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Abstract

Many studies involving surface radiative fluxes rely on surface fluxes retrieved by the Clouds and the Earth’s Radiant Energy

System (CERES) project, or derived from spaceborne cloud radar and lidar observations (CloudSat-CALIPSO). In particular,

most climate models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were found to have

too little shortwave radiation being reflected back to space and excessive shortwave radiation reaching the surface over the

Southern Ocean – an error with significant consequences for predicting both regional and global climate. There have been few

evaluations of CERES or CloudSat retrievals over the Southern Ocean. In this article, CERES and CloudSat retrieved surface

shortwave (SW) and longwave (LW) downwelling fluxes are evaluated using surface observations collected over the Southern

Ocean during the Macquarie Island Cloud and Radiation Experiment (MICRE). Overall, biases (CERES – surface observations)

in the CERES- surface fluxes are found to be slightly larger over Macquarie Island than most other regions, approximately

+10 Wm for the SW and -10 Wm for the LW in the annual mean, but with significant seasonal and diurnal variations. If

the Macquarie observations are representative of the larger SO, these results imply that CMIP5 model errors in SW surface

fluxes are (if anything) somewhat larger than previous evaluation studies suggest. The bias in LW surface flux shows a marked

increase at night, which explains most of the total LW bias. The nighttime bias is due to poor representation of cloud base

associated with low clouds.
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Key Points: 9 

• CERES and CloudSat-CALIPSO surface shortwave (SW) and longwave (LW) fluxes are 10 
compared with surface measurements over the Southern Ocean. 11 

• Mean CERES surf fluxes are larger in SW (+10 Wm-2) & smaller in LW (-10 Wm-2) 12 
than observed with significant seasonal and diurnal variations. 13 

• LW surface fluxes are larger at night (-16 Wm-2), which explains most of the total bias, 14 
and is due to incorrect cloud base for low clouds. 15 

  16 
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Abstract – 17 

Many studies involving surface radiative fluxes rely on surface fluxes retrieved by the Clouds 18 

and the Earth’s Radiant Energy System (CERES) project, or derived from spaceborne cloud 19 

radar and lidar observations (CloudSat-CALIPSO).  In particular, most climate models that 20 

participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were found to have 21 

too little shortwave radiation being reflected back to space and excessive shortwave radiation 22 

reaching the surface over the Southern Ocean – an error with significant consequences for 23 

predicting both regional and global climate.  There have been few evaluations of CERES or 24 

CloudSat retrievals over the Southern Ocean.  In this article, CERES and CloudSat retrieved 25 

surface shortwave (SW) and longwave (LW) downwelling fluxes are evaluated using surface 26 

observations collected over the Southern Ocean during the Macquarie Island Cloud and 27 

Radiation Experiment (MICRE).  Overall, biases (CERES – surface observations) in the CERES- 28 

surface fluxes are found to be slightly larger over Macquarie Island than most other regions, 29 

approximately +10 Wm-2 for the SW and -10 Wm-2 for the LW in the annual mean, but with 30 

significant seasonal and diurnal variations.  If the Macquarie observations are representative of 31 

the larger SO, these results imply that CMIP5 model errors in SW surface fluxes are (if anything) 32 

somewhat larger than previous evaluation studies suggest. The bias in LW surface flux shows a 33 

marked increase at night, which explains most of the total LW bias.  The nighttime bias is due to 34 

poor representation of cloud base associated with low clouds.    35 
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Plain Language Summary – 36 

We compare satellite estimates for the amount of sunlight (solar) and thermal (infrared) energy 37 

reaching the surface, with surface observations collected at Macquarie Island.  Macquarie Island 38 

is located in the Southern Ocean (SO) about halfway between New Zealand and Antarctica.  The 39 

satellite-based estimates have seen little evaluation over the Southern Ocean. This is a concern 40 

because climate models, when compared with the satellite estimates, are not reflecting enough 41 

sunlight to space over the SO, which has important implications for simulating the current 42 

climate and climate changes. The comparison shows that the satellite estimates are reasonably 43 

good, but the differences between the satellite estimates and the surface measurements are 44 

somewhat larger at Macquarie than at most other locations, and suggests that (if anything) the 45 

satellite data are underestimating the model error associated with having too little reflected 46 

sunlight.  In the infrared, the satellite errors are due to a systematic overestimation of the altitude 47 

of cloud base, and in general, the errors in both the solar and infrared have strong seasonal and 48 

diurnal variations.  49 
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1.  Introduction 50 

The Southern Ocean plays a large role in global oceanic heat and carbon uptake, in large 51 

measure because this is where much of the world’s deep oceanic water returns to the surface, and 52 

on long timescales, much of the world’s oceanic water passes through the Southern Ocean 53 

overturning circulation (Frölicher et al. 2015, Sallée et al. 2013). A number of studies over the 54 

past few years have identified a large excess in absorbed shortwave radiation (ASR) at the top of 55 

the atmosphere and in downwelling shortwave (SW) surface fluxes over the Southern Ocean in 56 

both climate models and reanalyses (e.g. Trenberth and Fasullo 2010, Ma et al. 2015, Kay et al. 57 

2016, Zhang et al. 2016).  In an analysis of the surface energy budget, Schneider and Reusch 58 

(2016) found that most climate models that participated in the Coupled Model Intercomparison 59 

Project Phase 5 (CMIP5) have excessive shortwave radiation reaching the surface over the 60 

Southern Ocean in early summer and midsummer as a result of having an insufficient shortwave 61 

(SW) cloud radiative effect (clouds do not reflect enough sunlight back toward space), which 62 

causes a warm bias in surface air temperatures during late summer; while in winter, most CMIP5 63 

models have a negative longwave (LW) bias due to insufficient longwave cloud radiative 64 

forcing.  On average, the water masses of the Southern Ocean in the CMIP5 models are too 65 

warm and light, also likely due in part to excess heat uptake (Sallée et al. 2013).  These model 66 

radiative errors and associated excess heat uptake are of profound importance to global climate, 67 

including influencing the position of the Southern Hemisphere midlatitude jet and the Inter-68 

Tropical Convergence Zone (ITCZ), as well as cross-hemispheric energy transports (Ceppi et al. 69 

2012, 2013, Hwang and Frierson 2013, Kay et al 2016).   70 

 71 

All of the above evaluations of model radiative fields rely on satellite top-of-atmosphere (TOA) 72 

or surface fluxes derived by the Clouds and the Earth’s Radiant Energy System (CERES) 73 

project, specifically, the Energy Balanced and Filled TOA product (EBAF-TOA) (Loeb et al. 74 

2018) and the EBAF-Surface flux product (Kato et al 2018). While CERES EBAF-Surface and 75 

related products have been evaluated against surface observations over some land regions and 76 

using data from (primarily tropical) buoys (e.g., Rutan et al. 2015, Kato et al 2018, Zhang et al. 77 

2016), there has been little evaluation over the Southern Ocean.  An exception is Rutan et al. 78 

(2018) who compared CERES retrievals with observed SW and LW downward surface fluxes 79 

measured from several Australian research vessels, including the Australian Aurora Australis 80 



Hinkelman and Marchand, CERES and CloudSat Surface Fluxes over the SO, submitted JGR 

5 

ice-breaker. We summarize and discuss uncertainties estimated from these and other evaluation 81 

studies in detail later in this manuscript. 82 

 83 

In response to the need for additional measurements of surface radiative fluxes, as well as 84 

precipitation, cloud and aerosol properties over the Southern Ocean, the U.S. Department of 85 

