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Abstract

The joint probability distribution of streamwise particle hop distance, lateral particle hop distance, and travel time constrains

the relationships between topographic change and sediment transport at the granular scale. Previous studies have investigated

the ensemble characteristics of particle motions over plane-bed topography, however it is unclear whether reported distributions

remain valid when bedforms are present. Here, we present measurements of particle motion over bedform topography obtained

in a laboratory flume and compare these to particle motions over plane-bed topography with otherwise similar conditions. We

find substantial differences in particle motion in the presence of bedforms that are relevant to macroscopic models of sediment

transport. Most notably, bedforms increase the standard deviation of streamwise and lateral hop distances relative to the mean

streamwise hop distance. This implies that bedforms increase the streamwise and lateral diffusion lengths and, equivalently,

increase diffusive-like fluxes.
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Abstract16

The joint probability distribution of streamwise particle hop distance, lateral particle hop17

distance, and travel time constrains the relationships between topographic change and18

sediment transport at the granular scale. Previous studies have investigated the ensem-19

ble characteristics of particle motions over plane-bed topography, however it is unclear20

whether reported distributions remain valid when bedforms are present. Here, we present21

measurements of particle motion over bedform topography obtained in a laboratory flume22

and compare these to particle motions over plane-bed topography with otherwise sim-23

ilar conditions. We find substantial differences in particle motion in the presence of bed-24

forms that are relevant to macroscopic models of sediment transport. Most notably, bed-25

forms increase the standard deviation of streamwise and lateral hop distances relative26

to the mean streamwise hop distance. This implies that bedforms increase the stream-27

wise and lateral diffusion lengths and, equivalently, increase diffusive-like fluxes.28

1 Introduction29

The joint probability distribution of particle hop distance and travel time encap-30

sulates the relationship between granular sediment motion and topographic change (Nakagawa31

& Tsujimoto, 1976; Tsujimoto, 1978; Ancey, 2010; Furbish et al., 2012; Pelosi & Parker,32

2014). Considerable attention has been devoted to the problem of discerning the forms33

of the associated marginal distributions and predicting their parameters or moments un-34

der steady, uniform macroscopic flow conditions (Abbott & Francis, 1977; Lajeunesse35

et al., 2010; Fathel et al., 2015; Furbish, Schmeeckle, et al., 2016; Hosseini-Sadabadi et36

al., 2019; Liu et al., 2019). This objective represents an important step toward the de-37

velopment of models for large-scale fluvial morphodynamics that are consistent with the38

physics of grain-scale sediment transport.39

Likely forms for the marginal probability distributions of particle hop distances and40

travel times can be obtained from simple assumptions about particle motion through statistical-41

mechanical arguments (Furbish & Schmeeckle, 2013; Furbish, Schmeeckle, et al., 2016).42

These authors suggest that travel times are exponentially distributed while streamwise43

and absolute lateral hop distances follow a Weibull distribution with shape parameter44

0.5 ≤ k < 1, neglecting the small fraction of particles that move in the upstream di-45

rection. Previous experimental measurements of particle motion confirm these predic-46

tions for uniform flow conditions over a flat streambed (Lajeunesse et al., 2010; Fathel47

et al., 2015; Campagnol et al., 2015; Furbish, Schmeeckle, et al., 2016; Liu et al., 2019;48

Wu et al., 2020). This still leaves a gap in understanding for the wide range of condi-49

tions under which the coupled motion of fluid and sediment amplifies small perturba-50

tions in bed elevation leading to the development of ripples and dunes (Van den Berg51

& Van Gelder, 1993; Southard & Boguchwal, 1990; Garćıa, 2008). We therefore seek to52

determine the forms of these distributions in the presence of equilibrium mobile bedforms.53

The processes governing growth, coarsening, and subsequent dynamical behavior54

of bedforms involve a continual feedback between topography, flow, and sediment trans-55

port (Southard & Dingler, 1971; Costello, 1974; McLean, 1990; Best, 1992; Mclean et56

al., 1994; Venditti et al., 2005a, 2006; Coleman et al., 2006; Coleman & Nikora, 2011;57

Charru et al., 2013). A rich literature related to flow over bedforms reveals persistent58

zones of flow acceleration, expansion, and separation which modulate the bed stress and59

transport fields (Mclean et al., 1994; Maddux, Nelson, & McLean, 2003; Maddux, McLean,60

& Nelson, 2003; Best, 2005, 2009; Muste et al., 2016; Kwoll et al., 2017; Naqshband et61

al., 2017). Only recently have researchers begun to examine the effects of this interac-62

tion on particle kinematics through particle tracking and acoustic techniques. Exper-63

imental results indicate that instantaneous quantities like particle activity and velocity64

vary systematically in relation to topographic position while retaining probability dis-65

tributions similar to those observed under plane-bed conditions (Wilson & Hay, 2016;66
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Leary & Schmeeckle, 2017; Tsubaki et al., 2018; Terwisscha van Scheltinga et al., 2019).67

What remains unclear is how bedforms influence Lagrangian integral quantities like par-68

ticle hop distance and travel time, particularly insofar as they relate to the ensemble av-69

erage flux and its advective and diffusive components (Furbish et al., 2012; Ancey et al.,70

2015).71

The purpose of this paper is to clarify how bedforms influence time-integrated par-72

ticle behavior by comparing observations of particle motion over bedforms and plane-73

bed topography. We consider intermediate-timescale hops, defined as periods of contin-74

uous motion separated by periods of rest (sensu Nikora et al., 2001; Ballio et al., 2018).75

Here, we present the results of experiments designed to reveal differences in the prob-76

ability distributions of particle hop distance and travel time over equilibrium mobile bed-77

forms compared with plane-bed topography. We focus on properties that are relevant78

to macroscopic transport to determine whether existing theory developed for plane-bed79

topography provides a suitable description of particle motion when bedforms are present80

on the bed.81

2 Theory82

The topography of a granular bed evolves through the processes of particle entrain-83

ment and disentrainment. Each entrainment or disentrainment event produces a small84

change in bed elevation which, averaged over time, results in macroscopic topographic85

change. This notion underlies the entrainment form of Exner equation (Nakagawa & Tsu-86

jimoto, 1976; Tsujimoto, 1978; Parker et al., 2000; Furbish et al., 2012), expressing the87

time rate of change of bed elevation η (L) at time t, streamwise position x and cross-stream88

position y in terms of the difference between the volumetric particle entrainment rate89

E (LT−1) and disentrainment rate D (LT−1) per unit bed area:90

cb
∂η

∂t
(t, x, y) = −E(t, x, y) +D(t, x, y). (1)

Here, cb (-) is the concentration of particles in the bed.91

Paired entrainment and disentrainment events are explicitly linked through the mo-92

tion of individual particles, defining a spatiotemporal displacement vector with compo-93

nents of streamwise hop distance Lx (L), lateral hop distance Ly (L), and travel time94

Tp (T). Because these quantities are defined in terms of particle exchanges with the bed,95

they also form the basis for the relationship between sediment transport and topographic96

change. This statement can be demonstrated by invoking a master equation to rewrite97

