Asymmetric Responses of the Western Tropical Pacific Sea Level to El Niño and La Niña

WANG Fan¹, Ren Qiuping², Li Yuanlong³, Zheng Fei⁴, and Duan Jing⁵

¹Institute of Oceanology, Chinese Academy of SciencesQingdao, China ²Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences ³Institute of Oceanology, Chinease Academy of Sciences ⁴Institute of Atmospheric Physics ⁵Institute of Oceanology, Chinese Academy of Sciences

November 16, 2022

Abstract

The western tropical Pacific (WTP) exhibits large interannual sea level anomalies (SLAs), and the sea level falling in El Niño is evidently stronger than the rising in La Niña. The asymmetry is most prominent near 160°E with the response to El Niño larger by three times and becomes less obvious near the western boundary. Sensitivity experiments of a simplified ocean model suggest that the asymmetry in surface wind forcing structure between El Niño and La Niña is critical. The El Niño's westerly wind anomaly patch locates more east than the La Niña's easterly wind patch during the mature stage, and its upwelling effects are accumulated over a wider longitude range and cause stronger negative SLAs in the WTP. Near the western boundary, however, upwelling effects are attenuated by easterly wind anomalies during El Niño conditions. The asymmetric ocean responses to ENSO winds may participate in the asymmetry of ENSO cycle.

2	Asymmetric Responses of the Western Tropical Pacific Sea Level to
3	El Niño and La Niña
4	Qiuping Ren ^{1,2} , Yuanlong Li ^{1,3,4} , Fei Zheng ^{3,5} , Fan Wang ^{1,2,3,4,*} ,
5	Jing Duan
6	
7	¹ Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of
o Q	² University of Chinese Academy of Sciences Beijing China
10	³ Center for Ocean Mega-Science, Chinese Academy of Sciences, Derjing, China,
11	⁴ Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine
12	Science and Technology, Qingdao, China,
13	'International Center for Climate and Environment Science, Institute of Atmospheric Physics, Chinese
14	Academy of Sciences, Beijing, Unina,

April 2020

Fan Wang

^{*}Corresponding Author:

Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. **Email:** <u>fwang@qdio.ac.cn</u>

16 Key Points.

17	1)	The responses of the western tropical Pacific sea level to ENSO are
18		obviously asymmetric, and the response to El Niño is evidently stronger.
19	2)	The different surface wind anomaly structure between El Niño and La Niña
20		is critical for the asymmetric response of sea level.
21	3)	The asymmetric ocean responses to ENSO may contribute to the ENSO
22		asymmetry.

23 Abstract

24	The western tropical Pacific (WTP) exhibits large interannual sea level
25	anomalies (SLAs), and the sea level falling in El Niño is evidently stronger than the
26	rising in La Niña. The asymmetry is most prominent near 160°E with the response to
27	El Niño larger by three times and becomes less obvious near the western boundary.
28	Sensitivity experiments of a simplified ocean model suggest that the asymmetry in
29	surface wind forcing structure between El Niño and La Niña is critical. The El Niño's
30	westerly wind anomaly patch locates more east than the La Niña's easterly wind patch
31	during the mature stage, and its upwelling effects are accumulated over a wider
32	longitude range and cause stronger negative SLAs in the WTP. Near the western
33	boundary, however, upwelling effects are attenuated by easterly wind anomalies
34	during El Niño conditions. The asymmetric ocean responses to ENSO winds may
35	participate in the asymmetry of ENSO cycle.

36 Plain Language Summary

ENSO is the most influential climate variability mode of the Pacific and causes 37 strong interannual sea level anomalies (SLAs) in the western tropical Pacific (WTP). 38 We notice that the WTP's sea level falling in El Niño condition is stronger than its sea 39 level rising in La Niña. This difference is most prominent near 160°E, where the 40 falling in El Niño is stronger by three times. This phenomenon becomes much less 41 evident near the western boundary of the Pacific basin. We find that the difference in 42 surface wind anomaly structures between El Niño and La Niña is the primary cause. 43 El Niño's westerly wind anomaly center locates more east than La Niña's easterly 44

45	wind anomaly center in their mature phase, and there are easterly wind anomalies
46	emerging near the western boundary during El Niño. Therefore, effect of El Niño's
47	westerly wind anomaly is accumulated over a wider longitude range and causes
48	stronger sea level falling in the WTP. But this effect becomes weaker near the western
49	boundary, due to easterly wind anomalies there. By contrast, effect of La Niña's
50	easterly wind anomaly strengthens monotonically from east to west, but the produced
51	sea level rising signatures are mainly confined to the WTP.
52	Keywords

- 53 Western Tropical Pacific, Sea Level, ENSO, ENSO asymmetry, Interannual
- 54 Variability

1. Introduction

56	Regional sea level change, as an essential aspect of climate change, is attracting
57	increasing attention of scientific communities and the general public, because of its
58	threats on eco-systems and people of coastal residence (e.g., Nicholls & Cazenave,
59	2010; Cazenave & Cozannet, 2014). There is a paramount demand for improved
60	understanding of regional sea level changes on various timescales (e.g., Milne et al.,
61	2009; Church et al., 2013; Stammer et al., 2013). Sea level changes over the tropical
62	Pacific Ocean are particularly pronounced on interannual timescale, as largely
63	modulated by El Niño-Southern Oscillation (ENSO) (e.g., Cazenave et al., 2008;
64	Antonov et al., 2005; Cheng et al., 2008). It is evident in Figure 1a that the western
65	tropical Pacific (WTP) shows stronger interannual sea level anomalies (SLAs) than
66	other regions, as quantified the standard deviation of low-passed SLAs. The WTP
67	shows strong sea level rising (falling) during the La Niña (El Niño) condition, as a
68	result of prevailing easterly (westerly) wind anomalies over the tropical Pacific basin
69	(Wyrtki, 1975; Zebiak, 1984; Alory & Delcroix, 2002; Gu & Li, 2009; Nerem et al.,
70	2010; Merrifield, 2011; Zhang & Church, 2012; Chang et al., 2013; Becker et al.,
71	2016; Hamlington et al., 2016; Wang, 2018). The sea level rising during La Niña
72	conditions is expected to aggravate coastal erosion, extreme marine flooding, or
73	saltwater intrusion in coastal aquifers (Nicholls & Tol, 2006; Nicholls et al., 2007;
74	Nicholls & Cazenave, 2010), thus becomes a major threat for the densely populated
75	coastal regions. However, the sea level falling during El Niño causes the coral reef
76	exposure and could damage the region's ecosystem. There are many

heavily-populated coasts and islands in the WTP, so the sea level changes duringENSO are well worth studying.

79	El Niño and La Niña are, however, not mirrors of each other. They exhibit
80	obvious asymmetry in magnitude, duration time, and occurrence frequency (e.g., Yu
81	et al., 1997; Burgers & Stephenson, 1999; Ohba & Ueda, 2007; Gergis & Fowler,
82	2009; An & Choi, 2009; Okumura & Deser, 2010). Their signatures on sea level are
83	also asymmetric, owing to not only ENSO's asymmetry but also the nonlinearity in
84	ocean response (Niedzielski & Kosek, 2010; Swierczynska et al., 2013; Im et al.,
85	2015; An & Kim, 2017). Previous studies have demonstrated that ENSO asymmetry is
86	contributed by nonlinear dynamical heating of ocean current advection (e.g., Kang &
87	Kug, 2002; Jin et al., 2003; An & Jin, 2004; Su et al., 2010). As dynamically
88	associated with the upper-ocean currents through pressure gradient, the asymmetric
89	SLAs induced by ENSO may affect ocean current advection of heat and thereby
90	participate in the ENSO asymmetry.
91	In this study, we aim to investigate the asymmetric response of the WTP sea
92	level to ENSO and the underlying dynamical processes. This effort is of paramount
93	need for the prediction and projection of regional sea level change and adaptions of
94	the low-lying coasts and islands, as well as for understanding the dynamics of ENSO
95	asymmetry. The rest of the paper is structured as follows. Section 2 describes the data
96	and models. Section 3 describes the asymmetric SLAs of the WTP in response to
97	ENSO. Section 4 explores the underlying dynamics through a simplified ocean model.
98	Section 5 presents concluding remarks.

2. Data and Models

2.1. Data

101	In this study we use $0.25^{\circ} \times 0.25^{\circ}$, monthly satellite SLA data of 1993-2016
102	from Archiving Validation, and Interpretation of Satellite Oceanography (AVISO; Le
103	Traon et al., 1998) and sea level records of three tidal gauge stations in the WTP:
104	Malakal at 7.33°N, 134.45°E for 1979-2016, Kapingamrangi at 1.1°N, 154.78°E for
105	1929-2016, and Lombrum at 2.04°S, 147.47°E for 1995-2016 (Figure S1 in the
106	Supporting Information). The Hadley Centre Sea Ice and Sea Surface Temperature
107	(HadISST) data set (Kennedy et al., 2011) of the Met Office during 1979-2016 with
108	horizontal resolution of $1^{\circ} \times 1^{\circ}$ is used to compute Niño-3.4 index and identify El
109	Niño and La Niña conditions. Surface winds and other surface atmospheric fields of
110	1979-2016 are taken from the 0.75° monthly dataset of the European Centre for
111	Medium-Range Weather Forecasts (ECMWF) ERA-interim (Dee et al., 2011).
112	2.2. НУСОМ
113	The HYbrid Coordinate Ocean Model (HYCOM) version 2.2.18 (Bleck, 2002)
114	are used to simulate interannual SLAs in the tropical Pacific Ocean. HYCOM is
115	configured to the Pacific Ocean basin between 48°S-48°N, 110°E-70°W, with a
116	horizontal resolution of $1/3^{\circ} \times 1/3^{\circ}$ and 26 hybrid vertical layers (Li et al., 2015; Ren et
117	al., 2020). Surface atmospheric forcing fields (winds, heat fluxes, precipitation, etc.)
118	are taken from ERA-interim. Three sponge layers are applied to the western, southern
119	and northern open-ocean boundaries, where model temperature and salinity are
120	related to the World Ocean Atlas 2009 (WOA09) climatology (Antonov et al., 2010).

121	More details of model configuration are described in Ren et al. (2020). Subsequent to
122	the spin-up run of 30 years under monthly climatologic forcing, two parallel
123	experiments are performed under daily ERA-Interim fields for the period of
124	1979-2016. The control run (HYCOM-CTL) is forced with the original daily
125	atmospheric fields and assumed to contain the complete processes. This experiment
126	can well reproduce the amplitude and spatial distribution of interannual SLA and
127	upper-ocean circulation variation in observation (Figure 1b; Ren et al., 2020). Another
128	experiment, HYCOM-TAU, uses daily wind stress forcing as HYCOM-CTL, but all
129	the other forcing fields (heat and freshwater fluxes) are fixed to monthly climatology.
130	HYCOM-TAU is used to evaluate the effects of wind forcing on sea level.

2.3. Reduced-Gravity Ocean Model

132	To achieve more in-depth understanding, a series of experiments are performed
133	with a 1.5-layer nonlinear reduced-gravity ocean (RGO) model. This model mainly
134	represents the 1 st -mode baroclinic response of the ocean to surface wind forcing,
135	which is the dominant source of large-scale interannual variability in sea level and
136	upper-ocean circulation of the WTP (e.g., Qiu & Chen, 2010, 2012). The model is
137	configured to the Pacific Ocean basin between 40°S-40°N, 100°E-70°W with
138	horizontal resolutions of $0.25^{\circ} \times 0.25^{\circ}$ and forced by monthly ERA-Interim surface
139	winds. Readers are referred to Duan et al. (2019) for more details of the model
140	configuration. After a spin-up of 10 years under climatological wind forcing, the
141	control run of RGO model (RGO-CTL) is forced by realistic monthly winds. RGO
142	model experiments (Table S1) are forced by idealized wind forcing to examine the

role of wind forcing asymmetry and are described in Section 4.