Energy Atmospheric Radiation Measurement (ARM) program, the Australian Antarctic Division 86 

(AAD) and the Australian Bureau of Meteorology (BoM) collaborated in deploying a variety of 87 

ground-instrumentation to Macquarie Island between March 2016 and March 2018.  Macquarie 88 

Island is located at 54.5° S, 158.9° E and has a small research station operated by AAD that is 89 

staffed year-round, in part by the BoM.  The station supports a variety of research activities and 90 

includes a long history of surface weather and radiosonde observations (Hande et al. 2012, Wang 91 

et al. 2015). 92 

 93 

The primary objective of the March 2016 to March 2018 deployment, hereafter the Macquarie 94 

Island Cloud and Radiation Experiment (MICRE), was to collect observations of surface 95 

radiation, precipitation, cloud and aerosol properties in order to evaluate satellite datasets and to 96 

improve knowledge of diurnal and seasonal variations in these properties, especially as pertains 97 

to the vertical structure of boundary layer clouds, precipitation, and the pervasive supercool 98 

liquid clouds which occupy this region.   99 

 100 

In this article, CERES synoptic (SYN) 1 degree hourly SW and LW downwelling surface fluxes 101 

and monthly CERES EBAF-Surface fluxes are evaluated using surface observations collected 102 

during MICRE.  The hourly CERES-SYN fluxes are derived using both Moderate Resolution 103 

Imaging Spectroradiometer (MODIS) and geostationary satellite imagery (Doelling et al 2013), 104 

and are subsequently used in the generation of the CERES EBAF-Surface fluxes, which includes 105 

corrections and adjustment to the SYN data to ensure consistency with CERES EBAF-TOA 106 

fluxes.  This evaluation also briefly examines SW and LW surface fluxes derived operationally 107 

from spaceborne cloud radar (CloudSat) and lidar (Cloud–Aerosol Lidar and Infrared Pathfinder 108 

Satellite Observations, CALIPSO) observations by the CloudSat project (Henderson et al. 2013). 109 

Section 2 summarizes the surface and satellite datasets used. 110 

 111 
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Results are given in section 3 and summarized in the context of previous surface-based 112 

evaluations in section 4, with conclusions and additional discussion given in section 5.  Overall, 113 

biases (CERES – surface observations) in the CERES-SYN and EBAF downwelling surface 114 

fluxes are found to be slightly larger over the Macquarie Island than most other regions, 115 

approximately +10 Wm-2 for SW and -10 Wm-2 for the LW in the annual mean, but with 116 

significant seasonal and diurnal variations.  Of particular note is that bias in LW surface flux 117 

shows a marked increase in bias (to about -16 Wm-2) at night, which explains most of the total 118 

LW bias. The nighttime bias is found to be due to poor representation of cloud base associated 119 

with low clouds. 120 

 121 

2.  Description of Data 122 

 123 

2.1 Surface dataset 124 

In this manuscript we use observations of surface broadband SW and LW fluxes collected by the 125 

ARM broadband radiometers (ARM SKYRAD datastream mcqskyrad60sS1.b1, DOI: 126 

10.5439/1025281), and in the later analysis, cloud base from the ARM ceilometer (ARM 127 

datastream mcqceilS1.b1, DOI: 10.5439/1181954) collected during MICRE. The shortwave 128 

radiometer calibration is traceable to the World Radiometric Reference and follows the 129 

Broadband Outdoor Radiometer CALibration (BORCAL) methods developed at the U.S. 130 

National Renewable Energy Laboratory, while calibration of the longwave radiometers is 131 

traceable to the interim World Infrared Standard Group standard (Andreas et al. 2018). The 132 

measurement uncertainty is expected to be about +/- 4% for the total downwelling shortwave 133 

flux and +/- 2% for the total downwelling longwave flux.  The uncertainty in the field maybe 134 

slightly larger than the expected values, and we will return to this topic in the later discussion.  135 

 136 

While data collection for most MICRE instrumentation began near the end of March or 137 

beginning of April 2016, there was unfortunately, a wire/grounding problem with the 138 

pyrgeometer (LW flux) measurements that was not corrected until August 15, 2016.   Thus, the 139 

analysis presented is section 3 include SW flux measurements from April 3, 2016 to March 13, 140 

2018 (a little over 23 months) and LW flux measurements from August 15, 2016 to March 13, 141 

2018 (just under 19 months). 142 
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2.2 Satellite Datasets 143 

In this study downwelling shortwave (SW) and longwave (LW) radiative fluxes from (1) the 144 

hourly CERES SYN 1 degree Edition 4A product (Doelling et al., 2013; Rutan et al., 2015), (2) 145 

the monthly CERES Energy Balanced and Filled (EBAF) Surface Product Edition 4 (Kato et al. 146 

2018), and (3) the CloudSat Fluxes and Heating Rate with Lidar (FLXHR-LIDAR) version R05 147 

(Henderson et al. 2013) are examined.  The analysis includes comparison of hourly SYN data 148 

from the grid cell that contains Macquarie Island, and uses larger regional scale (mean fluxes) 149 

taken over a 10° x 10° area for the purpose of evaluating the EBAF and FLXHR-LIDAR 150 

products. We briefly summarize each dataset, below. 151 

 152 

2.2.1 CERES SYN Product 153 

Among other parameters, the CERES SYN 1 degree product provides hourly surface LW and 154 

SW fluxes computed based on cloud and aerosol properties derived from several satellites 155 

(MODIS Terra, MODIS Aqua, and Geostationary imagers), meteorological profiles from the 156 

NASA Global Modeling and Assimilation Office (GMAO), and surface properties from several 157 

sources (Rutan et al. 2015, Kato et al. 2019).  Here we use the Edition 4.0 product (Doelling 158 

2017, DOI: 10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A). At MODIS Terra 159 

and MODIS Aqua overpass times, cloud properties (more details below) are derived from 160 

MODIS data, while at other times of the day cloud properties are based on geostationary satellite 161 

observations (calibrated against MODIS) using similar retrieval algorithms (Doelling et al. 162 

2013).  Cloud properties from MODIS and geostationary imager data are collected (averaged) on 163 

the SYN 1 degree grid using four groups defined by the cloud top pressure.  The four cloud-top-164 

height categories are surface-to-700 hPa, 700-500 hPa, 500-300 hPa, and less-than-300 hPa.  We 165 

note that the cloud bases are independent of the cloud tops, meaning that the cloud base in each 166 

category can be below the top or even the base of other cloud-top-height categories.  For 167 

example, the cloud base of the 700-to-500 hPA category may be at a pressure-altitude that is 168 

larger than 700 hPA.  The four cloud categories are randomly overlapped, as described in Kato et 169 

al. (2019, see Appendix A), creating 16 possible cloud vertical configurations.  We provide some 170 

additional details and clarifications to the description given by Kato et al. 2019 in Appendix A of 171 

this document.  Radiative fluxes are computed using a gamma-weighted two-stream model 172 

applied to (as many as) 4 of the 16 vertical configurations (as explained in Appendix A). 173 
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 174 

In general, the method of determining cloud geometric and optical properties in a given MODIS 175 

or geostationary pixel depends on the wavelength bands of the available observations, as 176 

described in Minnis et al. (2011).  When the solar zenith angle is less than 82° (defined as 177 

