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Abstract

Vertical land motion (VLM) of Earth’s surface can aggravate or mitigate ongoing relative sea level change. The near-linear

process of Glacial Isostatic Adjustment (GIA) is normally assumed to govern regional VLM. However, present-day deglaciation

of primarily the Greenland Ice Sheet causes a significant non-linear elastic uplift of >1 mm yr -1 in most of the wider Arctic.

The elastic VLM exceeds GIA at 14 of 42 Arctic GNSS-sites, including sites in non-glaciated areas in the North Sea region

and along the east coast of North America. The combined elastic VLM + GIA model is consistent with measured VLM at

three-fourth of the GNSS-sites (R=0.74), which outperforms a GIA-only model (R=0.60). Deviations from GNSS-measured

VLM, are interpreted as estimates of local circumstances causing VLM. Future accelerated ice loss on Greenland, will increase

the significance of elastic uplift for North America and Northern Europe and become important for coastal sea level projections.
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Key Points:8

• Elastic VLM from present-day ice loss in the Arctic causes significant uplift of coast-9

lines in North America and Northern Europe.10

• A combined VLM-model that includes GIA and elastic VLM, yields good agree-11

ment with GNSS-stations in the wider Arctic.12

• Residuals between GNSS and modeled VLM provides an approximation of extraor-13

dinary VLM caused by local circumstances.14
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Abstract15

Vertical land motion (VLM) from past and ongoing glacial changes can amplify or mit-16

igate ongoing relative sea level change. We present a high resolution VLM-model for the17

wider Arctic, that includes both present-day ice loading (PDIL) and glacial isostatic ad-18

justment (GIA). The study shows that the non-linear elastic uplift from PDIL is signif-19

icant (0.5-1 mm y−1) in most of the wider Arctic and exceeds GIA at 15 of 54 Arctic GNSS-20

sites, including sites in non-glaciated areas of the North Sea region and the east coast21

of North America. Thereby the sea level change from PDIL (1.85 mm y−1) is significantly22

mitigated from VLM caused by PDIL. The combined VLM-model was consistent with23

measured VLM at 85% of the GNSS-sites (R=0.77) and outperformed a GIA-only model24

(R=0.64). Deviations from GNSS-measured VLM can be attributed to local circumstances25

causing VLM.26

Plain Language Summary27

From 2003 to 2015, the Northern Hemisphere lost more than 6,000 gigatons of land28

ice, which added nearly 18 mm to the global mean sea level rise. Loss of land-based ice29

results in the vertical deformation of the Earth’s surface. Ongoing rebounding or sub-30

sidence caused by the end of the last ice age is often assumed to govern vertical defor-31

mation. However, present-day ice loss from Greenland and Arctic glaciers also cause an32

immediate vertical deformation. By using an vertical deformation model, that includes33

both components, we can explain GPS-measured deformation occurring in the Arctic.34

Our results show that the present-day Arctic ice loss contribution to vertical deforma-35

tion is approximately 0.5 to 1 mm y−1 in the wider northern region. This exceeds de-36

formation caused by the disappearance of the last ice ages at many coastal regions, in-37

cluding the North Sea region and the North American Atlantic coast. The Arctic present-38

day ice loss included in the VLM-model equals a global sea level rise of 1.5 mm y−1, which39

means that 30-80% of the sea level rise caused by Arctic ice loss is mitigated by surface40

uplift caused by the same ice loss.41
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1 Introduction42

The Arctic region is warming faster than any other region on Earth (Post et al.,43

2019). Deglaciation of Arctic land-based ice accounts for 70% of all barystatic sea level44

change (Abram et al., 2019) and has increased the sea level rise by 0.035 mm y−2 over45

the last three decades (Nerem et al., 2018). From 2003 to 2015 the Greenland Ice Sheet46

and adjoining glaciers produced 1 cm of sea level rise, while the contribution of other Arc-47

tic glaciers was 0.8 cm (Zemp et al., 2019).48

Change in ice loading not only contributes to sea level change, but also alters Earth’s49

solid surface, which commonly is called Vertical Land Motion (VLM). Accurate quan-50

tification of VLM and its causes is key for understanding relative sea level (RSL) (Watson51

et al., 2015; Wöppelmann & Marcos, 2016), which is the sea level change measured by52

tide gauges (TG).53

VLM can be modeled for a given ice loading by employing the sea level equation54

of Farrell and Clark (1976) or in its elastic adaptation by Clark and Lingle (1977). vis-55

coelastic relaxation of Earth’s surface caused by past ice loading changes, also known56

as Glacial Isostatic Adjustment (GIA), has historically been the most important com-57

ponent of VLM (Farrell & Clark, 1976; Tushingham & Peltier, 1991; Milne & Mitrovica,58

1998; Peltier et al., 2015) and is often assumed to be the key contributor to VLM in sea59

level studies from tide gauges (Church & White, 2011; Jevrejeva et al., 2014). This as-60

sumption is in particular inadequate in the Arctic region (Henry et al., 2012), where the61

change in present-day ice loading (PDIL) is extensive and the corresponding VLM equals62

GIA in order of magnitude.63

Here we quantified the VLM resulting from changes in PDIL from 2003-2015 in the64

wider Arctic (the region above 50 deg latitude). After considering GIA, ocean loading,65

rotational feedback (RF) and non-secular geocenter motion, the total VLM uplift is pre-66

dicted and compared to GNSS-measured VLM at 54 locations.67

In recent years, data products from the Gravity Recovery And Climate Experiment68

(GRACE) satellite mission have been used to estimate PDIL and the corresponding VLM69