144	3. Asymmetric Responses to El Niño and La Niña

145	To highlight the interannual variations associated with ENSO, we analyze the
146	13-month low-pass filtered anomaly fields with the monthly climatology removed.
147	Skewness S is a measure of the distribution asymmetry with $S = 0$ indicating a normal
148	distribution (White, 1980). Figure 1c shows the skewness of the observed SLA over
149	the tropical Pacific for 1993-2016. The eastern tropical Pacific is positively skewed
150	with the maximum S of ~2.0, while the central-western tropical Pacific is negatively
151	skewed with the minimum S of -2.0 and a horseshoe structure extending from the
152	equator to extratropical regions in both hemispheres. This distribution of SLA
153	skewness resembles that of SST anomaly (An & Jin, 2004; Niedzielski & Kosek,
154	2010) and is likely associated with the positive skewness of ENSO (Nerem et al.,
155	2010). The El Niño condition is characterized by positive SLAs in the eastern Pacific
156	and negative SLAs in the WTP, and these anomalies are stronger in amplitude than
157	the opposite SLAs occurring in La Niña condition (Niedzielski & Kosek, 2010;
158	Figure S1).
159	In addition to the asymmetry residing in ENSO (e.g., as quantified by the
160	skewness of Niño-3.4 index), the asymmetric responses of sea level to El Niño and La
161	Niña also contribute to the SLA asymmetry shown in Figure 1c. We regress SLAs
162	onto the normalized Niño-3.4 index separately for the El Niño condition (Niño-3.4 $>$
163	0) and the La Niña condition (Niño- $3.4 < 0$). The corresponding regression
164	coefficients, namely k_{Nino} and k_{Nina} , are used to quantify the responses of SLA to El

165	Niño and La Niña, respectively (Figures 1d and 1e). The response time of sea level to
166	ENSO shows spatial variation, as indicated by the lead-lag correlation (Figure S2a).
167	For each grid point, the lead-lag time of the maximal correlation is used to compute
168	the regression coefficient. The results are not dramatically different from those of
169	simultaneous regression (Figure S2b). Figures 1d and 1e show distributions of k_{Nino}
170	and k_{Nina} . In the WTP, the maximal k_{Nino} of ~-0.2 m is located 20°-30° away from the
171	western boundary, and k_{Nino} decreases in magnitude as approaching the western
172	boundary. By contrast, the peak k_{Nina} values of ~-0.15 m are close to the western
173	boundary. We further use the ratio of k_{Nino} to k_{Nina} to quantify the response asymmetry,
174	$R_k = \frac{k_{Nino}}{k_{Nina}}.$ (1)
175	$R_k = 1$ denotes symmetric response of SLAs to El Niño and La Niña, while $R_k > 1$ and
176	$R_k < 1$ indicates stronger and weaker response to El Niño than to La Niña, respectively.
177	As shown in Figure 1f, R_k reaches the largest value near 160°E with values exceeding
178	3.0, indicating that the response of SLA to El Niño is stronger by at least 3 times than
179	the response to La Niña. R_k is weakened to ~1.0 near the western boundary, implying
180	SLA responses there are nearly symmetric. This interesting distribution of R_k in the
181	WTP and underlying dynamics are worthy of systematic investigation. One may
182	notice that R_k is < 1 in the central Pacific and is > 1 in the eastern Pacific, indicative
183	of prevailing asymmetry over the tropical Pacific basin. In the following, we focus on
184	explaining the R_k distribution in the WTP.
185	Simulations of HYCOM and RGO model have faithfully reproduced the
186	observed interannual variations of sea level at three tidal gauge stations (Figure S3).

187	The upper-layer thickness (ULT) anomaly of the 1.5-layer RGO model is a good	
188	proxy of SLA in the tropical Pacific (e.g., Qiu & Chen, 2010, 2012; Chang et al., 2013;	
189	Duan et al., 2019). The correlations among AVISO, HYCOM-CTL, HYCOM-TAU	
190	and RGO-CTL at the three tidal gauge stations are all above 0.85. The asymmetric	
191	responses of SLAs to El Niño and La Niña in the WTP during 1993-2016 can be	
192	realistically reproduced by HYCOM-CTL, HYCOM-TAU, and RGO-CTL (Figures	
193	2a-2c), although RGO-CTL fails to capture the features in the eastern Pacific. The	
194	good performance of HYCOM-TAU and RGO-CTL indicates that the interannual	
195	SLAs in the WTP and their asymmetric features are primarily the results of ENSO	
196	wind forcing, and the underlying dynamics can be explored by sensitive model	
197	experiments with prescribed wind forcing fields.	
198	4. Dynamics	

199 To include more ENSO events, we use the period of 1979-2016 to perform 200 model experiments (Table S1), although R_k of 1979-2016 shows detailed differences 201 from that of 1993-2016 in the northwest Pacific (Figures 2d-2f). According to existing 202 studies of ENSO asymmetry, the different spatial and temporal characteristics of wind 203 anomalies are essential to cause the SST asymmetry between El Niño and La Niña 204 (Kang & Kug, 2002; An & Kim, 2017). To examine which aspect of ENSO's wind 205 forcing is critical in regulating the asymmetric responses of SLAs, we adopt a 206 statistical model based on the singular value decomposition (SVD) of wind stress and 207 SST (Kang & Kug, 2000), which is expressed as

208
$$\mathbf{\tau}'(x, y, t) = \sum_{n}^{N} c(n) \left[\sum_{x, y} V_{\text{SST}}(x, y, n) T(x, y, t) \right] V_{\tau}(x, y, n),$$
(2)

where *x*, *y*, and *t* represent longitude, latitude, and time, respectively, V_{SST} and $V\tau$ are the SVD singular vectors for SST and wind stress, *T* is the SST anomaly field, and *n* = 1, 2, ..., *N* indicates the *n*th mode of SVD, $\sum_{x,y}$ indicates spatial integration over the region of 100°-290°E, 40°S-40°N. *c*(*n*) represents the correlation between SST and wind stress anomalies,

214

$$c(n) = \frac{\sum_{t} t_{\text{SST}}(t,n) t_{\tau}(t,n)}{\sum_{t} t_{\text{SST}}(t,n)^2} , \qquad (3)$$

where t_{SST} and $t\tau$ are the corresponding time series, the numerator is the covariance of t_{SST} and $t\tau$ and the denominator is the variance of t_{SST} , and \sum_t indicates temporal integration from January 1979 to December 2016. Zonal and meridional components of τ' are separately computed. All the RGO sensitive experiments are forced by monthly wind stress anomalies constructed by Eq. 2 (representing ENSO wind forcing) plus monthly climatological winds.

We first perform two experiments, namely EXP1 and EXP2. EXP1 uses different

222 wind stress anomaly fields for El Niño and La Niña conditions. Specifically, τ'_{Nino} and

223 τ'_{Nina} are reconstructed separated for Niño-3.4 \geq 0 and Niño-3.4 \leq 0 conditions

(Figures S4a and S4b) using Eq. 2, respectively, so that the synthesized τ ' still retains

the difference in spatial structure between El Niño and La Niña conditions. By

contrast, EXP2 does not distinguish El Niño and La Niña conditions and uses

reconstructed τ' for the entire model period (Figure S4c). As such, the difference

between EXP1 and EXP2 represents the effect of different wind anomaly structures

- between El Niño and La Niña on SLAs. In EXP1 and EXP2, we use only the leading
- 230 mode (n = 1) of SVD to reconstruct τ' (Figure S4), which explains > 85% of the total

231	covariance and mainly represents ENSO's mature phase (Figure S5). The higher SVD		
232	modes largely represent the transition stages between El Niño and La Niña polarities		
233	(Figure S5) and have limited impacts on the asymmetry of SLAs (Figure S6).		
234	Figures 3a and 3b show R_k distributions of ULT produced by EXP1 and EXP2,		
235	respectively. EXP1 is able to reproduce large R_k values in the WTP as RGO-CTL,		
236	whereas R_k is generally close to 1.0 in EXP2. These results suggest that the		
237	asymmetry in surface wind structures between El Niño and La Niña is largely		
238	responsible for asymmetric responses of the WTP sea level. Note that EXP2 still		
239	retains some asymmetric characteristics of ENSO winds, such as the asymmetries in		
240	intensity, frequency, and temporal evolution. Figure 3b however indicates that these		
241	factors have little contributions to SLA asymmetry. This is confirmed by an additional		
242	experiment EXP3, which adopts an idealized sine time series for τ' (Table S1) and		
243	achieves similar results to EXP2 (Figure S7).		
244	In the equatorial zone, zonal component of wind stress τ^x is much more		
245	influential for the ocean than the meridional component. We repeat EXP1 and EXP2		
246	using only τ^x anomaly, and τ^y is fixed to monthly climatology (EXP1-TAUX and		
247	EXP2-TAUX). The results of two experiments achieve are broadly consistent with		
248	EXP1 and EXP2 (Figures 3c and 3d). Therefore, the spatial structure of τ^x is critical		
249	for the asymmetric responses. The typical structures of ULT and τ^x in EXP1-TAUX		
250	for warm and cold phases are shown in Figures 3e and 3f, respectively, as represented		
251	by the leading SVD mode of τ^x and ULT. Notice that westerly wind anomaly patch of		
252	El Niño locates more east than the easterly wind anomaly patch of La Niña in their		

mature phase, and correspondingly the zero value of ULT anomaly of El Niño also
locates more east (Jin, 1997; Kang & Kug, 2002). During El Niño there are easterly
wind anomalies near the western boundary. The strong negative ULT anomalies in El
Niño are seen over a wide longitude range and weaken as approaching the western
boundary, while the positive ULT anomalies in La Niña are confined to the far WTP
and generally strengthen westward.

