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Abstract

Meteorological and geophysical hazards will concur and interact with coronavirus disease (COVID-19) impacts in many re-

gions on Earth. These interactions will challenge the resilience of societies and systems. A comparison of plausible COVID-19

epidemic trajectories with multi-hazard time-series curves enables delineation of multi-hazard scenarios for selected countries

(United States, China, Australia, Bangladesh) and regions (Texas). In multi-hazard crises, governments and other responding

agents may be required to make complex, highly compromised, hierarchical decisions aimed to balance COVID-19 risks and

protocols with disaster response and recovery operations. Contemporary socioeconomic changes (e.g. reducing risk mitigation

measures, lowering restrictions on human activity to stimulate economic recovery) may alter COVID-19 epidemiological dynam-

ics and increase future risks relating to natural hazards and COVID-19 interactions. For example, the aggregation of evacuees

into communal environments and increased demand on medical, economic, and infrastructural capacity associated with natural

hazard impacts may increase COVID-19 exposure risks and vulnerabilities. COVID-19 epidemiologic conditions at the time of

a natural hazard event might also influence the characteristics of emergency and humanitarian responses (e.g. evacuation and

sheltering procedures, resource availability, implementation modalities, and assistance types). A simple epidemic phenomeno-

logical model with a concurrent disaster event predicts a greater infection rate following events during the pre-infection rate

peak period compared with post-peak events, highlighting the need for enacting COVID-19 counter measures in advance of sea-

sonal increases in natural hazards. Inclusion of natural hazard inputs into COVID-19 epidemiological models could enhance the

evidence base for informing contemporary policy across diverse multi-hazard scenarios, defining and addressing gaps in disaster

preparedness strategies and resourcing, and implementing a future-planning systems approach into contemporary COVID-19

mitigation strategies. Our recommendations may assist governments and their advisors to develop risk reduction strategies for

natural and cascading hazards during the COVID-19 pandemic.
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Abstract
Meteorological and geophysical hazards will concur and interact with coronavirus disease (COVID-19) impacts in many 
regions on Earth. These interactions will challenge the resilience of societies and systems. A comparison of plausible COVID-
19 epidemic trajectories with multi-hazard time-series curves enables delineation of multi-hazard scenarios for selected 
countries (United States, China, Australia, Bangladesh) and regions (Texas). In multi-hazard crises, governments and other 
responding agents may be required to make complex, highly compromised, hierarchical decisions aimed to balance COVID-
19 risks and protocols with disaster response and recovery operations. Contemporary socioeconomic changes (e.g. reducing 
risk mitigation measures, lowering restrictions on human activity to stimulate economic recovery) may alter COVID-19 
epidemiological dynamics and increase future risks relating to natural hazards and COVID-19 interactions. For example, 
the aggregation of evacuees into communal environments and increased demand on medical, economic, and infrastructural 
capacity associated with natural hazard impacts may increase COVID-19 exposure risks and vulnerabilities. COVID-19 
epidemiologic conditions at the time of a natural hazard event might also influence the characteristics of emergency and 
humanitarian responses (e.g. evacuation and sheltering procedures, resource availability, implementation modalities, and 
assistance types). A simple epidemic phenomenological model with a concurrent disaster event predicts a greater infection 
rate following events during the pre-infection rate peak period compared with post-peak events, highlighting the need for 
enacting COVID-19 counter measures in advance of seasonal increases in natural hazards. Inclusion of natural hazard inputs 
into COVID-19 epidemiological models could enhance the evidence base for informing contemporary policy across diverse 
multi-hazard scenarios, defining and addressing gaps in disaster preparedness strategies and resourcing, and implementing 
a future-planning systems approach into contemporary COVID-19 mitigation strategies. Our recommendations may assist 
governments and their advisors to develop risk reduction strategies for natural and cascading hazards during the COVID-19 
pandemic.

Keywords Coronavirus · COVID-19 · Natural disasters · Decision-making · Multi-hazards

1 Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) and its associated coronavirus disease 
(COVID-19) emerged from probable zoonotic origin from 
China’s Hubei province in early December 2019. The virus 
and disease are collectively referred to as COVID-19 in 
this paper. COVID-19 rapidly spread around the world and 
was declared a pandemic by the World Health Organization 
(WHO) on 11 March 2020 (https ://www.who.int/emerg encie 
s/disea ses/novel -coron aviru s-2019/event s-as-they-happe n). 
As of 29 April 2020, the John Hopkins University coro-
navirus dashboard (https ://coron aviru s.jhu.edu/map.html) 
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reports more than 3.1 million confirmed infections and more 
than 217,200 fatalities globally.

This paper uses quantitative and qualitative measures 
to assess the likelihood of natural hazards coinciding with, 
and influencing epidemiological characteristics of, the 
COVID-19 pandemic. Natural hazard curves for seasonal 
(e.g. tropical cyclone, floods, heat waves, monsoons, tor-
nadoes) hazards are plotted against COVID-19 time-series 
forecasts (Fig. 1). Stochastic (e.g. earthquakes, volcanic 
eruptions) hazards are also considered in a general sense 
but not specifically analysed. The effects of these natural 
hazards on human life depends on the severity of the hazard, 

the exposure of humans and infrastructure to it, the vulner-
ability of exposed elements, and the ability to respond and 
recover. COVID-19 has the potential to significantly impact 
the exposure, vulnerability and response elements associated 
with natural disasters and vice-versa, thereby requiring a 
systems approach to analyse risk and resilience (e.g. Simon-
ovic 2011; Harrison and William 2016).

Approaches to mitigating COVID-19 risks share some 
commonalities with natural disaster mitigation. For example, 
enacting social distancing protocols to reduce COVID-19 
exposure could be considered analogous to land-use plan-
ning to reduce exposure to natural hazards (e.g. floods, 

Fig. 1  Epidemiological forecast models for COVID-19 fatalities and 
infections for a the United States, b Australia, c Bangladesh and d 
China, developed using https ://covid 19-scena rios.org/ software and 
boot-strapping reproduction number (1.9 ≤ Ro ≤ 3.2), simulation date 
ranges, and % mitigation estimate parameters (see legend in each 
panel) to maximize goodness-of-fit between confirmed cumulative 
fatalities and model curves. Epidemiological curves are labelled in 
the format COUNTRY_AVERAGE Ro_MITIGATION#1%EFFECT
IVENESS_±MITIGATION#2%EFFECTIVENESS_±MITIGATION
#3%EFFECTIVENESS. Epidemiological curves are subject to large 
and spatiotemporally varying uncertainties and are thus intended for 

illustrative purposes only, rather than accurate and precise forecasts. 
The grey box in (a) is the 95% confidence interval for the Institute 
for Health Metrics and Evaluation U.S. cumulative fatality projection 
with preferred value (black line). Model parameters and results for 
a–d are presented in the Supplementary Information accompanying 
this paper. Representative seasonal hazard curves for each country as 
shown. TCs tropical cyclones. See text for interpretations. These haz-
ard curves are derived from a variety of sources (Brooks et al. 2003; 
Landsea 1993; Nissan et al. 2017; Sheridan and Kalkstein 2010) and 
expert knowledge

https://covid19-scenarios.org/
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earthquakes) (Quigley et al. 2020). COVID-19 health and 
service policies aimed to preference vulnerable groups 
including the elderly, those with ill health and comorbidities, 
the homeless or underhoused, and people from vulnerable 
socioeconomic groups that might be vulnerable to financial, 
psychosocial and/or physical challenges (Lancet 2020), are 
crudely analogous to defining and enforcing seismic build-
ing codes, and strengthening earthquake-vulnerable build-
ings, to reduce life safety risks (e.g. Stucchi et al. 2011; 
Hosseini et al. 2009).