(Adhikari et al., 2016; Riva et al., 2017; Frederikse et al., 2019). While this is a reason-70

able estimate for regional and global VLM-patterns, the native resolution of GRACE is71

around 300-km half width at the equator (Tapley et al., 2004) which is insufficient for72

estimating VLM close to glaciers and ice sheets.73

Here we combined a high-resolution (2x2 km) ice mass balance data in the Arc-74

tic to compute VLM from PDIL (VLMPDIL), with a resolution that is suitable in both75

the near- and far-field in the Arctic region.76

2 Data and Method77

The solid-earth response of PDIL is assumed to be purely elastic and the viscoelas-78

tic response is considered to be negligible. This includes the ongoing solid-earth response79

from modern changes in ice loading prior to 2003, which is not considered in the applied80

GIA-models. In particular, the deglaciation after the Little Ice Age (LIA) that ended81

in the 19th century can create a GIA-like viscoelastic response that is not captured by82

GIA-models (Simon et al., 2018).83

Contrary to studies using GRACE-measurements for ice loading, we used mass bal-84

ance data from glaciers (Marzeion et al., 2012; Pfeffer et al., 2014; Zemp et al., 2019) that85

were transformed into an ice-elevation model (details in Supporting Information S1) with86

a 2x2 km spatial resolution by applying a mass balance distribution function and assum-87

ing a uniform density of 917 kg m−3. Glaciers were combined with elevation changes from88

Greenland (updated version of the data from S. A. Khan et al. (2013), see section 2.1).89
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Separately, Antarctic yearly mass equivalent surface elevation changes for 2003-2015 from90

Schröder et al. (2019) were used to estimate the present-day Antarctic contribution to91

VLM in the Arctic.92

The elastic VLM (VLMPDIL) was computed with REAR (Regional Elastic Rebound93

calculator) (Melini et al., 2014, 2015). REAR calculates the elastic response to a disc94

load (Farrell, 1972) and assumes a solid, non-rotating and isotropic earth. Load Defor-95

mation Constants (LDC’s) used for solving the Green’s Functions were obtained from96

the REF6371 model by Kustowski et al. (2007) which is similar to the PREM-model (Dziewonski97

& Anderson, 1981), however the REF6371 model includes more realistic seismic prop-98

erties of the crust (Kustowski et al., 2007). The LDC’s from REAR are by default de-99

fined with respect to Earth’s center of mass (CM-frame), which is consistent with the100

GIA-model of Caron et al. (2018). The ICE6G_D-model of Peltier et al. (2018) is ref-101

erenced to the center of solid-earth (CE). The surface loading change included in GIA102

is however prehistoric and current viscoelastic mass transport induces a negligible CM-103

CE motion (King et al., 2012; Argus et al., 2014).104

Rotational feedback (Milne & Mitrovica, 1998) was added to the elastic VLM-model105

by using equation 1 and 2 from King and Watson (2014). Position changes of the pole106

(xp,yp) for ITRF2008 are available from IERS (Bizouard & Gambis, 2009). Since REAR107

is not solving the sea level equation (Farrell & Clark, 1976; Milne et al., 1999), it does108

not account for the effect of extra water mass added to the oceans because of PDIL, which109

results in a measurable deformation (van Dam et al., 2012; Santamaría-Gómez & Mémin,110

2015). Non-tidal ocean loading (NOL) is predicted by estimating the elastic deforma-111

tion of ocean bottom pressure (OBP, shown in Figure S2.2 in Supporting Information)112

grids from the latest version of Estimating the Circulation and Climate of the Ocean (ECCO)113

project (version 4, release 4) (Fukumori et al., 2019; Forget et al., 2015).114

GNSS data are referenced to ITRF2008 (Altamimi et al., 2011), which has secu-115

lar trends in CM, while non-secular trends of ITRF are in center of figure (CF) (Dong116

et al., 2003). Therefore, when studying ongoing mass changes, we need to make a ITRF117

to CM translation by considering non-linear geocenter motion (GCM). GCM is obtained118

from first-order Stokes coefficients from 2002-2019 provided by Sun et al. (2016) avail-119

able from https://grace.jpl.nasa.gov/data/get-data/geocenter/, which are de-120

trended in order to make the ITRF to CM translation. An VLM-model (eq. 2) is cre-121

ated that is comparable to adjusted GNSS-measured VLM (eq. 3):122

VLMCM
ela = VLMCM

PDIL + VLMCM
NOL + VLMrot (1)

VLMCM
model = VLMCM

GIA + VLMCM
ela (2)

VLMCM
GNSS = VLMITRF

GNSS − GCMITRF−CM (3)

Where VLMCM
ela is the elastic VLM-model, VLMCM

GIA represents VLM caused by GIA,123

VLMrot indicates the deformation caused by rotational feedback and VLMNOL is the124

contribution from NOL. VLMCM
GNSS is GNSS-measured VLM after non-secular geocen-125

ter motion is removed. Average VLM-rates from 2003-2015 are shown in Figure 1, while126

VLMCM
model is evaluated against VLMCM

GNSS in section 3. The contribution of Antarctic127

ice loading (including Southern Hemisphere glaciers) is shown together with the contri-128

bution of VLMCM
NOL and VLMrot in Figure S2.1 in Supporting Information.129

Caron2018 (Caron et al., 2018) is the default GIA-model throughout this study.130

Caron2018 used 128000 forward models of different 1D Earth rheologies and ice eleva-131

tion histories to create a statistical distribution of the GIA signal representative of long132

term GNSS observations and relative sea level records from paleo RSL indicators. In some133

parts of the analysis, we include the ICE-6G_D GIA model of Peltier et al. (2018), since134

large discrepancies between the VLMCM
model and VLMCM

GNSS can be explained by the choice135

–4–



manuscript accepted for publication in Geophysical Research Letters

of GIA-model. Recent study using an ensemble of simulations with 3D-earth rheologies136

(Li et al., 2020), seems to favor the results GIA-rates of Peltier et al. (2018).137