"daytime"), several shortwave and infrared channels are used to retrieve cloud top effective 178 

temperature, phase, optical depth, and particle size using an iterative method.  Beyond 82° 179 

(defined as "nighttime"), only infrared wavelengths are used.   The nighttime algorithm includes 180 

an iterative process for clouds determined to be optically thin (based on thermal channel 181 

brightness temperature differences) that accounts for the cloud emissivity being less than 1 (i.e. 182 

not opaque in the infrared) and retrieves the cloud microphysics (optical depth and effective 183 

radius), while optically thick clouds are taken to be opaque and cloud microphysics are set to 184 

fixed values at night (depending on the inferred phase and cloud top temperature).  Cloud base 185 

height is particularly important in determining downwelling LW surface flux.  Because only 186 

passive remotely sensed data are used to construct the cloud profiles, the location of cloud base 187 

is not directly measured and not well constrained.  The location of cloud base is determined from 188 

the retrieved cloud-top temperature and cloud thickness, where the cloud thickness is estimated 189 

in one of two ways.  For liquid clouds, a relationship between optical depth and thickness 190 

derived from satellite and field data are applied (Minnis et al. 2011), while for ice clouds, a new 191 

latitude-dependent parameterization is used in SYN edition 4A.  The new parameterization was 192 

developed using cloud property profiles constructed from the active remote sensors CloudSat and 193 

CALIPSO.  194 

 195 

2.2.2 CERES Energy Balanced and Filled (EBAF) Surface Product  196 

As described by Kato et al. (2018), the CERES project derives both top of atmosphere and 197 

surface radiative fluxes at several temporal and spatial scales, with the top-of-atmosphere (TOA) 198 

and surface irradiances determined separately.  The TOA fluxes are derived directly from 199 

radiances measured by CERES instruments, and includes the Energy Balanced and Filled 200 

(EBAF) TOA product, which applies an algorithm that adjusts SW and LW TOA fluxes (within 201 

their uncertainties) in order to remove inconsistency between average global net TOA flux and 202 

heat storage in the earth–atmosphere system (Loeb et al. 2018).  Surface fluxes, on the other 203 

hand, are computed using radiative transfer calculations following the discussion for the SYN 204 
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product. The SYN TOA fluxes do not necessarily match those from the CERES EBAF-TOA 205 

product. In the CERES EBAF-Surface product, the atmospheric properties used to calculate the 206 

SYN fluxes are bias corrected and adjusted so that they produce TOA fluxes that match closely 207 

the EBAF-TOA fluxes.  Here we use the CERES EBAF-Surface product Edition 4.0 (Loeb et 208 

2017, DOI: 10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0).  The bias 209 

correction and adjustment procedures are complex, and a lengthy description is given by Kato et 210 

al. (2018). Very briefly, AIRS, CloudSat, and CALIPSO are used to estimate bias errors in some 211 

SYN inputs at the monthly scale.  Specifically upper-tropospheric (200-500 hPa) temperature 212 

and specific humidity, low-level cloud fraction as viewed from space (over ocean), and total 213 

cloud fraction and cloud-base as viewed from the surface are bias corrected on spatial scales of 1 214 

degree (but with some smoothing that includes the use of zonal averages in some cases).  215 

Following the bias correction (which nominally is correcting for errors in the SYN inputs), the 216 

monthly mean computed SYN-bias-corrected fluxes and EBAF-TOA fluxes are compared and 217 

differences are then minimized utilizing a Lagrange multiplier, which further adjusts 218 

temperature, water vapor, cloud, aerosol, and surface properties (within their uncertainties) in 219 

order to bring the computed TOA fluxes into close agreement with EBAF-TOA fluxes.  220 

  221 

2.2.3 CloudSat Fluxes and Heating Rate with Lidar (FLXHR-LIDAR)  222 

The CloudSat 2B-FLXHR-LIDAR product (Henderson et al. 2013) provides vertical profiles of 223 

SW and LW radiative fluxes and heating rates. The fluxes and heating rates are calculated using 224 

a two-stream plane-parallel doubling-adding radiative transfer model (L’Ecuyer et al. 2008, 225 

Henderson et al. 2013), based on vertical profiles constructed from radar and lidar backscatter 226 

from the CloudSat Cloud Profiling Radar (CPR) and the Cloud–Aerosol Lidar with Orthogonal 227 

Polarization (CALIOP) aboard CALIPSO, respectively, along with auxiliary cloud information 228 

from MODIS, and environmental information from ECMWF.  The radar and lidar data enable an 229 

explicit representation of vertical cloud properties, and in particular the representation of multi-230 

layered cloud structures has been shown to improve the impact of cloud impacts on TOA and 231 

surface radiation (L’Ecuyer et al, 2019, Hang et al, 2019).  This article uses the most recently 232 

released Revision 05 (R05) 2B-FLXHR-LIDAR data, available from the CloudSat data 233 

processing center (http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-lidar).  234 

The R05 data includes several improvements in land surface characteristics (i.e., surface 235 
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emissivity and albedo) compared with R04 and is based on cloud properties from R05 CloudSat 236 

and V4 CALIPSO datasets.  Major changes related to the R05 retrieval are described in Matus 237 

and L’Ecuyer (2017).  Of particular note is that cloud properties for cirrus are now based on the 238 

CloudSat 2C-ICE product (Deng et al. 2013) and mixed phase clouds are more explicitly 239 

represented (Van Tricht et al. 2016), which has improved surface flux comparisons against 240 

ground sites in Greenland (McIlhattan et al. 2017).  More generally, Matus and L’Ecuyer (2017) 241 

demonstrate that the improvements in R05 yield better agreement with respect to TOA global 242 

and regional fluxes when compared to the CERES CloudSat, CERES, and MODIS (CCCM) 243 

product (Kato et al. 2010). 244 

 245 

3.  Results  246 

3.1 Comparison of coincident SYN hourly data with surface observations during MICRE  247 

Figure 1 compares hourly CERES SYN SW and LW downwelling surface fluxes with hourly 248 

averages of measured values at Macquarie Island during MICRE.  Specifically, Figure 1 shows 249 

the frequency of occurrence for a given pair of satellite-derived and surface-measured values.  250 

Here the frequency of occurrence values have been scaled logarithmically because the frequency 251 

is very large in some sections of the plots and low in others.  Nominally, both observations 252 

would be equal and fall along the one-to-one line (shown in black), but with some scatter 253 

(departure from the line) due to the different spatial-scale in each dataset (the surface radiometers 254 

observe a much smaller area).  We note nighttime values (defined here as times when the SW 255 

flux is less than 10 W/m2) are not used in the SW comparison in Figure 1.  The SYN SW values 256 

have a bias of 21.5 Wm-2 relative to the ground measurements during daylight.  The bias would 257 

be roughly half this value if both day and night time samples were included, as is often done 258 

when reporting monthly or annual means.  There are more than 8000 samples in this comparison 259 

and even considering serial correlation, the bias is significant at the 95% level of confidence.  260 

Nonetheless the points in the SW histogram appear to fall reasonably symmetrically about the 261 

one-to-one line.   262 

 263 

The comparison of ground-measured and SYN LW fluxes in Figure 1 shows a bias of about -8.3 264 