D(t, x, y) as98

D(t, x, y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

E(t− Tp, x− Lx, y − Ly)

fTp,Lx,Ly
(Tp, Lx, Ly; t− Tp, x− Lx, y − Ly) dTpdLxdLy, (2)

where fTp,Lx,Ly
(Tp, Lx, Ly; t, x, y) is the joint probability distribution of streamwise hop99

distance, lateral hop distance, and travel time of particles entrained at (t, x, y). Equa-100

tion (2) (Furbish et al., 2012) is fundamentally nonlocal in that it integrates conditions101

over space and time, however it can be approximated in terms of local variables as a Fokker-102

Planck equation (Furbish et al., 2012, 2017), given by103

cb
∂η

∂t
(t, x, y) = − ∂

∂x
ELx −

∂

∂y
ELy −

∂

∂t
ETp

+
1

2

∂2

∂x2
EL2

x +
1

2

∂2

∂y2
EL2

y +
1

2

∂2

∂x∂y
ELxLy (3)

where overbars denote ensemble averages. This approximation is valid as long as the marginal104

probability distributions of hop distance and travel time have finite first and second mo-105

ments and as long as the spatiotemporal scales of particle motion are small relative to106
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the scales of change in flow conditions (Furbish et al., 2012). The one dimensional fluxes107

qx (L2T−1) and qy (L2T−1) are obtained from (3) by assuming conditions are approx-108

imately steady in time and uniform in one spatial dimension. These assumptions are ap-109

propriate for many practical problems (Furbish et al., 2012; Furbish, Fathel, & Schmeeckle,110

2016). Noting that the variance is equal to the mean squared hop distance minus the squared111

mean, (i.e. σ2
Lx

= L2
x − Lx

2
), the one dimensional fluxes are given by112

qx(t, x, y) = ELx −
1

2

∂

∂x
ELx

2 − 1

2

∂

∂x
Eσ2

Lx
(4)

and113

qy(t, x, y) = ELy −
1

2

∂

∂y
ELy

2 − 1

2

∂

∂x
Eσ2

Ly
. (5)

As noted by Furbish et al. (2017), these terms do not map directly onto conventional ad-114

vective and diffusive components of the flux containing the mean particle velocity and115

diffusivity. Instead, the first two terms comprise an advective-like flux consisting of a lo-116

cal term that is equal to the total flux under uniform transport conditions and a non-117

local term that accounts for spatial variability in particle entrainment rate and mean hop118

distance. The third term is like a diffusive flux in that it is driven by the variance in par-119

ticle hop distance. This interpretation differs from previous studies, reflecting the de-120

composition of the raw variance (i.e. L2
x) into terms containing the squared mean and121

variance. Under this interpretation, the squared coefficient of variation (the ratio of the122

standard deviation to the mean) of particle hop distances is like an inverse Peclet num-123

ber in that it scales the relative propensity for diffusion-like and advection-like transport.124

Similarly, the ratio of the variance to the mean is like a diffusion length in that it scales125

the diffusive-like flux in the presence of gradients in the advective-like flux. This idea is126

fully discussed in Section 4.4.127

The objective of this paper is to reveal the manner in which bedforms influence the128

marginal probability distribution of particle travel time fTp(Tp), streamwise hop distance129

fLx
(Lx) and lateral hop distance fLy

(Ly). This work is primarily motivated by macro-130

scopic morphodynamic modeling problems (e.g., Abramian et al., 2019) for which the131

most important features of these distributions are the statistical moments contained in132

Equations (3), (4) and (5). We consider multiple indicators of distribution fit, however133

we place special emphasis on those which pertain to the estimation of these moments.134

Results are interpreted in the context of probability distribution models proposed by Fathel135

et al. (2015) which are consistent with various mechanical constraints (Furbish, Schmeeckle,136

et al., 2016) as well as with empirical constraints imposed by an extensive dataset of par-137

ticle motion over plane-bed topography (Roseberry et al., 2012). These distributions ex-138

ist on the domain from zero to infinity and thus ignore hops in the upstream direction.139

They also have thin tails and fixed coefficients of variation, implying that the propen-140

sity for diffusion-like transport varies in proportion to the advective component of flux141

across a wide range of conditions as discussed in more detail below. We aim to deter-142

mine the extent to which the constraints that derive from the forms of these distribu-143

tions provide a realistic foundation for modeling macroscopic sediment transport phe-144

nomena when bedforms are present.145

3 Experiments146

3.1 Overview147

In order to compare the ensemble statistics of particle motions that are character-148

istic of plane-bed and bedform topography, we conducted two flume experiments differ-149

entiated primarily by the presence or absence of equilibrium bedforms. For each exper-150

iment we recorded videos of fluorescent tracer particles that were used to construct em-151

pirical distributions of particle hop distance and travel time. In considering fixed dis-152

tributions of these quantities, we appeal to the idea of an ensemble of nominally iden-153
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tical systems first described by Gibbs (1902) and elaborated recently with respect to bed-154

load transport by Furbish et al. (2012). We designed our experiments so that the dis-155

tributions measured over a finite temporal and spatial domain may be assumed to be156

equivalent to the instantaneous ensemble distribution at any position and time. This as-157

sumption is reasonable as long as the macroscopic average conditions are steady and uni-158

form over the domain of data collection.159

Theory and analyses presented here assume a steady, uniform probability distri-160

bution of particle hop distance and travel time that is independent of x, y and t. Although161

previous studies find that particle motion depends on location relative to bedform fea-162

tures (Wilson & Hay, 2016; Leary & Schmeeckle, 2017; Tsubaki et al., 2018; Terwisscha163

van Scheltinga et al., 2019), we emphasize that the existence of bedforms does not pre-164

clude the possibility of considering a stationary distribution averaged over all possible165

configurations of bedform topography. Bedforms are viewed as stochastic fluctuations166

in bed elevation, and there is a timescale over which a single location on the bed expe-167

riences a representative sample of all possible configurations of topography character-168

istic of the macroscopic flow conditions (e.g. the bedform field timescale as envisioned169

by Furbish et al., 2012). In this context, the term ”macroscopic” implies averaging over170

scales much larger than an individual bedform.171

In order to ensure that measured distributions reflect ensemble probability distri-172

butions characteristic of macroscopic flow conditions, measured particle motions would173

ideally contain a sample that is representative of all possible microconfigurations of flow174

and topography. In practice, this means that particle hops should be measured over spa-175

tiotemporal scales that are much larger than those of significant autocorrelation in flow176

velocity and bed elevation. Due to practical limitations, this was not possible for the bed-177

form condition: particle motions were recorded over a small region of the bed with stream-178

wise and cross-stream dimensions comparable to the bedform lengthscale which we as-179

sume is similar to the autocorrelation lengthscale of topography (Nordin, 1971; Nikora180

et al., 1997). Nonetheless, we posit that these data are sufficient to reveal important fea-181

tures of particle motion over bedforms. We report distributions sampling hops originat-182

ing on both stoss and lee regions of a single bedform over two ten second intervals. All183

tracer particle motions in the measurement window were included in our analysis such184

that the empirical distributions approximately reflect the relative entrainment rates in185

stoss and lee regions of one bedform. For additional discussion of issues related to the186

finite sampling window, see Section 4.5.187

3.2 Description of Experiments188

Experiments were conducted in a 7.2 m long × 0.29 m wide flume capable of re-189

circulating both sediment and water. Bedforms were allowed to develop under constant190

flow conditions over a period of 48 hours, at which point particle motions were recorded191

using a downward-looking camera. Plane-bed conditions were then achieved by manu-192

ally grading the bed using a plastic paddle, and particle motions were recorded again.193

