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Abstract

Aftershock cascades play an important role in forecasting seismicity in natural and human-made situations. While their behavior

including the spatial aftershock zone has been the focus of many studies in tectonic settings, this is not the case when fluid flows

are involved. Using high-quality seismic catalogs, we probe earthquake-earthquake triggering in three settings influenced by

fluids: \emph{i}) A natural swarm (Long Valley Caldera, California), \emph{ii}) \emph{suspected} swarms in the Yuha Desert

(California), and \emph{iii}) induced seismicity in Oklahoma and southern Kansas. All settings exhibit significant aftershock

behavior highlighting the importance of secondary processes. The spatial aftershock zones scale with mainshock magnitude

as expected based on the rupture length. While \emph{i}) and \emph{iii}) show a rapid decay beyond their rupture length,

\emph{ii}) exhibits long-range behavior suggesting that fluid migration might not be the dominant mechanism. We also find

that aftershock productivity might allow to distinguish between natural swarms and induced seismicity.
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Abstract15

Aftershock cascades play an important role in forecasting seismicity in natural and16

human-made situations. While their behavior including the spatial aftershock zone has17

been the focus of many studies in tectonic settings, this is not the case when fluid flows are18

involved. Using high-quality seismic catalogs, we probe earthquake-earthquake triggering in19

three settings influenced by fluids: i) A natural swarm (Long Valley Caldera, California), ii)20

suspected swarms in the Yuha Desert (California), and iii) induced seismicity in Oklahoma21

and southern Kansas. All settings exhibit significant aftershock behavior highlighting the22

importance of secondary processes. The spatial aftershock zones scale with mainshock23

magnitude as expected based on the rupture length. While i) and iii) show a rapid decay24

beyond their rupture length, ii) exhibits long-range behavior suggesting that fluid migration25

might not be the dominant mechanism. We also find that aftershock productivity might26

allow to distinguish between natural swarms and induced seismicity.27

Plain Language Summary28

While it is known that fluid injection operations can induce seismic activity, it has29

remained unclear how this activity compares to their natural counterpart, seismic swarms30

driven by natural fluid flows. The latter are typically characterized by the absence of a domi-31

nant event within the seismic sequence, while exhibiting other characteristics consistent with32

tectonic aftershock sequences and secondary triggering. Our analysis of high-quality seis-33

mic catalogs for both types of fluid-induced seismicity shows that both exhibit a significant34

amount of secondary processes leading to spatially localized event-event triggering. Yet, the35

seismic productivity, which refers to the average increase in the number of aftershocks with36

the magnitude of their trigger, is significantly higher in the induced setting. Both findings37

are of direct importance for earthquake forecasting and seismic hazard assessment.38

1 Introduction39

Fluid-induced seismicity typically refers to (minor) seismic events that (partially) in-40

volve fluid flows. Examples range from natural flows associated with rainfalls and volcanic41

eruptions to human-made contexts including wastewater injection wells, hydraulic fractur-42

ing, and geothermal power plants. Recently, anthropogenic sources have lead to an extraor-43

dinary surge of seismic activities in different parts of the United States (Ellsworth, 2013).44

The most extreme cases are reported in Oklahoma and Southern Kansas where most seismic45

events are potentially linked to large-scale wastewater disposals. The USG survey indicates46

that no more than five (tectonic) earthquakes per year with magnitude m ≥ 3 had been47

previously reported over almost three decades (Deflandre, 2016), in sharp contrast to the48

one thousand m ≥ 3 earthquakes recorded in 2016. In this context, it is essential to identify49

potential anthropogenic origins and relevant secondary triggering mechanisms, which has50

important consequences in terms of seismic hazard assessment, earthquake forecasting and51

effective mitigation strategies.52

To what extent fluid-based anthropogenic seismicity bears similarities with its natu-53

ral analog is an open question. Swarm-like features of induced seismicity associated with54

wastewater disposal and/or hydraulic fracturing were found in (Skoumal et al., 2015). Signa-55

tures of event-event triggering or aftershock dynamics were recently reported in (Maghsoudi56

et al., 2016, 2018), where common features of event-event triggering and natural earthquake57

swarms, i.e. productivity relation or the Omori-Utsu (OU) relation as well as an absence of58