Wm-2.  We note that the SW and LW biases are in the opposite direction such that the bias in the 265 

total (SW + LW) radiative flux is small, with a magnitude of less than 2 Wm-2 in the daily (day + 266 
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night) average.  We will discuss SW and net radiative flux in more detail later in the manuscript, 267 

and focus for the time being on the downwelling LW flux. 268 

 269 

 270 
Figure 1. Comparisons between downwelling radiative fluxes from CERES SYN 1degree-hourly and 271 
ground-based measurements: a) Shortwave, b) Longwave.  Nighttime values are not included in the SW 272 
comparisons. 273 
 274 
Much of the LW bias is due to a cluster of points where SYN has LW fluxes near 300 Wm-2 and 275 

the ground observations have values near 340 Wm-2, which stands out from the otherwise fairly 276 

linear distribution.  Separating the LW data into daytime and nighttime populations (Figure 2) 277 

reveals that the offset cluster consists of fluxes occurring at night.  While the magnitude of the 278 

SYN1deg daytime LW bias is only -1.4 Wm-2, it increases to -16 Wm-2 at night.  279 

 280 
Figure 2.  Comparisons between downwelling longwave fluxes from CERES SYN1deg-hourly and 281 
ground-based measurements. a) Daytime data.  b) Nighttime data.   282 
 283 
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The vertical profiles of temperature, water vapor, and cloud base height are the primary 284 

determinants of downwelling LW flux at the Earth's surface.  Given the relatively weak diurnal 285 

variations in temperature and water vapor in this region, and the algorithmic differences in the 286 

treatment of clouds between daytime and nighttime conditions in the satellite retrievals, one 287 

expects that the differences between the panels in Figure 2 are likely due to errors in cloud base.   288 

The SYN product provides cloud base pressure for each of the four cloud top height categories 289 

discussed in section 2.2, which we have converted to altitude above ground level using monthly 290 

mean profiles from radiosonde observations and accounted for cloud overlap (Appendix A).  In 291 

Figure 3, we compare the distribution of the SYN lowest cloud base height to the distribution of 292 

the lowest cloud base determined by a Vaisala laser ceilometer (lidar) deployed during MICRE.  293 

The bars on the far right show the fraction of clear-sky (no clouds in the column).  The 294 

ceilometer suggests somewhat more clear sky than the satellite.  While this is not surprising 295 

given the ceilometer observes a smaller area than the satellite imager pixels used in SYN, it is 296 

also likely due in part to the inability of the ceilometer to detect clouds above 5 km and some 297 

optically thin ice clouds.   Regardless of these issues, it is clear the CERES SYN data 298 

substantially under represents the occurrence of clouds with bases below 900 hPa at the 299 

Macquarie Island site.  300 

 301 

 302 
Figure 3.  Cloud base distributions from CERES (blue) and ceilometer (orange). The bars on the far right 303 
show the fraction of clear-sky. 304 
 305 
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Figure 4 further divides the cloud base height distributions into cases where (top) the LW 306 

difference (SYN – ARM surface radiometer) is large and negative (less than -30 Wm-2), (middle) 307 

the LW difference is small (within 10 Wm-2), and (bottom) the LW difference is large and 308 

positive (greater than 30 Wm-2).   The top panel further demonstrates that large underestimates in 309 

the SYN LW flux occur when the ceilometer data is dominated by low clouds. This “large error” 310 

condition occurs about 13% of the time.  There is very little clear during these 1-hour periods (in 311 

either dataset), which shows that this occurs when extensive low cloud cover is present.  312 

Examination of W-band radar shows that much of the time, the clouds in this category are 313 

multilayered, but also includes periods that are apparently dominated by only low-altitude 314 

stratocumulus (though it is possible the radar is failing to detect some high altitude cloud).   315 

 316 

Not surprisingly, the middle panel shows that when the LW flux bias is small (less than 10 Wm-317 
2), the cloud base distributions are much more similar.  Even considering the roughly 10% 318 

difference in the amount of clear sky (which again may be due to higher altitude clouds missed 319 

by the ceilometer), it is clear that the presence of clouds with bases below 900 hPA remains too 320 

small, and the occurrence of cloud-base above about 950 hPA is too large.  In short, the same 321 

cloud base issue still occurs but is less severe.    322 

 323 

In the bottom panel, biases greater than +30 Wm-2 are relatively uncommon, occurring 3% of the 324 

time, and are dominated by cases where the laser ceilometer does not detect any cloud over the 325 

one hour periods being analyzed.  It is likely that most of the LW difference here is due to 326 

regional variability. Simply put, there are fewer clouds over the island (during the 1 hour over 327 

which ceilometer data is aggregated) as compared with the 1 degree region surrounding the site. 328 

Setting aside the difference in the amount of cloud, the distribution of cloud-base during these 329 

apparently-broken-low-cloud periods appears to be well captured by SYN.  It is perhaps also 330 

noteworthy that the broken clouds (in this category) have an overall higher cloud base than the 331 

clouds in the other two categories.  332 

 333 
 334 
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 Figure 4.  Same as figure 3 except limited to 335 
cases where (top) ΔLW = (SYN – ARM 336 
Ground) < -30 Wm-2, (middle) -10 Wm-2 < 337 
ΔLW < 10 Wm-2, (bottom) ΔLW > 30 Wm-2.  338 
 339 

 340 

 341 

 342 

 343 

  344 

 345 

346 

 347 
As mentioned in the description of the SYN product, there are four different retrieval paths used 348 

in SYN.  These are distinguished by whether MODIS or geostationary imager data are used, and 349 
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by whether daytime (solar zenith angle less than 82o) or nighttime algorithms are used.  In Figure 350 

5, we further examine the satellite and lidar cloud base distributions according to the four 351 

retrieval paths.  Here, MODIS-based retrievals are given in the upper two panels and 352 

Geostationary-based retrievals (Himawari for the region and time-period being studied) in the 353 

lower two panels, while the two panels on the left are daytime retrievals (retrievals using visible 354 

and infrared channels) and on the right are nighttime retrievals (infrared channels only). 355 

Regardless of retrieval path, SYN under represents the presence of cloud bases below 900 hPA.  356 

However, the SYN and lidar cloud base height distributions do agree better during the daytime 357 

(left panels) than at night (right panels), regardless of whether MODIS or Geostationary data are 358 

being used.  The overall similarity of the MODIS and Geostationary-based satellite retrievals 359 

indicates the flux differences are not being driven by problems with the calibration of the 360 

Geostationary data (at least for Himawari-8 in this region).    361 

  362 

  363 
Figure 5.  Same as Figure 3, except: (top left) MODIS daytime, (top right) MODIS nighttime, (bottom 364 
left) Geostationary (Himawari) daytime and (bottom right) Geostationary nighttime. 365 
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3.2 The Diurnal Cycle and the CloudSat FLXHR-LIDAR 366 

Figure 6 plots the diurnal cycle of mean surface fluxes for all of the coincident SYN and 367 

observed surface fluxes during MICRE.  Here the orange and light blue shading indicates the 368 

two-sigma sampling uncertainty (95% confidence) interval (given by twice the standard 369 

deviation divided by the square root of the number of samples) for the ceilometer and SYN data, 370 

respectively.  Values from the CloudSat FLXHR-LIDAR product (R05) are shown as black dots.  371 

CloudSat and Calipso are sun-synchronous polar orbiting satellites which pass near Macquarie 372 

island at about 2 pm and 12:30 am local time.  The CloudSat data shown here is the mean taken 373 

over the period August 15, 2006 until December 30, 2009, during which time CloudSat was 374 

operating nominally during both daytime and nighttime overpasses.  While CloudSat did collect 375 

data between March 2016 and December 2017, data for this period (coincident with MICRE) has 376 

not yet been processed.  In addition, owing to problems with the CloudSat satellite battery, 377 

