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Abstract

Astronomical variations in tidal magnitude can strongly modulate the severity of coastal flooding on daily, monthly, and

interannual timescales. Here, we present a new quasi-nonstationary skew surge joint probability method (qn-SSJPM) that

estimates interannual fluctuations in flood hazard caused by the 18.6 and quasi 4.4-year modulations of tides. We demonstrate

that qn-SSJPM-derived storm tide frequency estimates are more precise and stable compared with the standard practice of

fitting an extreme value distribution to measured storm tides, which is often biased by the largest few events within the

observational period. Applying the qn-SSJPM in the Gulf of Maine, we find significant tidal forcing of winter storm season

flood hazard by the 18.6-year nodal cycle, whereas 4.4-year modulations and a secular trend in tides are small compared to

interannual variation and long-term trends in sea-level. The nodal cycle forces decadal oscillations in the 1% annual chance

storm tide at an average rate of ±13.5 mm/y in Eastport, ME; ±4.0 mm/y in Portland, ME; and ±5.9 mm/y in Boston, MA.

Currently (in 2020), nodal forcing is counteracting the sea-level rise-induced increase in flood hazard; however, in 2025, the

nodal cycle will reach a minimum and then begin to accelerate flood hazard increase as it moves toward its maximum phase

over the subsequent decade. Along the world’s meso-to-macrotidal coastlines, it is therefore critical to consider both sea-level

rise and tidal non-stationarity in planning for the transition to chronic flooding that will be driven by sea-level rise in many

regions over the next century.
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Key Points: 

• We present a new quasi-nonstationary joint probability method that estimates tidally 

driven interannual fluctuations in flood hazard  

• This method provides more precise and stable storm tide frequency estimates than 

extreme value distributions fit to measured storm tides  

• In the Gulf of Maine, tides force decadal oscillations in the 1% annual chance storm tide 

at a rate exceeding mean historical sea-level rise   
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Abstract 1 

Astronomical variations in tidal magnitude can strongly modulate the severity of coastal 2 

flooding on daily, monthly, and interannual timescales. Here, we present a new quasi-3 

nonstationary skew surge joint probability method (qn-SSJPM) that estimates interannual 4 

fluctuations in flood hazard caused by the 18.6 and quasi 4.4-year modulations of tides. We 5 

demonstrate that qn-SSJPM-derived storm tide frequency estimates are more precise and stable 6 

compared with the standard practice of fitting an extreme value distribution to measured storm 7 

tides, which is often biased by the largest few events within the observational period. Applying 8 

the qn-SSJPM in the Gulf of Maine, we find significant tidal forcing of winter storm season 9 

flood hazard by the 18.6-year nodal cycle, whereas 4.4-year modulations and a secular trend in 10 

tides are small compared to interannual variation and long-term trends in sea-level. The nodal 11 

cycle forces decadal oscillations in the 1% annual chance storm tide at an average rate of ±13.5 12 

mm/y in Eastport, ME; ±4.0 mm/y in Portland, ME; and ±5.9 mm/y in Boston, MA. Currently 13 

(in 2020), nodal forcing is counteracting the sea-level rise-induced increase in flood hazard; 14 

however, in 2025, the nodal cycle will reach a minimum and then begin to accelerate flood 15 

hazard increase as it moves toward its maximum phase over the subsequent decade. Along the 16 

world’s meso-to-macrotidal coastlines, it is therefore critical to consider both sea-level rise and 17 

tidal non-stationarity in planning for the transition to chronic flooding that will be driven by sea-18 

level rise in many regions over the next century.  19 

Plain Language Summary 20 

Coastal management practices around flood risk often rely on estimates of the percent 21 

chance of a particular flood height occurring within a year. For example, U.S. flood insurance 22 

requires designating areas with a 100-year flood recurrence interval (the “100-year flood zone”). 23 

When storms hit regions with large tides, the height and timing of high tide often determine 24 

flood severity. Thus, the relationship between flood height and annual frequency can be altered 25 

by natural, daily-to-decadal cyclical variation in tide heights. Here, we present a new method for 26 

calculating annually-varying flood height–frequency relationships based on known tidal cycles. 27 

Applying the new method in the Gulf of Maine, we find an 18.6-year-long tidal cycle (the nodal 28 

cycle) has forced decadal variation in the 1% annual chance flood at a faster rate than the 29 

historical average rate of sea-level rise over the past century. Currently, nodal cycle forcing is 30 

counteracting the sea-level rise-induced increase in flood hazard; however, in 2025, the nodal 31 

cycle will reach a minimum in the Gulf and then begin to accelerate flood hazard as it moves 32 

toward its maximum over the subsequent decade. It is therefore critical to consider sea-level rise 33 

and tidal variation in medium-term flood hazard planning.  34 
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Glossary of acronyms 42 

GEV   Generalized Extreme Value distribution 43 

GPD  Generalized Pareto distribution 44 

GPDST  Generalized Pareto distribution fit to measured storm tides  45 

JPM   Joint probability method  46 

MSL  Mean sea level 47 

NOAA  National Oceanic and Atmospheric Administration  48 

qn-SSJPM Quasi-nonstationary joint probability method  49 

RJPM  Revised joint probability method 50 

SLR  Sea-level rise 51 

SSJPM  Skew surge joint probability method 52 

ST0.01  Storm tide at the 0.01 exceedances/year level 53 

1 Introduction 54 

Extreme coastal flooding poses a growing hazard to coastal communities (e.g. Hallegatte 55 

et al., 2013; Neumann et al., 2015). Management practices around flood risk often require 56 

estimates of extreme sea level recurrence intervals; for example, in the United States, federal 57 

flood insurance and building codes depend on estimates of the current 100-year flood zone 58 

(Galloway et al., 2006; Hunter, 2010; Buchanan et al., 2017).  Coastal flood hazard, however, is 59 

not stationary. The relationship between flood height and recurrence interval is approximately 60 

log-linear, so even small interannual variations in storm surge, tides, waves, or mean sea-level 61 

(trends on the order of millimeters per year) can significantly alter extreme sea level frequencies 62 

(e.g. Oppenheimer et al., 2019). Robust statistical methods for considering sea-level non-63 

stationarity (Hunter, 2010; Buchanan et al., 2017; Wahl et al., 2017) have been used to 64 

incorporate uncertain sea-level rise (SLR) projections into global (e.g. Lin et al., 2016; Garner et 65 

al., 2017; Oppenheimer et al., 2019) and local (e.g. NYC, 2013; Douglas et al., 2016; Griggs et 66 

al., 2017) hazard assessments. In this paper, we investigate the impact of quasi-deterministic 67 

variation in astronomical tides on low-frequency, high-impact extreme sea levels. 68 

Tidal magnitude modulates the severity of flooding in meso-to-macrotidal regions, and 69 

interannual variation in tides causing periods of enhanced flood risk is a well-known 70 

phenomenon (e.g. Sobey, 2005; Eliot, 2010; Menéndez & Woodworth, 2010; Ray & Foster, 71 

2016; Talke et al., 2018; Peng et al., 2019; Haigh et al., 2020; Talke & Jay, 2020). In particular, 72 

the 18.6-year lunar nodal cycle and the 8.85-year cycle of lunar perigee influence high water 73 

globally on weekly, monthly, and annual timescales (e.g., Haigh et al., 2011; Peng et al., 2019). 74 