Though we limited this study to the wider Arctic area, both the elastic VLM-components138

and GIA have a global impact. However, if we neglect the VLM caused by Antarctica,139

the VLM-signal from PDIL is relatively small (< ±0.2 mm y−1) outside the region of140

this study. The estimated uncertainty of the VLMCM
model originates from the standard un-141

certainty of the ice model combined with a 10% uncertainty that represents the uncer-142

tainity from the REF6371 earth model (Wang et al., 2012).143

While the ice model of Greenland is well constrained, mass balance errors of in-144

dividual glaciers from the glacial model can be large (several times the glacial signal).145

We therefore divide the glacial model into 25x25 km tiles, which reduces the uncertainty146

significantly, but might also introduce unrealistic low uncertainty in areas with large glacial147

signals or where glaciers are poorly constrained. Glaciers are, however, still the largest148

source of regional uncertainty (see Supporting Information Figure S3.1.). The Caron2018149

GIA-model has standard uncertainty estimates included in the product, while there is150

no uncertainty estimate associated with the ICE6G-model. Uncertainties of geocenter151

motion from Sun et al. (2016) contributes to the GNSS-uncertainty estimate. The spa-152

tial distribution of the uncertainty estimates are shown in Supporting Information Fig-153

ure S3.1.154

2.1 Ice Loading155

The main component of VLMPDIL is the ice loading model and consist of a com-156

bined water equivalent elevation model from Greenland and mass balance estimates from157

glaciers. Rate of elevation change is shown in Supporting Information Figure S1.1. While158

only Northern Hemisphere ice history is created with high resolution, changes of Antarc-159

tic and Southern Hemisphere ice loading is computed on a 0.5x0.5◦ grid and included160

in the computation of VLMCM
PDIL. The low resolution does not have any impact on VLM161

in the Arctic. The total mass loss of the Southern Hemisphere is 140 Gt y−1, equiva-162

lent of to 0.38 mm y−1 barystatic sea level rise.163

2.1.1 Glaciers164

A total of 62,000 individual glaciers from the Randolph Glacier Inventory (RGI 6.0)165

(Pfeffer et al., 2014; RGI Consortium, 2017) located in North America, Russia, Scandi-166

navia (incl. Svalbard) and Iceland have been included in this study. Mass loss from in-167

cluded glaciers accounts for 95 % of the registered glacial mass loss of the Northern Hemi-168

sphere and constitutes 80% of the global glacial mass loss (Zemp et al., 2019).169

Mass change estimates for each glacier were estimated using an updated version170

of a model reported in Marzeion et al. (2012). Direct mass balance observations (Zemp171

et al., 2019) were used to calibrate and validate the glacier model. The glacier model trans-172

lates information about atmospheric conditions into glacier mass change, while consid-173

ering various feedback mechanisms that occur between glacier mass balance and glacier174

geometry. Glacial mass balance was combined with a distribution function to calculate175

glacier-wide surface elevation change. This ensured that the lower parts of glaciers are176

thinning, while upper parts experience small elevation gains. This ’slope steepening’ of177

glaciers is characteristic of glaciers of many regions (Nuth et al., 2010; Foresta et al., 2016;178

Ciracì et al., 2018) and is assumed to apply to all glaciers included in this study (see Sup-179

porting Information S1 for an enhanced description of glacial elevation change).180

–5–
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2.1.2 Greenland181

Glacial ice history was combined with elevation change of the Greenland Ice Sheet182

and adjoining glaciers. We estimated the rate of ice volume change from 2003-2015 by183

using altimeter surveys from NASA’s ATM flights (Krabill, 2011) that took place be-184

tween 2003 and 2015 supplemented with high-resolution Ice, Cloud and land Elevation185

Satellite (ICESat) data (Zwally et al., 2011) from 2003-2009 and CryoSat-2 data from186

2011-2015 (Helm et al., 2014). Our procedure for deriving ice surface elevation changes187

has previously been described in detail by S. A. Khan et al. (2013) and is similar to the188

method used by, e.g. Ewert et al. (2012); Smith et al. (2009) and Kjeldsen et al. (2013).189

We used the observed ice elevation change rates to interpolate (using collocation) ice el-190

evation changes onto the 2x2 km spatial grid.191

2.2 GNSS data192

Timeseries of vertical deformation and uncertainty estimates of 54 GNSS-sites from193

the sixth release of the consortium led by University of La Rochelle (ULR-6) (Santamaría-194

Gómez et al., 2017) were used. A detailed map and timeseries of all GNSS-sites are shown195

in Supporting Information Figure S4.1 and Figure S5.1. ULR-6 includes 125 GNSS-sites196

located within the area of interest, but only GNSS-sites with data for at least 120 of 156197

months from 2003 to 2015 known not to be impacted by human activities were selected.198

One GNSS site was selected based on lowest observed standard deviation of timeseries199

when multiple GNSS sites were located within 100 km of each other. Nome (AT11), Es-200

bjerg City (ESBC) and Magadan (MAG0) were exempted from the temporal selection201

criteria, because of their location which has a special interest for interpretation.202

Annual averages and combined uncertainties were calculated for each GNSS-site203

from the vertical component and standard uncertainty included in URL-6a. Hereafter,204

the linear trend was calculated for the years available between 2003 and 2015.205

3 Evaluating the VLM model206

From Figure 1 it is seen that the VLM-model is dominated by the pattern of the207

GIA-model, with rates above 20 mm y−1 east of the Hudson Bay and another local max-208

imum of over 15 mm y−1 in north-west Canada. The elastic rebound is evident in most209

of the Arctic, particular in Greenland with large areas exceeding 10 mm y−1, with max-210

imum value at Jakobshavn Isbræ (69.1N, 49.5W) with an average modeled uplift of 40211

mm y−1. Large areas around Svalbard and Alaska have modeled elastic VLM-rates of212

more than 8 mm y−1. The uncertainty is significantly larger in glaciated regions than213

in the far field (see Figure 3.1 in Supporting Information).214

Most depression zones are found over the ocean, with the Beaufort Sea and Labrador215

