glpr05	HEOBI	########	22	4	-52.9604	73.23888	49.145	0.325156	26.9169
Glpr05	HEOBI	########	22	3	-52.9604	73.23888	68.045	0.2886	21.43639
Glpr05	HEOBI	########	22	2	-52.9604	73.23888	86.872	0.305916	20.9332
Glpr05	HEOBI	########	22	1	-52.9604	73.23888	108.445	0.323232	20.60044
Glpr05	HEOBI	########	23	6	-53.0059	73.72118	14.402	0.498551	24.04201
Glpr05	HEOBI	########	23	5	-53.0059	73.72118	28.24	0.510145	27.07191
Glpr05	HEOBI	########	23	4	-53.0059	73.72118	48.053	0.307246	27.38061
Glpr05	HEOBI	########	23	3	-53.0059	73.72118	59.322	0.301449	24.98825
Glpr05	HEOBI	########	23	2	-53.0059	73.72118	67.7	0.26087	23.05525
Glpr05	HEOBI	########	23	1	-53.0059	73.72118	75.02	0.272464	25.44332
Glpr05	HEOBI	########	24	4	-53.0037	73.60683	13.901	0.473491	27.52554
Glpr05	HEOBI	########	24	3	-53.0037	73.60683	20.519	0.537533	29.27902
Glpr05	HEOBI	########	24	2	-53.0037	73.60683	28.885	0.538583	28.27456
Glpr05	HEOBI	########	24	1	-53.0037	73.60683	35.27	0.571129	27.81576
Glpr05	HEOBI	########	25	6	-53.035	72.66254	13.872	0.283465	13.54655
Glpr05	HEOBI	########	25	5	-53.035	72.66254	29.071	0.272966	13.22903
Glpr05	HEOBI	########	25	4	-53.035	72.66254	58.134	0.356955	14.14021
Glpr05	HEOBI	########	25	3	-53.035	72.66254	87.731	0.39895	16.02761
Glpr05	HEOBI	########	25	2	-53.035	72.66254	108.245	0.39895	27.36035
Glpr05	HEOBI	########	25	1	-53.035	72.66254	119.586	0.388451	31.96008
Glpr05	HEOBI	########	26	6	-53.0288	72.66081	12.864	0.427142	17.44573
Glpr05	HEOBI	########	26	5	-53.0288	72.66081	28.669	0.308532	19.442
Glpr05	HEOBI	########	26	4	-53.0288	72.66081	58.001	0.349281	20.15696
Glpr05	HEOBI	########	26	3	-53.0288	72.66081	88.469	0.390031	23.70023
Glpr05	HEOBI	########	26	2	-53.0288	72.66081	107.496	0.336183	15.88943
Glpr05	HEOBI	########	26	1	-53.0288	72.66081	119.969	0.38421	23.84019
Glpr05	HEOBI	########	27	6	-53.0334	72.66873	13.921	0.302711	23.04924

Glpr05	HEOBI	########	27	5	-53.0334	72.66873	28.669	0.350737	23.0427
Glpr05	HEOBI	########	27	4	-53.0334	72.66873	58.347	0.437329	24.48343
Glpr05	HEOBI	########	27	3	-53.0334	72.66873	88.273	0.458432	26.38703
Glpr05	HEOBI	########	27	2	-53.0334	72.66873	107.923	0.448972	29.35477
Glpr05	HEOBI	########	27	1	-53.0334	72.66873	119.736	0.439512	27.47414
Glpr05	HEOBI	########	28	6	-53.0387	72.66159	12.73	0.346371	23.04924
Glpr05	HEOBI	########	28	5	-53.0387	72.66159	28.458	0.628707	23.0427
Glpr05	HEOBI	########	28	4	-53.0387	72.66159	58.665	0.311543	24.48343
Glpr05	HEOBI	########	28	3	-53.0387	72.66159	88.021	0.377837	26.38703