Ray and Foster (2016) showed that the perigean cycle modulates predicted future nuisance tidal 75 

flooding at a quasi 4.4-year period. For extreme flooding, Menéndez and Woodworth (2010) 76 

modeled global nodal and perigean astronomical modulations using a non-stationary location 77 

parameter in extreme sea level probability distributions fit to satellite altimetry records over the 78 

1970–2008 time period. Over a longer, nearly 200-year record from Boston, Massachusetts, 79 

Talke et al. (2018) also showed that the nodal cycle produces 10–20 cm of variation in extreme 80 

sea levels with recurrence intervals between 2 and 100 years.  81 

On decadal to centennial timescales, non-astronomical factors also force local-to-global-82 

scale variations and trends in tides (Schindelegger et al., 2018; Haigh et al., 2020; Talke & Jay, 83 

2020). Changes in water depth, shoreline position, frictional resistance, and river flow have led 84 

to dramatic local-scale tidal amplification and reduction over the past two centuries, particularly 85 

in estuaries and tidal rivers (Winterwerp et al., 2013; Haigh et al., 2020; Talke & Jay, 2020). 86 



 

 

Spatially coherent, regional-scale variation in tides has been driven by changes in ocean depth, 87 

shoreline position, sea ice extent, ocean stratification, non-linear interactions, and radiational 88 

forcing (e.g. Woodworth, 2010; Müller et al., 2011; Müller, 2012; Haigh et al., 2020).  89 

In summary, interannual variations and long-term trends in tides have significant 90 

implications for flood hazard. Astronomical nodal and perigean cycles can significantly increase 91 

flood hazard compared to the long-term average during their positive phases (e.g. Talke et al., 92 

2018), and secular changes in tides driven by non-astronomical factors will either enhance or 93 

counteract the increase in flood hazard driven by SLR (e.g. Haigh et al., 2020). Given that the 94 

expected frequency of flooding changes year-to-year, considering sea-level rise and tidal non-95 

stationarity together is important to both short and long-term municipal planning and emergency 96 

management at the coast. However, as mentioned by Talke et al. (2018), methods for assessing 97 

tidally driven interannual variation in extreme sea-level hazard require further development.  98 

In this paper, we describe a new method for estimating tidally driven non-stationarity in 99 

extreme still water levels measured at tide gauges using an adaptation of the measurement-based 100 

joint probability methods developed by Pugh and Vassie (1978, 1980), Tawn and Vassie (1989), 101 

Tawn (1992), and Batstone et al. (2013). We apply and validate our methodology using century-102 

long tide gauge records from the Gulf of Maine coast in the northwest Atlantic Ocean (Fig. 1), a 103 

region with significant nodal variability and secular trends in tides (Ray, 2006; Ray & Talke, 104 

2019).  Under the assumption of stationary storm characteristics, this new quasi-nonstationary 105 

joint probability method provides separate statistical treatment of tides and surge and accounts 106 

for interannual variation in tides. The we use the term “still water level” to convey that the tide 107 

gauge-based analyses presented here do not consider wave impacts. Tide gauges located in 108 

wave-sheltered harbors measure the contributions storm surge, tides, and mean sea level to flood 109 

level (i.e. the still water level) but exclude waves (Melet et al., 2018; Dodet et al., 2019; 110 

Woodworth et al., 2019). Note that in subsequent sections, we use the term “storm tides” for 111 

extreme still water levels referenced to the annual mean sea-level.  112 

 113 

 114 

Figure 1. Gulf of Maine site map, including gauge locations mentioned in the text.  115 



 

 

2 Background 116 

2.1 Site description 117 

We apply this new quasi-nonstationary joint probability method to estimating extreme 118 

still water level recurrence intervals at the three longest running and most complete National 119 

Oceanic and Atmospheric Administration (NOAA) tide gauge records within the Gulf of Maine 120 

at Boston, Portland, and Eastport (Fig. 1). Table 1 shows their locations, measurement 121 

timespans, and relevant tidal datums. An additional record at St. John, New Brunswick (1893-122 

present) is not included because of significant data gaps and unusual interannual variation in the 123 

amplitude of the M2 tidal constituent after 1980 (Ray & Talke, 2019). In addition to its multiple 124 

century-long tide gauge records, the Gulf of Maine’s large tide range and known local and 125 

regional tidal variation make it an ideal location for applying our statistical method. The region 126 

also hosts major cities and sensitive infrastructure that require careful flood risk assessment; for 127 

example, Hallegate et al. (2013) ranked Boston, Massachusetts within the top twenty cities 128 

globally for modeled flood loss under both present-day and future (2050) scenarios.  129 

The Gulf of Maine coast is vulnerable to flooding from both tropical and extratropical 130 

cyclones, but extratropical cyclones have historically been the dominant flooding mechanism, as 131 

they are more frequent and more likely to intersect with high tide due to their often longer 132 

durations (e.g. Kirshen et al., 2008; Talke et al., 2018). The total still water level (i.e. not 133 

including waves) recorded during a storm, relative to some vertical datum, is called storm tide 134 

and represents the net impact of meteorological and tidal forcing. Here, we use annual mean sea 135 

level (MSL) as the vertical datum, such that storm tide time series do not include SLR. Storm 136 

surge is the meteorologically forced deviation from the predicted tide, calculated by subtracting 137 

the predicted tide from time series of measured storm tide values. Extreme storm surges reach 138 

~1.3 meters in the Gulf (e.g. Talke et al., 2018), and tides are significantly larger. The great 139 

diurnal tide range increases northward from 3.1 meters in Boston to ~16 meters in the Bay of 140 

Fundy’s northern embayments, making tides a primary control on most of the region’s extreme 141 

coastal flooding events. In Boston, for example, Talke et al. (2018) found that 92 of the top 100 142 

storm events occurring between 1825 and 2018 coincided with a predicted high tide that 143 

exceeded modern mean higher high water. 144 

 Tides in the Gulf of Maine and Bay of Fundy are unusual in several respects. In addition 145 

to the well-known large tidal range, there is a natural resonance frequency in the Gulf near the 146 

frequency of the N2 tide (Garrett, 1972; Godin, 1993). Observed N2 amplitudes are larger than S2 147 

amplitudes, although the opposite is true of the theoretical tidal potential; thus, the classic 148 

fortnightly spring-neap modulation is relatively weak and is smaller than the monthly modulation 149 

induced by M2/N2 beating. The strongest astronomical tides during any month therefore occur 150 

near times of lunar perigee. Similar to many locations, there are additional modulations at 151 

semiannual, 4.4-year, and 18.6-year periods (Haigh et al., 2011; Ray & Merrifield, 2019). The 152 

4.4-year and 18.6-year modulations of the highest predicted tide are moderate at Boston and 153 

Portland (roughly 3–4 cm in amplitude) but get much larger (up to 15 cm in amplitude) inside 154 

the Bay of Fundy (Ray & Merrifield, 2019; see also Ray & Talke, 2019 for 18.6-year 155 

modulations of the M2 constituent in the Gulf of Maine). The 18.6-year modulation is caused by 156 

the lunar nodal cycle, or a precession of the moon’s orbital plane around the ecliptic 360° every 157 

18.6 years. The 4.4-year modulation is caused by perigean spring tides coinciding with the 158 

winter or summer solstice (when the diurnal tidal contribution is largest) twice per 8.85 years 159 

(see Ray & Foster, 2016 for an explanation).     160 



 

 

Table 1. Gulf of Maine NOAA tide gauge station info. The two right-most columns show winter and 161 

summer seasons omitted from the qn-SSJPM statistical analysis due to missing more than 25% of water 162 

level measurements. Two years are listed for each omitted winter season because we define the season as 163 

31 October through 30 April of the following year. Note that all records extend to the present, but we only 164 

use data through 2019 in our calculations.  165 

Station;  

NOAA 

station no.  