CloudSat has only been able to collect data during the afternoon (2 pm), daylight overpass (at 378 

Macquarie Island) since April of 2011.  Thus some level of statistical comparison becomes 379 

necessary.  Comparing CloudSat and SYN data in this way requires there be little variation in the 380 

mean fluxes between the two time periods examined.   In this regard we note the standard 381 

deviation of annual mean SW and LW flux in the CERES SYN product between 2001 and 2017 382 

is only 1.7 and 2.1 Wm-2, respectively. 383 

 384 

The left panel in Figure 6, shows that the diurnal cycle of the SYN downwelling SW fluxes 385 

compares well with the observed SW fluxes.  The largest difference occurs at about 11 am, where 386 

the difference is about 38 Wm-2.  The two-sigma (95% confidence) intervals barely overlap at 11 387 

am, suggesting the difference between SYN and the surface SW fluxes are not likely due to 388 

sampling limitations.   However, a calibration error of 4% in the surface observations would 389 

create greater overlap between the uncertainty shading, such that the possibility of a combination 390 

of calibration error and sampling differences cannot be rejected.  Nonetheless, the fact that the 391 

difference has a diurnal cycle (in which differences are larger at 11 am than 1 pm, for instance) 392 

suggests that a large calibration error is not likely.  We will discuss this result and SW fluxes in 393 

more detail later in section 5.  At the time of the CloudSat afternoon overpass, the SYN, 394 

CloudSat, and measured values all agree within the sampling uncertainty.  The sampling 395 

uncertainty in the CloudSat result is comparable, but slighter larger, than the size of the dot used 396 
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to denote the CloudSat fluxes.  In the LW (right panel), the SYN LW downwelling fluxes 397 

compare well with the surface measurements between about 9 am and 3 pm, but poorly overnight 398 

– consistent with the results shown in Figure 2 and associated discussion.  The CloudSat 399 

downwelling fluxes, on the other hand, compare well with the surface measurements during both 400 

afternoon and night overpasses.   401 

  402 
Figure 6. Diurnal cycle of the mean SYN retrieved and measured surface fluxes during MICRE. Left 403 
panel shows downwelling SW flux and right panel shows downwelling LW flux.  Shading indicates 404 
sampling uncertainty in the mean.  Black dots denote mean fluxes from the CloudSat FLXHR-LIDAR 405 
product (R05) based on data from 2006 through 2009 (note a different time period, see text). Sampling 406 
uncertainty of CloudSat data is comparable to the size of the dot.   407 
 408 
Figure 7 shows that the same pattern found in figure 6 for all coincident data, is found in each 409 

individual season.   Seasonal and annual means and biases are given in Table 2.  As there is less 410 

night during the Spring and Summer, it is not surprising to find the SYN LW biases (averaged 411 

over the day in Table 2), are less in Spring and Summer than during the Fall and Winter.  412 

Likewise, disagreement between SW SYN and surface fluxes are largest in Spring and Summer.  413 

Differences between CloudSat fluxes and surface values are within or near the sampling 414 

uncertainty (depicted by bars shown on Figure 7).  In Summer, the CloudSat mean SW fluxes is 415 

high relative to the observations, but the bias remains within or close to the sampling uncertainty 416 

and we note there is additional uncertainty related to the differing time periods (these are not 417 

coincident data) which is not represented by the uncertainty bars in Figure 7.  The sampling 418 

uncertainty for the CloudSat fluxes is much larger than that for CERES because CloudSat 419 

observes the region far less frequently than CERES. 420 
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Figure 7. Same as Figure 6, except showing result for Southern Hemisphere Winter (JJA), Spring (SON), 425 
Summer (DJF), and Fall (MAM).  CloudSat data are from different time period (see text).  Bars on 426 
CloudSat dots show sampling uncertainty (and do not include uncertainty due to interannual variability). 427 
 428 

 W/m2 Surface 
obs. 

CERES  
SYN (1°) 

CERES  
SYN (10°) 

CERES  
EBAF (10°) 

CloudSat 
(1°) day* 

CloudSat 
(1°) night* 

Coincident 2001-2017 2001-2017 2006-2009 2006-2009 

Winter (JJA)     		     		
  SW mean 24.5 27.0 27.1 [1.5]  27.4 [1.3] 72.2* - 
  SW bias - 2.6 2.6 2.9 -8.2*   
  LW mean 302.3 291.1 294.4 [2.8] 291.5 [3.0] 311.2* 309.5* 

  LW bias - -11.2 -7.9 -10.8 5.8* 6.9* 

Spring (SON)             
  SW mean 122.8 138.4 138.8 [4.3]  141.7 [4.0] 311.8* - 
  SW bias - 15.6 16.0 18.9 -1.6*    
  LW mean 309.7 302.5 302.3 [2.1] 297.7 [2.1] 304.6* 309.0* 
  LW bias - -7.1 -7.4 -12.0 -3.9* -2.7* 

Summer (DJF)             
  SW mean 177.0 195.3 192.6 [4.8] 197.0 [4.3] 510.4* - 
  SW bias - 18.4 15.6 20.0 70.5*   
  LW mean 318.8 312.5 315.5 [2.5] 310.2 [2.5] 312.2* 319.7* 
  LW bias - -6.3 -3.3 -8.6 -6.8* -0.1* 

Fall (MAM)              
  SW mean 55.5 61.1 60.3 [2.6] 62.8 [2.6] 153.9* - 
  SW bias - 5.6 4.8 7.3  4.3*   
  LW mean 318.9 308.2 307.6 [3.3] 303.8 [3.5] 317.6 319.7* 
  LW bias - -10.7 -11.3 -15.1 -4.3* 1.4* 

Annual	             
  SW mean 94.9 105.5 104.7 [1.7] 107.2 [1.1] 262.1* - 
  SW bias - 10.5 9.8 12.3 16.3*   
  LW mean 312.4 303.6 304.9 [2.1] 300.8 [2.1] 311.4* 314.5* 
  LW bias	 - -8.8 -7.5 -11.6 -2.3* 1.43* 

Table 2 – Seasonal and annual means in downwelling SW and LW fluxes.  All values have units of Wm-2.   429 
Biases given with respect to mean surface fluxes (e.g. SYN – Surface Obs).   Surface and CERES values 430 
are 24-hour averages.  *CloudSat values are NOT 24-hour averages, but the average value at the time of 431 
the CloudSat overpass (and biases are the difference with surface obs during the same hour).  When 432 
present, parentheses “[ ]” show year-to-year standard deviation.  Data for CERES SYN is given for 433 
coincident points in the 1 degree grid cell that contains Macquarie Island ground site, and for 10 x 10 434 
degree (lat/lon) region centered on the island.  435 
   436 
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3.3 Monthly SYN and EBAF-Surface Fluxes    437 

CERES EBAF-Surface fluxes are only available on monthly (and longer) time scales. Thus 438 

rather than compare EBAF to coincident surface data (which would include only 18 to 24 439 

points), we instead compare the CERES SYN and CERES EBAF for the 17 years of Edition 4 440 

data available at the present time.  EBAF Monthly values are close to SYN values in the 10 x 10 441 

degree region surrounding Macquarie Island.  Figure 8 shows the distribution of EBAF – SYN 442 