Flume boundary conditions remained constant throughout this procedure: water discharge194

was 18 L/s, the flume slope was 0.001, and flow depth at the outlet was set to approx-195

imately H = 0.16 m. The mean flow velocity was U = 0.39 m/s, and the Froude num-196

ber was Fr = U/
√
gH = 0.31.197

The bed material consisted of natural sediment collected in an aeolian dune field198

near the Seminoe Reservoir in Wyoming. Fine sediment was removed prior to these ex-199

periments by continuously siphoning turbid water in the outlet reservoir and replacing200

it with clear water. The resulting bed material had a median diameter of 330 µm and201

median settling velocity ωs = 4.4 cm/s. The base-2 logarithmic standard deviation was202

0.69 (68% of the bed material was within a multiplicative factor of 20.69 = 1.61 of the203

mean). This is typical of hydraulically sorted natural sediment in fluvial systems, but204
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is a significant departure from the single-grain size experiments reported in previous stud-205

ies. The implications of this difference are discussed in Section 4.2.206

Particle motions were measured using videos of fluorescent tracer particles. To this207

end, a small fraction of the bed material was removed from the flume and coated with208

a thin layer of fluorescent paint. Although we cannot rule out the possibility that the209

paint caused small differences in particle properties, we expect that such effects are small210

and do not influence the primary findings of this study. Approximately 30 cm3 (includ-211

ing pore space) of tracer particles were added back into the flume and allowed to mix212

with the unpainted bed material over a period of several weeks of continuous run time213

under a range of flow conditions. The thickness of sediment within the flume was approx-214

imately 8 cm such that the total volume of sediment in the flume including pore space215

was approximately 170000 cm3 and tracer particles composed an estimated 0.017 % of216

the bed material. For comparison, the tracer particle percentage estimated by compar-217

ing the tracer particle flux and the bedform bedload flux (discussed below) is 0.019 %.218

Particles were illuminated with black lights (GE Black Light Blue bulbs, peak wavelength219

= 368 nm) through the side windows of the flume test reach (Figure 1a, 1b), which in-220

creased the contrast of tracer particles against the bed and facilitated consistent track-221

ing (Naqshband et al., 2017). We assume this procedure provides an unbiased sample222

of complete particle hops representing the full distribution of particle sizes.223

Acoustic measurements of the near-bed flow velocity profile were collected over equi-224

librium bedforms to compute the bed stress condition (Bagherimiyab & Lemmin, 2013;225

Le Bouteiller & Venditti, 2015). The sidewall-corrected shear velocity was u∗ = 2.4 cm/s.226

This produced bedload dominated bedforms with a suspension number (the ratio of shear227

velocity to sediment settling velocity) of 0.54. For comparison, the unit bedload flux es-228

timated from bedform migration using the bedform bedload equation of Simons et al.229

(1965) was qb = 4.1 × 10−7 m2/s. Applying the Wong and Parker (2006) bedload equa-230

tion and solving for stress suggests that the effective shear velocity (i.e. skin friction) driv-231

ing sediment transport was u∗sk = 1.8 cm/s. This is consistent with the notion that pres-232

sure differences across a bedform reduce the bedload transport rate associated with a233

specified average bed stress.234

Although fluid velocities were not measured directly for the plane-bed condition,235

we may estimate of the shear velocity by comparing the relative magnitudes of the tracer236

particle flux (discussed below) using the Wong and Parker (2006) bedload equation. The237

tracer particle flux for the plane-bed experiment was 2.1 particles per second per me-238

ter width. The bedload flux is estimated to be 1.9 × 10−7 m2/s leading to an estimated239

shear velocity of u∗ = 1.7 cm/s and a suspension number of 0.38. We emphasize that240

this estimate requires substantial assumptions and is reported here as a rough approx-241

imation to contextualize our experiments. However, the specific values of the shear ve-242

locity are not central to any of the theoretical developments or interpretations presented243

below.244

Characteristic scales of bedform topography were computed from one-dimensional245

scans obtained using an ultrasonic profiler mounted to a moving cart. Equilibrium bed-246

forms had a characteristic height Hc = 1.5 cm, a characteristic length Lc = 16 cm, and247

a characteristic migration velocity Vc = 0.50 cm/minute. Bedform height was determined248

using Hc = 2
√

2ση where ση is the standard deviation of bed elevation (McElroy, 2009).249

Lc was determined from the spectral centroid of the bed profile and Vc was determined250

from the maximum of the cross-correlation function of successive scans (Van der Mark251

& Blom, 2007). The characteristic evolution timescale of bed elevation η computed as252

Tη = η/(∂η/∂t), was approximately 8 minutes, such that topography is effectively fixed253

within the ten-second data collection intervals.254

Videos of particle motion were recorded using a submerged downward-looking cam-255

era mounted near the centerline of the flume with the lens approximately 15 centime-256
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Figure 1. Experimental setup and tracked particle motions. (a) Oblique view of flume with

bedforms. Black box indicates the approximate region of the bed where videos of fluorescent

tracer particles were recorded. (b) Still image from video of fluorescent tracer particles during the

bedform condition. Flow is from bottom to top. (c) Tracked particle motions over plane-bed and

(d) bedform topography. Grey region in (d) indicates the position of a bedform lee face. Note

that the particle transport direction exhibits conditional dependence on topographic configura-

tion in the vicinity of the particle that is discussed in more detail in section 4.1. (e) Visualization

of particle displacements over plane-bed and (f) bedform topography. Topographic effects mani-

fest as qualitative differences in between (e) and (f).

ters from the bed. Videos were collected at a resolution of 1920 by 1080 pixels and at257

a frame rate of 30 frames per second. This window covered a streamwise distance of 12.2258

cm, and a cross-stream distance of 21.7 cm. Two ten-second intervals from each video259

were used for this analysis. Image registration and rectification were performed using260

OpenCV in Python (Bradski, 2000) Particles were digitized manually using TrackMate261

(Tinevez et al., 2017), an open-source particle tracking package for ImageJ (Schindelin262

et al., 2012; Rueden et al., 2017). All particles that moved during each interval were tracked263

for their entire visible path, including rest times (Figure 1).264

The position of the particle centroid was tracked to within roughly one pixel such265

that the total uncertainty in each estimate of particle hop distance is roughly 0.022 cm266