B̊ath’s law, were recovered within the context of hydraulic fracturing-induced microseismic-59

ity. Recent studies point to pore-pressure fluctuations, poro-elastic effects, or combination60

of those two as relevant activation mechanisms (T. H. Goebel & Brodsky, 2018) as well61

as aseismic creep (Eyre et al., 2019). The signatures of event-event triggering in induced62

settings also indicate the relevance of static stress transfer, similar to the case of aftershocks63
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in tectonic settings (Maghsoudi et al., 2018). In general, the features of the spatio-temporal64

evolution of induced seismicty can be viewed as a main signature of the underlying physi-65

cal activation and secondary triggering processes. For example, the typical diffusion-based66

picture is that the activation takes place in a spatially local manner and over diffusion67

timescales giving rise to a square-root time dependence of the distance (Shapiro, 2015). On68

the other hand, the overall increase in the spatial extent of induced seismicity could be69

interpreted in terms of poro-elastic interactions between migrating fluids and embedding70

porous solids (T. H. Goebel & Brodsky, 2018).71

To which degree the mechanisms are affected by the specific source — anthropogenic or72

natural sources — has remained largely unexplored. Here, our aim is to identify common-73

alities and differences in the spatio-temporal dynamics of induced and natural seismicity in74

fluid-driven situations. To this end, we analyzed aftershocks properties in i) Oklahoma and75

southern Kansas and compared our observations with two other case studies, which are ii)76

the Long Valley Caldera and iii) the Yuha Desert, whose seismic activities are believed to be77

strongly influenced by the natural migration of fluids. Our overall methodology is similar to78

the one used by Vasylkivska and Huerta (2017); Schoenball and Ellsworth (2017a) in Okla-79

homa and Kansas aiming to distinguish between background events (as a direct consequence80

of fluid injection) and triggered events (due to secondary mechanisms).81

All settings exhibit a significant amount of event-event triggering highlighting the im-82

portance of secondary processes for the overall seismicity. The event-event triggering rates83

in i) exhibit similar temporal features to those of natural earthquakes in ii), iii) and can84

be quantified by the OU relation (Kagan, 2013). In all cases, the productivity relation85

between the total number of aftershocks and the triggers’ magnitude also holds, yet the86

number of triggered events increases much more rapidly with magnitude for i). The spatial87

clustering of aftershocks in i) is quantified by a steep algebraic decay with distance beyond88

the rupture length of the main shock. This agrees closely with the narrow aftershock zones89

associated with natural swarms in ii) suggesting that short-ranged triggering is not specific90

to human-made contexts. Moreover, we find analogous topological features associated with91

triggering cascades in i) and ii) confirming the swarm-like nature of induced seismicity in92

the former. In iii), however, aftershock sequences tend to be burst-like and the aftershock93

zones extend well beyond the associated rupture size. In fact, the fluid diffusion may not be94

the dominant contribution in iii) and other mechanisms — such as non-local stress transfer95

and aseismic deformations — and/or the underlying fault network might be more relevant96

in this context.97

2 Data98

We analyze three different, previously published high-resolution seismic catalogs, for99

which fluids are thought to play a significant role in driving seismic activity. For the100

injection-induced seismicity in Oklahoma and southern Kansas, we use a relocated cat-101

alog (Schoenball & Ellsworth, 2017a, 2017b). The region witnessed an almost ten fold102

increase in the overall seismicity rate over two years, which declined later on due to scaling103

down of industrial operations (Langenbruch & Zoback, 2016). A magnitude 5.8 earthquake104

occurred during this mitigation period and led to a spontaneous increase in the seismic activ-105

ity indicating the significance of secondary triggering processes and aftershocks (Fig. S1(a)106

in SM). The Yuha Desert catalog (Ross et al., 2017) contains pronounced aftershock activity107

following the 2010 magnitude 7.2 El Mayor-Cucapah event (Fig. S1(b) in SM). We neglect108

the initial ten days after the event during which the seismic activity is mostly affected by109

aseismic deformations and instead, we focus on the later times, suggested to be driven by110

fluid diffusion (Ross et al., 2017). The Long Valley Caldera catalog (Shelly et al., 2016)111

corresponds to a five-month sequence of natural swarms (Fig. S1(c) in SM).112

In all cases, the frequency-magnitude distributions largely follow the Gutenberg-Richter113

(GR) relation N(Mag. > m) ∝ 10−b(m−mc) (right panels of Fig. S1(a-c) in SM). Here, the114
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b-value controls the exponential decay rate and mc denotes the magnitude of completeness.115