To better elucidate how the wind forcing structure cause asymmetric SLAs, we show in Figure 4 the zonal distributions of τ^x and ULT in the equatorial band (5°S-5°N). It is clearly discernible in Figure 4a that the El Niño's westerly wind anomaly patch locates more east than the La Niña's easterly wind anomaly patch. The

263 forcing effect of equatorial zonal wind stress on sea level and ULT slopes can be

roughly expressed in a linear relationship (Sverdrup, 1947; McCreary, 1977; Alory &

265 Delcroix, 2002; Palanisamy et al., 2014),

266

$$\frac{dh}{dx} = \tau^x,\tag{4}$$

where *h* is ULT anomaly or SLA. Therefore, h(x) at a given longitude *x* can be

determined by the integration of Eq. (4) from the eastern boundary $x_E = 70^{\circ}$ W along equator,

270
$$h(x) = h(x_E) + \int_{x_E}^x \tau^x \, dx.$$
 (5)

Since $h(x_E)$ diffuses quickly away from the eastern boundary as free Rossby waves and has little impact on the interior Pacific (Qiu et al., 2013), h(x) is primarily determined by the zonal integral of τ^x from x_E to x (second term). As such, the negative ULT anomaly in El Niño in the WTP is much stronger than the positive ULT

275	anomaly in La Niña owing to the much wider westerly wind anomaly patch to its east.	
276	West of 160°E, easterly wind anomaly near the western boundary causes downwelling	
277	of the ocean, resulting in the attenuation of negative ULT anomalies there. By contrast,	
278	the La Niña's positive ULT anomalies are continuously strengthened by easterly wind	
279	anomalies. As a result, the ULT anomalies of El Niño and La Niña are comparable in	
280	amplitude in the far WTP, and the asymmetry of response is no longer evident there	
281	(right panel of Figure 4a). In EXP2-TAUX (Figure 4b), without the difference in wind	
282	forcing structure (left panel), the asymmetric responses cannot be reproduced (middle	
283	and right panels).	
284	Figure 4c shows the zonal distributions of ULT anomaly and regression	
285	coefficients predicted by the linear theory, which compare favorably with Figure 4a. It	
286	indicates that the linear theory can to a large extent capture the processes causing	
287	asymmetric responses to ENSO winds and confirms the critical role played by the	

structure of zonal wind anomaly. Under this theoretical framework, the response

asymmetry R_k can be theoretically expressed as,

290
$$R_k(x) \approx \frac{\int_{x_E}^x \tau^x_{Nino} dx}{\int_{x_E}^x \tau^x_{Nina} dx} , \qquad (6)$$

where τ^{x}_{Nino} and τ^{x}_{Nina} are the zonal wind stress anomaly in El Niño and La Niña conditions, respectively. Eq. (6) clearly suggests the sensitivity of $R_{k}(x)$ to the distribution of τ^{x} from x to the eastern boundary.

294 5. Concluding Remarks

295 The WTP exhibits large interannual variations of sea level, and the sea level

296	falling in El Niño is stronger than the rising in La Niña. Here we show that this		
297	asymmetry is most prominent near 160°E with the response to El Niño larger by \sim 3		
298	times and becomes much less obvious near the western boundary. RGO model		
299	experiments suggest that the asymmetric surface wind anomaly structure between El		
300	Niño and La Niña conditions is critical. El Niño's westerly wind anomaly patch		
301	locates more east than La Niña's easterly wind anomaly patch in their mature stages.		
302	As such, the upwelling effects of westerly wind anomalies are accumulated over a		
303	wider longitude range and cause stronger negative SLAs in the WTP. As approaching		
304	further toward the western boundary, positive SLAs in La Niña continue to amplify,		
305	while negative SLAs of El Niño are attenuated by easterly wind anomalies in the far		
306	WTP.		
307	Here we reveal the sensitivity of the asymmetric SLAs in the WTP to the ENSO		
308	wind structures. It is interesting to investigate whether the asymmetric SLAs in turn		
309	contributes to the ENSO asymmetry in amplitude and temporal evolutions. This can		
310	be investigated through careful heat budget analysis that evaluate the effects of		
311	asymmetric current advection on SST variability. In addition, the zonal surface wind		
312	patch dominates the SLA asymmetry along the equator, and its off-equatorial structure		
313	may affect the asymmetry beyond the equator by modifying the wind stress curl (An		
314	& Bong, 2016). In addition to wind forcing, the effects of local nonlinear processes,		
315	such as mesoscale eddies, on sea level in the WTP are not resolved by the RGO		
316	model experiments (Chen et al., 2015; Qiu et al., 2015), which can be also examined		
317	in the future study.		

318 Acknowledgments

This research is supported by National Natural Science Foundation of China (grants 41730534 and 41806014) and the National Program on Global Change and Air-Sea Interaction (grant GASI-IPOVAI-01-01). AVISO sea level data are available at http://marine.copernicus.eu/services-portfolio/access-to-products/. Tidal gauges data are available at <u>https://www.psmsl.org/</u>. ERA-Interim wind data are available at https://apps.ecmwf.int/datasets/. HadISST data are downloaded from Met-Office website <u>https://www.metoffice.gov.uk/hadobs/</u>.

327 **References**

328	Alory, G., and T. Delcroix (2002), Interannual sea level changes and associated mass
329	transports in the tropical Pacific from TOPEX/Poseidon data and linear model
330	results (1964-1999), Journal of Geophysical Research-Oceans, 107(C10), doi:
331	10.1029/2001jc001067.
332	An, S. I., and F. F. Jin (2004), Nonlinearity and asymmetry of ENSO, Journal of
333	Climate, 17(12), 2399-2412, doi:
334	10.1175/1520-0442(2004)017<2399:naaoe>2.0.co;2.
335	An, SI., and J. Choi (2009), Seasonal locking of the ENSO asymmetry and its
336	influence on the seasonal cycle of the tropical eastern Pacific sea surface
337	temperature, Atmospheric Research, 94(1), 3-9, doi:
338	10.1016/j.atmosres.2008.09.029.
339	An, SI., and H. Bong (2016), Inter-decadal change in El Nino-Southern Oscillation
340	examined with Bjerknes stability index analysis, Climate Dynamics, 47(3-4),
341	967-979, doi: 10.1007/s00382-015-2883-8.
342	An, SI., and JW. Kim (2017), Role of nonlinear ocean dynamic response to wind
343	on the asymmetrical transition of El Nino and La Nina, Geophysical Research
344	Letters, 44(1), 393-400, doi: 10.1002/2016gl071971.

- Antonov, J. I., S. Levitus, and T. P. Boyer (2005), Thermosteric sea level rise,
- 346 1955-2003, Geophysical Research Letters, 32(12), doi: 10.1029/2005gl023112.
- 347 Antonov, J., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., et al.
- 348 (2010). World ocean atlas 2009. In S. Levitus (Ed.), Salinity (Vol. 2, pp. 184).

349	Washington, DC: US Gov. Print. Off.Bleck, R. (2002), An oceanic general			
350	circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean			
351	Modelling, 4(1), 55-88, doi: 10.1016/s1463-5003(01)00012-9.			
352	Becker, M., B. Meyssignac, C. Letetrel, W. Llovel, A. Cazenave, and T. Delcroix			
353	(2012), Sea level variations at tropical Pacific islands since 1950, Global and			
354	Planetary Change, 80-81, 85-98, doi: 10.1016/j.gloplacha.2011.09.004.			
355	Burgers, G., and D. B. Stephenson (1999), The "normality" of El Nino, Geophysical			
356	Research Letters, 26(8), 1027-1030, doi: 10.1029/1999gl900161.			
357	Cazenave, A., and G. Le Cozannet (2014), Sea level rise and its coastal impacts,			
358	Earths Future, 2(2), 15-34, doi: 10.1002/2013ef000188.			
359	Cazenave, A., A. Lombard, and W. Llovel (2008), Present-day sea level rise: A			
360	synthesis, Comptes Rendus Geoscience, 340(11), 761-770, doi:			
361	10.1016/j.crte.2008.07.008.			
362	Chang, YT., L. Du, SW. Zhang, and PF. Huang (2013), Sea level variations in the			
363	tropical Pacific Ocean during two types of recent El Nino events, Global and			
364	Planetary Change, 108, 119-127, doi: 10.1016/j.gloplacha.2013.06.001.			
365	Chen, L., Y. Jia, and Q. Liu (2015), Mesoscale eddies in the Mindanao Dome region,			
366	Journal of Oceanography, 71(1), 133-140, doi: 10.1007/s10872-014-0255-3.			
367	Cheng, X., Y. Qi, and W. Zhou (2008), Trends of sea level variations in the			
368	Indo-Pacific warm pool, Global and Planetary Change, 63(1), 57-66, doi:			
369	10.1016/j.gloplacha.2008.06.001.			
370	Church, J. A., et al. (2013), Sea-Level Rise by 2100, Science, 342(6165), 1445-1445,			

- doi: 10.1126/science.342.6165.1445-a.
- 372 Dee, D. P., et al. (2011), The ERA-Interim reanalysis: configuration and performance
- of the data assimilation system, Quarterly Journal of the Royal Meteorological
- 374 Society, 137(656), 553-597, doi: 10.1002/qj.828.
- 375 Duan, J., Y. Li, F. Wang, and Z. Chen (2019), Multidecadal Change of the Mindanao
- 376 Current: Is There a Robust Trend?, Geophysical Research Letters, 46(12),
- 377 6755-6764, doi: 10.1029/2019gl083090.
- 378 Gergis, J. L., and A. M. Fowler (2009), A history of ENSO events since AD 1525:
- implications for future climate change, Climatic Change, 92(3-4), 343-387, doi:
- 380 10.1007/s10584-008-9476-z.
- Xiao-li, G. U., and L. I. Pei-liang (2009), Pacific sea level variations and its factors,
- 382 Acta Oceanologica Sinica, 31(1), 28-36.
- Hamlington, B. D., S. H. Cheon, P. R. Thompson, M. A. Merrifield, R. S. Nerem, R.
- R. Leben, and K. Y. Kim (2016), An ongoing shift in Pacific Ocean sea level,
- Journal of Geophysical Research-Oceans, 121(7), 5084-5097, doi:
- 386 10.1002/2016jc011815.
- 387 Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin (2015), Feedback processes responsible
- 388 for El Nino-La Nina amplitude asymmetry, Geophysical Research Letters,
- 389 42(13), 5556-5563, doi: 10.1002/2015gl064853.
- Jin, F. F. (1997), A theory of interdecadal climate variability of the North Pacific
- 391 ocean-atmosphere system, Journal of Climate, 10(8), 1821-1835, doi:
- 392 10.1175/1520-0442(1997)010<1821:atoicv>2.0.co;2.

393	Jin, F. F., J. S.	Kug, S. I. An,	and I. S. Kang	(2003), A near-annual	l coupled
		U,	U U		

- 394 ocean-atmosphere mode in the equatorial Pacific ocean, Geophysical Research
- Letters, 30(2), doi: 10.1029/2002gl015983.
- Kang, I. S., and J. S. Kug (2002), El Nino and La Nina sea surface temperature
- anomalies: Asymmetry characteristics associated with their wind stress
- anomalies, Journal of Geophysical Research-Atmospheres, 107(D19), doi:
- 399 10.1029/2001jd000393.
- 400 Kang, I. S., and J. S. Kug (2000), An El-Nino prediction system using an intermediate
- 401 ocean and a statistical atmosphere, Geophysical Research Letters, 27(8),
- 402 1167-1170, doi: 10.1029/1999gl011023.
- 403 Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby (2011),
- 404 Reassessing biases and other uncertainties in sea surface temperature
- 405 observations measured in situ since 1850: 2. Biases and homogenization, Journal

406 of Geophysical Research-Atmospheres, 116, doi: 10.1029/2010jd015220.

- 407 Le Traon, P. Y., F. Nadal, and N. Ducet (1998), An improved mapping method of
- 408 multisatellite altimeter data, Journal of Atmospheric and Oceanic Technology,

409 15(2), 522-534, doi: 10.1175/1520-0426(1998)015<0522:aimmom>2.0.co;2.