(or one pixel at the start and beginning of each hop). Note that this is comparable to267

the median particle diameter. The uncertainty in each particle hop distance is approx-268

imately 6.25% of the mean hop distance in the plane-bed experiment and 9.5% of the269

mean hop distance in the bedform experiment. This error may be positive or negative270
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such that it is unlikely to bias estimates of the mean hop distance. In principle, this type271

of uncertainty could result in a positive bias in estimates of the variance by adding nor-272

mally distributed noise, however the magnitude of this effect is small and equivalent for273

both experiments. As a result, it is ignored in the analysis presented below.274

The timing of the end and beginning of particle motions can be constrained to within275

one frame (0.033 s). Assuming perfect detection of particle motion, the measured hop276

duration will always be greater than or equal to the true hop duration because motion277

will always be registered as starting the frame before motion begins and ending the frame278

after motion ends. This effect will introduces a positive bias to empirical estimates of279

the mean travel time if the particle is assumed to be moving for the full duration over280

which motion is observed. Correcting for this bias is not trivial and depends on assump-281

tions about the underlying distribution of particle travel times, however we note that the282

effect on the computed moments is small, biasing the estimate of the mean travel time283

by approximately one frame time and introducing essentially no bias to the estimate of284

the variance. A moderate bias correction does not influence the primary findings of this285

paper and is not performed here.286

3.3 Definition of a Particle Hop287

The concept of a complete particle “hop” follows from the notion that particles may288

occupy one of two mutually exclusive states: motion and rest (Hosseini-Sadabadi et al.,289

2019). This distinction is critical to the interpretation of particle-kinematic statements290

of sediment mass conservation, namely, the divergence and entrainment forms of the Exner291

equation. However, differentiating between active and stationary particles is not straight-292

forward: grains on the bed surface may wiggle in place without moving appreciably and293

may accumulate significant displacements over long timescales due to granular creep (Houssais294

et al., 2015). In fact, granular transport occurs via numerous phases (Houssais & Jerol-295

mack, 2017); the binary view of mobility is merely a convenience adopted to delineate296

highly disparate scales of particle velocity and flux for the purposes of mathematical ab-297

straction.298

This reasoning suggests that particles on or below the bed surface are not truly sta-299

tionary in the sense that they have detectable mean velocities averaged over long timescales.300

Consequently, empirical studies of particle motion which attempt to differentiate between301

mobile and immobile grains do so according to criteria that, despite their intuitive ap-302

peal, lack clear physical justification (Hosseini-Sadabadi et al., 2019). For example, par-303

ticles are often treated as mobile when their velocity exceeds a threshold value that is304

either explicitly stated or set implicitly by the resolution of the technique used to dig-305

itize particle motions. Such criteria retain the important property of mass conservation306

as long as the mobile and immobile states encompass all grains and are mutually exclu-307

sive, and mobile particles are not counted towards the elevation of the bed. Moreover,308

velocity criteria are valid in scenarios where sediment transport and morphodynamics309

are dominated by bedload transport rather than granular creep.310

Other criteria that are equally valid from a theoretical perspective may lead to dif-311

ferent results as to whether certain particles are mobile or immobile, ultimately produc-312

ing differences in measured distributions of particle hop distance and travel time (Hosseini-313

Sadabadi et al., 2019). We recognize this issue but do not attempt to solve it here. In-314

stead, we use an approach that is similar to previous studies (Liu et al., 2019) and ac-315

knowledge where our results might be sensitive to this choice. Velocity criteria are an316

objective, reproducible solution to this problem. Different velocity thresholds may pro-317

duce different distributions of particle hop distance and travel time but will lead to es-318

sentially the same estimate of the macroscopic flux as long as the velocity threshold is319

sufficiently small.320
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Table 1. Summary Statistics

Plane Bed Bedforms

Mean travel time Tp 0.18 s 0.13 s
Variance σ2

Tp
0.042 s2 0.023 s2

Coefficient of variation σTp/Tp 1.13 1.13

Mean streamwise hop distance Lx 0.32 cm 0.21 cm
Variance σ2

Lx
0.43 cm2 0.47 cm2

Coefficient of variation σLx
/Lx 2.04 3.25

Streamwise diffusion length `Dx
1.34 cm 2.22 cm

Inverse Peclet number Pe−1x 4.2 10.6

Mean lateral hop distance Ly -2.2 × 10−3 cm -2.8× 10−2 cm
Variance σ2

Ly
0.11 cm2 0.27 cm2

CV of absolute values σ|Ly|/|Ly| 2.20 2.70

Coefficient of lateral transport σLy
/Lx 1.03 2.49

Lateral diffusion length `Dy
0.34 cm 1.29 cm

Inverse Peclet number Pe−1y 1.07 6.17

The exact value of the velocity threshold used here was chosen following the ap-321

proach of Liu et al. (2019). Specifically, we examined particle motions under a range of322

velocity thresholds and found that values ranging from 0.2 cm/s to 0.5 cm/s reliably dis-323

criminated between visually-identified mobile and immobile states. The exact value of324

the threshold within this range affects the absolute magnitude of empirical moments but325

has almost no effect on the primary findings of this paper which concern their relative326

magnitudes and the shape of the distribution functions. Reported results were obtained327

using a velocity threshold of 0.3 cm/s. This value is significantly lower than the thresh-328

old velocities adopted by Liu et al. (2019) and Lajeunesse et al. (2010), perhaps because329

the lower frame rate (30 frames per second in the present study compared with 90 frames330

per second) allows more precise estimates of frame-averaged velocity. This number cor-331

responds to a one-frame displacement of 0.01 cm over 1/30th of a second, which is roughly332

one pixel or one third of the median grain diameter. Particles with frame-averaged ve-333

locities greater than or equal to the threshold velocity are considered mobile, and all other334

particles are considered immobile. A complete hop is defined as an uninterrupted period335

in the mobile state that begins and ends with transitions to and from the immobile state.336

Insofar as previous plane-bed studies necessarily employ some variant of this approach,337

it is sufficient to reveal the extent to which particle motions over bedforms conform to338

existing theory.339

4 Results and Discussion340

The experimental procedure described in the previous section yielded measurements341

of 360 complete particle hops for the plane bed condition and 1170 hops for the bedform342

condition. These data are visualized in Figure 1, which shows all tracked particle mo-343

tions, and Figure 2, which shows the pairwise relationships between variables. Descrip-344

tive statistics are reported in Table (1).345

Tracked particle paths reveal significant qualitative differences between the plane-346

bed and bedform experiments. Notably, particle behavior clearly depends on position347

relative to bedform features in a manner that is reminiscent of the backward facing step348

experiments of Leary and Schmeeckle (2017) and the particle velocity fields reported by349

Tsubaki et al. (2018) and Terwisscha van Scheltinga et al. (2019). Particle transport di-350
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rection is highly variable in the region of flow separation immediately downstream of the351

bedform crest. On the stoss side, particle transport direction is more regular and the mean352

local transport direction is approximately perpendicular to the nearest crest (Figures 1c,353

1d). These behaviors produce significant qualitative differences in the characteristics of354

particle displacement as shown in figures 1e, 1f, and 2.355

Figure 2. Pairwise comparison of measured particle hop distances and travel times. Dashed

lines indicate particle hop distances of zero. Bedform data are shown in black diamonds and

plane-bed data are shown in white circles. Panels (a) and (b) illustrate a conditional dependence

of streamwise and lateral particle hop distance on travel time that is used by Fathel et al. (2015)

to derive the Weibull distribution for particle hop distances. Panel (c) encompasses the primary

qualitative differences between the plane-bed and bedform experiments; particle motions over

bedforms exhibit a wider spread in both the streamwise and cross-stream directions, and up-

stream hops appear to occur more frequently and have larger magnitudes over bedforms than

over planar topography.