We vary mth and include events with m ≥ mth to estimate b(mth) based on the maximum-116

likelihood estimator (Bhattacharya et al., 2011). We estimate both b and mc by identifying117

the lowest value of mth for which b becomes constant (Davidsen et al., 2015). For Oklahoma118

and southern Kansas (Fig. S1(a)), we obtain b = 1.65. The high b-value implies an exces-119

sive number of lower-magnitude earthquakes compared to tectonic settings, which typically120

exhibit b ' 1 (Kagan, 2013). Yet, similarly high b-values are observed for microseismic121

events associated with hydraulic fracturing (Eaton et al., 2014; Eaton & Maghsoudi, 2015;122

Maghsoudi et al., 2016; Dinske & Shapiro, 2013). For the Yuha Desert, we obtain b = 0.95123

(Fig. S1(b)). The Long Valley catalog (Fig. S1(c)) is lacking a unique b-value. Our analysis124

indicates two regimes with b = 0.7 for mc = 0.2 and b = 0.9 for mc = 1.0. Thus, we use125

both sets of parameters for our triggering analysis. Using two different estimators (Kantz &126

Schreiber, 2004; Gneiting et al., 2012), the spatial distribution of hypocenters can be well127

approximated as a fractal with a fractal dimension df ' 2 for all catalogs.128

3 Methodology: Event-event triggering and aftershock identification129

We follow the methodology first proposed by (Zaliapin et al., 2008), which allows for130

a robust classification between triggered events (aftershocks) and events not triggered by131

other events in the catalog, considered background events (Zaliapin et al., 2008; Gu et al.,132

2013; Zaliapin & Ben-Zion, 2013; Moradpour et al., 2014; Davidsen et al., 2015; Schoenball133

et al., 2015; Davidsen & Baiesi, 2016; Davidsen et al., 2017; Maghsoudi et al., 2018; Teng &134

Baker, 2019). The starting point is the GR relation, which is used to formulate an expected135

magnitude-dependent rate of activity for a spatially uniform and stationary Poisson process.136

This rate allows one to formulate the null hypothesis of independent events — correspond-137

ing to background events — and the method seeks for possible rejections of it to identify138

triggered events and their trigger. As a first step, the present approach associates each event139

j to a set of possible triggers {i} with (ti < tj , ~ri,mi) that fulfill rij ≡ |~ri−~rj | ≤ cp tij with140

tij ≡ tj− ti and pressure wave velocity cp ' 6 km s−1 to ensure causality (Moradpour et al.,141

2014). The pair-wise quantity nij ≡ cg tij r
df
ij 10−b(mi−mc) gives the expected number of142

magnitude mi events between events i and j. Here, the prefactor cg relates to the regional143

seismicity rate. We can set cg = 1 without loss of generality. The most likely trigger i∗144

of event j can be identified by n∗j = mini{nij}, since it is the strongest possible violation145

of the null hypothesis. Low values of n∗j can be associated with triggered events and high146

values can be associated with background events. The separation between these groups can147

be readily seen in a two-dimensional projection of n∗j using (t∗j , r
∗
j ) defined as148

t∗j ≡ ti∗j 10−
b
2 (mi∗−mc),149

r∗j ≡ r
df
i∗j 10−

b
2 (mi∗−mc), (1)150

such that n∗j = r∗j × t∗j . Using the density distribution of n∗j in this projection, one can151

choose a suitable threshold nth for the separation (see SM for further discussion).152

4 Results153

Using the above methodology to identify event-event triggering, we find that all catalogs154

exhibit significant triggering and aftershocks (Fig. S2 in SM). This enables us to study the155

properties of the direct event-event triggering (the first generation of aftershocks) and their156

variations with time, distance, and magnitude.157

4.1 Spatial aftershock zones158

We evaluate the linear (normalized) aftershocks density ρm(r) associated with triggers159

(or main shocks) of magnitude m. Displayed in the insets of Fig. 1(a-d), almost all after-160

shocks densities show an initial increase up to a peak followed by a power-law like decrease.161
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Figure 1. Rescaled probability density function of aftershocks 10σm × ρm(r) against scaled

distance r/10σm in a) Oklahoma and southern Kansas b) the Yuha Desert c) Long Valley Caldera

with b = 0.7,mc = 0.2 d) Long Valley Caldera with b = 0.9,mc = 1.0 conditioned based on the

mean main shock magnitude m in a given range. The dash-dotted lines indicate ρ(r) ∝ r−ν for

large r. The insets show the unrescaled data presented in the main plots. The red arrow indicates

the average relative location uncertainty where available.