- 410 Li, Y., and W. Han (2015), Decadal Sea Level Variations in the Indian Ocean
- 411 Investigated with HYCOM: Roles of Climate Modes, Ocean Internal Variability,
- and Stochastic Wind Forcing, Journal of Climate, 28(23), 9143-9165, doi:
- 413 10.1175/jcli-d-15-0252.1.
- 414 McCreary, J. (1976), Eastern Tropical Ocean Response to Changing Wind

415	System-with Application to El Nino, Journal of Physical Oceanography, 6(5),		
416	632-645, doi: 10.1175/1520-0485(1976)006<0632:etortc>2.0.co;2.		
417	Merrifield, M. A. (2011), A Shift in Western Tropical Pacific Sea Level Trends during		
418	the 1990s, Journal of Climate, 24(15), 4126-4138, doi: 10.1175/2011jcli3932.1.		
419	Milne, G. A., W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea (2009), Identifying		
420	the causes of sea-level change, Nature Geoscience, 2(7), 471-478, doi:		
421	10.1038/ngeo544.		
422	Nerem, R. S., D. P. Chambers, C. Choe, and G. T. Mitchum (2010), Estimating Mean		
423	Sea Level Change from the TOPEX and Jason Altimeter Missions, Marine		
424	Geodesy, 33, 435-446, doi: 10.1080/01490419.2010.491031.		
425	Nicholls, R. J., and R. S. J. Tol (2006), Impacts and responses to sea-level rise: A		
426	global analysis of the SRES scenarios over the twenty-first century, Philos. Trans.		
427	R. Soc. A Math. Phys. Eng. Sci., 364(1841), 1073-1095,		
428	doi:10.1098/rsta-2006.1754.		
429	Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S.		
430	Ragoonaden, and C. D. Woodroffe (2007), Coastal systems and low-lying areas,		
431	in Climate Change 2007: Impacts, Adaptation and Vulnerability. Fourth		
432	Assessment Report of the Intergovernmental Panel on Climate Change (IPCC,		
433	2007), edited by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden,		
434	and C. E. Hanson, Cambridge University Press, Cambridge, UK. pp. 315–356.		
435	Nicholls, R. J., and A. Cazenave (2010), Sea-level rise and its impact on coastal zones		
436	(June, pg 1517, 2007), Science, 329(5992), 628-628.		

437	Niedzielski, T., and W. Kosek (2010), El Nino's Impact on the Probability Distribution
438	of Sea Level Anomaly Fields, Polish Journal of Environmental Studies, 19(3),
439	611-620.
440	Ohba, M., and H. Ueda (2007), An impact of SST anomalies in the Indian ocean in
441	acceleration of the El Nino to La Nina transition, Journal of the Meteorological
442	Society of Japan, 85(3), 335-348, doi: 10.2151/jmsj.85.335.
443	Okumura, Y. M., and C. Deser (2010), Asymmetry in the Duration of El Nino and La
444	Nina, Journal of Climate, 23(21), 5826-5843, doi: 10.1175/2010jcli3592.1.
445	Qiu, B., and S. Chen (2010), Interannual-to-Decadal Variability in the Bifurcation of
446	the North Equatorial Current off the Philippines, Journal of Physical
447	Oceanography, 40(11), 2525-2538, doi: 10.1175/2010jpo4462.1.
448	Qiu, B., and S. Chen (2012), Multidecadal Sea Level and Gyre Circulation Variability
449	in the Northwestern Tropical Pacific Ocean, Journal of Physical Oceanography,
450	42(1), 193-206, doi: 10.1175/jpo-d-11-061.1.
451	Qiu, B., S. Chen, and H. Sasaki (2013), Generation of the North Equatorial
452	Undercurrent Jets by Triad Baroclinic Rossby Wave Interactions, Journal of
453	Physical Oceanography, 43(12), 2682-2698, doi: 10.1175/jpo-d-13-099.1.
454	Qiu, B., S. Chen, L. Wu, and S. Kida (2015), Wind- versus Eddy-Forced Regional Sea
455	Level Trends and Variability in the North Pacific Ocean, Journal of Climate,
456	28(4), 1561-1577, doi: 10.1175/jcli-d-14-00479.1.
457	Ren, Q., Y. Li, F. Wang, J. Duan, S. Hu, and F. Wang (2020), Variability of the
458	Mindanao Current Induced by El Niño Events, Journal of Physical

459 Oceanography, 0(0), null, doi: 10.1175/jpo-d-19-0150.1.

460	Palanisamy, H., A. Cazenave, T. Delcroix, and B. Meyssignac (2015), Spatial trend
461	patterns in the Pacific Ocean sea level during the altimetry era: the contribution
462	of thermocline depth change and internal climate variability, Ocean Dynamics,
463	65(3), 341-356, doi: 10.1007/s10236-014-0805-7.
464	Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea (2013), Causes for
465	Contemporary Regional Sea Level Changes, in Annual Review of Marine
466	Science, Vol 5, edited by C. A. Carlson and S. J. Giovannoni, pp. 21-46.
467	Su, J., R. Zhang, T. Li, X. Rong, J. S. Kug, and CC. Hong (2010), Causes of the El
468	Nino and La Nina Amplitude Asymmetry in the Equatorial Eastern Pacific,
469	Journal of Climate, 23(3), 605-617, doi: 10.1175/2009jcli2894.1.
470	Sverdrup, H. U. (1947), NOTE ON THE CORRECTION OF REVERSING
471	THERMOMETERS, Journal of Marine Research, 6(2), 136-138.
472	Wang, C. (2018), A review of ENSO theories, National Science Review, 5(6),
473	813-825, doi: 10.1093/nsr/nwy104.
474	Swerczynska, M., T. Niedzielski, and W. Kosek (2014), Semiannual and annual
475	oscillations of sea level and their impact on asymmetry between El Nino and La
476	Nina episodes, Studia Geophysica Et Geodaetica, 58(2), 302-325, doi:
477	10.1007/s11200-013-1124-z.
478	White, G. H. (1980), SKEWNESS, KURTOSIS AND EXTREME VALUES OF
479	NORTHERN HEMISPHERE GEOPOTENTIAL HEIGHTS, Monthly Weather
480	Review, 108(9), 1446-1455, doi:

- 481 10.1175/1520-0493(1980)108<1446:skaevo>2.0.co;2.
- 482 Wyrtki, K. (1975), EL NINO DYNAMIC-RESPONSE OF EQUATORIAL PACIFIC
- 483 OCEAN TO ATMOSPHERIC FORCING, Journal of Physical Oceanography,
- 484 5(4), 572-584, doi: 10.1175/1520-0485(1975)005<0572:entdro>2.0.co;2.
- 485 Yu, J. Y., C. R. Mechoso, and S. O. C. Amer Meteorol (1997), On the asymmetry of
- 486 SST in the tropical Pacific, 613-614 pp.
- 487 Zebiak, S. E. (1989), OCEANIC HEAT-CONTENT VARIABILITY AND EL NINO
- 488 CYCLES, Journal of Physical Oceanography, 19(4), 475-486, doi:
- 489 10.1175/1520-0485(1989)019<0475:ohcvae>2.0.co;2.
- 490 Zhang, X., and J. A. Church (2012), Sea level trends, interannual and decadal
- 491 variability in the Pacific Ocean, Geophysical Research Letters, 39(21), doi:
- 492 10.1029/2012gl053240.

494 **Figure captions**

- 495 Figure 1. Standard deviation (STD) of sea level anomalies (SLAs, m) of 1993-2016
- 496 from (a) AVISO sea level product and (b) HYCOM-CTL. (c) Skewness of SLAs. (d)
- 497 Regression coefficient k_{Nino} (m) of SLAs onto the normalized Niño-3.4 index for El
- 498 Niño condition (Niño-3.4 > 0). (e) Same as (b) but for La Niña condition (Niño-3.4 < 0)
- 499 0). (f) Ratio of k_{Nino} to k_{Nino} , i.e., $R_k = k_{\text{Nino}}/k_{\text{Nina}}$. SLA data in (c)-(f) are derived from
- 500 AVISO sea level product of 1993-2016.
- **Figure 2.** R_k distributions during 1993-2016 simulated by (a) HYCOM-CTL, (b)
- 502 HYCOM-TAU, and (c) RGO-CTL. (d)-(f) are the same as (a)-(c), but for the
- 503 1979-2016 period.
- **Figure. 3.** R_k distributions from (a) EXP1, (b) EXP2, (c) EXP1-TAUX and (d)
- 505 EXP2-TAUX. (e) and (f) show the 1st singular value decomposition (SVD) modes for
- zonal wind stress τ^x (N m⁻²; solid and dashed contours for positive and negative
- values) and upper-layer thickness ULT (m; color shading) of EXP1-TAUX1 for El
- 508 Niño and La Niña conditions, respectively.
- **Figure. 4.** (a) Zonal structure of the 5°S-5°N average τ^{χ} (left), and ULT (middle) of
- the 1st SVD mode, and regression coefficients (k_{Nino} and k_{Nina} ; right) in EXP1-TAUX,
- 511 computed separated for the for El Niño and La Niña conditions. (b) Same as (a) but
- for EXP2-TAUX. (c) is the same as (a), but for τ^x of the 1st SVD mode in
- 513 RGO-CTL, and theoretically-predicted ULT and regression coefficients (see the text

for details), and they are normalized by the standard deviation.

516 Figures

Figure 2. R_k distributions during 1993-2016 simulated by (a) HYCOM-CTL, (b)

526 HYCOM-TAU, and (c) RGO-CTL. (d)-(f) are the same as (a)-(c), but for the

527 1979-2016 period.

529 Figure. 3. R_k distributions from (a) EXP1, (b) EXP2, (c) EXP1-TAUX and (d)

530 EXP2-TAUX. (e) and (f) show the 1st singular value decomposition (SVD) modes for

531 zonal wind stress τ^{x} (N m⁻²; solid and dashed contours for positive and negative

values) and upper-layer thickness ULT (m; color shading) of EXP1-TAUX1 for El

533 Niño and La Niña conditions, respectively.

the 1st SVD mode, and regression coefficients (k_{Nino} and k_{Nina} ; right) in EXP1-TAUX,

- 537 computed separated for the for El Niño and La Niña conditions. (b) Same as (a) but
- for EXP2-TAUX. (c) is the same as (a), but for τ^x of the 1st SVD mode in
- 539 RGO-CTL, and theoretically-predicted ULT and regression coefficients (see the text
- 540 for details), and they are normalized by the standard deviation.

Submitted to Geophysical Research Letters

Asymmetric Responses of the Western Tropical Pacific Sea Level to

El Niño and La Niña

Qiuping Ren^{1,2}, Yuanlong Li^{1,3,4}, Fei Zheng^{3,5}, Fan Wang^{1,2,3,4,*}, Jing Duan^{1,3,4}

 ¹Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,
 ²University of Chinese Academy of Sciences, Beijing, China,
 ³Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,
 ⁴Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,
 ⁵International Center for Climate and Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China,

April 2020

*Corresponding Author:

Fan Wang

Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. **Email:** <u>fwang@qdio.ac.cn</u>

1 Key Points.

2	1)	The responses of the western tropical Pacific sea level to ENSO are
3		obviously asymmetric, and the response to El Niño is evidently stronger.
4	2)	The different surface wind anomaly structure between El Niño and La Niña
5		is critical for the asymmetric response of sea level.
6	3)	The asymmetric ocean responses to ENSO may contribute to the ENSO
7		asymmetry.

Abstract 8

The western tropical Pacific (WTP) exhibits large interannual sea level 9 anomalies (SLAs), and the sea level falling in El Niño is evidently stronger than the 10 rising in La Niña. The asymmetry is most prominent near 160°E with the response to 11 El Niño larger by three times and becomes less obvious near the western boundary. 12 13 Sensitivity experiments of a simplified ocean model suggest that the asymmetry in 14 surface wind forcing structure between El Niño and La Niña is critical. The El Niño's westerly wind anomaly patch locates more east than the La Niña's easterly wind patch 15 16 during the mature stage, and its upwelling effects are accumulated over a wider longitude range and cause stronger negative SLAs in the WTP. Near the western 17 boundary, however, upwelling effects are attenuated by easterly wind anomalies 18 during El Niño conditions. The asymmetric ocean responses to ENSO winds may 19 20 participate in the asymmetry of ENSO cycle.