Epidemiological forecasts of COVID-19 infections and 
fatalities (Fig. 1) exhibit large spatial and temporal variations 
due to differences in modelling approaches, mitigation sce-
narios (e.g. “Supress and Lift” strategy used in Hong Kong 
and Singapore; see Normile 2020), health system capacity, 
epidemiological parameters, and demographic parameters 
(https ://covid 19-scena rios.org/). Changes induced by exter-
nal (e.g. the concurrency of other emergent phenomena such 
as natural disasters) and internal factors (e.g. relaxation of 
social distancing measures, return-to-work decisions) can 
impact on many of these parameters significantly and thus 
create more uncertainty in infection and fatality predictions 
(Fig. 1). It is therefore challenging to define what a ‘worse-
case’ COVID-19 fatality scenario is, given the susceptibility 
of forecasts to major perturbations induced by phenomena 
with uncertain spatial and temporal properties.

Given this context, resolving policy priorities in response 
to the COVID-19 pandemic and associated compounding 
effects of natural hazards involves a complex higher-level 
decision-making process that must inevitably be guided 
by scientific insight (Colwell and Machlis 2019; Filippelli 
2020). In view of this, our study seeks to provide a qualita-
tive analysis of the combined effect of COVID-19 epidemic 
and external perturbations, specifically natural disasters, to 
propose that:

 (i) COVID-19 epidemiological models may be highly 
sensitive to disasters originating from natural haz-
ards, and thus inclusion of seasonal and / or stochas-
tic events might better enable worst-case scenarios to 
be considered,

 (ii) contemporary COVID-19 related policies, such as 
relaxations of mitigative measures, may increase the 
probability that diverse multi-hazards will interact 
with the COVID-19 crisis and stimulate concurrent 
and cascading crises, and

 (iii) disaster preparedness strategies and resourcing 
should carefully consider the impact of COVID-19 
on future response operations, including: adaptation 
of implementation modalities to account for the dis-
ruption of critical supply chains, the potential locali-
sation of response efforts due to limited mobility of 
humanitarian actors, availability of evacuation cen-

tres with capacity for social distancing, the capacity 
of humanitarian workers/volunteers and medical staff 
to respond to natural disasters in COVID-affected 
regions, and the availability of personal protective 
equipment and medical equipment (e.g. respirators) 
to incorporate large spikes in need.

2  Context: cascading natural disasters 
and their relevance to COVID‑19 scenarios

In this paper, we forthwith use the term ‘natural disaster’ to 
refer to an adverse event or series of events that originate 
from the interaction of hazardous event(s) of natural origin 
with humans and/or their physical and/or socioeconomic 
systems and infrastructure. Droughts, floods (meteorologi-
cal) and earthquakes (geophysical) are the most common 
natural disasters in the world, affecting millions of people 
every year (Kouadio et al. 2012). Natural disaster fatali-
ties since 1900 reveal decreases in average annual deaths 
from major drought and flood events and increases in fatali-
ties associated with earthquakes (including tsunamis) and 
extreme weather (e.g. tornadoes, tropical cyclones) and tem-
perature events (e.g. heat waves) (Fig. 2). Fatality estimates 
from extreme temperature events are considered a minimum 
value because heat and cold temperature extremes may exac-
erbate pre-existing medical conditions and contribute to 
mortality rates without formal attribution (Medina-Ramon 
et al. 2006).

A concurrent hazard is defined herein as hazardous 
event(s) of natural physical  (e.g. earthquake, volcanic 
eruption, flood, tropical cyclone) or biologic origin (e.g. 
an infectious disease such as COVID-19) that overlap in 
time and space. The occurrence of two or more hazardous 
events (e.g. an earthquake during COVID-19) is referred to 
here as a multi-hazard scenario [a.k.a. “compound events”, 
although this term has a broader definition than used here 
(e.g. Zscheischler et al. 2018)]. Hazards that are sourced 
from, triggered by, and/or influenced by preceding hazards 
are referred to as cascading hazards. For context, we provide 
brief examples below.

On January 12, 2010, a catastrophic 7.0 magnitude earth-
quake struck Haiti, causing more than 200,000 fatalities, 
displacing more than 1.5 million people, and affecting 3 mil-
lion people overall (Doocy et al. 2013, see also Fig. 2). The 
earthquake severely damaged the public sanitation system 
and created ideal conditions for outbreaks of major infec-
tious diseases. Nine months later, a cholera outbreak origi-
nating from human transmission (Orata et al. 2014) began 
to spread across the country, eventuating in more than 9000 
deaths and 650,000 infections (https ://www.cdc.gov/chole 
ra/haiti /index .html). Prior to 2010, there was no reported 
history of cholera in Haiti. Long-term impacts and hazards 

https://covid19-scenarios.org/
https://www.cdc.gov/cholera/haiti/index.html
https://www.cdc.gov/cholera/haiti/index.html
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originating from the earthquake crisis (socioeconomic 
impacts, infrastructure impacts, hazards such as aftershocks) 
spatially and temporally overlapped, interacted with, and 
amplified the cholera impacts; these could be considered as 
a protracted multi-hazard scenario with cascading elements 
and disastrous impacts.

Other cascading, multi-hazard examples include:

(i) increased long-term flood hazard in Christchurch, New 
Zealand caused by, and concurrent with, the 2010–
2011 Canterbury earthquake sequence (Quigley and 
Duffy 2020) caused significant damage to property and 
infrastructure and increased vulnerability to coastal-
tidal hazards,

(ii) large death tolls in Puerto Rico and some Caribbean 
islands due to the cascading effects of Hurricanes Irma 
and Maria compounded societal vulnerability through 
infrastructure damage and power outages that left mil-
lions without electricity, water, and cell phone service 
for 2–4 weeks;

(iii) the 2015 magnitude 7.8 Nepal earthquake along with 
its magnitude 7.3 aftershock triggered snow avalanches 
(largest ~ 2.3  km2) and thousands of landslides, the lat-
ter of which caused flooding due to river blockages and 
landslide dam breaches (Martha et al. 2017). Blocked 
and damaged road infrastructure directly impacted 
earthquake response efforts, including search and res-
cue activities, the timely provision of emergency aid, 
the ability to conduct rapid needs assessments, and the 

provision of essential services (Khazai et al. 2015). The 
complex spatial distribution of landslides highlights the 
need for considering additional dimensions including 
seasonality in a multi-hazard scenario (Roback et al. 
2018);

(iv) extreme events (e.g. floods of 1987, 1998, and 2007, 
tropical cyclone in 1991) in Bangladesh that offer a 
perspective of the interaction between extreme natural 
hazards and socioeconomic vulnerabilities, and how 
that could be amplified by COVID-19 (Siddique et al. 
1991; Khalil 1993; Mushtaque et al. 1993; Dove and 
Khan 1995; Chowdhury 2000; Benson and Clay 2002; 
Mirza 2002; Sherman and Shapiro 2005; McMahon 
2007; Zoraster 2010; Rahman et al. 2013).

(v) the 2011 Tohoku magnitude 9.1 earthquake, which 
caused shaking damage, triggered a tsunami with dis-
astrous impacts, including a major malfunction at the 
Fukushima Daiichi Nuclear Power Plant that exposed 
people to severe radiation hazards locally and signifi-
cant hazards globally (Ten Hoeve and Jacobson 2012).