Glpr05	HEOBI	########	28	2	-53.0387	72.66159	107.833	0.655835	30.31347
Glpr05	HEOBI	########	28	1	-53.0387	72.66159	117.306	0.420439	27.87476
Glpr05	HEOBI	########	29	6	-53.0337	72.65347	13.39	0.352406	28.24213
Glpr05	HEOBI	########	29	5	-53.0337	72.65347	28.975	0.453477	28.03404
Glpr05	HEOBI	########	29	4	-53.0337	72.65347	56.947	1.014404	25.67791
Glpr05	HEOBI	########	29	3	-53.0337	72.65347	78.064	0.507424	30.14941
Glpr05	HEOBI	########	29	2	-53.0337	72.65347	92.863	0.490539	24.73785
Glpr05	HEOBI	########	29	1	-53.0337	72.65347	101.019	0.472865	29.28149
Glpr05	HEOBI	########	30	6	-52.922	74.02227	13.878	5.173907	43.38744
Glpr05	HEOBI	########	30	5	-52.922	74.02227	28.235	0.285676	41.37166
Glpr05	HEOBI	########	30	4	-52.922	74.02227	67.518	0.126967	42.97981
Glpr05	HEOBI	########	30	3	-52.922	74.02227	98.262	0.158709	39.67458
Glpr05	HEOBI	########	30	2	-52.922	74.02227	147.422	0.142838	38.21724
Glpr05	HEOBI	########	30	1	-52.922	74.02227	186.937	0.190451	25.03412
Glpr05	HEOBI	########	31	9	-52.6964	74.79167	12.603	-0.00447	59.0513
Glpr05	HEOBI	########	31	8	-52.6964	74.79167	48.258	5.418345	57.53533
Glpr05	HEOBI	########	31	7	-52.6964	74.79167	97.416	0.214765	40.96099
Glpr05	HEOBI	########	31	6	-52.6964	74.79167	147.418	0.035794	23.17195
Glpr05	HEOBI	########	31	5	-52.6964	74.79167	245.205	0.102908	21.56045
Glpr05	HEOBI	########	31	4	-52.6964	74.79167	345.04	0.06264	21.72319
Glpr05	HEOBI	########	31	3	-52.6964	74.79167	395.434	0.008949	15.81971
Glpr05	HEOBI	########	31	2	-52.6964	74.79167	443.703	0.008949	11.57393
Glpr05	HEOBI	########	31	1	-52.6964	74.79167	468.562	0.040268	11.38487
Glpr05	HEOBI	########	32	6	-52.5428	75.26237	12.871	0.014625	52.81464
Glpr05	HEOBI	########	32	5	-52.5428	75.26237	47.889	0.102377	53.72495
Glpr05	HEOBI	########	32	4	-52.5428	75.26237	87.467	0.146252	27.12847
Glpr05	HEOBI	########	32	3	-52.5428	75.26237	147.438	0.204753	17.14814
Glpr05	HEOBI	########	32	2	-52.5428	75.26237	196.365	0.146252	18.88747
Glpr05	HEOBI	########	32	1	-52.5428	75.26237	271.03	0.043876	15.17406
Glpr05	HEOBI	########	33	9	-52.4092	75.60666	14.22	0	50.26546
Glpr05	HEOBI	########	33	8	-52.4092	75.60666	48.259	0.131627	46.00405
Glpr05	HEOBI	########	33	7	-52.4092	75.60666	97.726	0	26.69294
Glpr05	HEOBI	########	33	6	-52.4092	75.60666	148.04	0.058501	15.31341
Glpr05	HEOBI	########	33	5	-52.4092	75.60666	221.234	0.087751	13.07136
Glpr05	HEOBI	########	33	4	-52.4092	75.60666	293.952	0.190128	10.73295
Glpr05	HEOBI	########	33	3	-52.4092	75.60666	394.851	0.014625	8.649526
Glpr05	HEOBI	########	33	2	-52.4092	75.60666	494.551	0.014625	7.107548