Approx. 

location 

Mean 

higher high 

water (m)a  

Great 

diurna

l range 

(m)a  

Timespan 

Omitted winter 

seasons (< 75% 

complete) 

Omitted 

summer seasons 

(< 75% 

complete) 

Eastport, ME; 

8410140 

44°54.2’N 

66°59.1’

W 

2.916 5.874 
1929–

2019  

1957/1958, 1962/1963, 

1970/1971, 1971/1972, 

1974/1975, 1975/1976, 

1976/1977, 1977/1978, 

1995/1996, 1998/1999 

1929, 1957, 

1958, 1963, 

1971, 1974, 

1976, 1978, 1980 

Portland, ME; 

8418150 

43°39.3’N 

70°14.8’

W 

1.513 3.019 
1910–

2019 

1910/1911, 1911/1912, 

1933/1934, 1945/1946, 

1960/1961 

1910, 1911, 

1956, 1961, 

1970, 1971, 1990 

Boston, MA; 

8443970 

42°21.2’N 

71°3.0’W 
1.545 3.131 

1921–

2019 
1944/1945 1921 

a Tidal datums are relative to 1983-2001 mean sea level  166 

 167 

 Perhaps owing to the basin resonance being near N2, Gulf of Maine tides are sensitive to 168 

small changes in basin geometry, depth, and friction. Indeed, they display some of the largest 169 

secular tidal trends observed anywhere in the world for a regional body of water. Since the early-170 

20th century, the amplitude of the M2 tidal constituent has steadily increased at an average rate of 171 

0.25 ± 0.04 mm/y at the Boston tide gauge, 0.59 ± 0.04 mm/y at Portland, and 0.77 ± 0.08 mm/y 172 

at Eastport (Ray & Talke, 2019). In comparison, average rates of SLR measured at these tide 173 

gauges over the same time period (see Tab. 1 for exact date range) are 2.83 ± 0.15 mm/y in 174 

Boston, 1.88 ± 0.14 mm/y in Portland, and 2.14 ± 0.17 mm/y in Eastport. New tide estimates 175 

derived from 19th-century water level measurements show that the M2 trend began sometime in 176 

the late-19th or early-20th century, coincident with the transition to modern rates of SLR (Ray & 177 

Talke, 2019). Numerical models show that SLR has only caused part of the observed increase in 178 

M2 amplitude in the Gulf of Maine (e.g. Müller et al., 2011; Greenberg et al., 2012; Pelling & 179 

Green, 2013; Schindelegger et al., 2018), suggesting that ocean stratification driven by sea-180 

surface temperature warming has also played a role in the increase (Müller, 2012; Ray & Talke, 181 

2019).   182 

2.2 Review of extreme sea level statistical methods 183 

Extreme sea level recurrence intervals can be estimated from data or models. In both 184 

cases, an extreme value probability distribution is fit to a set of measured or simulated extreme 185 

sea levels assumed to be representative of the possible flood scenarios in a region. 186 

Hydrodynamic simulations have the advantage of explicitly including wave impacts and 187 

providing spatially continuous flood elevations and flow velocities; however, they are 188 

computationally intensive, take time to develop, and as with all models, rely on uncertain 189 

parameterizations, bathymetry, and assumptions (e.g. Vousdoukas et al., 2016; Lin et al., 2010). 190 

At gauged locations with multi-decadal records, estimating storm tide recurrence intervals from 191 

data is a simpler alternative that will be the focus of this paper.  192 



 

 

 The two most commonly used extreme value distributions are the Generalized Extreme 193 

Value distribution (GEV) and the Generalized Pareto Distribution (GPD). The GEV is fit to 194 

block maxima data, or the n-largest measurements per some time interval (e.g. the largest event 195 

each year), and the GPD is fit to peaks-over-threshold data, or all measurements over some 196 

threshold value that defines extremes. The GPD approach is more robust because it uses more 197 

available extreme observations (e.g. NERC, 1975; Coles et al., 2001; Tebaldi et al., 2012; 198 

Buchanan et al., 2017). In Boston, for example, only 46 of the top 100 storm tides recorded at the 199 

NOAA gauge occurred in distinct years. A GEV using annual block maxima would therefore 200 

omit more than half of the top-100 events. Compared with the GEV, however, the GPD requires 201 

higher data quality and is more difficult to fit automatically because of its sensitivity to the 202 

choice of threshold (Coles, 2001; Arns et al., 2013). Storm tide statistics published by NOAA, 203 

for example, are derived from GEV fits because choosing a GPD threshold can be subjective, 204 

and NOAA requires a method that can be quickly applied and periodically updated at over 100 205 

gauges (Zervas, 2013). Nonetheless, Talke et al. (2018) found that GEV and GPD fits to Boston 206 

extreme storm tides yielded similar recurrence interval estimates. 207 

 In meso-to-macrotidal regions, where tides are a primary control on flooding, a joint 208 

probability approach that convolves separate tide and surge distributions can capture more 209 

extreme storm surges within a temporally limited tide gauge record (e.g. Pugh & Vassie, 1979, 210 

1980). For example, in 63 of the 100 years in Boston’s record, the largest storm surge of the year 211 

did not coincide with any of the year’s top-3 storm tides; thus, a GPD fit to measured Boston 212 

storm tides would exclude two-thirds of the largest storm surges (assuming a GPD threshold that 213 

was exceeded, on average, three or fewer times per year). The first two published storm tide joint 214 

probability methods were the Joint Probability Method (JPM; Pugh & Vassie, 1978, 1980) and 215 

the Revised Joint Probability Method (RJPM; Tawn & Vassie, 1989; Tawn, 1992). The JPM 216 

separates measured water levels into the predicted tide and a non-tidal residual (measured minus 217 

predicted water level at a given time), fits an empirical probability distribution to each 218 

component, and obtains the joint storm tide distribution by a convolution of the two component 219 

distributions. The RJPM improves upon the JPM by 1) fitting a GEV distribution to extreme 220 

non-tidal residual values in order to model events exceeding the observed maximum, and 2) 221 

applying an extremal index that accounts for dependence of non-tidal residuals occurring close 222 

together in time (the extremal index will be further explained in section 3.2).  223 

 The primary shortcoming of the JPM and RJPM is the assumed independence between 224 

the predicted tide and the non-tidal residual. Storm surge and tides interact; storm surge increases 225 

water depth, and tidal wave speed increases in deeper water (Horsburgh and Wilson, 2007). The 226 

non-tidal residual time series of measured minus predicted water level therefore often includes 227 

an “illusory” surge during storm events, which is an artifact of the difference in the predicted tide 228 

and the phase-shifted tide. Furthermore, the amplitude, timing, and timescale of the surge wave 229 

impacts its frictional interaction with tides (Familkhalili et al., 2020).  230 

The Skew Surge Joint Probability Method (SSJPM; Batstone et al., 2013) improves upon 231 

the JPM by eliminating the bias introduced by the uncertain timing of the tidal prediction during 232 

storm conditions. Skew surge is defined as the difference between the maximum measured water 233 

level and the predicted high water within each tidal cycle. After accounting for seasonal variation 234 

in tides, Williams et al. (2016) found statistical independence between predicted high water and 235 

skew surge at 77 Atlantic tide gauges in the United States and Europe. They concluded that this 236 

skew surge independence enables a simplified joint probability approach for calculating storm 237 

tide recurrence intervals that does not require the inclusion of an empirical relationship between 238 