Sea subsiding with 2 mm y−1 and the Norwegian Sea with 1.5 mm y−1. Subsiding coastal216

areas are found in North America, where Nova Scotia and most of the US east- and west217

coast subsides with more than 1 mm y−1, while smaller subsidence (0.0 - 0.5 mm y−1)218

is found in Northern Europe along the North Sea and Atlantic coastlines. From Figure219

1 we see that most subsiding areas are caused by GIA.220

Figure 2 shows that VLMCM
model predicts VLM within the range of VLMCM

GNSS at 46221

of 54 GNSS locations considered. The mean absolute error (MAE) for the 54 GNSS-sites222

was 1.45 mm y−1 (1.33 mm y−1 for ICE6G_D), which was 0.53 mm y−1 better than MAE223

from only V LMGIA. For less than half (27) of the 54 GNSS-sites considered was the VLM-224

model with Caron2018 outperforming the ICE6G_D GIA model.225

Barystatic sea level change for VLMPDIL was 1.5 mm y−1 (ice loss-mediated global226

average sea level change (excl. Antarctica)). As shown in Figure 2, elastic VLM values227

–7–
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Figure 2. Average VLM change (mm y−1) from 2003-2015 determined using the elastic VLM
model (blue) and GIA (red) at the 54 GNSS-sites from Figure 1 and Supporting Information
Figure S4.1 are shown (top). Sites are listed from most west (left) to most east (right). The
dotted-cyan line indicates the average barystatic sea level rise (∼ 1.85 mm y−1) from the ice loss
used in this study. The total modeled VLM uncertainty are indicated with red error bars and
the GNSS-measured VLM is shown with black errorbars. Light red indicates locations in which
GIA is negative and overlaps the positive elastic VLM. Residuals between GNSS-measured VLM
(VLMCM

GNSS) and the VLM-model (VLMCM
model) (blue) and GIA (red) are shown (bottom). The

average of the absolute residuals (equivalent to mean absolute error) are 1.45 mm y−1 and 1.98
mm y−1 respectively. All values used in this figure are included within Table S4.1 in Supporting
Information.

between 0.5-1 mm y−1 were observed at many far field GNSS-sites in this study and partly228

mitigated the barystatic sea level change.229

The effect of non-cryospheric mass change is not included in VLMCM
model. In par-230

ticular terrestial water storage (TWS) causes a small uplift over large parts of North Amer-231

ica (0.4 - 0.8 mm y−1) and North-Central Siberia (0.2 - 0.4 mm y−1), while TWS is caus-232

ing a subsidence in most of Scandinavia of 0.2 - 0.4 mm y−1 (Frederikse et al., 2019).233

Glaciated regions show particularly large residuals between the predicted VLM and234

VLM measured by GNSS (Figure 3), but also exhibit the largest associated uncertain-235

ties of GNSS estimates. Predicted VLM at 26 of 54 GNSS-sites are within a range of 0.75236

mm y−1 to GNSS (the three center bins in the right panel of Figure 3). The VLM-model237

has a tendency to underestimate the GNSS-measured VLM, which is evident in North238

–8–
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America and Europe. From figure 2, we see that a different choice of GIA-model would239

yield enhance the accuracy of the VLM-model in these regions. The most significant dis-240

crepancies between measured and predicted VLM is explained in the following for ev-241

ery region.242

3.1 North America243

Alaska is located in the transition zone between GIA-uplift and GIA-subsidence,244

which is also reflected in the GNSS-rates. Nome (AB11), Prudhoe Bay (PBOC) and In-245

uvik (INVK) all experience an GIA-subsidence that is larger than the elastic uplift. While246

Nome and INVK are well matched with VLMCM
GNSS , PBUC has the largest measured sub-247

sidence (3.2±1.6 mm y−1), while VLMCM
model only shows a subsidence of 1.4±1.4 mm y−1.248

An extraordinary subsidence is likely caused by oil extraction in the Prudhoe Bay area.249

The Alaska south coast accounts for more than 25% of the total glacial melt and250

is naturally dominated by elastic uplift while the uplift from GIA is below 1 mm yr−1.251

Seldovia (SELD) shows an observed average rate of 9.2 ± 1.0 mm yr−1, while VLMCM
ela252

is only 0.3 ± 1.6 mm yr−1 and GIA-rate -0.1 ± 0.8 mm yr−1. Seldovia is located on the253

Kenai Peninsula close to the Kenai Fjords, which experienced an accelerated glacial ice254

loss in the 20th century (VanLooy et al., 2006). This is, however, not enough to explain255

the increased measured uplift. GIA-estimates vary in the region (Larsen et al., 2005; Hu256

& Freymueller, 2019), but is not more than around 1-2 mm yr−1. The residual seems257

explained by a postseismic signal following the Prince Willam Sound Earthquake in 1964258

(Cohen & Freymueller, 2001; Huang et al., 2020) which is still causing a local uplift on259

this side of the peninsula. The residuals estimates this effect to be 9.0 mm yr−1 from260

2003-2015, which is slightly less than the value found by Cohen and Freymueller (2001)261

of 9.3 mm yr−1 from 1994-2001. This rebound is expected to decay further over time,262

but will still be relevant for decades to come (Cohen & Freymueller, 2001; Huang et al.,263

2020).264

Discrepancies between GNSS and modeled VLM in central North America, are likely265

due to uncertain GIA-estimates. A significantly better alignment between VLMCM
model and266