21

Plain Language Summary

El Niño-Southern Oscillation (ENSO) is the most influential climate variability 22 mode of the Pacific and cause strong interannual sea level anomalies (SLAs) in the 23 24 western tropical Pacific (WTP). We notice that the WTP's sea level falling in El Niño 25 condition is stronger than its sea level rising in La Niña. This difference is most prominent near 160°E, where the falling in El Niño is stronger by three times. This 26 phenomenon becomes much less evident near the western boundary of the Pacific 27 basin. We further show that the difference in surface wind anomaly structures between 28 El Niño and La Niña is the primary cause. El Niño's westerly wind anomaly center 29

30	locates more east than La Niña's easterly wind anomaly center in their mature phase,
31	and there are easterly wind anomalies emerging near the western boundary during El
32	Niño condition. As a result, effect of El Niño's westerly wind anomaly is accumulated
33	over a wider longitude range and causes stronger sea level falling in the WTP. But this
34	effect becomes weaker near the western boundary, due to easterly wind anomalies
35	there. By contrast, effect of La Niña's easterly wind anomaly strengthens
36	monotonically from east to west, but the produced sea level rising signatures are
37	mainly confined to the WTP.
38	Keywords
39	Western Tropical Pacific, Sea Level, ENSO, ENSO asymmetry, Interannual

40 Variability

1. Introduction

42	Regional sea level change, as an essential aspect of climate change, is attracting
43	increasing attention of scientific communities and the general public, because of its
44	threats on eco-systems and people of coastal residence (e.g., Nicholls & Cazenave,
45	2010; Cazenave & Cozannet, 2014). There is a paramount demand for improved
46	understanding of regional sea level changes on various timescales (e.g., Milne et al.,
47	2009; Church et al., 2013; Stammer et al., 2013). Sea level changes over the tropical
48	Pacific Ocean are particularly pronounced on interannual timescale, as largely
49	modulated by El Niño-Southern Oscillation (ENSO) (e.g., Cazenave et al., 2008;
50	Antonov et al., 2005; Cheng et al., 2008). It is evident in Figure 1a that the western
51	tropical Pacific (WTP) shows stronger interannual sea level anomalies (SLAs) than
52	other regions, as quantified the standard deviation of low-passed SLAs. The WTP
53	shows strong sea level rising (falling) during the La Niña (El Niño) condition, as a
54	result of prevailing easterly (westerly) wind anomalies over the tropical Pacific basin
55	(Wyrtki, 1975; Zebiak, 1984; Alory & Delcroix, 2002; Gu & Li, 2009; Nerem et al.,
56	2010; Merrifield, 2011; Zhang & Church, 2012; Chang et al., 2013; Becker et al.,
57	2016; Hamlington et al., 2016). The sea level rising during La Niña conditions is
58	expected to aggravate coastal erosion, extreme marine flooding, or saltwater intrusion
59	in coastal aquifers (Nicholls & Tol, 2006; Nicholls et al., 2007; Nicholls & Cazenave,
60	2010), thus becomes a major threat for the densely populated coastal regions.
61	However, the sea level falling during El Niño causes the coral reef exposure and could
62	damage the region's ecosystem. There are many heavily-populated coasts and islands

63	in the WTP, so the sea level changes during ENSO are well worth studying.
64	El Niño and La Niña are, however, not mirrors of each other. They exhibit
65	obvious asymmetry in magnitude, duration time, and occurrence frequency (e.g.,
66	Burgers & Stephenson, 1999; Ohba & Ueda, 2007; Gergis & Fowler, 2009; An &
67	Choi, 2009; Okumura & Deser, 2010). Their signatures on sea level are also
68	asymmetric, owing to not only ENSO's asymmetry but also the nonlinearity in ocean
69	response (Niedzielski & Kosek, 2010; Swierczynska et al., 2013; Im et al., 2015; An
70	& Kim, 2017). Previous studies have demonstrated that ENSO asymmetry is
71	contributed by nonlinear dynamical heating of ocean current advection (e.g., Kang &
72	Kug, 2002; Jin et al., 2003; An & Jin, 2004; Su et al., 2010). As dynamically
73	associated with the upper-ocean currents through pressure gradient, the asymmetric
74	SLAs induced by ENSO may affect ocean current advection of heat and thereby
75	participate in the ENSO asymmetry.
76	In this study, we aim to investigate the asymmetric response of the WTP sea
77	level to ENSO and the underlying dynamical processes. This effort is of paramount
78	need for the prediction and projection of regional sea level change and adaptions of
79	the low-lying coasts and islands, as well as for understanding the dynamics of ENSO
80	asymmetry. The rest of the paper is structured as follows. Section 2 describes the data
81	and models. Section 3 describes the asymmetric SLAs of the WTP in response to
82	ENSO. Section 4 explores the underlying dynamics through a simplified ocean model.
83	Section 5 presents concluding remarks.

2. Data and Models

2.1. Data

86	In this study we use $0.25^{\circ} \times 0.25^{\circ}$, monthly satellite SLA data of 1993-2016
87	from Archiving Validation, and Interpretation of Satellite Oceanography (AVISO; Le
88	Traon et al., 1998) and sea level records of three tidal gauge stations in the WTP:
89	Malakal at 7.33°N, 134.45°E for 1979-2016, Kapingamrangi at 1.1°N, 154.78°E for
90	1929-2016, and Lombrum at 2.04°S, 147.47°E for 1995-2016 (Figure S1 in the
91	Supporting Information). The Hadley Centre Sea Ice and Sea Surface Temperature
92	(HadISST) data set (Kennedy et al., 2011) of the Met Office during 1979-2016 with
93	horizontal resolution of $1^{\circ} \times 1^{\circ}$ is used to compute Niño-3.4 index and identify El
94	Niño and La Niña conditions. Surface winds and other surface atmospheric fields of
95	1979-2016 are taken from the 0.75° monthly dataset of the European Centre for
96	Medium-Range Weather Forecasts (ECMWF) ERA-interim (Dee et al., 2011).
97	2.2. HYCOM
98	The HYbrid Coordinate Ocean Model (HYCOM) version 2.2.18 (Bleck, 2002)
99	are used to simulate interannual SLAs in the tropical Pacific Ocean. HYCOM is
100	configured to the Pacific Ocean basin between 48°S-48°N, 110°E-70°W, with a
101	horizontal resolution of $1/3^{\circ} \times 1/3^{\circ}$ and 26 hybrid vertical layers (Li et al., 2015; Ren et
102	al., 2020). Surface atmospheric forcing fields (winds, heat fluxes, precipitation, etc.)
103	are taken from ERA-interim. Three sponge layers are applied to the western, southern
104	and northern open-ocean boundaries, where model temperature and salinity are
105	related to the World Ocean Atlas 2009 (WOA09) climatology (Antonov et al., 2010).

106	More details of model configuration are described in Ren et al. (2020). Subsequent to
107	the spin-up run of 30 years under monthly climatologic forcing, two parallel
108	experiments are performed under daily ERA-Interim fields for the period of 1979-
109	2016. The control run (HYCOM-CTL) is forced with the original daily atmospheric
110	fields and assumed to contain the complete processes. This experiment can well
111	reproduce the amplitude and spatial distribution of interannual SLA and upper-ocean
112	circulation variation in observation (Figure 1b; Ren et al., 2020). Another experiment,
113	HYCOM-TAU, uses daily wind stress forcing as HYCOM-CTL, but all the other
114	forcing fields (heat and freshwater fluxes) are fixed to monthly climatology.
115	HYCOM-TAU is used to evaluate the effects of wind forcing on sea level.

116 **2.3. Reduced-Gravity Ocean Model**

To achieve more in-depth understanding, a series of experiments are performed 117 with a 1.5-layer nonlinear reduced-gravity ocean (RGO) model. This model mainly 118 represents the 1st-mode baroclinic response of the ocean to surface wind forcing, 119 which is the dominant source of large-scale interannual variability in sea level and 120 upper-ocean circulation of the WTP (e.g., Qiu & Chen, 2010, 2012). The model is 121 configured to the Pacific Ocean basin between 40°S-40°N, 100°E-70°W with 122 horizontal resolutions of 0.25°×0.25° and forced by monthly ERA-Interim surface 123 winds. Readers are referred to Duan et al. (2019) for more details of the model 124 configuration. After a spin-up of 10 years under climatological wind forcing, the 125 control run of RGO model (RGO-CTL) is forced by realistic monthly winds. RGO 126 model experiments (Table S1) are forced by idealized wind forcing to examine the 127

role of wind forcing asymmetry and are described in Section 4.

129	5. Asymmetric Responses to El Niño and La Niña
130	To highlight the interannual variations associated with ENSO, we analyze the 13-
131	month low-pass filtered anomaly fields with the monthly climatology removed.
132	Skewness <i>S</i> is a measure of the distribution asymmetry with $S = 0$ indicating a normal
133	distribution (White, 1980). Figure 1c shows the skewness of the observed SLA over
134	the tropical Pacific for 1993-2016. The eastern tropical Pacific is positively skewed
135	with the maximum S of ~2.0, while the central-western tropical Pacific is negatively
136	skewed with the minimum S of -2.0 and a horseshoe structure extending from the
137	equator to extratropical regions in both hemispheres. This distribution of SLA
138	skewness resembles that of SST anomaly (An & Jin, 2004; Niedzielski & Kosek,
139	2010) and is likely associated with the positive skewness of ENSO (Nerem et al.,
140	2010). The El Niño condition is characterized by positive SLAs in the eastern Pacific
141	and negative SLAs in the WTP, and these anomalies are stronger in amplitude than
142	the opposite SLAs occurring in La Niña condition (Niedzielski & Kosek, 2010;
143	Figure S1).
144	In addition to the asymmetry residing in ENSO (e.g., as quantified by the
145	skewness of Niño-3.4 index), the asymmetric responses of sea level to El Niño and La
146	Niña also contribute to the SLA asymmetry shown in Figure 1c. We regress SLAs
147	onto the normalized Niño-3.4 index separately for the El Niño condition (Niño-3.4 $>$

129 **3.** Asymmetric Responses to El Niño and La Niña

149 coefficients, namely k_{Nino} and k_{Nina} , are used to quantify the responses of SLA to El

0) and the La Niña condition (Niño-3.4 < 0). The corresponding regression

150	Niño and La Niña, respectively (Figures 1d and 1e). The response time of sea level to
151	ENSO shows spatial variation, as indicated by the lead-lag correlation (Figure S2a).
152	For each grid point, the lead-lag time of the maximal correlation is used to compute
153	the regression coefficient. The results are not dramatically different from those of
154	simultaneous regression (Figure S2b). Figures 1d and 1e show distributions of k_{Nino}
155	and k_{Nina} . In the WTP, the maximal k_{Nino} of ~-0.2 m is located 20°-30° away from the
156	western boundary, and k_{Nino} decreases in magnitude as approaching the western
157	boundary. By contrast, the peak k_{Nina} values of ~-0.15 m are close to the western
158	boundary. We further use the ratio of k_{Nino} to k_{Nina} to quantify the response asymmetry,
159	$R_k = \frac{k_{Nino}}{k_{Nina}}.$ (1)
160	$R_k = 1$ denotes symmetric response of SLAs to El Niño and La Niña, while $R_k > 1$ and
161	$R_k < 1$ indicates stronger and weaker response to El Niño than to La Niña,
162	respectively. As shown in Figure 1f, R_k reaches the largest value near 160°E with
163	values exceeding 3.0, indicating that the response of SLA to El Niño is stronger by at
164	least 3 times than the response to La Niña. R_k is weakened to ~1.0 near the western
165	boundary, implying SLA responses there are nearly symmetric. This interesting
166	distribution of R_k in the WTP and underlying dynamics are worthy of systematic
167	investigation. One may notice that R_k is < 1 in the central Pacific and is > 1 in the
168	eastern Pacific, indicative of prevailing asymmetry over the tropical Pacific basin. In
169	the following, we focus on explaining the R_k distribution in the WTP.
170	Simulations of HYCOM and RGO model have faithfully reproduced the
171	observed interannual variations of sea level at three tidal gauge stations (Figure S3).