 

 

tide and the non-tidal residual to account for tide-surge interaction. The argument is primarily 239 

statistical and not dynamical, as the absence of correlation does not indicate the absence of 240 

effect; rather, in observational records, natural variability in storm systems dominates over 241 

tidally driven variation in surge. We address this issue by using primarily coastal (rather than 242 

estuary) locations, such that frictional interaction effects are likely less prominent.  243 

 These joint probability methods have lowered bias in storm tide recurrence interval 244 

estimates (compared to GPD or GEV fits to data) in regions where tides are large relative to 245 

meteorological forcing, particularly for short data series (Dixon & Tawn, 1999; Haigh et al., 246 

2010); however, none has accounted for year-to-year fluctuations or secular trends in tidal 247 

properties. In the following sections, we describe a new, quasi-nonstationary (qn) modification 248 

of the SSJPM called the qn-SSJPM, which calculates a separate set of storm tide recurrence 249 

intervals for winter and summer storm seasons using that season’s known high tides. We fit 250 

separate summer and winter distributions because the region’s large storm events mostly occur in 251 

the winter season (e.g. Talke et al., 2018), while summertime tide levels are larger on average 252 

(Ray & Foster, 2016).  253 

3 Methods 254 

3.1 Tide gauge data processing 255 

At the Eastport, Portland, and Boston NOAA gauges, we use hourly water level data 256 

from NOAA, downloaded from the University of Hawaii Sea Level Center database for pre-2016 257 

data (Caldwell et al., 2010) and from NOAA’s website for post-2016 data 258 

(https://tidesandcurrents.noaa.gov). We remove the annual MSL trend by subtracting a one-year 259 

moving average of all hourly water level measurements (following Arns et al., 2013).  260 

 We fit a six-minute cubic spline function to the hourly data over the entire length of each 261 

tide gauge record (six-minute data are only available from NOAA beginning in 1996) to reduce 262 

the peak truncation caused by using hourly records. For example, hourly-based high waters from 263 

Boston in 2018 were an average of 4.1 cm lower than 6-minute resolution records. The six-264 

minute spline fit reduces this bias to 0.7 cm. Since the precision of individual, pre-digital 265 

measurements varies from 0.015 meters (due to rounding) to 0.05–0.1 meters or more during 266 

periods with timing or gauge problems (e.g. Talke et al., 2018, 2020), this small bias is less than 267 

other sources of error. All subsequent calculations use this MSL-adjusted six-minute spline fit to 268 

the hourly data.  269 

 We estimate the tidal contribution to each water level measurement using the MATLAB-270 

based harmonic analysis program r_t_tide (Pawlowicz et al., 2002; Leffler and Jay, 2009). We 271 

calculate tidal constituents independently for each year from a 369-day analysis that includes 67 272 

constituents. The 369-day analysis enables estimation of the semiannual and annual constituents, 273 

as well as the seasonal sidelines to M2 (often called MA2 and MB2, but mislabeled H1 and H2 in 274 

r_t_tide). Since we are interested in the effect of the nodal cycle, no nodal corrections were 275 

applied. r_t_tide also applies nodal corrections based on the astronomic potential, rather than the 276 

empirically measured and slightly smaller correction observed in practice in the Gulf of Maine 277 

(e.g. Ku et al., 1985; Ray & Foster 2016; Ray & Talke, 2019).     278 

 We calculate the skew surge parameter by subtracting maximum predicted water level 279 

from maximum observed water level within each semidiurnal tidal cycle. Following Williams et 280 

al. (2016), we test for statistical independence between predicted high water and the top 1% of 281 

skew surge at all sites using the rank-based Kendall’s Tau correlation test (Kendall, 1938), where 282 

about:blank


 

 

the criteria for significant correlation are |tau| > 0.1 and p < 0.05. We do not find significant 283 

correlation between predicted high water and skew surge at any of the three sites (Tab. S1).  284 

 The final inputs into the joint probability analysis are semidiurnal predicted high waters 285 

(relative to annual MSL) and their associated skew surges over the length of each tide gauge 286 

record. Measured high waters are only used to calculate the declustering coefficient (see equation 287 

6 for calculating the extremal index in section 3.2). Prior to the joint probability analysis, we also 288 

divide tides and skew surges into the winter storm season, defined as 31 October to 30 April, and 289 

the more quiescent summer season, defined as 1 May to 30 October (Wahl and Chambers, 2015; 290 

Thompson et al., 2013). Including 31 October in the winter storm season avoids exclusion of a 291 

1991 hybrid storm (Talke et al., 2018). In all subsequent analyses, we only include seasons 292 

where the set of measured water levels is at least 75% complete (Menéndez and Woodworth, 293 

2010; Wahl and Chambers, 2015).  Table 1 lists the winter and summer seasons omitted at each 294 

tide gauge.  295 

3.2 Quasi-nonstationary joint probability analysis (qn-SSJPM) 296 

 We calculate storm tide exceedance curves for each season, where the expected number 297 

of exceedances (i.e. the number of storm tides exceeding a certain level) is equal to the inverse of 298 

recurrence interval. Each winter or summer-season storm tide exceedance curve is calculated by 299 

convolving probability distributions of that season’s predicted high waters and all winter or 300 

summer skew surges recorded over the length of the tide gauge record. We model winter and 301 

summer extreme skew surge probabilities with a GPD following Batstone et al. (2013). For skew 302 

surges x above a threshold µ, the GPD cumulative distribution function  𝐺𝑠𝑠(𝑥) takes the form  303 

𝐺𝑠𝑠(𝑥)  =  1 −  (1 +  𝜉
𝑥 − 𝜇

𝜎
)

−1
𝜉⁄
                                            (1) 304 

with shape parameter 𝜉 ≠ 0 and scale parameter 𝜎 > 0. To account for uncertainty in the skew 305 

surge GPD, we sample 1,000 pairs of 𝜉 and 𝜎 from the covariance matrix of their maximum 306 

likelihood estimates with Latin hypercube sampling (Buchanan et al., 2016, 2017). We choose 307 

the GPD threshold that defines extreme skew surges by minimizing the root mean square error of 308 

GPD exceedances versus empirically-derived storm tide plotting positions (Arns et al., 2013). 309 

We calculate plotting positions using the Weibull formula  310 

�̃�𝑠𝑠(𝑥𝑖)  =  
𝑖

𝑛+1
                           (2) 311 

where xi is the ith-largest skews surge, and n is the total number of skew surges. We find that 312 

setting the threshold as the 99.7th percentile of skew surges for both the winter and summer 313 

seasons minimizes error across all sites, and past studies have used a similarly high threshold 314 

(Menéndez and Woodworth, 2010; Arns et al., 2013). This 99.7th percentile threshold samples an 315 

average of 1.1 events per season. Following Batstone et al. (2013), we assume there are 316 

sufficient observations to use the empirical distribution �̃�𝑠𝑠(𝑥) (i.e. plotting positions; equation 2) 317 

for skew surges below the threshold, such that the cumulative distribution function of all skew 318 

surges 𝐹𝑠𝑠(𝑥) is  319 

𝐹𝑠𝑠(𝑥) = { 
�̃�𝑠𝑠(𝑥),                                                  𝑥 <  𝜇
(1 − 0.997)  ∗  𝐺𝑠𝑠(𝑥)  +  0.997, 𝑥 ≥  𝜇