GNSS is reached if Caron2018 is replaced by ICE-6G. The GIA-overestimate of Caron2018267

in North America has been demonstrated by other studies (Schumacher et al., 2018; Fred-268

erikse et al., 2019) and is likely caused by large differences between estimated viscosity269

properties of paleo-RSL indicators and GNSS in North America (Caron et al., 2018). TWS-270

change causes a small uplift below 1 mm y−1 over large parts of North America (Frederikse271

et al., 2019), which enhances the difference between VLMCM
model and VLMCM

GNSS .272

3.2 Greenland273

Four GNSS-sites on Greenland and Alert (ALRT) on Baffin Island measure a sig-274

nificant elastic uplift. While Pittuffik/Thule (THU2) and ALRT agree with VLMCM
model,275

Kangerlussuaq (KELY) is overestimated quite a bit and VLMCM
model at Kulusuk (KULU)276

and Qaqortoq (QAQ1) is below VLMCM
GNSS . GIA on Greenland is poorly constrained in277

Caron2018, which can exaggerate VLM-estimates from GIA. A low-viscosity zone stretch-278

ing from Iceland beneath Southeast Greenland (S. A. Khan et al., 2016) enables a sig-279

nificant viscoelastic rebound caused by ice loss since LIA (S. Khan et al., 2014).280

3.3 Iceland281

The two GNSS-sites on Iceland show very different uplift rates of 0.0 ± 1.1 mm282

yr−1 in Reykjavik (REYK) and 13.1 ± 1.1 mm yr−1 at Hoefn (HOFN) at the southern283

edge of the largest ice cap on Iceland, Vatnajökull. VLMCM
model overestimates the rebound284

in Reykjavik while it largely underestimates it at Hoefn. Similar to south east Green-285

land a soft viscoelastic mantle layer (Fleming et al., 2007) creates a present-day viscoelas-286
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Figure 3. VLMCM
GNSS versus VLMCM

model including associated uncertainties for all GNSS-sites.
If the cross is above the dashed line the VLMCM

model underestimate compared to VLMCM
GNSS . A

histogram of the difference between VLMCM
model and VLMCM

GNSS (in intervals of 0.5 mm y−1) is
shown in the right panel.

tic signal that is much larger than the ones predicted by the GIA-model. A thin crust,287

also means that the uplift decreases faster with distance to the glacier (Fleming et al.,288

2007; Sørensen et al., 2017), which could explain why Reykjavik shows little vertical de-289

formation despite being less than 100 km from glaciers.290

3.4 Svalbard291

The majority of land in Svalbard is covered with ice, and VLM is highly affected292

by ongoing ice-mass changes. At Ny Ålesund (NYAL), located on the west coast, VLMCM
model293

is dominated by VLMCM
ela of 4.6 ± 5.3 mm yr−1 and V LMGIA of 0.5± 0.4 mm yr−1. In294

total this is 2.6 mm yr−1 short of observed VLMCM
GNSS . While ICE6G and Caron2018295

agree within ± 0.2 mm yr−1, more focused, but older studies predict a slightly higher296

GIA contribution of around 1.5 mm yr−1 (Sato et al., 2006; Kierulf et al., 2009). Also297

on Svalbard, significant post-LIA deglaciation (Grove, 2001) is likely contributing to an298

ongoing uplift (Mémin et al., 2014; Rajner, 2018). The effect is still uncertain (Rajner,299

2018) and Mémin et al. (2014) estimated the post-LIA rebound to be 2-5 mm yr−1 in300

the beginning of 21st century, which explains the residual of 2.9 mm yr−1.301

3.5 Northern Europe and Scandinavia302

GIA is dominating the vertical deformation in Scandinavia (Figure 1). Even though303

small glaciers exist in Norway, the elastic effect is very local and has almost negligible304

effect on the GNSS-sites in this study. However, VLMCM
ela is still significant, and improves305

the correlation with observed VLMCM
GNSS compared to a GIA-only model. This becomes306

more prominent for GNSS-sites in areas, where GIA is less dominant. Esbjerg (ESBC)307

on the west coast of Denmark is close to the zero-line of Caron2018 (-0.1 mm yr−1), but308
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is still measuring an uplift of about 0.6 mm yr−1, which is partly explained by an elas-309

tic uplift of 0.3 mm yr−1.310

In Northern Europe, Caron2018 models a subsidence, which is mitigated by an elas-311

tic uplift caused by present day ice melt. Generally, VLMCM
model is consistent with VLMCM

GNSS312

in the North Sea and the Baltic region, while an VLM-model using ICE6G is at odds313

at several locations.314

3.6 Siberia315

Only a few available GNSS measurements exist in eastern Europe and Siberia. Caron2018316

is also challenged by limited resources of paleo sea-level records, which makes the GIA-317

model more dependent on the existing GNSS-records. It is commonly anticipated that318

Siberia had little or no ice during the last glacial cycle (Whitehouse et al., 2007), except319

north central Siberia and in the shallow waters in the Barents Sea between Svalbard and320

Novaya Zemlya (Root et al., 2015).321

Also VLMCM
ela is generally smaller than around 1 mm yr−1. While the VLMCM

GNSS322

is within the uncertainty-range of VLMCM
model for the Siberian GNSS-sites (Arti (ARTU),323

Norilsk (NRIL), Tixi (TIXI) and Magadan (MAG0)), a GIA-only model has a better fit324

to the GNSS measurements which is likely due to increased dependence on GNSS in Caron2018.325

4 Discussion and Conclusion326

VLM of the wider Arctic region occurs mainly as a result GIA and elastic VLM.327

Though this study is limited to the area surrounding the Arctic, VLM caused by deglacia-328

tion produces global effects (Riva et al., 2017; Kleinherenbrink et al., 2018; Frederikse329

et al., 2019). By combining deglaciation that occurred since the last glacial maximum330

(GIA) and present-day changes in land ice (elastic VLM), the VLM-model provides a331

realistic estimate of VLM in the Arctic. By evaluating 54 GNSS-sites using a combined332