Empirical moments are reported in Table 1. Although the mean particle travel time356

and mean streamwise hop distance are slightly larger in the plane-bed experiment, we357

find that the distribution of particle hop distances over bedforms has much larger vari-358

ance in the cross-stream and streamwise directions. This difference reflects the increased359

variability in hop distances evident in Figure 2. The sample size in both experiments was360

sufficiently large such that conventional measures of statistical uncertainty indicate that361

moments are estimated with high precision. For example, the 95% asymptotic confidence362

interval for the estimate of the mean travel time in the bedform experiment ranges from363

0.12 s to 0.14 s. More sophisticated estimates of statistical uncertainty produce similar364

results. However, these statistical measures only quantify uncertainty associated with365
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measurement error and finite sample size, and cannot quantify uncertainty associated366

with the finite measurement window (Section 4.5). We believe this effect is the primary367

source of uncertainty in our results. Due to the systematic misrepresentation of true un-368

certainty, confidence intervals for other parameters are not reported here.369

4.1 Physical Mechanism for Observed Differences in Particle Behavior370

Previous studies of particle motion find that particle velocities are conditionally371

dependent on the local topographic configuration due to the coupling of topography, flow,372

and sediment transport (Tsubaki et al., 2018; Terwisscha van Scheltinga et al., 2019).373

Topographically-induced correlations in flow velocity exist over spatial scales that are374

comparable to the bedform length; in contrast, we find that the average hop distance is375

much smaller than a bedform length. As a result, individual particle hops do not con-376

verge on the ensemble statistics of motion (Fathel et al., 2016; Furbish et al., 2017), in-377

stead reflecting topographically-induced deviations from the mean flow field.378

As an example, consider a particle that is entrained on a stoss slope that is oriented379

obliquely relative to the mean flow direction. This topographic configuration usually re-380

sults in flow being redirected laterally (Best, 2005; Venditti et al., 2005b), causing a cor-381

responding lateral component of sediment movement (Tsubaki et al., 2018; Terwisscha382

van Scheltinga et al., 2019) that is possibly amplified by gravitational effects (Parker et383

al., 2003). Because particle motions are short relative to the spatial scales of topogra-384

phy, this particle is likely to spend the entire interval from entrainment to disentrain-385

ment on this oblique slope. A large lateral hop distance would be highly improbable over386

plane-bed topography under similar mean flow conditions, but would be typical for par-387

ticles entrained in this location.388

We suggest that observed differences in probability distributions of particle hop dis-389

tance and travel time are the result of this effect. Over plane-bed topography, turbulent390

fluctuations in flow velocity and collisions between particles are the primary sources of391

variability (Nikora et al., 2001, 2002; Seizilles et al., 2014; Fathel et al., 2015; Hosseini-392

Sadabadi et al., 2019). We infer that localized fluctuations in flow velocity driven by bed-393

form topography cause variability in particle behavior that is superimposed on variabil-394

ity driven by turbulence and particle collisions. Tsubaki et al. (2018) and Terwisscha van395

Scheltinga et al. (2019) report similar behaviors, which manifest as deviations from the396

mean particle velocity field characterized by crest-normal transport on the stoss sides397

of bedforms (Fryberger & Dean, 1979; Werner & Kocurek, 1997), and highly variable trans-398

port over lee faces and troughs (figures 1c, 1d). This causes a marked qualitative differ-399

ence in particle behavior that is apparent in Figures 1e, 1f, and 2 as enhanced variabil-400

ity in transport direction and distance. Quantitative analyses presented below contex-401

tualize these observations in terms of the entrainment forms of the flux and Exner equa-402

tions.403

4.2 Effect of Naturally Sorted Sediment404

Our analysis assumes that the marginal distributions of particle hop distance and405

travel time have thin tails such that the mean and the variance are well defined. Although406

previous studies suggest that this is true for monodisperse sediment undergoing low bed-407

load transport (Fathel et al., 2015; Furbish, Schmeeckle, et al., 2016; Liu et al., 2019),408

heavy-tailed distributions of hop distance and travel time are possible if a range of grain409

sizes are present and the mean hop distance varies with grain size (Ganti et al., 2010).410

Our experiments involved naturally sorted sediment which is valuable insofar as we seek411

to understand natural transport systems. However, it is important to consider the ex-412

tent to which theory developed for uniform sediment may be applicable to the present413

research.414
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As a starting point, we consider the distribution of streamwise hop distance as a415

margin of the joint distribution of particle hop distance and grain size, fLx,D(Lx, D):416

fLx
(Lx) =

∫ ∞
0

fLx|D(Lx|D)fD(D)dD. (6)

Ganti et al. (2010) clarify how this integration may lead to a heavy-tailed distribution417

of hop distance. Specifically, if fLX |D(Lx|D) is exponential with mean varying in pro-418

portion (or inverse proportion) to grain size and fD(D) is a Gamma distribution with419

shape parameter α, then fLx(Lx) is a generalized Pareto distribution. This argument420

also holds for particle travel times. In this scenario, the mean only converges if α > 1421

and the variance only converges if α > 2. We note that the the coefficient of variation422

of a Gamma distribution is equal to 1/
√
α. Thus, the weight of the tails depends on the423

degree of sorting of the bed material, where well sorted sediments are less likely to have424

heavy-tailed distributions of hop distance and travel time. The best-fit Gamma distri-425

bution for the bed material used in these experiments has a shape parameter α = 4.83426

such the mean and variance are well-defined. On this basis, we suggest that it is reason-427

able to expect that the distributions of hop distance and travel time are thin-tailed.428

Even if the distributions have thin tails, variability in grain size implies that the429

marginal probability distributions of hop distance and travel time depend on (a) the func-430

tional form of the grain-size specific distribution of hop distance and travel time (e.g. fLx|D(Lx|D),431

(b) the relationship between the grain size and the parameters of this conditional dis-432

tribution, and (c) the relative entrainment rates of different grain sizes (which may dif-433

fer from the grain size distribution of the bed material due to selective entrainment and434

vertical sorting). Each of these effects may be present in our data, however we focus on435

the collective outcome and have not attempted to evaluate their importance individu-436

ally.437

4.3 Comparison of Theoretical and Empirical Distributions438

4.3.1 Travel Times439

Previous studies suggest that the marginal probability distribution of bedload par-440

ticle travel times is exponential (Fathel et al., 2015; Furbish, Schmeeckle, et al., 2016),441

i.e.:442

fTp
(Tp) =

1

τ
e−Tp/τ , (7)

where τ is a characteristic travel time. This implies a fixed temporal disentrainment rate443

for moving particles (Tucker & Bradley, 2010; Furbish, Schmeeckle, et al., 2016). In other444

words, the probability that a particle in motion at time t is deposited over the next small445

time interval dt does not depend on how long the particle has been in motion at t in the446

absence of other information about the flow and topographic configuration. Previous stud-447

ies have suggested that this this distribution is not strictly exponential (due to the pres-448

ence of truncated tails) but may be treated as such for most practical purposes (Fathel449

et al., 2015).450

Quantile-quantile (Q-Q) plots (figure 3a, 3b) and histograms (figure 3c, 3d) reveal451

that the exponential distribution provides a reasonable fit to plane-bed and bedform par-452

ticle travel times (Figure 3). The coefficient of variation (the ratio of the standard de-453

viation to the mean) of an exponentially distributed random variable is 1, which is an454

important diagnostic test of distribution fit. Measured coefficients of variation are 1.13455

for both experiments (Table 1). Based on these observations, we suggest that (a) our data456

confirm the findings of previous authors with regard to the exponential distribution of457

particle travel times over plane-bed topography and (b) the presence of equilibrium mo-458

bile bedforms does not substantially influence the functional form of this distribution.459

We also find no evidence that the distribution of travel times is heavy-tailed despite vari-460

ability in bed material grain size typical of natural fluvial systems.461
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Figure 3. Quantile-quantile (a, b) and density plots (c,d) comparing measured distributions

of particle travel time with best-fit exponential distributions (dashed lines). Densities were com-

puted using logarithmically-spaced bins. Error bars represent the 95% Bayesian credible interval

for a binomial proportion obtained using Jeffrey’s prior (Brown et al., 2001). Deviations from

theory are similar in both experiments and do not cause a substantial difference in the coefficient

of variation in travel times. We interpret observed deviations as measurement error rather than

as genuine features of the dataset.