(Edition 4) downwelling surface fluxes for the period 2001 to 2017.   As discussed in section 3.3, 443 

CERES EBAF-Surface fluxes contain both bias corrections and adjustments, which nominally 444 

include bias corrections for cloud base (see section 2.3).  However, the net effect of the 445 

corrections appears to be in the wrong direction.  EBAF SW fluxes are typically somewhat larger 446 

than SYN fluxes by a small amount (2.5 Wm-2 on average), when the surface measurements 447 

suggest the SYN fluxes are already too large. And similarly, EBAF LW fluxes are typically 448 

smaller then SYN fluxes (by 4.1 Wm-2 on average), when the surface measurements suggest the 449 

SYN fluxes are already too small.   In short, CERES EBAF fluxes appear to have (if anything) 450 

slightly larger biases in the region surrounding Macquarie Island. 451 

 452 
Figure 8. Distribution of monthly SW (left) and LW (right) downwelling surface flux differences between 453 
Edition 4 CERES EBAF and CERES SYN 1o data (EBAF –SYN) for all grid points within 10o of 454 
Macquarie Island between 2001 and 2017. 455 
 456 

4. Results from Previous CERES Evaluation Studies  457 

Several studies have evaluated CERES SYN and EBAF surface fluxes against surface 458 

observations.  Rutan et al. (2015) evaluated the SYN Edition 3 and EBAF Edition 2.7 surface 459 

fluxes, comparing both to other satellite based estimates and measurements recorded at 37 460 
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globally distributed land-based sites and 48 buoys (over subtropical and tropical oceans) between 461 

2000 to 2007.  There were no buoy sites at mid or high latitudes in this data set.  Relative to the 462 

surface measurements, SYN monthly mean downwelling SW fluxes were biased +1.8 Wm-2 over 463 

the land sites and +4.9 Wm-2 over the ocean sites with a standard deviation (in the monthly 464 

means) of about 12 Wm-2, while EBAF Edition 2.7 surface fluxes were found to have a bias of 465 

only -0.5 Wm-2 over land and +5.0 over ocean with again a standard deviation of about 12 Wm-2 466 

in the monthly means.  For LW fluxes, Rutan et al. (2015) found biases for SYN of -4.2 Wm-2 467 

over land and -3.6 Wm-2 over the ocean, with a standard deviation (in the monthly means) of 468 

about 10 Wm-2, while for EBAF (Edition 2.7) the bias was just 1.2 Wm-2 over land and -3.5 Wm-469 
2 over ocean, with a standard deviation in the monthly means of about 10 Wm-2. 470 

 471 

Kato et al. (2018) present a similar assessment for the EBAF Ed. 4.0 surface fluxes, using many 472 

of the same sites as Rutan et al. (2015) but using data from March 2000 through February 2016.  473 

The EBAF monthly mean SW downwelling fluxes were found to have biases of -0.8 Wm-2 and 474 

4.8 Wm-2 over land and ocean, respectively (quite similar to values found by Rutan et al. 2015 475 

using the previous edition of the EBAF data), while LW downwelling were improved with 476 

overall (taken across all station) mean biases of only -0.04 Wm-2 over land and 1.0 Wm-2 over 477 

ocean.   Standard deviations in the monthly means remained about 10 Wm-2. 478 

 479 

Studies by Ma et al. (2015) and Zhang et al. (2016) also compared CERES EBAF downwelling 480 

SW fluxes with data from a wider range of sites/networks including (i) the Global Energy 481 

Balance Archive (GEBA) with sites located primarily in Europe and Japan but also some sites in 482 

Austrailia, Asia, South America, and Africa, (ii) the Greenland Climate Network (GC-NET) and 483 

(iii) Climate Data Center of Chinese Meteorological Administration (CDC/CMA).  Most of these 484 

additional sites had mean biases less than 5 Wm-2, with the large set of GEBA sites having an 485 

average bias of less than 2.5 Wm-2 in both summer and winter seasons.   486 

 487 

In all of the above studies, some individual stations were found to have larger biases, and in 488 

some locations biases exceeded 20 Wm-2.  In most cases, these large differences were associated 489 

with suspect measurements (e.g., measurements which may suffer from dust contamination) or 490 

occur in mountainous or snow and ice covered regions, where larger differences might be due to 491 
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spatial heterogeneity (of clouds and surface conditions) and challenges presented by snow and 492 

ice covered surfaces to the retrieval of both cloud and surface albedos (Hinkelman et al. 2015, 493 

Riihelä et al. 2017, Kato et al. 2018).  Macquarie Island is far removed from Antarctic Sea Ice, 494 

and while it does snow on the island, it is largely free of snow (especially during Spring and 495 

Summer when SW flux errors are largest) and covers only a very small fraction of the area.  As 496 

such, snow and ice is not a concern in this study.  The possibility that the biases we find at 497 

Macquarie Island could be caused by spatial heterogeneity is more difficult to assess and we will 498 

return to this topic in the next section.  499 

 500 

The poster presentation by Rutan et al. (2018) provides the only other direct evaluation of 501 

CERES surface fluxes over the Southern Ocean of which we are aware.  This study utilized 502 

radiometric data collected from New Zealand and Australian research vessels over the period 503 

2008-2016.  This included data collected from the Australian Aurora Australis ice breaker during 504 

its resupply mission to Macquarie Island and Australian Antarctic stations, as well as data 505 

collected from the New Zealand Research Vessel (R/V) Tangaroa, which also include a few 506 

voyages which passed south 50° S.  In total, the number of hourly samples gathered over the 8-507 

year ship record is roughly equivalent to what was collected during MICRE over two years.  In 508 

the latitude range between 50° to 60° S, Rutan et al. 2018 show differences between the SYN 509 

and surface LW fluxes between about 5-10 Wm-2 from both the Aurora Australis and R/V 510 

Tangaroa, consistent with what we find from Macquarie Island.  Rutan et al. 2018 also generally 511 

find noteworthy day to night differences in the LW bias.  For the Aurora Australis (which spent 512 

most of its time south 50° S) the day to night difference was about -8 Wm-2 in Summer and Fall, 513 

but near zero in Spring during which both day and night have a bias near -10 Wm-2.  On a minor 514 

note, the original poster presented by Rutan et al. 2018 contained an error in the seasonal-and-515 

diurnal bias bar charts, and we thank Dr. Rutan for kindly providing us with corrected figures. 516 

The R/V Tangaroa data suggest similarly large day-to-night differences in Spring, Fall and 517 

Winter, but the seasonal-to-diurnal bias analysis was not subdivided by latitude, and a large 518 

fraction of the data being gathered from the R/V Tangaroa was gathered North of 45° S (and not 519 

over the Southern Ocean).   In summary, the LW results of Rutan et al. (2018) are reasonably 520 

consistent with the present analysis. 521 

 522 
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In the SW, however, Rutan et al. (2018) found no significant bias in the annual mean between 523 

50° to 60° S from the Aurora Australis (though there appears to be a bias south of 60° S in these 524 

data), but do show a SW bias from the R/V Tangaroa in this latitude range, which is consistent 525 

with the data collected at Macquarie.  Taken over all SO latitudes, data collected from Aurora 526 