VLM-model, we found that measured uplift of GNSS can be explained by either prehis-333

toric or present-day changes in land ice volume. For 46 of the GNSS sites, residuals be-334

tween GNSS-measured VLM values and the VLM-model were smaller than associated335

uncertainties.336

The 2x2-km spatial resolution of the used ice-model was much higher than simi-337

lar gravimetric satellite observations from GRACE (Adhikari et al., 2019). Increased spa-338

tial resolution improves VLM predictions accuracy in glaciated regions significantly, as339

local elastic deformation tends to dominate regional averages observed via GRACE (Frederikse340

et al., 2019). A VLM-model to GNSS comparison also indicated that the VLM-model341

was inadequate in some regions due to local causes of VLM that were not included in342

the VLM-model, such as subsurface properties, past seismic activity or 19–20th century343

ice-loss (Mémin et al., 2014; Rajner, 2018).344

In non-glaciated areas, GNSS measurements generally agree well with the VLM-345

model. Contour lines shown in Figure 1, indicate that elastic uplift is centered around346

Greenland, except when close to other glaciated regions (e.g. Alaska and Svalbard), de-347

spite the fact that total Arctic glaciers mass loss is comparable with that of Greenland.348

Hence, the elastic uplift caused by ice melt in Greenland significantly affects the entire349

wider Arctic region, which includes coastlines of Northern Europe and the North Amer-350

ican Atlantic.351

Riva et al. (2017) showed that elastic uplift caused by ice loss in Greenland causes352

a subsidence in the Southern Hemisphere. Similar, it is assumed that Antarctic ice loss353

will cause a subsidence in the Northern Hemisphere. Antarctic ice loss averaged 105 Gt354

y−1 from 2003-2015 (Schröder et al., 2019), and resulted in an elastic subsidence of less355

than 0.1 mm y−1 in the Northern Hemisphere. Since ice loss has the potential to occur356
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rapidly in the future (Hay et al., 2017; Edwards et al., 2019), VLM caused by Antarc-357

tic ice loss will be increasingly significant, and may be important for future coastal sea358

level projections in the Northern Hemisphere.359
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S1 Description of glacier ice model16

As initial conditions, we use glacier outlines obtained from RGI6.0 (Pfeffer et al.,17

2014). The time stamp of these outlines differs between glaciers, but is typically around18

the year 2000. To obtain results before this time, the model uses an iterative process to19

find the glacier geometry in the year of initialization (e.g., 1901) that results in the ob-20

served glacier geometry in the year of the outlines time stamp (e.g., 2000) after the model21

was run forward.22

The model relies on monthly temperature and precipitation anomalies to calculate23

the specific mass balance of each glacier. Here, we use the mean of seven different re-24

analysis products as boundary conditions. Temperature is used to estimate the ablation25

of glaciers following a temperature-index melt model, and to estimate the solid fraction26

of total precipitation, which is used to estimate accumulation.27

Mass balance data for each glacier is distributed over the glacier according to a math-
ematical approximation, assuming conservation of mass and that the glacier has a ele-
vation gain at the top which becomes a elevation decline further down the glacier. The
altitude where the elevation change goes from positive to negative, E, is approximated
by a simple function of the glacial altitude (Z) and the averaged ice height change, (h =
ρbA−1), and ρ is the ice density (917 kg m−3). Note that E is different from the equi-
librium line altitude (ELA).

E = (1− h̄)Z̃ (S1)

where Z̃ is the median glacial height. For every glacier we define a distribution function,28

D(i), where i represents a grid cell of the glacier:29

D(i) = 1− exp

(
(2−h̄)(E−Z(i))

Zmax

)
(S2)

For all glaciers, is the elevation change assumed to be exponentially declining with height,30

Z(i). The fraction in the exponential term makes sure that glaciers that on average gains31

Corresponding author: Carsten Ankjær Ludwigsen, caanlu@space.dtu.dk
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up to 2 m height, will have an elevation loss in the bottom of the glacier and elevation32

gain at the top, unless E is equal or to Zmax, in which case, the whole glacier will be loos-33

ing height.34

The elevation change, dh/dt, is found by normalizing D, multiplying with the to-35

tal mass balance, b, and converted to a height change by dividing with ρ = 917 kg m−3.36

dh(i)

dt
= b

ρD̂(i) where, (S3)

D̂(i) = D(i)∑k
i=1 D(i)

(S4)

S1.1 Data availability37

The ice model is available as a NetCDF-4 file on data.dtu.dk/articles/Arctic38

_Vertical_Land_Motion_5x5_km_/12554489.39
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Topography [m]

Figure S1.1. Ice elevation change from 2003 to 2015 in m yr−1 (red-blue scale) resulting from
the redistribution explained above. The most interesting regions (Alaskian Coast, Svalbard (on
a wider colorscale), Novaya Zemlja and Iceland) are enlarged. There is no significant ice loss in
mainland Siberia. The elevation change is not comparable with actual elevation change, since
no model for firn has been applied. The values on the map a proportional with mass changes
(assumed density of 917 kg m−3)
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Figure S1.2. Ice loss from Greenland (including peripheral glaciers) and Arctic glaciers that
goes in to the VLM calculations.

Figure S2.1. 2003-2015 average trends of rotational feedback, Non-tidal ocean loading and
Antarctic elastic VLM fingerprint [mm yr−1].

S2 Influence of rotational feedback, ocean loading and Antarctic ice loss40

Rotational feedback is calculated using the eq.1 and eq.2 by King and Watson (2014).41

Pole positions xp, yp used in the calculations are available from https://datacenter42

.iers.org/eop.php. The Geocenter Motion subtracted from GNSS calculated as de-43

scribed in (Swenson et al., 2008) uses the degree-1 stokes coefficients based on the cal-44

culations by Sun et al. (2016) are available from https://grace.jpl.nasa.gov/data/45

get-data/geocenter/. The associated uncertainity of the geocenter motion has been46

added to the GNSS-error estimate. The elastic VLM effect of Antarctic Ice Loss is es-47

timated from elevation changes by Schröder et al. (2019), which had an average mass48

loss of 105 Gt yr−1 between 2003 and 2015 which agrees well with the result of IMBIE(Shepherd49

et al., 2018).50
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Figure S2.2. 2003-2015 ocean mass trend [mm/y] from ECCOv4r4 OBP used to estimate the
effect of NOL.