                                               (3)  320 



 

 

We then calculate the joint cumulative distribution function of storm tides 𝐹𝑆𝑇(𝑧) for 321 

each season following the SSJPM (Batstone et al., 2013), which assumes that there is an equal 322 

probability of a given skew surge occurring at any high tide in a season: 323 

𝐹𝑆𝑇(𝑧)  =  [∏ 𝐹𝑠𝑠(𝑧 −  𝑃𝑡)
𝑁𝐻𝑊
𝑡=1 ]

1 𝑁𝐻𝑊⁄
               (4) 324 

where z is storm tide, 𝑃𝑡 is the predicted high water in tidal cycle 𝑡, and 𝑁𝐻𝑊 is the total number 325 

of high waters in the season. To account for statistical uncertainty in the skew surge GPD 326 

parameters, tides are convolved with all 1,000 skew surge GPDs (𝐹𝑠𝑠). The 50th quantile of the 327 

resulting 1,000 storm tide distributions (𝐹𝑆𝑇) represents the central estimate, and the 5th and 95th 328 

quantiles provide a 90% uncertainty range. We convert storm tide cumulative probabilities to 329 

expected number of exceedances per season N(z) by 330 

𝑁(𝑧)  =  [𝑁𝐻𝑊  ∗  𝜃(𝑧)]  ∗  [1 − 𝐹𝑆𝑇(𝑧)]                 (5) 331 

where 𝜃(𝑧) is the extremal index, which effectively reduces the number of high waters per 332 

season to the number of independent high waters per season to account for events that span 333 

multiple high tides (Leadbetter, 1983; Tawn, 1992). The extremal index is the inverse of mean 334 

cluster size (the mean number of storm tides exceeding a certain height that are associated with a 335 

single event) and calculated as a function of storm tide, following Ferro and Segers (2003): 336 

1

𝜃(𝑧) 
 =  

2[∑ (𝐼(𝑧)𝑖 − 1)
𝐸(𝑧)−1
𝑖=1 ]

2

(𝐸(𝑧) − 1) ∗ ∑ [(𝐼(𝑧)𝑖 − 1) ∗ (𝐼(𝑧)𝑖 − 2)]
𝐸(𝑧)−1
𝑖

               (6) 337 

where E(z) is the number of measured storm tides exceeding z, and I(z) is interexceedance time. 338 

We find that the extremal index reduces storm tide magnitudes in the 1 to 30-year recurrence 339 

interval range; thus, it is likely that these water levels are sometimes exceeded multiple times 340 

during a single storm event, while the most extreme water levels with recurrence intervals longer 341 

than 30 years are generally independent.    342 

 At each site, the final products of the qn-SSJPM calculations include: 343 

1. A storm tide exceedance curve for each summer and winter season in the NOAA record 344 

2. Full-year (i.e. combined winter and summer) storm tide exceedance curves for each year 345 

in the NOAA record, calculated by adding the expected number of summer and winter 346 

exceedances in a given year for each storm tide height  347 

3. Two time-integrated storm tide exceedance curves (one winter, one summer), calculated 348 

using winter or summer tides over the full length of the NOAA record 349 

4. One full-year, time-integrated storm tide exceedance curve    350 

4 Results and discussion 351 

4.1 qn-SSJPM results  352 

We focus our discussion on winter storm season results because extreme flooding is 353 

primarily a winter hazard in the Gulf of Maine. A comparison of the time-integrated qn-SSJPM 354 

storm tide exceedance curves for winter, summer, and the full year (Fig. 2a) shows that storm 355 

tides from the full-year curves are, at most, 1.5 cm higher than winter curves at frequencies 356 



 

 

below 0.1 expected exceedances/year. Thus, when viewing the full-year curve, it is important to 357 

do so with the caveat that summer floods are only a minor contributor to total flood hazard.   358 

Figure 2b shows the winter-season annual and time-integrated storm tide exceedance 359 

curves for Eastport, Portland, and Boston. The spread among annual curves represents 360 

deterministic tidal variability and is thus greatest in Eastport where tide range and nodal cycle 361 

amplitude are the largest. As an example, the winter storm tide with 0.01 expected 362 

exceedances/year ranges 4.20–4.50 meters in Eastport, 2.56–2.74 meters in Portland, and 2.83–363 

2.99 meters in Boston depending on the tidal properties of the calendar year (note that all storm 364 

tides are relative to annual MSL). The 90% uncertainty region (blue shading in Fig. 2b) 365 

encompasses both deterministic tidal variability and statistical uncertainty in the skew surge 366 

GPD parameters.  367 

 368 
Figure 2. Gulf of Maine storm tide exceedance curves. (a) Seasonality of flood hazard. Historical time-369 

integrated qn-SSJPM storm tide exceedance curves are compared for the full year (thick solid line), 370 

summer season (dashed line), and winter season (thin solid line). (b) Comparison of winter-season storm 371 

tide exceedance curves for the qn-SSJPM and a GPD fit to measured storm tides (GPDST). Thin blue 372 

curves show qn-SSJPM-derived curves for each winter storm season in the tide gauge record, and bold 373 

blue curves are the time-integrated qn-SSJPM curves based on the entire tide gauge record. Black curves 374 

are a GPDST fit to the top 0.3% of storm tides in each tide gauge record, and + signs are empirical 375 

exceedances (see equation 2). Lines represent central estimates (50th quantile), and filled regions show the 376 

90% uncertainty range (5th–95th quantiles) for each method. 377 



 

 

We also compare qn-SSJPM storm tide exceedance distributions to a GPD fit to the top 378 

0.3% of storm tides in each record (Fig. 2b). This is a common approach for deriving storm tide 379 

exceedances (see section 2.2), hereafter referred to as GPDST. We fit GPDST following the same 380 

methods described in section 3.2 for fitting the skew surge GPD, using the 99.7th percentile of 381 

measured storm tides as the GPD threshold. Uncertainty ranges are larger for the GPDST 382 

distributions than the qn-SSJPM distributions (gray versus blue shaded regions in Fig. 2b). 383 

Although both incorporate GPD parameter uncertainty, for the qn-SSJPM, the deterministic 384 

predicted high water distribution reduces overall uncertainty. In Boston, the GPDST method 385 

estimates significantly higher winter storm tides at exceedance levels < 0.1 compared to the qn-386 

SSJPM. Given the disagreement, we 1) use Monte Carlo simulations to validate the two 387 

statistical approaches, 2) compare the Boston qn-SSJPM and GPDST exceedance curves to a 388 

GPDST exceedance curve fit to an extended, 200-year long record of Boston storm tides (Talke et 389 

al., 2018), and 3) test for sensitivity to GPD threshold selection for in each method. 390 

4.2 Monte Carlo validation  391 

We compare the validity of the qn-SSJPM and GPDST methods using Monte Carlo 392 

simulations. We create a synthetic 10,000-year time series of winter-season high waters by 393 

splicing together the 1921-2018 Boston winter-season predicted high waters 102 times (102 394 

times the 98-year record ≈ 10,000 years) and combining each predicted high water with a skew 395 

surge randomly sampled from the cumulative distribution function of Boston winter skew surges. 396 

We treat empirical storm tide exceedances calculated from the synthetic 10,000-year record 397 