It is also pertinent to consider hazard cascades with epi-
demic components. For instance, previous cases of Acute 
Respiratory Infections (ARIs) following natural disasters 
can shed light on disaster response needed to counter the 
spread of COVID-19. ARIs were a major concern following 
natural disasters such as the South Asian Tsunami (World 
Health Organization 2005; Doocy et al. 2007), major-to-
great earthquakes (Weekly Morbidity and Mortality Report 

Fig. 2  Average annual deaths by natural disasters (Ritchie and Roser 2020)
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Pakistan, Vol. 42/ DEWS 2006-36; Woersching and Snyder 
2004; Akbari et al. 2004), volcanic eruptions (Surmieda 
et al. 1992), and hurricanes (Campanella 1999). Outbreaks 
of other communicable diseases (e.g. water borne diseases) 
in communities affected by natural disasters are commonly 
attributed to crowding of displaced people in camps (Weekly 
Morbidity and Mortality Report Pakistan, Vol. 23/DEWS 
2006–2017; Marin et al. 2006; Watson et al. 2007; Kouadio 
et al. 2012).

Several natural disasters have now occurred during the 
COVID-19 crisis. We consider some of these in Sects. 3 
and 4. Many countries around the world, including those 
with increasing COVID-19 infection and fatality rates are 
highly susceptible to seasonal natural disasters. Some deci-
sion-makers have reduced (or are considering reduction of) 
COVID-19 mitigation measures based on epidemiologic 
data and/or priority valuation of other inputs (e.g. economic, 
political). The likelihood of future natural disasters and 
potential impacts on COVID-19 exposure and vulnerability 
is scarcely mentioned in these narratives.  

3  Plausible COVID‑19 epidemic scenarios, 
multi‑hazard curves, and the importance 
of expeditiously reducing infection rates 
prior to disaster seasons

Figure  1 presents epidemiological forecast models for 
COVID-19 fatalities and infections for the USA, Aus-
tralia, Bangladesh and China, developed using https ://covid 
19-scena rios.org/ Software. Curves were generated by 
iteratively bootstrapping the COVID reproduction number 

(Ro), simulation onset date, and % mitigation variables to 
maximize goodness-of-fit between confirmed cumulative 
fatalities and modelled deaths through the same time period. 
Several alternative scenarios were considered by adjusting 
the % mitigation variable only.

The average Ro ranges from 1.9 (Australia) to 3.9 (China); 
Bangladesh is 3.8 and the United States is 3.2. These esti-
mates are consistent with the range of reported Ro values 
from scientific literature (https ://www.natur e.com/artic les/
d4158 6-020-01003 -6); noting that the Ro values used here 
are intended to be an average value since COVID-19 onset 
(rather than a value representing the current situation) that 
are modified by adjusting the % mitigation parameter at 
various time-slices. Mitigation dates for each country were 
derived from internet media reports by searching “country 
name”, and “COVID-19 mitigation actions” in Google and 
Google news search engines. The mitigation % effectiveness 
parameter was estimated from our analysis of the mitigation 
protocols taken, as represented by the media consulted for 
mitigation dates. A preference was given to peer-reviewed 
literature and/or government-issued information sources. 
For example, in Australia, we assigned a mitigation esti-
mate of 75% (range 50% to 90% effectiveness) commencing 
on 23 March 2020, when many places of social gathering 
were closed and a variety of mitigation strategies aimed to 
reduce social contact were progressively enacted, based on 
a government source summary document (https ://www.healt 
h.gov.au/news/healt h-alert s/novel -coron aviru s-2019-ncov-
healt h-alert /how-to-prote ct-yours elf-and-other s-from-coron 
aviru s-covid -19/limit s-on-publi c-gathe rings -for-coron aviru 
s-covid -19). Some countries have highly incremented and 
highly regionalized mitigation processes (https ://www.cdc.

Fig. 3  Daily new infectee rate in Croatia. The time of the Mw 5.3 Zagreb earthquake is also shown along with the COVID-19 incubation time 
range defined by WHO. An apparent increase in the infectee rate proceeding the earthquake is discernible. Data source Dong et al. (2020)

https://covid19-scenarios.org/
https://covid19-scenarios.org/
https://www.nature.com/articles/d41586-020-01003-6
https://www.nature.com/articles/d41586-020-01003-6
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-gatherings-for-coronavirus-covid-19
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-gatherings-for-coronavirus-covid-19
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-gatherings-for-coronavirus-covid-19
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-gatherings-for-coronavirus-covid-19
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-gatherings-for-coronavirus-covid-19
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm?s_cid=mm6915e2_x
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gov/mmwr/volum es/69/wr/mm691 5e2.htm?s_cid=mm691 
5e2_x) for which a single Ro metric grossly simplifies the 
reality (for example the U.S., where 20 March, 2 April, 12 
April); in these cases we acknowledge this complexity but 
consider our estimates to best represent available informa-
tion at the time of writing. Ro values, mitigation dates and % 
effectiveness estimates, and projected fatalities are included 
in the Supplementary Information item 2 accompanying this 
manuscript.

Infection and cumulative fatality scenarios vary widely 
and are highly sensitive to small changes in % mitigation sce-
narios (e.g. Fig. 1d, CHN_3.9_85_67 vs CHN_3.9_85_67), 
particularly for countries with higher Ro values. Both esti-
mates are intended for the main purpose of demonstrating 
how reducing mitigation measures can dramatically influ-
ence these projections.

In the case of the U.S., where a lifting of restrictions and 
re-opening of businesses is being considered, reduction in 
mitigation measures is likely to sustain higher infection and 
fatality rates (see USA_3.2_30_70_80 curve) concurrent 
with peak tornado hazard season in the southeast and central 

U.S. (blue curve), overlapping with increasing (and peak) 
wildfire and heatwave hazards, and potentially overlapping 
with increasing flood, hurricane, and tropical cyclone haz-
ards. Other COVID-19 related restrictions are likely to com-
pound natural disaster and COVID-19 risks. For example, 
the U.S. Forest Service has cancelled its planned seasonal 
burns due to COVID-19 restrictions, and travel restrictions 
may reduce the likelihood of provision of international 
support for firefighting. This is explored in more detail in 
Sect. 6.

In the case of Australia, where strong and increasing 
social distancing measures were enacted nationally begin-
ning on 23 March, daily confirmed infections are reducing 
significantly, and the cumulative fatality curve has mostly 
plateaued (as of 16 April 2020). Infection and fatality rates 
began to increase in Australia after the cessation of the 
severe 2019–2020 bushfire season (“Black Summer Fires”) 
in which thousands of Australians were forced to evacuate 
into communal environments; had COVID-19 emerged only 
1–2 months earlier in Australia community transmission 
risks would have been significantly higher. All of the major 

Fig. 4  Illustrations of cumula-
tive infectees and daily new 
infectee rates. Upper panel: 
Reported confirmed COVID-19 
cases in China from 22 January 
to 28 April 2020 (blue curve) 
and the model based on Eq. (1) 
(red-dashed line; see Sect. 5 
for equation). See main text for 
parameters used. Bottom panel: 
An example model output (see 
main text for details) show-
ing the daily new infectee rate 
over time for larger (blue) and 
smaller (red) spreading rates. 
While the infected population 
size (Nmax = 10,000) remains the 
same, a reduction in spreading 
rate from g = 0.2 (blue curve) to 
g = 0.1 (red curve) “flattens the 
curve” over a time horizon of 
150 days

https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm?s_cid=mm6915e2_x
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm?s_cid=mm6915e2_x
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seasonal hazards are reducing or at low levels; it seems less 
likely that natural multi-hazard scenarios will concur with 
COVID-19, although the protracted nature of the latter and 
possibility of stochastic hazards (e.g. earthquakes and out-
of-peak season floods) means this is still possible.