As for tectonic events (Gu et al., 2013), the location of the peak is closely aligned with the162

rupture length of the trigger, which scales as rrup ∝ 10σm. To test this explicitly, we rescale163

the distance r with 10σm and we indeed obtain a robust data collapse of all aftershock164

densities for a given catalog in Fig. 1(a-d). The variation between the different catalogs is165

minimal, namely 0.36 < σ < 0.5, which is consistent with previously reported estimates for166

tectonic earthquakes (Leonard, 2010; Brengman et al., 2019; Moradpour et al., 2014). The167

data collapses also indicate that beyond the rupture length the aftershock density decays168

as r−ν . While aftershock zones in Oklahoma and southern Kansas as well as in the Long169

Valley Caldera exhibit a steep decay with ν ' 2.9, the Yuha Desert data indicate a longer-170

ranged trend (ν ' 1.7), typical of tectonic seismicity in southern California (Gu et al., 2013;171

Moradpour et al., 2014).172

4.2 Aftershock productivity173

We next focus on the variation of the number of triggered events or first generation174

of aftershocks Nas with the magnitude m of the trigger as displayed in Fig. 2. If averaged175

over triggers with the same m, we find an exponential scaling of the number of triggered176
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Location (Year) Type
Gutenburg-Richter

N / 10�b(m�mc)

b mc

Productivity

Nas / 10↵m

↵

Omori-Utsu

�(t) / t�p

p

Linear Density

⇢(r) / r�⌫

⌫

Rupture Size

rrup / 10�m

�

Oklahoma
& southern Kansas
(2014�2017)

Fluid
Induced
(Man-made)

1.65 2.8 0.8 1.0 2.9 0.5

Long Valley Caldera,
California (2014 a)

Natural
Swarm

0.7 0.2 0.4 0.9, 2.0 2.9 0.36

Long Valley Caldera,
California (2014 b)

Natural
Swarm

0.9 1.0 0.48 0.9 2.9 0.36

Yuha Desert,
California (2010)

Fluid
Induced
(Natural)

0.95 1.0 0.6 1.0 1.7 0.4

Western Bohemia,
Europe (2000 & 2008)

(Hainzl et al., 2013)

Natural
Swarm

0.9 & 1.25 0.5 0.61� 0.68 1.33� 1.37 � �

San Ramon,
California (1970�2015)

(Llenos & Michael, 2019)

Natural
Swarm

0.85 2.0 0.65 1.12 � �

Southern California
(1984�2005)

(Gu et al., 2013)

Tectonic 1.09 2.5 0.85� 0.9 1.2� 1.25 1.6 0.4

Table 1. Comparison between estimated parameters and scaling exponents associated with dif-

ferent seismic settings
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N
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s

m m m m

Figure 2. Number of aftershocks Nas(m) as a function of trigger magnitude m in a) Oklahoma

and southern Kansas b) the Yuha Desert c) Long Valley Caldera with b = 0.7,mc = 0.2 d) Long

Valley Caldera with b = 0.9,mc = 1.0. The symbols ( ) indicate the mean value N̄as over

prescribed bins. The error bars denote the standard error. The dash-dotted line indicates the

productivity relation N̄as ∝ 10αm.

events with m in all cases, i.e., Nas ∝ 10αm as also observed in tectonic settings (Dascher-177

Cousineau et al., 2020). The scaling exponent α controls the rate of exponential growth with178

m and we find that the value of α varies between catalogs. We obtain α ' 0.8 for Oklahoma179

and southern Kansas, while in the Yuha Desert α ' 0.63, and α < 0.5 in the Long Valley180

Caldera. This implies that the productivity of triggers or mainshocks increases faster with181

magnitude in Oklahoma and southern Kansas than in the other cases while being comparable182

to tectonic systems (Gu et al., 2013; Moradpour et al., 2014). Note that variations in α183

have recently been attributed to mainshock properties and associated variations in terms184

of focal mechanisms, amplitude of stress drops, and on-fault slip distributions (Dascher-185

Cousineau et al., 2020), which might be at play for the different catalogs here as well. Note186

also that α ' 1.1 has been reported in (T. Goebel et al., 2019) for Oklahoma and southern187