Australis suggest a seasonal SW bias of about: +5 Wm-2 in the Spring, -2 Wm-2 in the Summer, 527 

and +8 Wm-2 in the Fall with sampling uncertainty in each season of about 5 Wm-2.   During its 528 

voyages, the R/V Tangaroa passed by Macquarie Island whereas much of the Aurora Australis 529 

data was collected further to the east. Thus one possibility for the differences between the two 530 

ship datasets is that there is a longitudinal variation.   However, we note that the ship cruises do 531 

not randomly sample Southern Ocean meteorological conditions.  For good and obvious reasons, 532 

the resupply transits try to avoid Southern Ocean cyclones. We speculate that sampling 533 

uncertainty and conditional meteorological sampling more likely explain the differences.  A 534 

regime-based analysis of the MICRE and ship datasets might prove worthwhile but such is 535 

beyond the scope of this first analysis, and as discussed in the next section it is possible the 536 

MICRE data could also be biased by island effects (local surface heterogeneity).   537 

 538 

5.  Discussion and Conclusions  539 

We find the annual mean bias in the CERES SYN and EBAF SW downwelling flux during 540 

MICRE to be about +10 Wm-2 with a larger bias occurring in the Spring and Summer (15 to 20 541 

Wm-2), see Table 2.  This is larger than the mean bias of about +5 Wm-2 found from using 542 

measurements from ocean buoys (primarily located in the subtropics and tropics) by Rutan et al. 543 

(2015) and Kato et al. (2108).  This bias is also larger than the 95% sampling uncertainty of 544 

about 2 to 3 Wm-2 and the expected calibration uncertainty  +/- 4% or a little over 4 Wm-2 in the 545 

annual mean for the surface measurements. Nonetheless, while neither sampling uncertainty nor 546 

calibration alone can account for the bias, in combination these two factors could account for 547 

much of the apparent bias.  Another possibility is that the SW bias we find might be due to an 548 

“island effect”, where clouds reflect more sunlight back toward space at the measurement site 549 

(because there is more cloud cover or clouds are more reflective over the island site) than over 550 

the surrounding ocean. If so, the results presented here suggest that this occurs preferentially in 551 

Spring and Summer and preferentially between roughly 9 am and noon.  An analysis of cloud 552 

properties form MICRE (which will include analysis of ground-based cloud radar and 553 
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depolarization lidar data, as well as satellite retrievals) is ongoing, and may provide some insight 554 

into the existence and cause of the SW bias.  555 

 556 

As regards climate models, in many CMIP3 and CMIP5 models the downwelling SW surface 557 

flux is too large as compared against CERES-EBAF, with multimodel averages have differences 558 

that range between 10 and 25 Wm-2 over much of the Southern Ocean (Trenberth and Fasullo 559 

2010, Ma et al. 2015, Kay et al. 2016, Zhang et al. 2016).  If the Macquarie observations are 560 

correct and representative of the larger SO, the CERES SW fluxes are too small by roughly 10 561 

Wm-2 in the SW and the model errors are larger than these previous studies have found.  This 562 

suggests that additional measurements and analysis should be undertaken at Macquarie Island 563 

and other locations, to more firmly establish the SW bias we have found at Macquarie Island, 564 

and to determine the extent to which the Macquarie data are representative of other parts of the 565 

Southern Ocean, and nominally, to identify the underlying cause of the CERES bias. 566 

 567 

We find the annual mean bias in the CERES SYN LW downwelling flux during MICRE is also 568 

of similar magnitude but opposite in sign, about -10 Wm-2 (see Table #2), with slightly larger 569 

values in the Fall and Winter than in the Spring and Summer.  Unlike the situation in the SW, it 570 

is clear that the LW bias is not due to calibration or sampling.  Rather an examination of the 571 

diurnal cycle shows the LW bias occurs almost entirely at night, which in turn is clearly related 572 

to the cloud-base being too high (and too cold) in the CERES SYN flux retrievals at night.  In 573 

most respects, this result is not surprising.  Comparison of LW fluxes from the previous version 574 

of CERES-MODIS retrievals (used in SYN) with retrievals based on a combination of CloudSat 575 

(radar), Calipso (lidar) and MODIS by Kato et al. (2011, see their figure 3) show a seasonally 576 

varying zonal bias in LW surface fluxes over the Southern Hemisphere, with values that range 577 

between about -3 to -7 Wm-2 at the latitude occupied by Macquarie Island.  Kato et al. (2011) 578 

likewise identified the LW surface bias as being due primarily to problems with cloud base.  As 579 

regards the current version of SYN (Edition 4), Kato et al. (2019, see their figure 1) suggest the 580 

near surface cloud occurrence profile (the volume of atmosphere containing cloud) remains too 581 

low near the surface in Edition 4 as compared with active sensors (radar and lidar profiles) from 582 

CloudSat and Calipso, and show there is a stark reduction in near surface cloud at night (Kato et 583 

al. 2019, their figure 2).   Given the algorithmic nature of the error, which originates from errors 584 
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in the cloud-base retrieval, it is likely that this LW bias affects much of the Southern Ocean, 585 

though the magnitude will likely vary with the amount of low cloud.  Again additional 586 

measurements should be undertaken to establish the Macquarie results are correct and to 587 

examine the degree to which variations in sea surface temperature, cloud type and other factors 588 

matter. 589 

 590 

We note that while the distribution of cloud bases in the SYN product is better during the 591 

daytime (when satellite visible channels are used in the cloud property retrievals), we find cloud 592 

bases below 900 hPA are still underrepresented (just not as severely as at night).  Indeed Figure 2 593 

(left panel) shows that during the day SYN LW fluxes tend to be too small (below the 1-to-1 594 

line) when the observed fluxes are above 300 Wm-2 (because low based clouds are present) and 595 

too large (above the 1-to-1 line) when the observed fluxes are below about 300 Wm-2.  This 596 

suggests that the low daytime LW bias of less then 2 Wm-2 at Macquaire reported here is likely 597 

due in some part to a fortuitous cancellation of errors with other factors, and analysis of surface 598 

temperatures and boundary layer thermodynamic profiles (based on radiosonde data) should 599 

perhaps be undertaken to explore this issue, further.  600 

 601 

The results presented in section 3, also demonstrate that the CERES-EBAF SW and LW fluxes 602 

track the CERES-SYN values closely in (at least) the 10 degree region surrounding Macquarie 603 

Island.  While the bias corrections and adjustments applied to monthly EBAF data appear to 604 

have reduced biases in other regions (Kato et al. 2018), such does not seem to be the case at this 605 

location. 606 

 607 

Overall, the LW flux comparison undertaken here reinforces the need for further improvements 608 

in CERES SYN (including CERES-MODIS retrievals) and EBAF treatments of low clouds and 609 

low cloud base at night, in particular.  As mentioned briefly in section 3, our initial impression is 610 

that much of the LW error occurs when multilayer clouds are present, and an ongoing analysis of 611 

cloud properties from MICRE should provide additional details in this regard.  Regardless, the 612 

relative success of LW fluxes during the day suggests that the nighttime problem is inherently 613 

rooted in the loss of information contained in the visible-radiances used in the daytime retrievals, 614 

and it may well be that what is needed is a greater reliance on climatological constraints or other 615 
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aprori knowledge during the night.  For example, for regions with small diurnal cycles in 616 

boundary layer thermodynamics, precipitation and clouds such as the Southern Ocean (Hande et 617 

al. 2012, Wang et al 2012), a simple approach might be to consider using statistical retrievals 618 