In the case of Bangladesh, infection and cumulative fatal-
ity rates are currently steeply increasing. Some mitigation 
measures have been in effect; however, the effectiveness of 
these is currently unclear. Cumulative fatality projections 
vary widely; our results suggest sustained 70% average 
effectiveness (in the absence of other concurrent disasters 
or major changes in internal variables) could keep fatali-
ties below 10,000, but weaker mitigation strategies fore-
cast > 500,000 deaths. Regardless of the mitigation scenarios 
considered here, sharp increases in infections and deaths are 
predicted to overlap with the forthcoming tropical cyclone 
and heatwave peak hazard seasons and may overlap with 
peaks in monsoonal flood hazard. These aspects are further 
considered in Sect. 6.

In the case of China, renewed ‘secondary spikes’ in infec-
tions in late March and early April enhance uncertainty in 
epidemiologic projections. If the average post-peak infec-
tion and fatality rate reductions have plateaued, our model 
suggests ~ 4500 deaths (CHN_3.9_85). However, if mitiga-
tive restrictions are relaxed, and if infection resurgences are 
sustained and stimulate cascading infections, it is conceiv-
able (albeit unlikely) that cumulative fatalities could exceed 
70,000 or more (e.g. CHN_3.9_85_67). In the latter sce-
nario, infection and fatality rates could increase concurrently 
with increasing flood, heatwave, and hurricane and tropi-
cal cyclone hazards, which cause more than 1000 fatalities 
per year in China on average (Han et al. 2016). China also 
contains regions with high earthquake hazard. To reduce 
risks of concurrent and cascading multi-hazards, our analy-
sis indicates that strong and sustained mitigation to reduce 
COVID-19 infection rates are required.

The COVID-19 pandemic is active and continuously 
evolving. The time interval over which our forecast mod-
els are valid is shorter than the expected duration of this 
crisis. For example, capturing rapid movement of hot spots 
through China, Italy, Spain, Turkey, and the United States 
due to continuously evolving population dynamics and gov-
ernment measures adds an additional layer of complexity, 
reducing the predictive power of forecasts over longer time 
periods. In the absence of a vaccine, it is conceivable that 
the COVID-19 pandemic might last for multiple months 
or years and its resurgence may occur in waves as in any 
other previous major pandemic (e.g. Cohn 2008). Adapting 
resurgence histories of previous COVID-19 like pandem-
ics (e.g. human corona virus HCoV-OC43) for modelling 
transmission dynamics, Kissler et al. (2020) suggest that 
the current pandemic or its waves may last through 2024. 
This effectively translates into an increase in compound risks 

associated with COVID-19 pandemic, and therefore, while 
our preliminary analysis of concurrent compound hazards is 
useful for the time interval considered, it does not preclude 
the possibility for future multi-hazard scenarios concurrent 
with COVID-19 to occur beyond the temporal extent of our 
analysis.

4  Multi‑hazards concurrent with COVID‑19

4.1  Croatia Mw 5.3 earthquake

On 19 March 2020 at midnight, the Croatian government 
introduced strict measures to counter the spread of COVID-
19 virus as the number of confirmed cases rose to 105 (Dong 
et al. 2020). These included, closing of borders, shutting 
down all non-essential activities such as public events and 
gatherings and service facilities, and requiring employers 
to facilitate working-from-home arrangements (https ://balka 
ns.aljaz eera.net/vijes ti/u-hrvat skoj-na-snagu -stupi le-strog 
e-mjere -zabra njen-prela zak-grani ca). These strict meas-
ures were enforced to promote social-distancing to reduce 
COVID-19 communal infection risks.

Concurrent with the countrywide partial lockdown, a 
moment magnitude (Mw) 5.3 earthquake occurred in the 
northern suburbs of Zagreb, the capital of Croatia with a 
population of over 800,000. Prior to this earthquake, Zagreb 
has been devastated by several moderate earthquakes, the 
latest of which occurred in 1880 with a magnitude of 6.3 
(Kozák and Čermák 2010) that caused damage to about 500 
buildings within a ~ 25 km radius from the epicentre. Past 
experiences have shaped earthquake preparedness in Zagreb 
and approximately 80% of buildings are built to standards 
consistent with the earthquake building design codes. How-
ever, the Mw 5.3 event and its aftershocks in March 2020 
caused significant damage and disruption in the city. There 
was one fatality and at least 27 people suffered injuries. 
Electricity, water, and heating were lost in some parts of the 
city and about 250 houses sustained significant damage. An 
estimated 59 people required temporary shelters due to loss 
of dwellings (https ://abcne ws.go.com/Healt h/wireS tory/after 
shock s-rattl e-croat ian-capit al-day-stron g-quake -69744 525).

The Croatian earthquake is not an extreme natural dis-
aster scenario. However, it provides a useful perspective of 
compound risks. For example, in the immediate aftermath 
of a natural disaster, measures imposed to ensure social-
distancing may collapse temporarily. Due to the moderate 
size of the event and relatively localized damage zone, the 
Croatian government managed to clamp down on partial 
lockdown measures within about a day by issuing new direc-
tives, whereby the natural human behaviour of congregating 
in numbers and comforting each other in the aftermath of 
such an event was disrupted. Nonetheless, it is evident that 

https://balkans.aljazeera.net/vijesti/u-hrvatskoj-na-snagu-stupile-stroge-mjere-zabranjen-prelazak-granica
https://balkans.aljazeera.net/vijesti/u-hrvatskoj-na-snagu-stupile-stroge-mjere-zabranjen-prelazak-granica
https://balkans.aljazeera.net/vijesti/u-hrvatskoj-na-snagu-stupile-stroge-mjere-zabranjen-prelazak-granica
https://abcnews.go.com/Health/wireStory/aftershocks-rattle-croatian-capital-day-strong-quake-69744525
https://abcnews.go.com/Health/wireStory/aftershocks-rattle-croatian-capital-day-strong-quake-69744525
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the risk of COVID-19 transmission increased in a short-time 
window immediately following the Zagreb earthquake.

The daily new infectee rate (Fig. 3) shows an apparent 
increase following the Zagreb earthquake on 22 March 2020 
within the COVID-19 incubation time range. Further analy-
sis is needed to ascertain the exact cause of this apparent 
signal although it is not unreasonable to presume that tem-
porary disruption of social-distancing measures not only in 
Zagreb but also in other parts of the country in the immedi-
ate aftermath of the earthquake might have played a role. 
Therefore, the importance of acting rapidly and decisively 
by governing bodies in the immediate aftermath of a natural 
disaster is highlighted by the Zagreb earthquake. Identifying 
probable natural disasters and advance preparation might 
enable enforcing such actions more efficiently and systemati-
cally, reducing risks posed by the COVID-19 virus.

4.2  Tropical Cyclone Harold (TCH)

TCH originated as a severe meteorologic event in the Pacific 
Ocean and made landfall in Solomon Islands, Vanuatu, Fiji, 
and Tonga between 1 April 2020 and 8 April 2020 (https ://
publi c.wmo.int/en/media /news/tropi cal-cyclo ne-harol d-chall 
enges -disas ter-and-publi c-healt h-manag ement ), disrupting 
COVID-19 early intervention made by these communities. 
It first hit the Solomon Islands as a Category 2 event and 
rapidly transitioned into a Category 5 event by the time it 
reached Vanuatu, sustaining high winds of 200 km/h. Mov-
ing further southeast, it traversed Fiji and Tonga as a Cat-
egory 4 tropical cyclone.