4.3.2 Streamwise Hop Distances462

Theoretical distributions proposed by Fathel et al. (2015) to describe streamwise463

hop distances follow from exponentially distributed travel times combined with the as-464

sumption that particles with longer travel times have the opportunity to attain higher465

velocities (Roseberry et al., 2012). This suggests that a conditional dependence of par-466

ticle hop distance on travel time (evident in Figures 2a and 2b) that can be approximated467

by Lx = axT
bx
p + εx (Fathel et al., 2015), where ax is a characteristic acceleration, εx468

is a residual deviation term, and bx is a scaling parameter that may be connected to sus-469

pension conditions. For bedload-dominated transport, particle travel times are short rel-470

ative to the timescale required to accelerate particles to the mean near-bed fluid veloc-471

ity and particle hops are dominated by the unsteady acceleration and deceleration phases472

of motion (Campagnol et al., 2015). As a result, previous studies which report bedload-473

dominated transport over plane-bed topography (e.g., Fathel et al., 2015) find that Lx/Tp ∼474

Tp and leading to bx = 2. It has been suggested that this dependence disappears at higher475

suspension conditions (Ancey & Heyman, 2014; Heyman et al., 2016; Campagnol et al.,476

2015; Wu et al., 2020), however we restrict our attention to bedload-dominated trans-477

port similar to previous plane-bed studies. Ignoring the residual deviation and assum-478

ing exponentially distributed travel times leads to the expectation that hop distances fol-479

low Weibull distributions (Fathel et al., 2015). Thus, the marginal distribution of stream-480
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wise hop distances is given by481

fLx
(Lx) =

kx
λx

(
x

λx

)kx−1
e−(x/λ)

kx
(8)

where kx = 1/bx and λx = axτ
bx . If kx = 1/2, then the mean and variance in par-482

ticle hop distance can be expressed in terms of model parameters as Lx = 2axτ
2 and483

σ2
Lx

= 20a2xτ
4.484

Figure 4. Quantile-quantile (a, b) and density plots (c, d) comparing measured distributions

of streamwise hop distance with best-fit Weibull distributions with shape parameter k = 1/2

(dashed lines). Densities were computed using logarithmically-spaced bins. Error bars repre-

sent the 95% Bayesian credible interval for a binomial proportion obtained using Jeffrey’s prior

(Brown et al., 2001). Red regions in panels (b) and (d) highlight systematic deviations from

plane-bed theory.

In considering whether this distribution is suitable for hop distances over bedforms,485

we focus primarily on the considerations relevant to macroscopic morphodynamic mod-486

eling outlined in Section 2. Specifically, we ask whether estimates of distribution param-487

eters ax and τ can lead to accurate predictions of the mean hop distance Lx and the vari-488

ance σ2
Lx

. This question is of central importance if the eventual goal is to construct macro-489

scopic morphodynamic models that are consistent with the physics of grain-scale sed-490

iment transport. The proposed Weibull distribution with shape parameter k = 1/2 pre-491

scribes a fixed coefficient of variation
√

5 ≈ 2.23. This implies that the variance σ2
Lx

492

can be estimated from a measurement of the mean. If k is allowed to vary between 1/2493

and 1, the coefficient of variation must be between 1 and
√

5. The coefficient of varia-494

tion therefore is an important indicator of distribution fit; if it is significantly larger than495 √
5 or smaller than 1, no single estimate of model parameters appropriately character-496

izes the advective and diffusive components of the flux simultaneously.497

Measured streamwise hop distances in the plane-bed experiment have a coefficient498

of variation of 2.05 compared with 2.23 predicted from theory. Ignoring upstream hops499
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does not significantly affect the estimate of the mean because only 5% of hops occur in500

the upstream direction and the average upstream hop distance is very small relative to501

the average downstream hop distance (0.1 mm compared with 3.5 mm). As with travel502

times, we find no evidence that the distribution of particle hop distance is heavy-tailed503

for the moderately sorted sand used in this experiment. We suggest suggest that the dis-504

tribution of streamwise bedload hop distances over plane-bed topography in hydrauli-505

cally sorted, natural sediments can be sufficiently approximated using a Weibull distri-506

bution with shape parameter k = 1/2 in the context of macroscopic transport prob-507

lems.508

In contrast, the distribution of streamwise hop distances over bedforms exhibits sig-509

nificant deviations from theory. Qualitative comparison of the histogram and a best-fit510

theoretical distribution (figure 4d) reveals systematic differences in probability density511

across the full range of observed hop distances that results in a concave-up relationship512

between empirical and theoretical quantiles (Figure 4b). A much larger fraction of hops513

occur in the upstream direction (15%) and these possess an average upstream displace-514

ment that are a significant fraction of the average downstream displacement (0.8 mm com-515

pared with 2.8 mm). We conclude that the presence of bedforms leads to an important516

difference in empirical moments: the coefficient of variation in measured streamwise hop517

distances is 3.25, meaning that the standard deviation does not vary with the mean as518

expected. Instead, observed spatiotemporal correlations between particle behavior and519

topography lead to an increased variance relative to the mean (figure 1d, 1f) that vio-520

lates constraints imposed by plane-bed theory.521

4.3.3 Lateral Hop Distances522

The streamwise and lateral coordinates are defined such that lateral hop distances523

have a mean of zero and are symmetrically distributed under steady, uniform transport524

conditions considered here. Like with streamwise hop distances, Roseberry et al. (2012)525

and Fathel et al. (2015) find that the absolute lateral displacement is correlated with travel526

time leading to |Ly| = ayT
by
p + εy, where by ≈ 2. The distribution of absolute lateral527

hop distances can therefore be approximated using a Weibull distribution with shape pa-528

rameter k = 1/2 and scale parameter λ = ayτ
2. For particle motions over plane-bed529

topography, quantile-quantile (figure 5a) and histogram plots (figure 5c) reveal that ab-530

solute lateral hop distances over plane-bed topography are well-approximated by the best-531

fit Weibull distribution with fixed shape parameter k = 1/2.532

Once again, we consider whether the proposed Weibull distribution can accurately533

quantify the first and second moments of measured lateral hop distances. This distri-534

bution implies that the mean absolute lateral hop distance is given by |Ly| = 2ayτ
2,535

the variance is given by σ2
|Ly| = 20a2yτ

4, and the coefficient of variation is
√

5. Because536

the distribution of signed lateral hop distances is symmetric with mean equal to zero,537

the variance is equal to the raw variance of absolute lateral hop distances, i.e. σ2
Ly