(equation 2) as the “truth.” We then run 1,000 trials of randomly selecting 100 of the 10,000 398 

years and calculating storm tide exceedance distributions based on those 100 years using both the 399 

qn-SSJPM and GPDST methods. We use the 99.7th percentile storm tide and skew surge as GPD 400 

thresholds, and for the qn-SSJPM calculation, we only generate a single time-integrated storm 401 

tide exceedance distribution for the 100 years (i.e. we do not calculate annual distributions). 402 

These simulations test how reliably the two statistical methods can represent flooding conditions 403 

over 10,000 years based on a limited “observational” period of 100 years. 404 

In analyzing the results, “estimate” refers to the storm tide-exceedance relationship 405 

calculated from a 100-year subsample using the qn-SSJPM or GPDST methods. “Truth” refers to 406 

the empirical storm tide-exceedance relationship calculated from the synthetic 10,000-year 407 

record. For each of the 1,000 trials, we determine 1) whether or not the truth  falls within the 408 

central 67% ranges of storm tide estimates at the 0.1, 0.01, and 0.002 exceedances/year levels for 409 

the two methods, and 2) the bias of the estimates, calculated as the difference between the truth 410 

and the central (50th quantile) qn-SSJPM and GPDST storm tide estimates at the 0.1, 0.01, and 411 

0.002 exceedances/year levels.  412 

We find that the truth falls within the central 67% range of estimates 55–65% of the time 413 

for the qn-SSJPM and 59–67% of the time for GPDST (Fig. 3a). Both methods’ overlap with the 414 

truth generally increases at lower exceedance levels because uncertainty range also increases 415 

with decreasing expected exceedances. The lower coverage of qn-SSJPM error ranges indicates 416 

that the method’s estimate errors are more overconfident than GPDST estimate errors; however, 417 

both the qn-SSJPM and GPDST have reasonable coverage.   418 

Comparing biases in qn-SSJPM and GPDST estimates of storm tides at the 0.1, 0.01, and 419 

0.002 exceedances/year levels reveals that qn-SSJPM estimates are more precise and stable (i.e. 420 

consistently closer to the truth). Box plots in Figure 3b show each method’s biases for all 1,000 421 

trials. The interquartile ranges increasing (i.e. the boxes getting larger) at lower exceedance 422 



 

 

levels reflects the expected trend of increasing instability (i.e. variability) in estimated 423 

exceedances at lower exceedance levels for a given record length (e.g. Haigh et al., 2010). Mean 424 

bias is close to zero for both methods at all three exceedance levels; however, for storm tides at 425 

the 0.01 and 0.002 exceedances/year levels, both the interquartile range and total range in biases 426 

are significantly narrower for qn-SSJPM estimates than for GPDST estimates. This result 427 

indicates that for a 100-year observational record, both methods will, on average, provide 428 

accurate storm tide estimates between the 0.1 and 0.002 exceedances/year levels; however, 429 

GPDST estimates of storm tides with recurrence intervals nearing the record length (e.g. the storm 430 

tide with a 100-year recurrence interval or 0.01 expected exceedances/year for a 100-year-long 431 

record), are more susceptible to being biased by the largest few events within the observational 432 

period. This finding is consistent with past studies that have shown GPD and GEV fits to 433 

observed storm tides (often called “direct methods” of estimation) are more unstable to historical 434 

outlier events than joint probability distributions that incorporate large historical storm surges not 435 

necessarily coinciding with high tides (e.g. Tawn and Vassie, 1989; Tawn, 1992; Haigh et al., 436 

2010).  437 

 438 

 

 

 

 

 

 
Figure 3. Validation results. (a) Percent of 439 

the 1,000 validation trials that contain the 440 

truth (empirical value) within the central 441 

67% range of storm tide estimates at the 0.1, 442 

0.01, and 0.002 exceedances/year levels for 443 

the qn-SSJPM method (blue) and the GPDST 444 

method (gray). (b) Box plot showing the 445 

distribution of qn-SSJPM and GPDST biases 446 

for the 1,000 validation trials at the 0.1, 0.01, 447 

and 0.002 exceedances/year levels. Biases 448 

are calculated as the difference between the 449 

truth (based on the empirical distribution 450 

calculated from the 10,000-year synthetic 451 

record) and the central qn-SSJPM estimates 452 

(blue) or GPDST estimates (gray). Central 453 

marker is the median (with the * symbol 454 

showing the mean), and bottom and top box 455 

edges are the 25th and 75th quartiles. Values 456 

plotted as outliers (+ markers) fall outside the 457 

central 99.3% range. 458 

 459 

This instability to historical outliers partially explains the disagreement between the qn-460 

SSJPM and GPDST curves for Boston (Fig. 2b). Boston’s highest three recorded flood events all 461 

occurred in years with unusually large tides (Talke et al., 2018). For example, the Blizzard of 462 

1978 (the storm tide of record), happened to coincide with the year that, on average, had the 463 



 

 

largest-magnitude high waters over the past century (represented by the right-most blue curve in 464 

Fig. 2b and highlighted with a red arrow in Fig. 5). Thus, the GPDST method in part 465 

overestimates Boston flood hazard because it does not account the Blizzard of 1978’s 3.05-meter 466 

flood having had a lower probability of occurrence during any of the other 97 winters of record.467 

4.3 Extended Boston record and GPD threshold sensitivity   468 

 469 

Figure 4. Sensitivity of Boston winter storm tide exceedance curves to GPD threshold selection and 470 

comparison to the extended, 200-year Talke et al. (2018) record. The five gray storm tide exceedance 471 

curves are calculated using a GPD fit to measure storm tides in the 100-year NOAA record (GPDST 472 

method) with the threshold set as the 99.5th, 99.6th, 99.7th, 99.8th, and 99.9th percentile of measured storm 473 

tides. The red shaded region shows GPDST exceedance curves fit to the 200-year Talke et al. (2018) 474 

record using a 2.31-meter threshold (same as Fig. 2b) and a 2.4-meter threshold (value used by Talke et 475 

al.). The blue shaded region shows five qn-SSJPM exceedance curves fit to the 100-year NOAA record, 476 

with the skew surge GPD threshold set as the same five percentiles of skew surges (99.5th–99.9th 477 

percentiles). 478 

 479 

Comparing the Boston qn-SSJPM and GPDST winter storm tide exceedance curves (Fig. 480 

2b) to exceedance curves fit to the Talke et al. (2018) extended 200-year storm tide record also 481 

highlights the stability of the qn-SSJPM relative to the GPDST method. Gray curves in Figure 4 482 

show five GPDST fits to the 1921–2018 NOAA record using five different GPD thresholds, 483 

ranging 2.25 to 2.44 meters (the 99.5th to 99.9th percentiles of measured winter storm tides; Tab. 484 

S2). For the 100-year NOAA record, the five exceedance curves begin to diverge below the 0.03 485 

exceedances/year level, demonstrating the sensitivity of the GPDST method to threshold 486 

selection. The red shaded region in Figure 4 shows GPDST curves fit to the extended 1825–2018 487 

Boston record (un-bias corrected Data Set S3 from Talke et al., 2018) using both a 2.40-meter 488 

threshold (the value used by Talke et al., 2018) and a 2.31-meter threshold (the value used in Fig. 489 

2b that provides the best match to empirical exceedances). In contrast to the NOAA-record 490 



 