Initial assessments indicate that 59,000 people were 
affected in Solomon Islands and 27 people are missing at 
sea to date. In Vanuatu, the northern province Sanma sus-
tained severe damage, where 90% of the population lost 
their homes and about 50% schools and 25% health cen-
tres were damaged. Initial aerial investigations conducted 
by the National Disaster Management Office of Vanuatu 
indicate that 159,474 people have been affected with pos-
sible 3 deaths (https ://ndmo.gov.vu/tropi cal-cyclo ne-harol d). 
The damage to houses, evacuation centres, gardens, water 
systems, health facilities, and schools vary between 50 and 
90% across seven different provinces (https ://ndmo.gov.vu/
tropi cal-cyclo ne-harol d/categ ory/100-01-ndmo-situa tion-
repor ts#). In Fiji, more than 1500 people have been moved 
to evacuation centres. The coastal flooding early warning 
system recently installed under the Coastal Inundation 
Forecasting Demonstration Project in Fiji recorded storm 
surge heights between 6.5 m and 8.5 m during the passage 
of TCH, which suggests that damage to life and property 
might be higher than known at present. Damage in Tonga is 
less documented but expected to be widespread with damage 
to homes, water supply, and food crops. TCH provides an 
example of how disaster response and recovery may impact 

COVID-19 measures. For example, Vanuatu has reduced 
in-country travel restrictions to facilitate humanitarian and 
relief operations. However, reduced capacity of communica-
tion services, disruptions infrastructure lifelines and supply 
chains, and limited resources are likely to compromise relief 
efforts and may increase societal vulnerability to COVID-19. 
Fortunately, these islands have recorded a very low number 
of COVID-19 confirmed cases to date, and it is yet to be seen 
if TCH has perturbed this trend.

4.3  4.3 Eruption of Anak Krakatau in Indonesia

Anak Krakatoa garnered much attention after its south-
western flank collapsed in an eruption in December 2018 
and generated a tsunami that killed 437 and injured thou-
sands along western Java and Southern Sumatra (Ye et al. 
2020). The volcano started a new eruption cycle on 10 April 
2020 concurrent with the COVID-19 pandemic. This has 
remained an active situation to date with constant alerts 
being disseminated to the public (https ://magma .esdm.
go.id/v1/vona?page=1) with a Volcano Observatory Notice 
for Aviation (VONA) alert level assigned as orange (3/4): 
“Volcano is exhibiting heightened unrest with increased 
likelihood of eruption with column height below 6000 m 
above sea level”. To our knowledge, no damage has been 
reported from this latest eruption cycle. A flank collapse 
analogous with the December 2018 is very unlikely as the 
volcano has greatly reduced in aerial extent as a result of 
that event. However, this highlights in general the high vol-
canic hazard throughout Indonesia, and the risk of volcanic 
activity to cause fatalities and population displacements that 
could impact on current COVID-19 mitigation strategies. 
Indonesia is still in early stage of the pandemic with only 
4839 confirmed cases and 459 deaths; however, the mortal-
ity rate of 9.5% is higher than global average of 6.4% on 14 
April 2020.

4.4  Tornadoes in the southeastern US

On 12 and 13 April, cold fronts crossed the southeast of 
the United States bringing widespread rainfall and embed-
ded mesoscale convective systems (MCSs) with associated 
strong winds and tornadoes. The MCSs within the larger 
weather system crossed several states, but Mississippi, 
Georgia and South Carolina were the worst impacted. The 
severe weather killed at least 30 people (https ://www.nytim 
es.com/2020/04/13/us/torna do-storm -south .html) across 
four states and destroyed many more peoples’ homes.

The typical immediate emergency response during a 
tornado outbreak is centred around finding shelter and this 
is practised by the community in the central and southeast 
US which has been well drilled in this process through past 
experience of severe weather. There is obvious potential for 

https://public.wmo.int/en/media/news/tropical-cyclone-harold-challenges-disaster-and-public-health-management
https://public.wmo.int/en/media/news/tropical-cyclone-harold-challenges-disaster-and-public-health-management
https://public.wmo.int/en/media/news/tropical-cyclone-harold-challenges-disaster-and-public-health-management
https://ndmo.gov.vu/tropical-cyclone-harold
https://ndmo.gov.vu/tropical-cyclone-harold/category/100-01-ndmo-situation-reports
https://ndmo.gov.vu/tropical-cyclone-harold/category/100-01-ndmo-situation-reports
https://ndmo.gov.vu/tropical-cyclone-harold/category/100-01-ndmo-situation-reports
https://magma.esdm.go.id/v1/vona?page=1
https://magma.esdm.go.id/v1/vona?page=1
https://www.nytimes.com/2020/04/13/us/tornado-storm-south.html
https://www.nytimes.com/2020/04/13/us/tornado-storm-south.html
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social distancing to be compromised where large tornado 
shelters are used, but accurate weather forecasts allowed 
for planning so that individual families within shelters were 
instructed to stand apart. Concerns about managing disas-
ter response during the COVID-19 pandemic prompted the 
American Meteorological Society to draw up a list of guide-
lines for sheltering from tornadoes during the COVID-19 
pandemic (https ://www.amets oc.org/index .cfm/ams/about 
-ams/ams-state ments /state ments -of-the-ams-in-force /torna 
do-shelt ering -guide lines -durin g-the-covid -19-pande mic/). 
Much of the advice is consistent with standard procedures 
for severe weather, but additionally people should be sure 
ahead of time that specific tornado shelters are open.

The US was in the midst of a steep rise in COVID-19 
cases and fatalities at the time of this tornado outbreak. It 
is presently unclear whether this severe weather has com-
pounded the effects of the COVID-19 pandemic in the south-
east US.

5  A simple epidemic phenomenological 
model with a concurrent event

5.1  Method

To qualitatively understand the effect of an external per-
turbation such as a natural hazard on the daily COVID-19 
infectee rate, we created a simple epidemic model assum-
ing that the cumulative growth of infectees over time fol-
lows a logistic differential function [Eq. (1)]. For a holistic 
analysis, this simple model is appropriate as the distribu-
tion of confirmed cumulative COVID-19 cases in countries 
that have implemented strict counter measures (e.g. China, 
South Korea, and Australia) can be approximately explained 
by this model. The exponential growth of COVID-19 cases 
observed in other countries is an indication of early stage 
exposure to the disease and that patient distribution is not 
sustainable over a longer time horizon due to the finite-
ness of populations and counter measures taken by govern-
ments. Therefore, the cumulative distribution of COVID-19 
cases can be expected to converge to a model similar to that 
described by some variation of Eq. (1).

where N is the cumulative number of infectees at any given 
time, t is time, Nmax is the expected maximum number of 
infectees, and g is the fractional growth of cumulative infect-
ees. Figure 4 compares data from China and the model based 
on Eq. (1) with g = 0.3, Nmax = 83,213 and a time horizon of 
83 days, where an approximate value for g is selected based 
on visual inspection of the fit between data and the model. 

(1)
dN

dt
= g

(

1 −
N

N
max

)

N

Note that the first patient in China was potentially discovered 
on 10 December 2019 and data for the period from that day 
to 22 January 2020 (start date given in the figure) is not reli-
ably recorded (https ://www.wsj.com/artic les/how-it-all-start 
ed-china s-early -coron aviru s-misst eps-11583 50893 2).

Rather than analysing cumulative infectee numbers, we 
focus on the effect on the “flattened” daily new infectee rate 
following an external perturbation (e.g. a natural disaster) as 
it is the behaviour of this curve that is being used to design 
COVID-19 counter measures (“curve flattening” shown in 
Fig. 4 bottom panel). We make several assumptions to con-
struct our simple models:

(1) In the immediate aftermath of an extreme natural dis-
aster, it is reasonable to assume that measures taken 
to contain the spread of COVID-19 collapse in the 
area directly affected by the event and the control over 
spreading rate is lost, resulting a spike in infectees. In 
this case, we assume that the spreading rate increases 
to the background value that existed prior to imposing 
“curve flattening” measures.