S3 Spatial distributions of of the VLM-model error51
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Figure S3.1. Standard deviation (σ) of GIA, elastic VLM and Geocenter Motion and com-
bined for the total VLM-model [mm/yr] for 2003-2015.

S4 VLM at GNSS-sites52

In this section, we explain the VLM measured by GNSS in comparison to the VLM-53

model for the regions covered in this study.54
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Figure S4.1. Location and name (and IGS abbreviation) of the 42 GNSS-sites used in this
study ordered from most west to most east. The color indicates the linear trend from 2003-2015
[mm yr−1], while the size of the square is proportional with the standard error (as estimated in
the URL6-product).

S5 Timeseries of vertical deformation at all GNSS sites55

Figure S5.1 shows both measured and modeled vertical deformation from 2003-201556

of each individual GNSS-site. It also reflects, how elastic VLM is changing year by year,57

while GIA is linear.58

S6 Contribution of elastic VLM and GIA59
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Figure S5.1. Measured and predicted year-to-year VLM-change [mm y−1] from 2003 to 2015
for the 54 GNSS locations. GNSS is shown by the green line and the VLM model by the black
line. The red and blue areas indicate the part of the VLM model that is elastic and GIA.
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IGS id Abbr. elastic VLM Caron2018 VLM-model GNSS VLM Residual