=538

|Ly|2 = |Ly|
2

+ σ2
|Ly|. The first and second moments that are relevant to macroscopic539

transport problems can be expressed in terms of distribution parameters as Ly = 0 and540

σ2
Ly

= 24a2yτ
4.541

The empirical coefficient of variation for absolute lateral hop distances is 2.20, com-542

pared with 2.23 predicted from theory. For particle motions over bedform topography,543

the coefficient of variation in absolute lateral hop distances is 2.7, while the histogram544

plot (figure 5d) reveals systematic deviations from predicted bin frequencies resulting545

in a concave-up relationship between theoretical and measured quantiles (figure 5b). Again,546

this may indicate a heavy-tailed distribution of absolute lateral hop distances. If the dis-547

tribution is not heavy tailed, then bedforms cause a significant increase in the variance548

of the signed lateral hop distances (0.27 cm2 compared with 0.11 cm2), both by alter-549

ing the shape of the distribution of absolute lateral hop distances and by increasing the550
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Figure 5. Quantile-quantile (a, b) and density plots (c, d) comparing measured distribu-

tions of absolute lateral hop distance with best-fit Weibull distributions with shape parameter

k = 1/2 (dashed lines). Densities were computed using logarithmically-spaced bins. Error bars

represent the 95% Bayesian credible interval for a binomial proportion obtained using Jeffrey’s

prior (Brown et al., 2001). Red regions in panels (b) and (d) highlight systematic deviations from

plane-bed theory.

average absolute lateral hop distance. This result primarily reflects an increase in the551

variability in transport direction as characterized by the coefficient of lateral transport552

(Table 1).553

4.4 Bedload Diffusion554

We have found that bedforms increase the variance of the ensemble probability dis-555

tributions of streamwise and absolute lateral hop distances. Here, we consider the sig-556

nificance of this observation in the context of macroscopic transport equations under the557

assumption that these moments are in fact finite and well-represented by our data. As558

noted previously, the Fokker-Planck approximation of the one dimensional entrainment559

flux consists of three terms: a local advective term that represents the mean hop distance,560

a nonlocal advective term that squared the squared mean, and a diffusive term that rep-561

resents the variance. These three terms are not guaranteed to map directly onto the typ-562

ical advective and diffusive terms contained in the activity form of the flux (Furbish et563

al., 2012, 2017), thus we refer to the sum of the first two terms as the advective-like flux564

and the third term as a diffusive-like flux.565

Nonlocal advective-like and diffusive-like transport terms are zero under steady, uni-566

form transport conditions (Furbish et al., 2012). In order to compare the advective and567

diffusive behavior associated with a fixed distribution of particle hop distances, we con-568

sider a simple disequilibrium scenario in which the sediment flux varies due to a constant569

spatial gradient in the particle entrainment rate, ∂E/∂x = β. In this case, the total570
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flux is steady, varying only as a function of x and is given by:571

qx(x) = E(x)Lx −
1

2
βLx

2 − 1

2
βσ2

Lx
. (9)

and the flux gradient is given by572

∂

∂x
qx(x) = βLx (10)

The diffusive flux is related to gradients in the advective flux by a diffusion length `Dx573

(Seizilles et al., 2014) as574

qxdiffusive
= −`Dx

∂

∂x
qx(x). (11)

For the simple disequilibrium conditions considered here, this diffusion length reduces575

to `Dx = σ2
Lx
/Lx.576

If hop distances are assumed to follow a Weibull distribution with shape param-577

eter k = 1/2, the diffusion length is given by `Dx
= 5Lx. The ratio of diffusion length578

to hop length `Dx
/Lx is like an inverse Peclet number in that it scales the relative propen-579

sity for diffusion-like and advection-like transport in the presence of gradients in parti-580

cle entrainment rate. We recognize that the entrainment rate and the probability dis-581

tributions of particle hop distance vary together in response to changes in boundary con-582

ditions; however, this mathematical abstraction is useful in that it enables a direct char-583

acterization of the effects of bedform development on particle diffusion.584

For the plane bed experiment reported here, we find that measured distributions585

of particle hop distance lead to `Dx = 4.2Lx. Thus, the Weibull distribution proposed586

by previous authors appropriately predicts the measured relationship between stream-587

wise diffusion and streamwise advection for naturally sorted sediments transported over588

planar topography. In contrast, we find for the bedform condition that `Dx
= 10.6Lx,589

deviating significantly from theory.590

Following similar arguments presented above but assuming a constant lateral gra-591

dient in particle entrainment rate ∂E/∂y, it is straightforward to show that the lateral592

diffusive flux is related to the lateral gradient in the streamwise advective flux by a dif-593

fusion length `Dy
= σ2

Ly
/Lx. Though, we lack a clear basis for predicting the lateral594

diffusion length as we have done for the streamwise diffusion length above, we assume595

as a starting point that the lateral Peclet number is fixed over plane-bed topography (as596

theory predicts for the streamwise Peclet number). For measured particle hop distances597

over plane-bed topography, we find that `Dy
= 1.07Lx. In contrast, particle motions598

in the bedform experiment have a lateral diffusion length of `Dy
= 6.17Lx.599

An important assumption in this analysis is that the distribution of particle hop600

distance is independent of the entrainment rate. Correlations between these variables601

cannot be evaluated using data reported here and may serve to enhance or diminish macro-602

scopic diffusion. Nevertheless, bedform development appears to increase the propensity603

for streamwise and lateral diffusive transport quantified by an inverse Peclet number that604

is equal to the squared coefficient of variation (for streamwise diffusion) or the squared605

coefficient of lateral transport (for lateral diffusion). This difference cannot be explained606

by an increase in shear stress alone which would likely cause an increase in the mean stream-607

wise hop distance (Lajeunesse et al., 2010). Instead, bedform development results in a608

decrease of the mean streamwise hop distance with a concurrent increase of the variance609

of streamwise and lateral hop distances in our experiments. The notion that this differ-610

ence is primarily caused by the development of bedform topography is entirely consis-611

tent with previously observed differences in particle behavior described by Wilson and612

Hay (2016), Leary and Schmeeckle (2017), Tsubaki et al. (2018), and Terwisscha van Scheltinga613

et al. (2019).614
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4.5 Experimental Censorship615

We have interpreted these data as representative of the ensemble distribution of616

particle hop distances and travel times characteristic of macroscopic flow conditions. In617

principle, this requires an unbiased sample of particle motions representing all possible618

microconfigurations of flow, topogrpahy, and sediment transport. However, practical con-619

siderations limited the spatiotemporal extent over which it was possible to measure par-620

ticle motions. This has two effects which could potentially influence our results.621

The first effect is related to the fact that particles with longer hop distances and622

travel times are more likely to begin or end their motions outside of the measurement623

window. This effect causes a systematic reduction in the sample mean and variance rel-624

ative to the true mean and variance because hops are censored at a rate that is propor-625

tional to their duration and length. In order to evaluate the importance of this effect,626

we performed the correction proposed by Ballio et al. (2019). This correction resulted627

in almost no change in estimates of the mean or variance in either of our experiments.628