(2) Governments re-establish social-distancing measures 
fully over a finite time horizon (Pdays) following the 
external perturbation, which means that the flattened 
spreading rate that existed prior to the external per-
turbation will take effect beyond Pdays. In the interim 
period (i.e. within Pdays), it is highly likely that gov-
ernments will take partial measures that will reduce 
the spreading rate as was seen for the earthquake in 
Croatia. Also, compliance of citizens to these partial 
measures can be expected although it may depend on 
the severity of the event and the socio-political pro-
files of countries. Thus, we model this effect by linearly 
reducing the spreading rate from the background value 
to the flattened value in the interim period. We test 
several reasonable time horizons to understand their 
effect on the flattened daily new infectee rate curve. 
Depending on the nature of the external perturbation, 
different scenarios may play out. For instance, in the 
event of a flood, a population may get displaced and 
scattered from days to months (Sastry 2009) or it may 
be that populations get displaced but not scattered as in 
the case of an earthquake (Akbari et al 2004; Asokan 
and Vanitha 2017). These different scenarios will have 
an effect on the spreading rate. Describing the spread-
ing rate quantitatively for different scenarios is not the 
focus of our modelling. Instead, we model the general 
behaviour of the “flattened curve” in the event of an 
external perturbation subjected to above (1).

(3) The COVID-19 incubation time period (the time 
between exposure to the virus and emergence of symp-
toms) is five days, consistent with the median incuba-
tion time published by WHO (https ://www.who.int/

https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-in-force/tornado-sheltering-guidelines-during-the-covid-19-pandemic/
https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-in-force/tornado-sheltering-guidelines-during-the-covid-19-pandemic/
https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-in-force/tornado-sheltering-guidelines-during-the-covid-19-pandemic/
https://www.wsj.com/articles/how-it-all-started-chinas-early-coronavirus-missteps-11583508932
https://www.wsj.com/articles/how-it-all-started-chinas-early-coronavirus-missteps-11583508932
https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
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news-room/q-a-detai l/q-a-coron aviru ses). This means 
that no new cases will be found within the first five 
days following an event. This simplifies the “ground 
truth” somewhat, as according to WHO, incubation 
time range varies between one and fourteen days.

In our models, we set Nmax = 10,000, a background 
spreading rate (gb) of 0.2, a flattened spreading rate (gf) of 
0.1, and a time horizon of 150 days. We test the perturbation 
to the flattened curve with Pdays = 1, 7, 14, 21, and 28 days.

5.2  Results

Figure 5 shows the results of modelling the flattened daily 
new infectee rate after introducing a concurrent event with 
Pdays = 1, 7, 14, 21, and 28 days. For each Pdays, we tested 
two scenarios, where we introduce external perturbations at 
72 (left panels) and 112 days (right panels) from the start 
date of the flatten curve. These two time points are located 
symmetrically on either side of the peak of the flattened 
curve (day 92), and thus, provide qualitative insights into 
demands on the health services depending on the event 
occurrence relative to the peak.

Our results provide two main insights: (1) A concurrent 
event occurring prior to reaching the peak of the flattened 
curve increases the new infectee rate more in the aftermath 
of a concurrent event than if it were to occur at a post-peak 
time. This translates into increased demand on health ser-
vices in the pre-peak period than in the post-peak period. In 
some instances, pre-peak concurrent events increase curve-
flattened peak infection rates to levels approaching unmiti-
gated peaks. (2) The number of days a government takes to 
re-establish COVID-19 spreading control measures (Pdays) is 
a critical factor that determines the level of demand placed 
on health services. That is, the longer it takes for a govern-
ment to re-establish control measures, the higher the demand 
on the health services particularly in the pre-peak period.

These results based on our simple model emphasize two 
main policy recommendations that governments could con-
sider. First, measures must be enforced as early as possible to 
flatten the daily new infectee rate curve to minimize risks of 

temporally-overlapping COVID-19 infection rate increases 
with concurrent disasters. This reduction of risk of a natu-
ral disaster occurring in the pre-peak period could reduce 
demand on health services. Second, contingency plans must 
be devised with a focus on re-establishing COVID-19 coun-
ter measures as fast as possible in the wake of an event. 
This would involve identifying possible natural disasters, 
their magnitude, timing (for example seasonal events), and 
regional dependencies.

Following our example, more sophisticated models can 
be built to incorporate infectious disease dynamics in the 
wake of a concurrent event. For example, we have only con-
sidered the infected component in this instance, whereas a 
standard epidemiological compartmental model will incor-
porate susceptible and recovered components in addition to 
the infected component (Kermack and McKendrick 1927) 
enabling the mapping of dynamic interactions between dif-
ferent population groups. Prediction capabilities can be 
further improved with even more complex models, where 
the underlying assumption of a well-mixed population is 
relaxed, and structured populations are used to reflect vari-
able dynamics among different groups of population (e.g. 
Inaba and Nishiura 2008). For real time applications, how-
ever, more work will be needed to reduce uncertainties in 
parameters that capture the spatiotemporal characteristics 
of spreading of a disease (e.g. R0, Ridenhour et al. 2014).

6  Discussion

6.1  Concurrent multi‑hazard cascades 
during the COVID‑19 crisis

The combined epidemiological COVID-19 forecasts and 
seasonal hazard risk plots in Fig. 1 illustrate the different 
extreme weather hazards that countries will likely need to 
manage during different stages of the pandemic. While we 
have not modelled stochastic hazards such as earthquakes, 
they contribute a non-negligible to high hazard with regional 
variability for all the countries considered. Volcanic hazard 
is highly regionalized and not further discussed, but is highly 
relevant in some locations.

6.1.1  Australia

In Australia, summer 2019/20 saw substantial natural haz-
ards including major heatwaves that brought record high 
temperatures to populated areas including Canberra and 
western Sydney, severe bushfires that swept through an 
unprecedented area of the continent (Boer et al. 2020) and 
continuing drought that has devastated farming areas, dimin-
ished water supplies and primed the Australian forests for 
bushfire (King et al. 2020). Australia’s “Black Summer” also 

Fig. 5  The daily new infectee rate with a concurrent event (e.g. a nat-
ural disaster). Red and blue curves are same as those given in Fig. 4 
(bottom panel) and the grey dash-dot curve is the flattened curve per-
turbed by a concurrent event. The vertical dashed black line is the 
event day. The left panel shows the effect on the flattened curve for 
an event occurrence in the pre-peak period, whereas the right panel 
is for an event occurrence in the post-peak period. Each row repre-
sents a given Pday, the number of days a government takes to fully 
re-establish COVID-19 counter measures following the concurrent 
event. Pre-peak events increase the daily new infectee rate more 
than post-peak events. Also, the longer the governments take to re-
establish strict COVID-19 counter measures, the higher the daily new 
infectee rate

◂

https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
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saw millions of people experience very poor air quality for 
several days at a time as smoke from the fires blanketed 
Sydney, Canberra and Melbourne on several occasions. 
The bushfires, which resulted in 33 fatalities, led to mass 
evacuations from vulnerable areas and people sheltering 
on crowded beaches in Mallacoota, Victoria amongst other 
places.

The “Black Summer” came only months before the 
COVID-19 pandemic began and as Australia approaches 
winter the risks of severe weather related to heatwaves, 
bushfires, tropical cyclones and hailstorms is reduced. While 
there are still natural hazard risks in Australian winter, nota-
bly related to floods and extratropical cyclones, the overall 
rate of meteorological hazards is lower than in summer. In 
that sense Australia is fortunate to have not experienced 
major natural hazards coincident with the COVID-9 pan-
demic, and it is less likely to do so than Northern Hemi-
sphere countries over the coming months. Note, that there 
are non-natural hazards that could also occur during winter 
that could exacerbate the effects of COVID-19 in Australia 
such as seasonal flu.