172	The upper-layer thickness (ULT) anomaly of the 1.5-layer RGO model is a good
173	proxy of SLA in the tropical Pacific (e.g., Qiu & Chen, 2010, 2012; Chang et al.,
174	2013; Duan et al., 2019). The correlations among AVISO, HYCOM-CTL, HYCOM-
175	TAU and RGO-CTL at the three tidal gauge stations are all above 0.85. The
176	asymmetric responses of SLAs to El Niño and La Niña in the WTP during 1993-2016
177	can be realistically reproduced by HYCOM-CTL, HYCOM-TAU, and RGO-CTL
178	(Figures 2a-2c), although RGO-CTL fails to capture the features in the eastern
179	Pacific. The good performance of HYCOM-TAU and RGO-CTL indicates that the
180	interannual SLAs in the WTP and their asymmetric features are primarily the results
181	of ENSO wind forcing, and the underlying dynamics can be explored by sensitive
182	model experiments with prescribed wind forcing fields.

183 4. Dynamics

To include more ENSO events, we use the period of 1979-2016 to perform 184 model experiments (Table S1), although R_k of 1979-2016 shows detailed differences 185 from that of 1993-2016 in the northwest Pacific (Figures 2d-2f). According to existing 186 studies of ENSO asymmetry, the different spatial and temporal characteristics of wind 187 anomalies are essential to cause the SST asymmetry between El Niño and La Niña 188 (Kang & Kug, 2002; An & Kim, 2017). To examine which aspect of ENSO's wind 189 forcing is critical in regulating the asymmetric responses of SLAs, we adopt a 190 191 statistical model based on the singular value decomposition (SVD) of wind stress and SST (Kang & Kug, 2000), which is expressed as 192

193 $\mathbf{\tau}' (x, y, t) = \sum_{n=1}^{N} c(n) \left[\sum_{x, y} V_{\text{SST}}(x, y, n) T(x, y, t) \right] V_{\tau}(x, y, n),$

11

(2)

where *x*, *y*, and *t* represent longitude, latitude, and time, respectively, V_{SST} and $V\tau$ are the SVD singular vectors for SST and wind stress, *T* is the SST anomaly field, and *n* = 1, 2, ..., *N* indicates the *n*th mode of SVD, $\sum_{x,y}$ indicates spatial integration over the region of 100°-290°E, 40°S-40°N. *c*(*n*) represents the correlation between SST and wind stress anomalies,

199

$$c(n) = \frac{\sum_{t} t_{\text{SST}}(t,n) t_{\tau}(t,n)}{\sum_{t} t_{\text{SST}}(t,n)^2} , \qquad (3)$$

where t_{SST} and $t\tau$ are the corresponding time series, the numerator is the covariance of t_{SST} and $t\tau$ and the denominator is the variance of t_{SST} , and \sum_t indicates temporal integration from January 1979 to December 2016. Zonal and meridional components of τ' are separately computed. All the RGO sensitive experiments are forced by monthly wind stress anomalies constructed by Eq. 2 (representing ENSO wind forcing) plus monthly climatological winds.

We first perform two experiments, namely EXP1 and EXP2. EXP1 uses different

207 wind stress anomaly fields for El Niño and La Niña conditions. Specifically, τ'_{Nino} and

208 τ'_{Nina} are reconstructed separated for Niño-3.4 ≥ 0 and Niño-3.4 < 0 conditions

209 (Figures S4a and S4b) using Eq. 2, respectively, so that the synthesized τ ' still retains

the difference in spatial structure between El Niño and La Niña conditions. By

211 contrast, EXP2 does not distinguish El Niño and La Niña conditions and uses

reconstructed τ' for the entire model period (Figure S4c). As such, the difference

between EXP1 and EXP2 represents the effect of different wind anomaly structures

between El Niño and La Niña on SLAs. In EXP1 and EXP2, we use only the leading

215 mode (n = 1) of SVD to reconstruct τ' (Figure S4), which explains > 85% of the total

216	covariance and mainly represents ENSO's mature phase (Figure S5). The higher SVD
217	modes largely represent the transition stages between El Niño and La Niña polarities
218	(Figure S5) and have limited impacts on the asymmetry of SLAs (Figure S6).
219	Figures 3a and 3b show R_k distributions of ULT produced by EXP1 and EXP2,
220	respectively. EXP1 is able to reproduce large R_k values in the WTP as RGO-CTL,
221	whereas R_k is generally close to 1.0 in EXP2. These results suggest that the
222	asymmetry in surface wind structures between El Niño and La Niña is largely
223	responsible for asymmetric responses of the WTP sea level. Note that EXP2 still
224	retains some asymmetric characteristics of ENSO winds, such as the asymmetries in
225	intensity, frequency, and temporal evolution. Figure 3b however indicates that these
226	factors have little contributions to SLA asymmetry. This is confirmed by an additional
227	experiment EXP3, which adopts an idealized sine time series for τ' (Table S1) and
228	achieves similar results to EXP2 (Figure S7).
229	In the equatorial zone, zonal component of wind stress τ^x is much more
230	influential for the ocean than the meridional component. We repeat EXP1 and EXP2
231	using only τ^x anomaly, and τ^y is fixed to monthly climatology (EXP1-TAUX and
232	EXP2-TAUX). The results of two experiments achieve are broadly consistent with
233	EXP1 and EXP2 (Figures 3c and 3d). Therefore, the spatial structure of τ^x is critical
234	for the asymmetric responses. The typical structures of ULT and τ^x in EXP1-TAUX
235	for warm and cold phases are shown in Figures 3e and 3f, respectively, as represented
236	by the leading SVD mode of τ^x and ULT. Notice that westerly wind anomaly patch of
237	El Niño locates more east than the easterly wind anomaly patch of La Niña in their

mature phase, and correspondingly the zero value of ULT anomaly of El Niño also
locates more east (Jin, 1997; Kang & Kug, 2002). During El Niño there are easterly
wind anomalies near the western boundary. The strong negative ULT anomalies in El
Niño are seen over a wide longitude range and weaken as approaching the western
boundary, while the positive ULT anomalies in La Niña are confined to the far WTP
and generally strengthen westward.

To better elucidate how the wind forcing structure cause asymmetric SLAs, we show in Figure 4 the zonal distributions of τ^{x} and ULT in the equatorial band (5°S-5°N). It is clearly discernible in Figure 4a that the El Niño's westerly wind anomaly patch locates more east than the La Niña's easterly wind anomaly patch. The forcing effect of equatorial zonal wind stress on sea level and ULT slopes can be roughly expressed in a linear relationship (Sverdrup, 1947; McCreary, 1977; Alory & Delcroix, 2002; Palanisamy et al., 2014),

 $\frac{dh}{dx} = \tau^x,$

where *h* is ULT anomaly or SLA. Therefore, h(x) at a given longitude *x* can be determined by the integration of Eq. (4) from the eastern boundary $x_E = 70^{\circ}$ W along equator,

(4)

255
$$h(x) = h(x_E) + \int_{x_E}^x \tau^x \, dx.$$
 (5)

Since $h(x_E)$ diffuses quickly away from the eastern boundary as free Rossby waves and has little impact on the interior Pacific (Qiu et al., 2013), h(x) is primarily determined by the zonal integral of τ^x from x_E to x (second term). As such, the negative ULT anomaly in El Niño in the WTP is much stronger than the positive ULT

260	anomaly in La Niña owing to the much wider westerly wind anomaly patch to its east.
261	West of 160°E, easterly wind anomaly near the western boundary causes downwelling
262	of the ocean, resulting in the attenuation of negative ULT anomalies there. By
263	contrast, the La Niña's positive ULT anomalies are continuously strengthened by
264	easterly wind anomalies. As a result, the ULT anomalies of El Niño and La Niña are
265	comparable in amplitude in the far WTP, and the asymmetry of response is no longer
266	evident there (right panel of Figure 4a). In EXP2-TAUX (Figure 4b), without the
267	difference in wind forcing structure (left panel), the asymmetric responses cannot be
268	reproduced (middle and right panels).
269	Figure 4c shows the zonal distributions of ULT anomaly and regression
270	coefficients predicted by the linear theory, which compare favorably with Figure 4a. It
271	indicates that the linear theory can to a large extent capture the processes causing
272	asymmetric responses to ENSO winds and confirms the critical role played by the
273	structure of zonal wind anomaly. Under this theoretical framework, the response
274	asymmetry R_k can be theoretically expressed as,

275
$$R_k(x) \approx \frac{\int_{x_E}^{x} \tau^x_{Nino} dx}{\int_{x_E}^{x} \tau^x_{Nina} dx} , \qquad (6)$$

where τ^{x}_{Nino} and τ^{x}_{Nina} are the zonal wind stress anomaly in El Niño and La Niña conditions, respectively. Eq. (6) clearly suggests the sensitivity of $R_{k}(x)$ to the distribution of τ^{x} from x to the eastern boundary.

279 5. Concluding Remarks

280 The WTP exhibits large interannual variations of sea level, and the sea level

281	falling in El Niño is stronger than the rising in La Niña. Here we show that this
282	asymmetry is most prominent near 160°E with the response to El Niño larger by \sim 3
283	times and becomes much less obvious near the western boundary. RGO model
284	experiments suggest that the asymmetric surface wind anomaly structure between El
285	Niño and La Niña conditions is critical. El Niño's westerly wind anomaly patch
286	locates more east than La Niña's easterly wind anomaly patch in their mature stages.
287	As such, the upwelling effects of westerly wind anomalies are accumulated over a
288	wider longitude range and cause stronger negative SLAs in the WTP. As approaching
289	further toward the western boundary, positive SLAs in La Niña continue to amplify,
290	while negative SLAs of El Niño are attenuated by easterly wind anomalies in the far
291	WTP.

292 Here we reveal the sensitivity of the asymmetric SLAs in the WTP to the ENSO wind structures. It is interesting to investigate whether the asymmetric SLAs in turn 293 contributes to the ENSO asymmetry in amplitude and temporal evolutions. This can 294 be investigated through careful heat budget analysis that evaluate the effects of 295 asymmetric current advection on SST variability. In addition, the zonal surface wind 296 patch dominates the SLA asymmetry along the equator, and its off-equatorial structure 297 may affect the asymmetry beyond the equator by modifying the wind stress curl (An 298 & Bong, 2016). In addition to wind forcing, the effects of local nonlinear processes, 299 such as mesoscale eddies, on sea level in the WTP are not resolved by the RGO 300 model experiments (Chen et al., 2015; Qiu et al., 2015), which can be also examined 301 in the future study. 302

303 Acknowledgments

This research is supported by National Natural Science Foundation of China (grants 41730534 and 41806014) and the National Program on Global Change and Air-Sea Interaction (grant GASI-IPOVAI-01-01). AVISO sea level data are available at http://marine.copernicus.eu/services-portfolio/access-to-products/. Tidal gauges data are available at <u>https://www.psmsl.org/</u>. ERA-Interim wind data are available at https://apps.ecmwf.int/datasets/. HadISST data are downloaded from Met-Office website <u>https://www.metoffice.gov.uk/hadobs/</u>.