Glpr05	HEOBI	########	33	1	-52.4092	75.60666	526.794	0.02925	7.067597

Glpr05	HEOBI	########	34	9	-52.302	76.00671	13.47	0.301075	51.48856
Glpr05	HEOBI	########	34	8	-52.302	76.00671	48.05	0	49.68593
Glpr05	HEOBI	########	34	7	-52.302	76.00671	96.09	0	46.84237
Glpr05	HEOBI	########	34	6	-52.302	76.00671	147.486	0.064516	14.18614
Glpr05	HEOBI	########	34	5	-52.302	76.00671	219.642	0.086022	11.46784
Glpr05	HEOBI	########	34	4	-52.302	76.00671	296.809	0.150538	7.291876
Glpr05	HEOBI	########	34	3	-52.302	76.00671	444.724	0.086022	5.358688
Glpr05	HEOBI	########	34	2	-52.302	76.00671	542.576	0.064516	7.641063
Glpr05	HEOBI	########	35	6	-52.8381	74.32217	13.648	0.053872	36.59579
Glpr05	HEOBI	########	35	5	-52.8381	74.32217	28.746	0.094276	36.38404
Glpr05	HEOBI	########	35	4	-52.8381	74.32217	68.064	0.13468	24.47819
Glpr05	HEOBI	########	35	3	-52.8381	74.32217	97.401	0.074074	13.58863
Glpr05	HEOBI	########	35	2	-52.8381	74.32217	137.334	0.141414	14.78911
Glpr05	HEOBI	########	35	1	-52.8381	74.32217	146.741	0.074074	12.68924
Glpr05	HEOBI	########	36	4	-53.0077	73.70902	14.094	0.13001	23.77608
Glpr05	HEOBI	########	36	3	-53.0077	73.70902	28.533	0.210981	19.01267
Glpr05	HEOBI	########	36	2	-53.0077	73.70902	58.272	0.171065	16.10411
Glpr05	HEOBI	########	36	1	-53.0077	73.70902	71.277	0.222059	23.41104
Glpr05	HEOBI	########	37	4	-53.0118	73.71645	13.71	0.23165	22.28596
Glpr05	HEOBI	########	37	3	-53.0118	73.71645	28.479	0.179125	23.42051
Glpr05	HEOBI	########	37	2	-53.0118	73.71645	58.461	0.183165	24.30983
Glpr05	HEOBI	########	37	1	-53.0118	73.71645	68.211	0.167003	23.10616
Glpr05	HEOBI	########	38	4	-53.0074	73.72444	14.088	-0.00458	22.98903
Glpr05	HEOBI	########	38	3	-53.0074	73.72444	28.569	0.280673	23.51511
Glpr05	HEOBI	########	38	2	-53.0074	73.72444	58.511	0.320269	24.6925
Glpr05	HEOBI	########	38	1	-53.0074	73.72444	75.355	0.036633	21.34652
Glpr05	HEOBI	########	39	4	-53.0027	73.71675	13.46	0.136835	20.77638
Glpr05	HEOBI	########	39	3	-53.0027	73.71675	28.716	0.193346	22.57333
Glpr05	HEOBI	########	39	2	-53.0027	73.71675	45.62	0.122696	21.4729
Glpr05	HEOBI	########	39	1	-53.0027	73.71675	77.198	0.330879	19.88652
Glpr05	HEOBI	########	40	5	-53.0076	73.7161	13.771	0.059379	23.32216
Glpr05	HEOBI	########	40	4	-53.0076	73.7161	28.819	0.043185	20.80127
Glpr05	HEOBI	########	40	3	-53.0076	73.7161	48.649	0.059379	22.35696
Glpr05	HEOBI	########	40	2	-53.0076	73.7161	63.429	0.010796	21.3951
Glpr05	HEOBI	########	40	1	-53.0076	73.7161	72.432	0.002699	21.16987

ONC_BOTTLE