Kansas using a different methodology. The specific criteria to define and identify aftershocks188

might be responsible for the differences (Hainzl et al., 2013) since they are known to lead189

to significant biases in the estimation (Marsan & Helmstetter, 2017; Marsan & Lengline,190

2008). In all cases, we find α < b implying that the overall event-event triggering budget is191

dominated by the more frequent smaller triggers instead of the fewer larger triggers (Gu et192

al., 2013).193

4.3 Temporal aftershock rates194

For a given event, the temporal rate of events it triggers varies with time. The insets of195

Fig. 3(a-d) display the daily aftershocks rates associated with triggers of magnitudem for our196

catalogs. In all cases, they follow approximately the OU relation λ(t) = K
(c+t)p over four to197

five decades, first established for tectonic earthquakes (Utsu et al., 1995; Davidsen & Baiesi,198

2016). Here, t denotes the time after the trigger or mainshock, c is a characteristic timescale199

— whose origin is still debated (Davidsen & Baiesi, 2016; Hainzl, 2016) — separating the200

constant rate regime from an algebraically decaying one with exponent p, and K determines201

the maximum rate. For all case, we find p ≈ 1, similar to what has been observed for tectonic202

earthquakes (Gu et al., 2013; Scholz, 2019). It is known that the used methodology has by203

construction a tendency to underestimate the true aftershock rates at late times (Davidsen204

& Baiesi, 2016) explaining the noticeably faster decay in the rates close to their respective205

maximum duration. Comparing the triggering rates for different trigger magnitudes, there206

is a general trend that the rates increase with m. Indeed, provided that c and p do not207

vary with m and mc is fixed, the aftershock productivity relation discussed above implies208

that on average K ∝ 10αm. This is directly tested in Fig. 3(a-d) by plotting λm(t)/10αm209

against t. For all catalogs, we obtain a very good scaling collapse onto a master curve for210

almost all data. A noticeable exception is the rate for m = 5.7 in the Yuha Desert case,211

which corresponds to a single (and the largest) aftershock sequence and, thus, the deviation212
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Figure 3. Rescaled aftershock rates λm(t)/10αm versus time t in a) Oklahoma and southern

Kansas b) the Yuha Desert, California c) Long Valley Caldera with b = 0.7,mc = 0.2 d) Long Valley

Caldera with b = 0.9,mc = 1.0 for different mainshock magnitude ranges with mean magnitude

m. Here, α denotes the productivity exponent as reported in Fig. 2. The (red) dash-dotted line

indicates t−p. The insets show the actual rates.

can likely be attributed to the natural variation in aftershock productivity discussed above.213

The scaling collapse on a master curve also shows that the Long Valley Caldera data in214

Fig. 3(c-d) may exhibit two different power-law regimes: an initial power-law with p ' 1.0215

at t < 10−2 (day) followed by a more rapid decay with exponent ' 2. Such a behavior216

is reminiscent of what has been observed in rock fracture (Davidsen et al., 2017; Baró &217

Davidsen, 2017). Fig. 3(a-d) also shows that only for the Yuha desert there are significant218

deviations from the master curve for smaller arguments indicating that c varies with the219

magnitude of the trigger, similar to what has been observed for tectonic earthquakes in220

southern California (Davidsen & Baiesi, 2016).221

4.4 Triggering topology222

Going beyond first generation of aftershocks, we focus on full triggering cascades or223

aftershock sequences. An aftershock sequence starts with a single (background) event that224

triggers its first generation of aftershocks, which in turn trigger the next generation of225

aftershocks and so on. This corresponds to the topology of a rooted tree (Zaliapin & Ben-226

Zion, 2013). In this representation, the ”leaf depth”, df , refers to the minimum number of227

generations between a given leaf (an event in the aftershock sequence that does not trigger an228

event) and the tree root. Averaging df over all leaves in a given tree provides insight into the229
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N
tc

d̄f d̄f d̄f d̄f

Figure 4. Number of events in the triggering cascade Ntc versus mean leaf depth d̄f in a)

Oklahoma and southern Kansas b) the Yuha Desert c) Long Valley Caldera with b = 0.7,mc = 0.2

d) Long Valley Caldera with b = 0.9,mc = 1.0. Symbol sizes represent magnitudes of the root

events. The magnitude of the smallest and largest event are a) 2.8− 5.8 b) 1.0− 5.7 c,d) 0.2− 3.5.