312 **References**

313	Alory, G.,	and T. Delcroix	(2002), Interannua	al sea level changes an	d associated mass
			· //	• • • • • • • • • • • • • • • • • • • •	

- transports in the tropical Pacific from TOPEX/Poseidon data and linear model
- results (1964-1999), Journal of Geophysical Research-Oceans, 107(C10), doi:
- 316 10.1029/2001jc001067.
- An, S. I., and F. F. Jin (2004), Nonlinearity and asymmetry of ENSO, Journal of
- Climate, 17(12), 2399-2412, doi: 10.1175/1520-
- 319 0442(2004)017<2399:naaoe>2.0.co;2.
- An, S.-I., and J. Choi (2009), Seasonal locking of the ENSO asymmetry and its
- 321 influence on the seasonal cycle of the tropical eastern Pacific sea surface
- temperature, Atmospheric Research, 94(1), 3-9, doi:
- 323 10.1016/j.atmosres.2008.09.029.
- An, S.-I., and H. Bong (2016), Inter-decadal change in El Nino-Southern Oscillation
- examined with Bjerknes stability index analysis, Climate Dynamics, 47(3-4),
- 326 967-979, doi: 10.1007/s00382-015-2883-8.
- 327 An, S.-I., and J.-W. Kim (2017), Role of nonlinear ocean dynamic response to wind
- 328 on the asymmetrical transition of El Nino and La Nina, Geophysical Research
- Letters, 44(1), 393-400, doi: 10.1002/2016g1071971.
- Antonov, J. I., S. Levitus, and T. P. Boyer (2005), Thermosteric sea level rise, 1955-
- 2003, Geophysical Research Letters, 32(12), doi: 10.1029/2005gl023112.
- Antonov, J., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., et al.
- 333 (2010). World ocean atlas 2009. In S. Levitus (Ed.), Salinity (Vol. 2, pp. 184).

334	Washington, DC: US Gov. Print. Off.Bleck, R. (2002), An oceanic general
335	circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean
336	Modelling, 4(1), 55-88, doi: 10.1016/s1463-5003(01)00012-9.
337	Becker, M., B. Meyssignac, C. Letetrel, W. Llovel, A. Cazenave, and T. Delcroix
338	(2012), Sea level variations at tropical Pacific islands since 1950, Global and
339	Planetary Change, 80-81, 85-98, doi: 10.1016/j.gloplacha.2011.09.004.
340	Burgers, G., and D. B. Stephenson (1999), The "normality" of El Nino, Geophysical
341	Research Letters, 26(8), 1027-1030, doi: 10.1029/1999gl900161.
342	Cazenave, A., and G. Le Cozannet (2014), Sea level rise and its coastal impacts,
343	Earths Future, 2(2), 15-34, doi: 10.1002/2013ef000188.
344	Cazenave, A., A. Lombard, and W. Llovel (2008), Present-day sea level rise: A
345	synthesis, Comptes Rendus Geoscience, 340(11), 761-770, doi:
346	10.1016/j.crte.2008.07.008.
347	Chang, YT., L. Du, SW. Zhang, and PF. Huang (2013), Sea level variations in the
348	tropical Pacific Ocean during two types of recent El Nino events, Global and
349	Planetary Change, 108, 119-127, doi: 10.1016/j.gloplacha.2013.06.001.
350	Chen, L., Y. Jia, and Q. Liu (2015), Mesoscale eddies in the Mindanao Dome region,
351	Journal of Oceanography, 71(1), 133-140, doi: 10.1007/s10872-014-0255-3.
352	Cheng, X., Y. Qi, and W. Zhou (2008), Trends of sea level variations in the Indo-
353	Pacific warm pool, Global and Planetary Change, 63(1), 57-66, doi:
354	10.1016/j.gloplacha.2008.06.001.
355	Church, J. A., et al. (2013), Sea-Level Rise by 2100, Science, 342(6165), 1445-1445,

doi: 10.1126/science.342.6165.1445-a.

- 357 Dee, D. P., et al. (2011), The ERA-Interim reanalysis: configuration and performance
- 358 of the data assimilation system, Quarterly Journal of the Royal Meteorological

359 Society, 137(656), 553-597, doi: 10.1002/qj.828.

- 360 Duan, J., Y. Li, F. Wang, and Z. Chen (2019), Multidecadal Change of the Mindanao
- 361 Current: Is There a Robust Trend?, Geophysical Research Letters, 46(12), 6755362 6764, doi: 10.1029/2019gl083090.
- 363 Gergis, J. L., and A. M. Fowler (2009), A history of ENSO events since AD 1525:
- implications for future climate change, Climatic Change, 92(3-4), 343-387, doi:
- 365 10.1007/s10584-008-9476-z.
- Xiao-li, G. U., and L. I. Pei-liang (2009), Pacific sea level variations and its factors,
 Acta Oceanologica Sinica, 31(1), 28-36.
- Hamlington, B. D., S. H. Cheon, P. R. Thompson, M. A. Merrifield, R. S. Nerem, R.
- R. Leben, and K. Y. Kim (2016), An ongoing shift in Pacific Ocean sea level,
- Journal of Geophysical Research-Oceans, 121(7), 5084-5097, doi:
- 371 10.1002/2016jc011815.
- Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin (2015), Feedback processes responsible
- for El Nino-La Nina amplitude asymmetry, Geophysical Research Letters,
- 42(13), 5556-5563, doi: 10.1002/2015gl064853.
- Jin, F. F. (1997), A theory of interdecadal climate variability of the North Pacific
- ocean-atmosphere system, Journal of Climate, 10(8), 1821-1835, doi:
- 377 10.1175/1520-0442(1997)010<1821:atoicv>2.0.co;2.

379	atmosphere mode in the equatorial Pacific ocean, Geophysical Research Letters,
380	30(2), doi: 10.1029/2002gl015983.
381	Kang, I. S., and J. S. Kug (2002), El Nino and La Nina sea surface temperature
382	anomalies: Asymmetry characteristics associated with their wind stress
383	anomalies, Journal of Geophysical Research-Atmospheres, 107(D19), doi:
384	10.1029/2001jd000393.
385	Kang, I. S., and J. S. Kug (2000), An El-Nino prediction system using an intermediate
386	ocean and a statistical atmosphere, Geophysical Research Letters, 27(8), 1167-
387	1170, doi: 10.1029/1999gl011023.
388	Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby (2011),
389	Reassessing biases and other uncertainties in sea surface temperature
390	observations measured in situ since 1850: 2. Biases and homogenization, Journal
391	of Geophysical Research-Atmospheres, 116, doi: 10.1029/2010jd015220.
392	Le Traon, P. Y., F. Nadal, and N. Ducet (1998), An improved mapping method of
393	multisatellite altimeter data, Journal of Atmospheric and Oceanic Technology,
394	15(2), 522-534, doi: 10.1175/1520-0426(1998)015<0522:aimmom>2.0.co;2.
395	Li, Y., and W. Han (2015), Decadal Sea Level Variations in the Indian Ocean
396	Investigated with HYCOM: Roles of Climate Modes, Ocean Internal Variability,
397	and Stochastic Wind Forcing, Journal of Climate, 28(23), 9143-9165, doi:
398	10.1175/jcli-d-15-0252.1.
399	McCreary, J. (1976), Eastern Tropical Ocean Response to Changing Wind System-

Jin, F. F., J. S. Kug, S. I. An, and I. S. Kang (2003), A near-annual coupled ocean-

378

400	with Application to El Nino, Journal of Physical Oceanography, 6(5), 632-645,
401	doi: 10.1175/1520-0485(1976)006<0632:etortc>2.0.co;2.
402	Merrifield, M. A. (2011), A Shift in Western Tropical Pacific Sea Level Trends during
403	the 1990s, Journal of Climate, 24(15), 4126-4138, doi: 10.1175/2011jcli3932.1.
404	Milne, G. A., W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea (2009), Identifying
405	the causes of sea-level change, Nature Geoscience, 2(7), 471-478, doi:
406	10.1038/ngeo544.
407	Nerem, R. S., D. P. Chambers, C. Choe, and G. T. Mitchum (2010), Estimating Mean
408	Sea Level Change from the TOPEX and Jason Altimeter Missions, Marine
409	Geodesy, 33, 435-446, doi: 10.1080/01490419.2010.491031.
410	Nicholls, R. J., and R. S. J. Tol (2006), Impacts and responses to sea-level rise: A
411	global analysis of the SRES scenarios over the twenty-first century, Philos.
412	Trans. R. Soc. A Math. Phys. Eng. Sci., 364(1841), 1073–1095, doi:10.1098/rsta-
413	2006.1754.
414	Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean,
415	S. Ragoonaden, and C. D. Woodroffe (2007), Coastal systems and low-lying
416	areas, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Fourth
417	Assessment Report of the Intergovernmental Panel on Climate Change (IPCC,
418	2007), edited by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden,
419	and C. E. Hanson, Cambridge University Press, Cambridge, UK. pp. 315-356.
420	Nicholls, R. J., and A. Cazenave (2010), Sea-level rise and its impact on coastal zones
421	(June, pg 1517, 2007), Science, 329(5992), 628-628.

422	Niedzielski, T., and W. Kosek (2010), El Nino's Impact on the Probability Distribution
423	of Sea Level Anomaly Fields, Polish Journal of Environmental Studies, 19(3),
424	611-620.
425	Ohba, M., and H. Ueda (2007), An impact of SST anomalies in the Indian ocean in
426	acceleration of the El Nino to La Nina transition, Journal of the Meteorological
427	Society of Japan, 85(3), 335-348, doi: 10.2151/jmsj.85.335.
428	Okumura, Y. M., and C. Deser (2010), Asymmetry in the Duration of El Nino and La
429	Nina, Journal of Climate, 23(21), 5826-5843, doi: 10.1175/2010jcli3592.1.
430	Qiu, B., and S. Chen (2010), Interannual-to-Decadal Variability in the Bifurcation of
431	the North Equatorial Current off the Philippines, Journal of Physical
432	Oceanography, 40(11), 2525-2538, doi: 10.1175/2010jpo4462.1.
433	Qiu, B., and S. Chen (2012), Multidecadal Sea Level and Gyre Circulation Variability
434	in the Northwestern Tropical Pacific Ocean, Journal of Physical Oceanography,
435	42(1), 193-206, doi: 10.1175/jpo-d-11-061.1.
436	Qiu, B., S. Chen, and H. Sasaki (2013), Generation of the North Equatorial
437	Undercurrent Jets by Triad Baroclinic Rossby Wave Interactions, Journal of
438	Physical Oceanography, 43(12), 2682-2698, doi: 10.1175/jpo-d-13-099.1.
439	Qiu, B., S. Chen, L. Wu, and S. Kida (2015), Wind- versus Eddy-Forced Regional Sea
440	Level Trends and Variability in the North Pacific Ocean, Journal of Climate,
441	28(4), 1561-1577, doi: 10.1175/jcli-d-14-00479.1.
442	Ren, Q., Y. Li, F. Wang, J. Duan, S. Hu, and F. Wang (2020), Variability of the
443	Mindanao Current Induced by El Niño Events, Journal of Physical