Nome 4 AB11 -0.4 ± 0.7 -0.8 ± 0.3 -1.1 ± 1.0 -0.1 ± 0.9 -1.0 ± 1.4
Seldovia 517 SELD 0.3 ± 1.6 -0.1 ± 0.8 0.2 ± 2.4 9.2 ± 1.0 -9.0 ± 2.6
Prudhoe Bay 433 PBOC 0.1 ± 0.9 -1.5 ± 0.5 -1.4 ± 1.4 -3.2 ± 1.6 1.8 ± 2.1
Whitehorse 651 WHIT 1.1 ± 2.6 0.9 ± 1.3 2.0 ± 3.9 2.0 ± 0.8 0.0 ± 4.0
Inuvik 232 INVK 0.3 ± 1.0 -1.7 ± 0.9 -1.4 ± 1.9 -0.8 ± 1.0 -0.6 ± 2.1
Nanoose 341 NANO -0.1 ± 0.6 1.5 ± 2.7 1.5 ± 3.3 1.6 ± 1.0 -0.2 ± 3.4
Friday Harbor 508 SC02 -0.2 ± 0.5 1.3 ± 2.6 1.1 ± 3.1 0.4 ± 1.3 0.7 ± 3.4
Whistler 656 WSLR 0.3 ± 0.6 2.5 ± 3.1 2.8 ± 3.8 4.5 ± 1.3 -1.7 ± 4.0
Holman 218 HOLM 0.3 ± 1.0 1.1 ± 0.8 1.4 ± 1.8 3.1 ± 1.1 -1.7 ± 2.1
Yellowknife 664 YELL 0.4 ± 0.8 7.6 ± 1.5 8.0 ± 2.3 6.8 ± 0.8 1.2 ± 2.4
Flin Flon 168 FLIN 0.2 ± 0.6 8.3 ± 1.6 8.4 ± 2.2 3.0 ± 0.9 5.4 ± 2.4
Lac du Bonnet 143 DUBO 0.1 ± 0.5 3.7 ± 1.1 3.8 ± 1.6 1.0 ± 0.9 2.8 ± 1.8
Resolute 477 RESO 1.1 ± 2.2 3.1 ± 0.9 4.2 ± 3.1 6.0 ± 1.2 -1.8 ± 3.3
Churchill 106 CHUR 0.4 ± 0.7 8.4 ± 2.8 8.8 ± 3.5 10.4 ± 0.8 -1.6 ± 3.6
Thule (Pittufik) 583 THU2 5.3 ± 3.3 0.1 ± 2.1 5.4 ± 5.4 6.6 ± 0.9 -1.2 ± 5.5
Schefferville 510 SCH2 0.4 ± 0.6 15.7 ± 2.3 16.1 ± 2.9 11.0 ± 0.7 5.0 ± 3.0
Halifax 211 HLFX -0.5 ± 0.4 -1.5 ± 0.8 -2.0 ± 1.2 -1.1 ± 1.6 -0.9 ± 2.0
Alert 27 ALRT 3.4 ± 4.0 4.1 ± 1.5 7.6 ± 5.6 6.6 ± 1.2 1.0 ± 5.7
Nain 340 NAIN 0.4 ± 0.7 4.0 ± 1.0 4.4 ± 1.7 4.6 ± 1.5 -0.2 ± 2.3
St. Johns 548 STJO -0.5 ± 0.4 -1.4 ± 0.3 -1.8 ± 0.8 -0.2 ± 0.8 -1.6 ± 1.1
Kangerlussuaq 247 KELY 6.6 ± 2.5 2.9 ± 3.4 9.4 ± 5.8 4.6 ± 1.2 4.8 ± 5.9
Qaqortoq 467 QAQ1 4.1 ± 1.5 -1.7 ± 1.4 2.4 ± 2.8 4.9 ± 0.8 -2.5 ± 3.0
Kulusuk 265 KULU 5.1 ± 1.6 -1.5 ± 1.0 3.6 ± 2.6 7.8 ± 1.0 -4.2 ± 2.8
Reykjavik 479 REYK 1.4 ± 1.4 0.2 ± 1.4 1.6 ± 2.8 -0.0 ± 1.1 1.6 ± 3.1
Hoefn 215 HOFN 1.9 ± 3.9 -0.1 ± 1.0 1.8 ± 4.9 13.1 ± 1.1 -11.3 ± 5.1
Newlyn (UK) 347 NEWL 0.1 ± 0.4 -1.1 ± 0.2 -0.9 ± 0.6 -0.2 ± 1.3 -0.7 ± 1.4
Guipavas 202 GUIP 0.2 ± 0.3 -1.0 ± 0.2 -0.9 ± 0.6 -0.4 ± 1.7 -0.4 ± 1.8
Aberdeen 10 ABER 0.4 ± 0.5 -0.5 ± 0.4 -0.1 ± 0.9 0.9 ± 1.2 -1.0 ± 1.5
Heauville 206 HEAU 0.1 ± 0.3 -0.8 ± 0.2 -0.7 ± 0.6 -0.3 ± 1.5 -0.4 ± 1.6
Portsmouth 446 PMTG 0.3 ± 0.4 -0.8 ± 0.3 -0.5 ± 0.6 0.1 ± 1.2 -0.6 ± 1.4
Lowestoft 286 LOWE 0.1 ± 0.4 -0.8 ± 0.5 -0.7 ± 0.9 -0.4 ± 1.8 -0.2 ± 2.0
Dunkerque 134 DGLG 0.2 ± 0.4 -0.7 ± 0.5 -0.6 ± 0.8 -0.3 ± 0.9 -0.3 ± 1.2
West-Terschelling 568 TERS 0.1 ± 0.4 -0.9 ± 0.7 -0.8 ± 1.1 -0.2 ± 0.8 -0.6 ± 1.4
Esbjerg Center 153 ESBC 0.3 ± 0.4 -0.1 ± 0.5 0.2 ± 0.9 0.6 ± 0.8 -0.4 ± 1.2
Hirtshals 210 HIRS 0.4 ± 0.5 2.2 ± 0.8 2.7 ± 1.3 2.8 ± 1.9 -0.1 ± 2.3
Trondheim 596 TRDS 0.8 ± 0.6 4.6 ± 1.1 5.4 ± 1.7 4.3 ± 0.8 1.1 ± 1.9
Oslo 378 OSLS 0.7 ± 0.5 5.0 ± 1.8 5.7 ± 2.3 5.2 ± 0.8 0.5 ± 2.4
Ny Ålesund 370 NYAL 4.6 ± 5.3 0.5 ± 0.4 5.1 ± 5.7 7.9 ± 0.9 -2.9 ± 5.7
Warnemünde 647 WARN 0.6 ± 0.4 -0.1 ± 0.5 0.5 ± 0.9 0.6 ± 0.8 -0.0 ± 1.2
Copenhagen 75 BUDP 0.6 ± 0.4 0.9 ± 0.5 1.6 ± 0.9 1.6 ± 3.7 -0.1 ± 3.8
Maartsbo 306 MAR6 0.8 ± 0.5 7.6 ± 2.4 8.3 ± 2.9 7.8 ± 0.8 0.5 ± 3.0
Visby 639 VIS0 0.8 ± 0.4 3.3 ± 1.1 4.0 ± 1.6 3.3 ± 0.8 0.8 ± 1.8
Tromsø 599 TRO1 0.9 ± 0.8 1.7 ± 0.7 2.5 ± 1.5 3.0 ± 0.8 -0.5 ± 1.7
Olstyn 274 LAMA 0.7 ± 0.4 0.1 ± 0.5 0.8 ± 0.9 -0.0 ± 0.7 0.8 ± 1.2
Skellefteaa 534 SKE0 0.9 ± 0.6 8.5 ± 2.1 9.4 ± 2.7 10.3 ± 7.0 -0.9 ± 7.5
Kiruna 252 KIR0 0.9 ± 0.7 5.2 ± 0.9 6.1 ± 1.6 6.8 ± 0.8 -0.6 ± 1.8
Vaasa 625 VAAS 0.9 ± 0.6 8.3 ± 2.2 9.1 ± 2.7 9.0 ± 0.9 0.1 ± 2.9
Vardoe 630 VARS 0.9 ± 0.8 2.0 ± 0.6 2.9 ± 1.4 3.0 ± 0.9 -0.2 ± 1.7
Poltava 452 POLV 0.7 ± 0.3 -0.4 ± 0.3 0.2 ± 0.5 0.2 ± 1.0 0.0 ± 1.1
Mendeleevo 323 MDVJ 0.8 ± 0.4 -0.7 ± 0.8 0.2 ± 1.2 0.7 ± 1.1 -0.5 ± 1.6
Arti 36 ARTU 0.8 ± 0.3 -0.2 ± 0.2 0.6 ± 0.6 0.7 ± 0.9 -0.1 ± 1.0
Norilsk 360 NRIL 0.9 ± 0.6 1.9 ± 0.2 2.8 ± 0.8 1.8 ± 0.8 1.0 ± 1.2
Tixi 587 TIXI 0.2 ± 0.6 -0.3 ± 0.3 -0.1 ± 0.9 1.0 ± 1.0 -1.1 ± 1.3
Magadan 298 MAG0 -0.2 ± 0.3 -0.2 ± 0.2 -0.4 ± 0.5 -0.3 ± 1.0 -0.1 ± 1.2
Table S4.1. Measured and modelled VLM for each GNSS-site in mm yr−1. VLM-model is the
sum of elastic VLM and GIA VLM.
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Figure S6.1. Percentage contribution of GIA-rate and elastic VLM-rate to total VLM-rate
(in absolute terms) are shown. Red colors indicate areas in which GIA dominates VLM, while
blue colors indicate areas in which elastic VLM is dominant.
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