For the sake of clarity, a gray color scale is used indicating the relative density of overlapping data

points.

shape of the triggering cascade. A large size (total number of events) of a triggering cascade230

Ntc associated with a small d̄f indicates a burst-like topology, while small Ntc associated231

with a large d̄f indicates a swarm-like topology. Figure 4(a-d) displays scatter plots of232

the relationship between d̄f and Ntc. Comparing the different catalogs, we can identify233

both opposing behaviors. For the Long Valley Caldera in Fig. 4(c,d), the values of Ntc are234

comparatively small but d̄f can take on relatively large values, while the Yuha Desert data235

show the opposite behavior. Thus, the natural swarm in the Long Valley Caldera tends to236

exhibit indeed a swarm-like topology, while the suspected swarms in the Yuha Desert tend to237

exhibit a more burst-like topology. Fig. 4(a) shows that the induced seismicity in Oklahoma238

and southern Kansas largely exhibits swarm-like behavior consistent with other findings for239

induced seismicity (Maghsoudi et al., 2018). However, the second largest aftershock sequence240

initiated by the largest event has almost exclusively first generation aftershocks representing241

a clear burst structure, consistent with the classical aftershock paradigm (Zaliapin & Ben-242

Zion, 2013). This triggering cascade and other exemplary ones are shown in Figs. S4-S6 in243

the SM.244

5 Discussion245

Our analysis of (suspected) fluid-induced seismicity in Oklahoma and southern Kansas,246

the Yuha Desert, and the Long Valley Caldera has shown the relevance of event-event trig-247

gering in all cases. Overall, this triggering obeys the GR relation, the aftershock productivity248

relation, the OU aftershock rate, and the scaling of the spatial aftershock zone with main249

shock magnitudes. Table 1 summarizes the relevant scaling relations and presents the esti-250

mated exponents based on our analysis and based on three independent studies, two of which251

probe aftershocks in natural swarms (Hainzl et al., 2013; Llenos & Michael, 2019) within252

the framework of the Epidemic-Type Aftershock-Sequence (ETAS) model, and the final one253

studies aftershocks in tectonic settings (Gu et al., 2013) using the same methodology we do.254

255

There are a number of significant differences and commonalities in the scaling exponents256

that stand out. First, the aftershock productivity in Oklahoma and southern Kansas is high,257

α = 0.8, and comparable to tectonic systems in southern California. All other catalogs have258

smaller values with the Long Valley Caldera having the lowest, α ≈ 0.4. Low α values were259

previously reported in a number of natural settings involving earthquake swarms, analogous260

to the Caldera region (Hainzl & Ogata, 2005). In addition, an ETAS-based study pertaining261
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Location (Year) Type
Gutenburg-Richter

N ∝ 10−b(m−mc)

b mc

Productivity

Nas ∝ 10αm

α

Omori-Utsu

λ(t) ∝ t−p
p

Linear Density

ρ(r) ∝ r−ν
ν

Rupture Size

rrup ∝ 10σm

σ

Oklahoma
& southern Kansas
(2014−2017)

Fluid
Induced
(Man-made)

1.65 2.8 0.8 1.0 2.9 0.5

Long Valley Caldera,
California (2014 a)

Natural
Swarm

0.7 0.2 0.4 0.9 2.9 0.36

Long Valley Caldera,
California (2014 b)

Natural
Swarm

0.9 1.0 0.48 0.9 2.9 0.36

Yuha Desert,
California (2010)

Fluid
Induced
(Natural)

0.95 1.0 0.6 1.0 1.7 0.4

Western Bohemia,
Europe (2000 & 2008)

(Hainzl et al., 2013)

Natural
Swarm

0.9 & 1.25 0.5 0.61− 0.68 1.33− 1.37 − −

San Ramon,
California (1970−2015)

(Llenos & Michael, 2019)

Natural
Swarm

0.85 2.0 0.65 1.12 − −

Southern California
(1984−2005)

(Gu et al., 2013)

Tectonic 1.09 2.5 0.85− 0.9 1.2− 1.25 1.6 0.4

Table 1. Comparison between estimated parameters and scaling exponents associated with dif-

ferent seismic catalogs and settings.

to swarm activities in Arkansas (Llenos & Michael, 2013) (which resembles the setting in262