6.1.2  The United States

In the US, we have already highlighted the tornado outbreak 
of 12 and 13 April as occurring during the COVID-19 pan-
demic. The US experiences its seasonal peak in tornado 
probability in May, so there are likely to be further severe 
storms around this time. During boreal summer, the US 
often experiences other natural hazards including heatwaves 
and hurricanes. While these extremes both have devastating 
impacts their interaction with the ongoing COVID-19 pan-
demic will likely differ. Heatwaves tend to exacerbate pre-
existing health conditions. This would place an additional 
burden on a healthcare system that may also be stretched 
due to COVID-19. In contrast, hurricanes tend to damage 
infrastructure, and, like tornadoes, people evacuate and shel-
ter, often travelling interstate or sheltering with many other 
people in large buildings. Such a response to a hurricane in 
summer 2020 would not abide by social distancing protocols 
and could aid the spread of the virus. Alternate plans should 
be considered. Both heatwaves and hurricanes affect larger 
areas than tornadoes and have the potential to strain emer-
gency response systems already managing the COVID-19 
pandemic.

6.1.3  South Asia

South Asian countries with some of the highest popula-
tion densities (https ://neo.sci.gsfc.nasa.gov/view.php?datas 
etId=SEDAC _POP) are exposed to compound risks from 
COVID-19 pandemic and extreme weather events such as 
severe floods as the region enters the wet season from May 

to October. For instance, 1110 people died and nearly 14 
million were affected in the floods of June 2007 in Bang-
ladesh (Dewan 2015). In addition, Northern Pakistan and 
India, Nepal, and Bhutan are located along the Himalayan 
main frontal thrust capable of producing large Mw > 7.0 
earthquakes (Lavé et al. 2005). The devastation caused by 
the 2015 Mw 7.8 Gorkha earthquake that occurred in Nepal 
exemplifies the exposure of this region to extreme geologic 
hazards. This particular event killed 8,790 people, injured 
22,304 and affected another 8 million people and damaged 
755,549 buildings (Gautam 2017). It is evident from these 
statistics that solitary extreme natural hazards in this region 
have the potential to affect large numbers of people and dis-
place them. In particular, displacement in large numbers 
during severe natural events is mainly attributable to the 
poor quality of dwellings and infrastructure. This in turn is 
detrimental to measures enforced to counter the spread of 
COVID-19, foremost of which is social distancing. In the 
event of natural hazards, these measures are highly likely to 
disintegrate completely, substantially increasing the risk of 
COVID-19 infections.

6.1.4  Other

While we have qualitatively aggregated these hazards on 
an domestic scale, the countries considered herein (and 
many other countries with high natural disaster risk includ-
ing Japan, The Philippines, Iran, Turkey, and many central 
America and Pacific island nations) have strong regional var-
iations in hazard, exposure, and vulnerability that are super-
imposed on spatiotemporal variabilities in COVID-19 risks. 
It is well beyond the scope of this article to consider these 
regional variations. However, we provide one example, from 
the U.S. state of Texas (Fig. 6). Currently Texas has imple-
mented two of four potential social distancing measures but 
has a climbing rate of COVID-19 hospitalizations and deaths 
that are collectively increasing demand on resources (Fig. 6). 
Projected peaks in fatality rate and hospital demand over-
lap with the seasonal peak in tornado hazard (Long et al. 
2018). Upper bounds (95% confidence) on projected ICU 
resource capacity currently approach ICU bed availability; 
if tornadoes increase ICU demand (by increasing critical 
care injuries associated with the tornado and/or COVID-19 
infectees) or reduce capacity (by power outages and infra-
structure damage) then it is conceivable that resource limits 
could be approached.

6.2  Implications for humanitarian response

In 2020 it is estimated that 167 million people across 55 
countries will require humanitarian assistance (OCHA 
2019). With ongoing global economic uncertainty (IMF 
2020), it is unclear what impact the COVID-19 pandemic 

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SEDAC_POP
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will have on humanitarian financing and resource mobiliza-
tion. In the event that a crisis exceeds the coping capacity of 
a host country, a funding or resourcing gap resulting from 
COVID-19 would severely impair the government’s ability 
to deliver critical humanitarian aid and to scale-up response 
efforts to meet the needs of the affected population.

For many countries, a hazard response beyond the coping 
capacity of the government will trigger a Level 3 (L3) Inter-
Agency Standing Committee (IASC) Humanitarian System-
Wide Scale-Up (IASC 2018) involving one or more clusters/
sectors (i.e. Water Sanitation and Hygiene (WASH), Health, 
Protection, Logistics, Shelter) to coordinate response efforts. 
Responding to a L3 multi-hazard situation during COVID-
19 will require additional resources and rely more heavily 
on integrated programming and inter-sectorial coordination 
incorporating competing priorities from different clusters/
sectors.

Where countries have an existing Humanitarian Response 
Plan (HRP), or contingency planning simulations have been 
carried out such as the 2019 “Bangladesh contingency plan 
for earthquake response in major urban centres” (HCTT 
2019), response plans will need to be revised, to account 
for the increased risk of disease transmission and additional 
limitations and access considerations imposed by COVID-19 
during response and recovery operations.

Where an IASC system-wide L3 emergency response is 
triggered, such as a major earthquake on a similar scale to 
the 2015 Gorkha Earthquake, global humanitarian response 

mechanisms may be limited in their ability to rapidly mobi-
lize international surge capacity (including humanitarian 
staff and volunteers) and resources typically relied on for 
large-scale humanitarian response. International military 
deployments may also be limited due to an increasing focus 
on domestic priorities. As a result, response efforts will 
likely need to become much more localized, with a focus 
on improving remote coordination and support for local 
responders. Movement restrictions will make it increasingly 
difficult for remote and isolated populations to seek medi-
cal services and assistance (OCHA 2020) and specialized 
services such as psychosocial support will increasingly need 
to be delivered through remote systems, as already observed 
during the recent Croatia Earthquake Response (IFRC, 
2020). Multi-hazard risk profiles in these circumstances will 
need to include an array of often compounding vulnerabili-
ties, such as the risk to elderly populations and the elevated 
risk of sexual and gender-based violence.

Logistics supply chains have already been severely com-
promised by COVID-19, with a disruption of critical sup-
ply chains due to border closures, import/export restrictions, 
and access restrictions (OCHA 2020). This will influence 
the way humanitarian programming can be implemented. 
Stimulation of local markets (where they still exist) through 
cash and voucher assistance (CVA) programming, improved 
engagement with the private sector, and utilization of local 
industry and resources and will likely play an increasing role 
in strategies for recovery.

Fig. 6  COVID-19 daily deaths, hospital bed usage and capacity, and 
future projections plotted against the tornado seasonal hazard curve. 
The concurrency of increased COVID-19 and tornado hazards define 
heightened risk of a multi-hazard scenario that could greatly increase 

demand on hospital resources and increase COVID-19 exposure risks 
in instances where existing tornado evacuation procedures such as 
communal clustering into shelters are undertaken
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A multi-hazard situation in an already compounded and 
protracted or ‘complex’ emergency is of particular concern. 
These include densely populated camp-like situations with a 
high risk of natural hazard, such as the Bangladesh Rohingya 
Refugee Response. As of December 2019, some 810,000 
Rohingya refugees live in 34 congested camps at high risk 
of flooding, landslides and seasonal cyclones, and are reli-
ant on humanitarian aid to meet basic needs (OCHA 2019). 
The added complication of COVID-19 containment meas-
ures into this already protracted crisis will put populations at 
significant risk of loss of life and will cause unprecedented 
complexity for humanitarian response efforts in the event of 
a natural hazard. Dense settlements, with a high population 
density will need to carefully consider social and physical 
distancing measures in humanitarian programming. This 
will limit the types of assistance (emergency centres, camps, 
emergency shelter, cash distributions, rental assistance, etc.) 
that can be delivered and the implementation modalities that 
can be used without increasing risk of transmission, and 
thereby compromising efforts to contain COVID-19.