 

curves, the narrowness of the red shaded region indicates that the longer, 200-year dataset makes 491 

the GPDST method stable down through the 0.002 exceedances/year level.  492 

The blue shaded region in Figure 4 shows the qn-SSJPM fit to the NOAA record using 493 

five different thresholds for the GPD fit to skew surges (99.5th through 99.9th percentiles; Tab. 494 

S2). The small variability among the five curves (i.e. the narrowness of the blue shaded region) 495 

shows that with the shorter NOAA record, the qn-SSJPM can achieve the same stability with 496 

respect to GPD threshold selection as the GPDST fit to the 200-year record. Finally, the 497 

agreement at low exceedance levels between the qn-SSJPM and 200-year exceedance curves is 498 

further evidence that the qn-SSJPM provides a more reliable characterization of extreme storm 499 

tide frequencies than the GPDST method based on the 100-year NOAA record.   500 

4.4 Interannual variation in storm tide frequency 501 

Interannual variation in tides forces changes in flood hazard on annual-to-decadal 502 

timescales that should be considered in coastal management practices tied to storm tide 503 

frequency estimates. We quantify the tidal modulation of flood hazard over the past century in 504 

Eastport, Portland, and Boston using the annual time series of winter storm season storm tides at 505 

the 0.01 exceedances/year level (hereafter referred to as ST0.01) taken from the qn-SSJPM curves 506 

(Fig. 5). To represent the three dominant sources of interannual tidal variability in the region (see 507 

Ray & Foster, 2016), we fit a harmonic function to the time series with an 18.6-year period, a 508 

4.4-year period, and a linear trend, where ST0.01 values are relative to annual MSL, so the linear 509 

trend is the increase in tides above SLR. The ranges (twice the amplitudes) of the 18.6 and 4.4-510 

year harmonics represent the magnitudes of the tidal cycles’ forcing of flood hazard.  511 

Table 2 compares 18.6 and 4.4-year modulations of ST0.01 and of the highest predicted 512 

tide (the highest tide in a 6-month interval), which are computed directly from harmonic 513 

constants at the gauges. The 18.6 and 4.4-year cycles’ forcing of ST0.01 is perhaps smaller than 514 

that of the highest predicted tide because ST1% is calculated from observations rather than 515 

predictions. Observed water level data include atmospheric effects, which introduce variability 516 

that could interfere with tidal modulations. The exclusion of summer-season tides in the winter 517 

ST0.01 values also likely reduces 4.4-year periodicity in predicted water levels (e.g. Talke et al., 518 

2018). Finally, Peng et al. (2019) showed that the 18.6-year modulation of tides is greater for 519 

more extreme high waters (for example, the modulation of monthly maximum high waters is 520 

greater than that of monthly 99the percentile high waters). Similarly, modulation of ST0.01 521 

potentially reflects less extreme tidal levels than what would be obtained using the 6-month 522 

maximum.  523 

The secular increase in tides observed in the M2 tidal constituent (e.g. Ray & Talke, 524 

2019) has driven roughly a 0.6 mm/y increase in ST0.01 in Eastport and Portland. In Boston, 525 

however, there is a slight negative linear trend in ST0.01 of -0.08 mm/y. Thus, the increase in tides 526 

has had a minimal decadal-timescale impact on ST0.01 compared to other forcings; however, in 527 

Eastport and Portland, the total secular increase in ST0.01 over the length of the tide gauge record 528 

is comparable to decadal nodal variability. There is likely to be a future increase in high water 529 

levels with SLR (Greenburg et al., 2012; Pelling & Green, 2013; Schindelegger et al., 2018) and 530 

increasing tidal range (Greenberg et al., 2012), but there are no detailed projections for Gulf of 531 

Maine tides that consider additional forcing mechanisms, such as changes in stratification and 532 

flooding (Haigh et al., 2020). 533 

The significance of the 4.4 and 18.6-year tidal modulations of ST0.01 can best be 534 

illustrated by converting the tidal cycle forcing ranges to rates and comparing them to rates of 535 



 

 

SLR.  In Eastport, for example, the average range in 18.6-year forcing of ST0.01 is 126 mm (Fig. 536 

5). The 18.6-year forcing can be positive or negative, so over any half nodal period in Eastport, 537 

the average rate of nodal forcing of ST0.01 is ±126 mm per 9.3 years, or ±13.5 mm/year. Applying 538 

the same calculation to Portland and Boston, the average 18.6-year tidal forcing rates are ±4.0 539 

mm/year and ±5.9 mm/year, respectively. 4.4-year tidal forcing rates are a slower ±3.0 mm/year 540 

in Eastport and Boston and ±4.0 mm/year in Portland. In practice, however, interannual variation 541 

in winter MSL (which has historically been on the order of tens of mm) would drown out this 542 

shorter-period 4.4-year tidal modulation.  543 

                544 
Figure 5. Interannual variation in the winter storm tides at the 0.01 exceedances/year level (ST0.01). Time 545 

series of qn-SSJPM-derived annual ST0.01 values (black line) with a least squares best-fit harmonic 546 

function that represents the region’s dominant tidal forcings (gray curve), which includes an 18.6-year 547 

period, a 4.4-year period, and a linear trend. Legends show the ranges (i.e. double the amplitude) of the 548 

best-fit sinusoids and the slopes of the linear trends. Note the gap in the Eastport ST0.01 time series where 549 

winter seasons were omitted due to less than 75% data completeness (see Tab. 1). 550 

 551 



 

 

Table 2. Ranges of 18.6 and 4.4-year tidal cycle modulations of the storm tides at the 0.01 552 

exceedances/year level (ST0.01) and the highest predicted tide. 553 

 18.6-year modulation range 

(mm) 

Quasi 4.4-year modulation 

range (mm) 

ST0.01 
Highest 

predicted tide 
ST0.01 

Highest 

predicted tide 

Eastport 126 196 28 78 

Portland 37 66 37 68 

Boston 55 72 28 62 

 

 

 554 

Figure 6. Joint impact of tidal forcing and sea-level rise on future flood hazard increase. (Top panel) 18.6 555 

and 4.4-year components of the best-fit harmonic function to the winter ST0.01 time series from Fig. 5. 556 

(Bottom panel) Gray curves show projected rates of local RCP8.5 SLR modified from Kopp et al. (2014) 557 

(line = 50th quantile of samples, shading = central 90% range). Over 9.3-year-intervals where the nodal 558 

cycle is moving from a minimum to a maximum (indicated by red shading), the average nodal forcing rate 559 

(black triangle on y-axis) is added to the average projected rate of SLR over the same 9.3 years (red 560 

circles, with bars representing SLR uncertainty). Over intervals when the nodal cycle is trending 561 

negatively, nodal forcing is subtracted from the rate of SLR (blue circles and bars). The historical rate of 562 

SLR over the past century is also shown for reference (black asterisk on the y-axis).  563 



 

 

Figure 6 provides a visualization of the impact of 18.6-year forcing in the context of 564 

SLR. On decadal timescales, the natural variability in ST0.01 (and therefore flood hazard) driven 565 

by the nodal cycle at the three Gulf of Maine sites has historically been larger than non-566 

stationarity driven by the ~100-year average rate of SLR (black triangles versus asterisks in Fig. 567 

6). In the future, even as SLR accelerates to equal or exceed rates of ST0.01 nodal forcing, the 568 

nodal cycle will continue to force significant decadal-scale variability in the rate that flood 569 

hazard will increase. We illustrate this effect through 2100 by adding the ST0.01 nodal forcing 570 

rate to the projected mean rate of SLR over 9.3-year periods when nodal forcing will be trending 571 

positively (i.e. moving from a minimum toward a maximum). Over 9.3-year periods when the 572 

nodal cycle will be trending negatively, we subtract nodal forcing from projected SLR. We use 573 