Oklahoma) found that natural fluid flows lead to a lower aftershock productivity prior to263

injection-induced activity, as evidenced by smaller numerical estimates for α as well as for264

the constant of proportionality in the productivity relation. This is consistent with our265

observations and studies of induced seismicity related to hydraulic fracturing (Maghsoudi266

et al., 2018) suggesting that α allows one to distinguish between natural and human-made267

seismic swarms.268

Second, the spatial density of aftershocks ρ(r) falls off rapidly in Oklahoma and southern269

Kansas as well as in the Long Valley Caldera (ν = 2.9), contrasted by long-range behavior270

in the Yuha Desert and also southern California with ν < 2. In tectonic settings, the271

slow inverse power-law behavior of the aftershocks density ρ(r) ∝ r−ν beyond the rupture272

length can be explained by non-local transfer of static (Coulomb) stress within the brittle273

crust (Moradpour et al., 2014; Hainzl et al., 2014; van der Elst & Shaw, 2015). Given274

comparable estimates of ν between southern California (Gu et al., 2013) and the Yuha275

Desert, it is likely that the event-event triggering in the Yuha Desert is also largely driven276

by static stress changes. The relevance of such a triggering mechanism is consistent with277

the findings of our topology-based analysis, since the emerging burstiness may indicate the278

non-local transfer of internal stress within a rigid elastic medium (Zaliapin & Ben-Zion,279

2013). On the other hand, our overall findings support that a rapid decay of the aftershock280

zone (with ν ≈ 3) is indicative of the dominant role of fluid migration. In particular, this281

mechanism might be relevant for induced events in Oklahoma and southern Kansas as well282

as for natural swarms in the Long Valley Caldera. Shelly et al. (2016) reported on the283

diffusive (and most likely localized) nature of the swarm propagation in the latter, which284

is another typical signature associated with various fluid-dominated contexts (Ruhl et al.,285

2016). In our study, swarm-like features were independently evidenced from the topology286

of triggering cascades in Caldera and (to a slightly lesser extent) Oklahoma.287

Narrow aftershock zones for Oklahoma and southern Kansas were independently re-288

ported in (Rosson et al., 2019) based on a spatio-temporal windowing approach. Rosson et289

al. (2019) argued that the absence of long-range triggering might also be due to structural290
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heterogeneities within the fault network in Oklahoma and southern Kansas, which could291

substantially constrain inter-fault activation in the region (Alt & Zoback, 2016). Similar292

arguments were made in (Shelly et al., 2016) pointing to the complex fault geometry in293

Caldera, which potentially led to confined swarm activities in this natural setting. Alto-294

gether, the complex interplay between fluid migration and local heterogeneities appear to295

control the spatial extent of aftershock triggering in Oklahoma as well as Caldera.296

As for the Omori exponent, Table 1 shows that p ≈ 1 appears to be a robust measure-297

ment although there is a slightly faster decay associated with natural swarms in Bohemia298

(Hainzl et al., 2013) and perhaps tectonic-based earthquakes in southern California, which299

is expected for strike-slip faulting (Tahir & Grasso, 2015). Despite being distinguishable300

in terms of spatial aftershocks densities and productivity, both Oklahoma and the Yuha301

Desert exhibit statistically similar temporal features. This is in line with recent observa-302

tions made by (Rosson et al., 2019) comparing the induced setting in Oklahoma with the303

tectonics-based seismicity in southern California. We note that the latter is known to have304

well-established seismic features (Gu et al., 2013), which are comparatively close to what we305

find for the Yuha Desert (Table 1). We observed analogous temporal properties between the306

Caldera and Oklahoma case studies that, along with spatial similarities, might be indicative307

of the swarm-type evolution in fluid-induced settings.308

6 Conclusions309

We have identified common features of event-event triggering between human-made and310

natural seismicity in fluid-driven contexts. Two natural case studies, Long Valley Caldera311

and the Yuha Desert, were used as benchmarks, in which the fluid migration was (partially)312

involved. We recovered essential features of natural swarm-like activities in injection-induced313

seismicity in Oklahoma and southern Kansas. Most remarkably, the “swarminess” mani-314

fested itself in narrow spatial aftershock zones and associated triggering topology that did315

not match tectonic mainshock-aftershock sequences in addition to the absence of B̊ath’s law.316

Finally, high aftershock productivity associated with human-made swarms appears to be a317

robust indicator making them distinguishable from naturally-induced swarms, which is of318

direct importance for earthquake forecasting and seismic hazard analysis.319
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