It is essential that humanitarian response remains pro-
portionate, appropriate and relevant to the emergency, while 
still being timely and effective (Sphere 2020). Humanitarian 
response should avoid exposing populations to further harm, 
and it is critical that preparedness plans pre-emptively assess 
and evaluate the compounding risks posed by COVID-19 
in multi-hazard situations. A tiered resilience approach 
that concurrently integrates resilience indices, visualiza-
tion tools, and modelling methods from multiple agencies, 
organizations, and researchers could assist in reconciling 
analytical complexity with stakeholder (humanitarian organ-
izations and beneficiaries) needs and resources available for 
creating actionable recommendations to enhance resilience 
(Linkov et al. 2018).

7  Conclusions and recommendations

Our analysis suggests that without good planning there is 
an increased risk of compounding impacts originating from 
natural hazard event(s) during the COVID-19 pandemic. 
This could include both the effects of the natural disaster 
being worse than they would otherwise be, and additional 
spread of COVID-19. Here we make several recommenda-
tions we believe could alleviate some of the worst effects of 
natural hazards during the pandemic:

7.1  Make extensive use of pandemic and natural 
disaster hybrid models

The compounding effect of seasonal natural hazards (e.g. 
floods, cyclones) on the COVID-19 pandemic is largely 
a foreseeable problem and plans developed ahead of time 

could prevent some of the worst potential impacts from 
occurring. These plans can be based on modelling similar 
to that shown in this paper and we encourage emergency 
management agencies to consider use of these hybrid models 
to build response plans. COVID-19 epidemiological mod-
els may be highly sensitive to natural disasters, and thus 
inclusion of seasonal and / or stochastic events might better 
enable worst-case scenarios to be considered. This may be 
particularly important considering (a) the effect on infectee 
rate of the timing of a concurrent event relative to the peak 
of the infectee rate curve as demonstrated in this study 
(Fig. 5); (b) the uncertainty in intensity and duration with 
which COVID-19 counter measures must be implemented 
for them to be effective.

7.2  Make extensive use of weather forecasting 
and seasonal prediction models

Where possible, use of prediction models may help agencies 
ramp up emergency planning procedures days and weeks 
before meteorological extremes occur. For example, sea-
sonal prediction allows advance planning for the possibility 
of specific weather extremes and this should be undertaken 
to prevent some of the worst impacts of such events. There is 
already an indication that the 2020 Atlantic hurricane season 
will be unusually active (e.g. https ://engr.sourc e.colos tate.
edu/csu-resea rcher s-predi cting -activ e-2020-atlan tic-hurri 
cane-seaso n/), so planning for major land-falling hurricanes 
in the US over heavily populated cities during the COVID-
19 pandemic could be beneficial. In particular, developing 
alternate response plans and communicating these well in 
advance should prepare people for the most suitable actions 
to take that keep them safe from the hazard while also adher-
ing to social distancing, could help in preventing a major 
disaster. Even on the timescale of numerical weather pre-
diction, the response to the 12–13 April tornado outbreak 
demonstrates that several days may be enough to prepare for 
well-forecast small-scale extreme weather events.

7.3  Re‑design policy responses to different natural 
hazards

It is likely that hazard mitigation measures for worst-case 
scenarios of expected natural disasters, seasonal or stochas-
tic, are already in place for many countries and regions (e.g. 
Hurricanes in the US, Floods in Bangladesh, earthquakes in 
Nepal). However, these plans do not account for the exist-
ing COVID-19 crisis that requires social-distancing as the 
primary counter measure. Thus, incorporating effects of 
natural hazards in epidemiological models can guide modi-
fications required in existing natural hazard mitigation plans. 
The compound risks associated with stochastic natural dis-
asters (e.g. earthquake, volcanic eruptions) can potentially 

https://engr.source.colostate.edu/csu-researchers-predicting-active-2020-atlantic-hurricane-season/
https://engr.source.colostate.edu/csu-researchers-predicting-active-2020-atlantic-hurricane-season/
https://engr.source.colostate.edu/csu-researchers-predicting-active-2020-atlantic-hurricane-season/


Environment Systems and Decisions 

1 3

be mitigated by modifying existing hazard mitigation plans. 
Specific suggestions include establishing strategies for 
decongestion of densely populated spontaneous camps and 
settlements, introducing clear physical distancing protocols 
for distribution of essential assistance, increasing space 
allocations for vulnerable populations in shelters to reduce 
the risk of COVID-19 transmission, and the use of more 
emergency shelter locations with fewer people so that some 
semblance of social distancing may be achieved even in the 
aftermath of a hurricane or earthquake. Large-scale avail-
ability of personal protective equipment (PPE) to emergency 
responders would also help prevent the spread of infection.

7.4  Support agencies working in developing 
regions to manage relief efforts

Given the disproportionate impacts of many prior pan-
demic and natural hazards on the developing world, plans 
to equip developing countries and NGOs in preparing for 
and responding to natural hazards during the COVID-19 
pandemic would help limit the impacts of such disasters.

As our simple epidemiology models show, spikes in 
daily new infectee rates are a likely scenario in the wake 
of a natural disaster. The magnitude and duration of these 
spikes could in principle be controlled by policy decisions 
(described above). Thus, disaster planning strategies and 
resourcing, such as the introduction of remote coordination 
platforms, the localisation of response efforts and resources, 
availability of evacuation centres with capacity for social 
distancing, potential mobility of humanitarian actors, vol-
unteers and medical staff that could respond to natural dis-
asters in COVID-affected regions, and the availability of 
personal protective equipment and medical equipment (e.g. 
respirators) must be designed in combination with above (ii). 
Countering challenging conditions associated with natural 
hazards (limited road access, lack of communication etc.) 
must be considered in upholding COVID-19 social-distanc-
ing measures.

We offer these recommendations in the hope that they 
may be used to prevent some of the worst-impact sce-
narios of coincident natural hazard occurrences with the 
ongoing COVID-19 outbreak. These recommendations 
support the independently-derived strategic disaster risk 
reduction recommendations proposed by Djalante et al. 
(2020): (i) Strengthen knowledge and science provision in 
understanding disaster and health-related emergency risks, 
(ii) Mobilize existing disaster risk governance structure 
to manage disaster risk and potential health-emergencies, 
(iii) Utilize existing disaster coordination mechanisms at 
regional level to inform epidemic response, (iv) Under-
stand COVID-19 economic implications and resilience, (v) 
Prepare inclusive early recovery plans, and (vi) Strengthen 
community-level preparedness and response. Urgent 

sharing of scientific information (models, methods), par-
ticularly with developing countries, is important because 
many of these countries may lack capacity to generate 
knowledge rapidly to improve resilience against foresee-
able compound risks.

Our recommendations are framed around the ideas of 
building resilience to natural hazard risks such that their 
impacts are reduced in the era of COVID-19. We note that 
the concept of increasing resilience to mitigate impacts 
of extreme events is not novel (Bostik et al. 2018; Linkov 
et al. 2018); however, we hope that our suggested actions 
will build on those provided previously and will be used 
to reduce risks from natural hazards during the COVID-19 
outbreak. Our use of plausible scenarios could stimulate pro-
duction of resilience analyses that incorporate uncertainty 
and complex dynamics of physical and human/social factors 
across multiple spatial and temporal scales (e.g. Bostik et al. 
2018).
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Susceptible 293.81m

Recovered 35.85m

Infectious 164

Severely ill 215

Patients in ICU (model) 1.56k

Cumulative deaths (model) 338.56k

Total hospital beds 540.67k
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