Kopp et al. (2014) probabilistic local SLR projections, but we modify the ice sheet contributions 574 

by replacing the Church et al. (2013) likely ranges with Oppenheimer et al. (2019) likely ranges.  575 

The nodal cycle is currently in its negative phase in the Gulf, and until it reaches its 576 

minimum in 2025, negative nodal forcing will counteract the SLR-induced increase in flood 577 

hazard. Between 2025 and 2034 (and in all decades when the nodal cycle is moving from a 578 

minimum to a maximum), however, positive nodal forcing will accelerate the flood hazard 579 

increase. Thus, it is critical to consider SLR and nodal cycle forcing together in planning for the 580 

transition to chronic flooding that will be driven by SLR in many coastal regions over the next 581 

century (e.g. Ray & Foster, 2016; Buchanan et al., 2017; Kopp et al., 2017; Talke et al., 2018; 582 

Oppenheimer et al., 2019). 583 

4.5 Limitations 584 

We demonstrate that the qn-SSJPM provides more precise and stable storm tide 585 

exceedance estimates than the commonly used GPD fit to measured storm tides. However, there 586 

are sources of uncertainty in the method, and there are additional forcings of interannual storm 587 

tide variation that we do not account for. The skew surge GPD is a significant source of 588 

uncertainty, as GPD parameters are sensitive to both the choice of threshold (e.g. Coles, 2001; 589 

Arns et al., 2013) and the largest observed skew surge values (e.g. Tawn and Vassie, 1989; 590 

Tawn, 1992; Haigh et al., 2010). We show that the qn-SSJPM is stable against a range of skew 591 

surge GPD thresholds for Boston through the 0.002 exceedances/year level (Fig. 4), and this 592 

should always be tested. Furthermore, the accuracy of skew surge values depends on the 593 

accuracy of tidal predictions. The r_t_tide software does not include minor constituents (for 594 

example, our Boston r_t_tide predictions use 67 constituents, compared to the 108 used by Ray 595 

and Foster, 2016), and our calculations do not include tide prediction errors. The errors, 596 

however, are small; for example, M2 amplitude errors are on the order of 0.1% (~0.001–0.003 597 

meters).   598 

The qn-SSJPM also does not incorporate climatic variability that may impact storm tide 599 

hazard relative to annual MSL. For example, the North Atlantic Oscillation drives interannual 600 

variation in New England sea levels via northeasterly wind stress anomalies on the upper ocean 601 

(Goddard et al., 2015). In the future, increasing sea surface temperatures and changing 602 

atmospheric circulation patterns may also drive changes in storm intensity and frequency, but 603 

there is low confidence in site-specific projections of future storm behavior (e.g. Knutson et al., 604 

2010; Emanuel et al., 2013), making it difficult to incorporate storm non-stationarity into flood 605 

hazard assessment.  606 

Finally, the qn-SSJPM does not consider the impact of wave processes on flood hazard 607 

and is therefore most suitable for wave-sheltered harbors and embayments. During flood events, 608 



 

 

wave set-up elevates the time-averaged water level, and wave run-up periodically further raises 609 

water level (Stockdon et al., 2006; O’Grady et al., 2019). These processes must be included for 610 

hazard analyses to be reliable at wave-exposed coastlines; for example, Lambert et al. (2020) 611 

demonstrate that neglecting waves can lead to overestimating the time it will take for sea-level 612 

rise to double the frequency of a given extreme water level. Furthermore, our analysis does not 613 

explicitly account for water level oscillations just below wind-wave frequencies in the 614 

infragravity spectrum, generally defined between 0.04 and 0.004 Hz (Bertin et al., 2018). 615 

Infragravity waves are not only an important component of wave-induced run-up along open 616 

coasts (Stockdon et al., 2006), but can also contribute to flooding in harbors, particularly when 617 

amplified by resonance (e.g. Rabinovich, 2010; Bertin et al., 2015).  618 

5 Conclusions 619 

We present a new quasi-nonstationary skew surge joint probability method for 620 

calculating storm tide exceedances and apply it along the Gulf of Maine coast, where tides are 621 

large and vary year-to-year. In addition to providing separate statistical treatment of tides and 622 

surge, the qn-SSJPM calculates distinct annual storm tide exceedance curves that account for 623 

interannual variation in tides. Each year’s curve is a convolution of 1) predicted high water 624 

probabilities, which are known based on that year’s tide predictions, and 2) skew surge 625 

probabilities determined from a GPD fit to all skew surges recorded over the length of a tide 626 

gauge record.   627 

We use a Monte Carlo validation and a GPD threshold sensitivity test to compare the qn-628 

SSJPM to the commonly used method of fitting a GPD to times series of measured storm tides. 629 

We find that the qn-SSJPM provides more precise and stable storm tide frequency estimates 630 

because it is less susceptible to being biased by the largest few events within the observational 631 

period, and it is more stable with respect to GPD threshold selection. We also show that in 632 

Boston, qn-SSJPM-derived storm tide frequency estimates based on the 100-year NOAA record 633 

match those based on the extended, 200-year Talke et al. (2018) record.  634 

At all three Gulf of Maine sites, we find that interannual variation in tides significantly 635 

impacts design-relevant flood levels, such as winter storm tides at the 0.01 exceedances/year 636 

level (ST0.01). The 18.6-year nodal cycle forces decadal oscillations in ST0.01 at a rate of 13.5 637 

mm/year in Eastport, 4.0 mm/year in Portland, and 5.9 mm/year in Boston. In comparison, the 638 

average historical rate of local SLR over the past century has been between 1.89 and 2.86 639 

mm/year at the three sites. Nodal forcing is currently counteracting the SLR-induced increase in 640 

flood hazard; however, in 2025, the nodal cycle will reach a minimum and then begin 641 

accelerating flood hazard increase as it moves toward its maximum phase over the subsequent 642 

decade.  643 

SLR is driving a transition to severe chronic flooding in many coastal regions (e.g. 644 

Oppenheimer et al., 2019). Flooding becomes severe when water elevations cross thresholds 645 

defined by local topography and flood defense structures, and the nodal cycle entering a positive 646 

phase may drive flood heights above these thresholds sooner than SLR would alone. Thus, 647 

considering tidal non-stationarity and SLR together is key to long-term municipal planning and 648 

emergency management along meso-to-macrotidal coastlines. 649 
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Table S1. Results of Kendall’s tau correlation test, using the top 1% of skew surges and their 882 

associated predicted high waters. 883 

 Summer Winter 

tau p-value tau p-value 

Eastport 0.02 0.59 -0.02 0.58 

Portland -0.01 0.80 -0.08 0.03 

Boston 0.05 0.14 0.01 0.75 

 884 

Table S2. Threshold values and number of observations included in threshold sensitivity test 885 

(see Fig. 4 in main text). 886 

 

Threshold 

percentile 

Skew GPD (qn-SSJPM) Storm tide GPD (GPDST) 

Threshold (m) 
# Values above 

threshold 
Threshold (m) 

# Values above 

threshold 

99.5 0.57 170 2.25 155 

99.6 0.60 134 2.28 128 

99.7 0.63 101 2.31 94 

99.8 0.68 69 2.35 60 

99.9 0.77 33 2.44 32 

 887 