Although this correction cannot account for all forms of censorship (for example, trun-629

cation of the distribution), we are confident that our results are not substantially influ-630

enced by this effect.631

The second effect concerns the fact that our sampling window is not large enough632

to capture a representative sample of particle motions originating from all possible mi-633

croconfigurations of flow and topography characteristic of the macroscopic transport con-634

ditions. The importance of this effect cannot be evaluated directly from available data.635

Nevertheless, we argue that our data are sufficient to provide unequivocal support for636

the primary claims made in this paper. Observed differences in particle behavior are con-637

sistent with previous studies of particle motion over bedforms (e.g., Wilson & Hay, 2016;638

Leary & Schmeeckle, 2017; Tsubaki et al., 2018) and qualitative differences illustrated639

in figure 1. Additionally, the mean lateral hop distance in the bedform experiment is ap-640

proximately zero (-0.028 cm) despite clear spatial correlations in lateral hop distance within641

the measurement window (Figure 1). Assuming the true mean lateral hop distance is zero,642

we tentatively interpret this as an indicator that the spatiotemporal extent of our mea-643

surement window is sufficiently large such that the measured statistics have begun to644

converge on the true ensemble statistics. By way of analogy, consider the problem of es-645

timating the mean and variance of bed elevation in a stable bedform field. Measurements646

from a single bedform will provide reasonable first-order estimates of these quantities de-647

spite the fact that there is variability between bedforms (Robert & Richards, 1988; Nikora648

et al., 1997).649

We argue that the primary findings of this paper concerning the forms of the dis-650

tributions of particle hop distance and travel time over bedforms are robust to possible651

censorship effects. Increases in streamwise and lateral diffusivity are consistent with ob-652

servations of particle motion reported by previous authors cannot be explained by cen-653

sorship or sampling biases.654

4.6 Limitations and Future Work655

Our theoretical and experimental approach has several important limitations that656

must be addressed in order to extend the utility of our results to a wide range of macro-657

scopic morphodynamic modeling problems. Here, we outline these limitations and pro-658

vides suggestions for future studies focused on particle motions over bedforms.659

The first limitation discussed in Section 3.3 is that measured distributions of par-660

ticle hop distance and travel time depend on the criterion used for differentiating between661

mobile and immobile particles. Bed elevation is also defined with respect to the positions662

of particles in the immobile phase such that different criteria potentially lead to differ-663

ent descriptions of topography. We report results obtained using a mobility criterion that664
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is consistent with previous work but ultimately subjective. Different criteria are valid665

as long as they obey mass conservation (i.e., mobile and immobile states encompass all666

particles and are mutually exclusive), and therefore provide alternative but compatible667

descriptions of sediment transport and morphodynamics. Recognizing this, the next step668

is to investigate how different choices of mobility criteria influence measured statistics669

of topogrpahy and particle motion. The morphodynamic interpretation of varying thresh-670

olds is similar to the scale-dependent active layer concept (Church & Haschenburger, 2017)671

and could potentially lead to valuable insights regarding interactions between fluctua-672

tions in bed elevation at the grain, bedform, bar, and channel scale (e.g., Nikora et al.,673

1997).674

Another important issue is that the theoretical framework presented here is only675

valid for quasi-steady, uniform transport. In principle, this condition is satisfied if we con-676

sider macroscopic transport averaged over bedform-scale fluctuations (i.e., averaged over677

the bedform field timescale as envisioned by Furbish et al., 2012); however, an impor-678

tant caveat is that equations (4) and (5) assume that the entrainment rate and hop dis-679

tance are independent. This assumption is valid for planar topography befcause the en-680

trainment rate is effectively uniform, but bedforms potentially introduce correlations be-681

tween the entrainment rate and hop distance that can influence the macroscopic trans-682

port rate.683

To clarify this point, consider that the entrainment rate may fluctuate under macro-684

scopically steady, uniform boundary conditions when bedforms are present. In this case,685

the instantaneous entrainment rate may be viewed as a probabilistic quantity and the686

ensemble average flux (over all possible topographic configurations) is given by qx = ELx.687

This becomes qx = ELx if E is constant, or qx = E Lx if E and Lx are independent.688

If they are not independent, the flux may be expressed in terms of a mean and devia-689

toric component as690

qx = E Lx + E′L′x (12)

where E′ = E−E and L′x = Lx−Lx. The second term in this expression is a covari-691

ance and can be rewritten as E′L′x = ρELx
σEσLx

, where ρELx
is the correlation co-692

efficient for the entrainment rate and hop distance, σE is the standard deviation of the693

entrainment rate, and σLx
is the standard deviation of the hop distance. The diffusive694

contribution to the flux under disequilibrium conditions may similarly be expanded in695

terms of mean and deviatoric components. This clarifies how correlations can influence696

the macroscopic transport rate and leads to several unanswered questions. First, are the697

entrainment rate and hop distance correlated over equilibrium mobile bedforms? Sec-698

ond, how does the correlation coefficient change under different conditions? Third, how699

do entrainment rate and hop distance vary within a statistically homogeneous bedform700

field as a function of local topography?701

Because our experimental approach was aimed at quantifying the probability dis-702

tribution of particle hop distance and travel time averaged over all possible topographic703

configurations, our results are limited in their capacity to elucidate the interaction be-704

tween particle motion and bedform evolution at the granular scale. Nevertheless, our re-705

sults clearly indicate that particle motions vary systematically in relation to topogra-706

phy. Future studies investigating this relationship may clarify (a) how morphodynamic707

feedbacks lead to a stable condition where the motion of individual particles perpetu-708

ates an statistically steady, uniform topographic configuration, and (b) how bedforms709

influence the advective and diffusive components of the flux under different flow condi-710

tions.711

5 Conclusions712

This paper presents results of an experimental study comparing the probability dis-713

tributions that describe the spatiotemporal scales of particle motion linking particle en-714
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trainment and disentrainment events. Measured distributions of particle travel time, Tp,715

streamwise hop distance, Lx, and lateral hop distance, Ly, are compared with previously716

proposed theoretical distributions describing particle motions over plane-bed topogra-717

phy. We confirm that particle motions over plane-bed topography in natural sediments718

conform to existing theory. Travel times follow an exponential distribution while stream-719

wise and absolute lateral hop distances follow a Weibull distribution with shape param-720

eter k = 1/2.721

In contrast, we find that particle hop distances over bedforms possess an increased722

standard deviation in both the streamwise and lateral directions relative to the mean stream-723

wise hop distance. We argue that this effect is consistent with observations of particle724

motion over bedforms reported by previous authors; quantities like particle activity and725

velocity vary systematically in relation to topographic position. Topographically-induced726

deviations from mean-particle behavior coupled with local flow velocity result in an ad-727

ditional source of variability that is superimposed on turbulent flow and particle colli-728

sion effects. At the macroscopic scale, this means that the relative magnitudes of advec-729

tive and diffusive-like transport implied by plane-bed distributions cannot be assumed730

when bedforms are present. Instead, bedforms increase the propensity for streamwise731

and lateral diffusion-like transport.732
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