444 Oceanography, 0(0), null, doi: 10.1175/jpo-d-19-0150.1.

445	Palanisamy, H., A. Cazenave, T. Delcroix, and B. Meyssignac (2015), Spatial trend
446	patterns in the Pacific Ocean sea level during the altimetry era: the contribution
447	of thermocline depth change and internal climate variability, Ocean Dynamics,
448	65(3), 341-356, doi: 10.1007/s10236-014-0805-7.
449	Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea (2013), Causes for
450	Contemporary Regional Sea Level Changes, in Annual Review of Marine
451	Science, Vol 5, edited by C. A. Carlson and S. J. Giovannoni, pp. 21-46.
452	Su, J., R. Zhang, T. Li, X. Rong, J. S. Kug, and CC. Hong (2010), Causes of the El
453	Nino and La Nina Amplitude Asymmetry in the Equatorial Eastern Pacific,
454	Journal of Climate, 23(3), 605-617, doi: 10.1175/2009jcli2894.1.
455	Sverdrup, H. U. (1947), NOTE ON THE CORRECTION OF REVERSING
456	THERMOMETERS, Journal of Marine Research, 6(2), 136-138.
457	Swerczynska, M., T. Niedzielski, and W. Kosek (2014), Semiannual and annual
458	oscillations of sea level and their impact on asymmetry between El Nino and La
459	Nina episodes, Studia Geophysica Et Geodaetica, 58(2), 302-325, doi:
460	10.1007/s11200-013-1124-z.
461	White, G. H. (1980), SKEWNESS, KURTOSIS AND EXTREME VALUES OF
462	NORTHERN HEMISPHERE GEOPOTENTIAL HEIGHTS, Monthly Weather
463	Review, 108(9), 1446-1455, doi: 10.1175/1520-
464	0493(1980)108<1446:skaevo>2.0.co;2.

465 Wyrtki, K. (1975), EL NINO - DYNAMIC-RESPONSE OF EQUATORIAL PACIFIC

- 466 OCEAN TO ATMOSPHERIC FORCING, Journal of Physical Oceanography,
- 467 5(4), 572-584, doi: 10.1175/1520-0485(1975)005<0572:entdro>2.0.co;2.
- 468 Zebiak, S. E. (1989), OCEANIC HEAT-CONTENT VARIABILITY AND EL NINO
- 469 CYCLES, Journal of Physical Oceanography, 19(4), 475-486, doi:
- 470 10.1175/1520-0485(1989)019<0475:ohcvae>2.0.co;2.
- 471 Zhang, X., and J. A. Church (2012), Sea level trends, interannual and decadal
- 472 variability in the Pacific Ocean, Geophysical Research Letters, 39(21), doi:
- 473 10.1029/2012gl053240.

475 **Figure captions**

476 Figure 1. Standard deviation (STD) of sea level anomalies (SLAs, m) of 1993-2016

- 477 from (a) AVISO sea level product and (b) HYCOM-CTL. (c) Skewness of SLAs. (d)
- 478 Regression coefficient k_{Nino} (m) of SLAs onto the normalized Niño-3.4 index for El
- 479 Niño condition (Niño-3.4 > 0). (e) Same as (b) but for La Niña condition (Niño-3.4 < 0)
- 480 0). (f) Ratio of k_{Nino} to k_{Nina} , i.e., $R_k = k_{\text{Nino}}/k_{\text{Nina}}$. SLA data in (c)-(f) are derived from
- 481 AVISO sea level product of 1993-2016.
- **Figure 2.** R_k distributions during 1993-2016 simulated by (a) HYCOM-CTL, (b)
- 483 HYCOM-TAU, and (c) RGO-CTL. (d)-(f) are the same as (a)-(c), but for the 1979-

484 2016 period.

Figure. 3. *R*_k distributions from (a) EXP1, (b) EXP2, (c) EXP1-TAUX and (d) EXP2-

486 TAUX. (e) and (f) show the 1st singular value decomposition (SVD) modes for zonal

- 487 wind stress τ^{x} (N m⁻²; solid and dashed contours for positive and negative values)
- and upper-layer thickness ULT (m; color shading) of EXP1-TAUX1 for El Niño and
- 489 La Niña conditions, respectively.
- 490 Figure. 4. (a) Zonal structure of the 5°S-5°N average τ^x (left), and ULT (middle) of
- 491 the 1st SVD mode, and regression coefficients (k_{Nino} and k_{Nina} ; right) in EXP1-TAUX,
- 492 computed separated for the for El Niño and La Niña conditions. (b) Same as (a) but
- 493 for EXP2-TAUX. (c) is the same as (a), but for τ^x of the 1st SVD mode in RGO-
- 494 CTL, and theoretically-predicted ULT and regression coefficients (see the text for

details), and they are normalized by the standard deviation.

497 Figures

506 Figure 2. R_k distributions during 1993-2016 simulated by (a) HYCOM-CTL, (b)

- 507 HYCOM-TAU, and (c) RGO-CTL. (d)-(f) are the same as (a)-(c), but for the 1979-
- 508 2016 period.

Figure. 3. *R*_k distributions from (a) EXP1, (b) EXP2, (c) EXP1-TAUX and (d) EXP2-

511 TAUX. (e) and (f) show the 1st singular value decomposition (SVD) modes for zonal

512 wind stress τ^x (N m⁻²; solid and dashed contours for positive and negative values) and

- 513 upper-layer thickness ULT (m; color shading) of EXP1-TAUX1 for El Niño and La
- 514 Niña conditions, respectively.

Figure. 4. (a) Zonal structure of the 5°S-5°N average τ^x (left), and ULT (middle) of the 1st SVD mode, and regression coefficients (k_{Nino} and k_{Nina} ; right) in EXP1-TAUX, computed separated for the for El Niño and La Niña conditions. (b) Same as (a) but for EXP2-TAUX. (c) is the same as (a), but for τ^x of the 1st SVD mode in RGO-CTL, and theoretically-predicted ULT and regression coefficients (see the text for

521 details), and they are normalized by the standard deviation.

@AGUPUBLICATIONS

Geophysical Research Letters

Supporting Information for

Asymmetric Responses of the Western tropical Pacific Sea level to El Niño and La Niña

Qiuping Ren^{1,2}, Yuanlong Li^{1,3,4}, Fei Zheng^{3,5}, Fan

Wang^{1,2,3,4}, Jing Duan^{1,3,4}

¹Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, ²University of Chinese Academy of Sciences, Beijing, China, ³Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China, ⁴Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marin Science and Technology, Qingdao, China, ⁵International Center for Climate an Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China,

Contents of this file

Figure S1 Figure S2 Figure S3 Figure S4 Table S1 Figure S5 Figure S6 Figure S7

Introduction

Seven figures and one table are uploaded as supporting information. *Figure S1* shows composites of sea level anomalies (SLAs) from AVISO for the mature phases of El Niño and La Niña conditions. *Figure S2* shows the lead-lag months of SLAs and Niño-3.4 index and Ratio of the synchronous-regressed coefficients k_{Nino} and k_{Nina} . *Figure 3* shows the time series of the normalized SLAs at three tidal gauge station from different datasets. *Figure S4* shows the distributions of the 1st SVD mode for the sea surface temperature and wind stress of different condition during 1979-2016. *Table S1* shows the model experiments descriptions of HYCOM and 1.5-layer RGO. *Figure S5* shows the time-longitude plots of normalized ULT anomaly from RGO-CTL, EXP1, and SVD2. *Figure S6* shows R_k produced by SVD2, SVDD5, and SVD10. *Figure S7* shows R_k produced by EXP3.

Figure S1. Composites of sea level anomalies (SLAs, m) from AVISO for the mature phases (December, January, and February, DJF) of (a) El Niño and (b) La Niña conditions during 1993-2016. The black dots at (7.33°N, 134.47°E), (1.1°N, 154.78°E) and (2.04°S, 147.47°E) indicate the Malakal, Kapingamrangi, and Lombrum tidal gauge stations.

Figure S2. (a) The lead-lag months of SLAs and Niño-3.4 index. (b) Ratio of k_{Nino} to k_{Nina} , i.e., $R_k = k_{\text{Nino}}/k_{\text{Nina}}$. k_{Nino} and k_{Nina} are the synchronous regression coefficients of SLAs during El Niño (Niño-3.4 > 0) and La Niña (Niño-3.4 < 0) condition onto the normalized Niño-3.4 index, respectively. SLA data are derived from AVISO sea level product of 1993-2016.

Figure S3. Time series of the normalized SLAs at (a) Malakal, (b) Kapingamrangi, (c) Lombrum from AVISO, tidal gauge, HYCOM-CTL, HYCOM-TAU and RGO-CTL. All the time series are 13-month low-passed filtered and normalized by the standard deviation. The normalized upper-layer thickness (ULT) anomaly in RGO-CTL represents SSH anomalies to compare with other datasets.

Figure S4. (a) Distributions of the 1st SVD mode for the sea surface temperature (SST; color shading) and wind stress (vector) of El Niño condition during 1979-2016. (b) and (c) are the same as (a), but for La Niña condition and ENSO condition, respectively. ENSO condition does not distinguish El Niño and La Niña conditions.

Table S1. HYbrid Coordinate Ocean Model (HYCOM) and 1.5-layer nonlinear

Exp. Name	Forcing
HYCOM-CTL	Daily ERA-Interim atmospheric fields
	Daily ERA-Interim wind stress, but all the other forcing fields are fixed to
	monthly climatology
RGO-CTL	Monthly ERA-interim wind stress
EVD1	Reconstructed wind stress for El Niño and La Niña phase based on the 1 st SVD
	mode of SST and wind stress
EXD3	Reconstructed wind stress for all the period based on the 1 st SVD mode of
L/XF 2	SST and wind stress
	Same as EXP1, but the meridional wind stress τ^{γ} is fixed to monthly
	climatology
	Same as EXP2, but the meridional wind stress τ^{γ} is fixed to monthly
	climatology
	Reconstructed wind stress ,
	$\tau(x, y, t) = V_{\tau}(x, y)T(t)$
FXP3	x, y and t indicate the zonal, meridional and time grid points, respectively. V_{τ}
EXI 3	is the 1 st SVD singular vectors for wind stress. $T(t)$ is the idealized Niño-3.4
	index and is a time-varying sinusoidal function with a timescale of 4 years, sin
	(t/4). EXP3 makes use of the 1 st mode only and is integrated for 50 years.
SVD2	Same as EXP1, but reconstructed wind stress based on the first two SVD
	modes
SV/D5	Same as EXP1, but reconstructed wind stress based on the first five SVD
	modes
	Same as EXP1, but reconstructed wind stress based on the first ten SVD
57010	modes

reduced gravity ocean (RGO) Model experiments descriptions.

Figure S5. Time-longitude plots of normalized ULT anomaly from (a) RGO-CTL, (b) EXP1, and (c) SVD2.

Figure S6. R_k produced by (a) SVD2, (b) SVD5, and (c) SVD10. k_{Nino} and k_{Nina} are the regression coefficients of ULT anomaly during El Niño (Niño-3.4 > 0) and La Niña (Niño-3.4 < 0) condition onto the normalized Niño-3.4 index, respectively.

Figure S7. R_k produced by EXP3.