(tuned regressions) rather than the current “physical retrievals” to ensure the cloud geometric and 619 

microphysical properties at night match those during the day (for a given set of infrared channel 620 

measurements and perhaps meteorological variables). 621 

 622 

While the most obvious (and arguably best) route to improving LW flux would be to focus on 623 

improving CERES SYN and CERES-MODIS retrievals that flow into CERES EBAF, an 624 

alternative might be to applied EBAF cloud base bias corrections separately to data collected 625 

during nighttime.  That is, EBAF corrections could still be based on monthly data, but monthly-626 

daytime and monthly-nighttime averages could be calculated and corrected separately, before 627 

being combined to calculate the 24-hour averaged monthly mean.  628 

 629 

The CERES SYN and EBAF surface SW and LW biases nearly cancel (sum to near zero) in the 630 

annual mean.  As far as we can conceive this is a coincidence, and we stress that it is true only in 631 

the annual mean.  There is a significant imbalance on seasonal scales in the net radiation, with 632 

too much net radiative heating of the surface occurring in the Spring and Summer (because the 633 

magnitude of the positive SW bias is larger during these seasons and greater than the magnitude 634 

of the negative LW bias); and there is net radiative cooling of the surface in the Fall and Winter 635 

(because the magnitude of the negative LW bias is larger in these seasons and greater than the 636 

magnitude of the positive SW bias); and likewise in the diurnal cycle where there is too much 637 

SW heating during the day (which is strongest in the summer) and too little LW heating at night.  638 

Accordingly, evaluations of model output on seasonal or diurnal time scales with CERES SYN 639 

and EBAF datasets should consider these differences in seasonal and diurnal biases.   640 

 641 
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data are available via the CloudSat Data Processing center 647 

(http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-lidar). MICRE 648 

observations made by the U.S DOE ARM program instrumentation (including surface radiation 649 

and ceilometer data sets) are available through the DOE ARM program data archive 650 

(https://adc.arm.gov/) (DOIs are given in section 2.1) and can also be obtained by request to 651 

Roger Marchand at the University of Washington (rojmarch@u.washington.edu). 652 

Appendix A: Cloud Overlap Treatment in CERES SYN/EBAF-Surface Edition 4  653 

The cloud overlap scheme described below is applied in CERES Edition 4, and was not used in 654 

earlier editions.  As described in Kato et al. (2019) there are four cloud type categories, which 655 

are defined by the cloud-top pressure: low = surface-to-700 hPa, mid-low= 700-500 hPa, mid-656 

high = 500-300 hPa, and high = less-than-300 hPa.  These 4 cloud type categories are overlapped 657 

(in Edition 4) to give 15 different combinations of cloud overlap plus one clear scene.  Table A1 658 

shows the cloud overlap combinations.   The cloud fraction associated with each of the 15 659 

combinations is obtained assuming random overlap of the 4 cloud-types and simply given by the 660 

product of the “true” cloud fraction (or clear fraction) associated with each layer, such that   661 

 c1 = C1*C2*C3*C4 662 

 c2 = C1*C2*C3*(1-C4) … 663 

 c15 = (1-C1)*(1-C2)*(1-C3)*C4 664 

We stress that C1 to C4 are nominally the “true” cloud fraction for each pressure category NOT 665 

the cloud fraction observed from space (S1 to S4).   In CERES processing C1 to C4 are derived 666 

from S1 to S4 assuming random overlap, see equations B1 to B4 in Kato et al. 2019. 667 

 668 

Table A1 – Cloud Overlap Categories.     669 

	 c1	 c2	 c3	 c4	 c5	 c6	 c7	 c8	 c9	 c10	 c11	 c12	 c13	 c14	 c15	

C1	

high	

x	 x	 x	 x	 x	 x	 x	 x	 	 	 	 	 	 	 	

C2	

mid-high	

x	 x	 x	 x	 	 	 	 	 x	 x	 x	 x	 	 	 	
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C3	

mid-low	

x	 x	 	 	 x	 x	 	 	 x	 x	 	 	 x	 x	 	

C4	

low	

x	 	 x	 	 x	 	 x	 	 x	 	 x	 	 x	 	 x	

 670 

As described in Kato et al (2019) at most four of these 15 overlap categories are used in the flux 671 

calculations, but the rules for selecting the 4 profiles were not clearly described.   It is not simply 672 

the largest four values taken over the collection c1 to c15, but rather up to four values are chosen 673 

within the following subsets: 674 

 675 

High_cloud_profile = the vertical profile associated with high clouds is represented by 676 

the category with the largest value between c1 to c8.   If all are zero then no profile with 677 

high-cloud is used. 678 

 679 

Mid-high_profile = the profile with a mid-high top is represented by the category with 680 

the largest value between c9 to c12 (if not all zero). 681 

 682 

Mid_low_profile = the mid-low profile follows that with the largest value between c13 683 

and c14 (if not both zero). 684 

 685 

Low_cloud_profile = c15, if not zero. 686 

 687 

In short, there are up to 4 cloud profiles used in the RT calculations, but with one profile 688 

associated with each of the original high, mid-high, mid-low and low categories.  The cloud 689 

fraction assigned to each of these 4 categories remains that of the original category (S1 to S4).  690 

The overlap values c1 to c15 are only used to select a single profile for each of the four 691 

categories.   Note the cloud-base associated with each profile is taken from the lowest layer.   692 

 693 

Last, but not least, if the retrieved optical depth associated with any of the original four 694 

categories (high, mid-high, mid-low, low) is less than six, the overlap is ignored.  Meaning the 695 

vertical profile of the cloud is assumed to have a cloud base equal to that of the original group.  696 
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 697 

So, for example, suppose we have a scenario in which S1 = 0, S2 = 0, S3=0.4 and S4=0.4 698 

(meaning no high or mid-high clouds only mid-low and low clouds are present), with a cloud 699 

base for layer 3 (CB3) of 850 hPa and for layer 4 (CB4) of 780 hPA, and a cloud optical depth 700 

for layer 3 (OD3) of 10 and layer 4 (OD3) of 3.   Yes, it is possible for CB3 to be lower (closer 701 

to the surface) than CB4 (each are retrieved independently). 702 

 703 

In this scenario, (following Kato 2019 equations B1 to B4) one obtains C1 = C2 = 0 and C3 = 704 

0.4 and C4 = S4/(1-S3) = ~ 0.67.   Consequently, c1 to c8 = 0, and c9 to c12 = 0 and ONLY two 705 

cloud profiles of the possible four will be used in the radiative transfer (RT) calculations. 706 

 707 

c13 = (1-C1)*(1-C2)*C3*C4  =  0.267 708 

c14 = (1-C1)*(1-C2)*C3*(1-C4) =  0.133 709 

c15 = (1-C1)*(1-C2)*(1-C3)*C4 =  0.4 710 

 711 

Since c13 is larger than c14 and OD3 is larger than 6, profile c13 will be used for the mid-low 712 

category in the RT calculations with a total area covered by the c13 profile set to 0.4 (S3), with a 713 

cloud base set to CB4 or 780 hPA, and a optical depth of 10 (OD3).  If OD3 had been 5, then the 714 

overlap would be ignored (equivalent in this case selecting profile c14), with a resulting cloud 715 

fraction of 0.4 (S3), cloud base at 850 hPA (CB3) and the same optical depth 10 (OD3). The 716 

second profile used in the RT calculation would be a single-layer low cloud with a cloud fraction 717 

of 0.4 (S4), with a base at 780 hPA (CB4) and an optical depth of 3 (OD4). 718 

 719 
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