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Abstract

Earthquake clustering is a relevant feature of seismic catalogs, both in time and space. Several methodologies for earthquake

cluster identification have been proposed in the literature in order to characterise clustering properties and to analyse background

seismicity. We consider two recent data-driven declustering techniques, one is based on nearest-neighbor distance and the other

on a stochastic point process. These two methods use different underlying assumptions and lead to different classifications of

earthquakes into background events and secondary events. We investigated the classification similarities by exploiting graph

representations of earthquake clusters and tools from network analysis. We found that the two declustering algorithms produce

similar partitions of the earthquake catalog into background events and earthquake clusters, but they may differ in the identified

topological structure of the clusters. Especially the clusters obtained from the stochastic method have a deeper complexity

than the clusters from the nearest-neighbor method. All of these similarities and differences can be robustly recognised and

quantified by the outdegree centrality and closeness centrality measures from network analysis.
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Abstract18

Earthquake clustering is a relevant feature of seismic catalogs, both in time and space.19

Several methodologies for earthquake cluster identification have been proposed in the20

literature in order to characterize clustering properties and to analyze background seis-21

micity. We consider two recent data-driven declustering techniques, one is based on nearest-22

neighbor distance and the other on a stochastic point process. These two methods use23

different underlying assumptions and lead to different classifications of earthquakes into24

background events and secondary events. We investigated the classification similarities25

by exploiting graph representations of earthquake clusters and tools from network anal-26

ysis. We found that the two declustering algorithms produce similar partitions of the earth-27

quake catalog into background events and earthquake clusters, but they may differ in28

the identified topological structure of the clusters. Especially the clusters obtained from29

the stochastic method have a deeper complexity than the clusters from the nearest-neighbor30

method. All of these similarities and differences can be robustly recognized and quan-31

tified by the outdegree centrality and closeness centrality measures from network anal-32

ysis.33

Plain Language Summary34

Clustering, in both space and time, is a widely recognised feature of seismicity. An35

adequate identification of earthquake clusters allows splitting seismicity into background36

and clustered events (e.g. aftershocks), and is an essential step in several studies, rang-37

ing from seismic hazard assessment to long- and short-term earthquake forecasting. Also,38

the space-time patterns of identified clusters may provide useful insights on the struc-39

tural and dynamic tectonic features of a region. Among the several methods proposed40

so far to identify and characterise seismic clusters, we consider two recent data-driven41

declustering techniques, one based on nearest-neighbor distance and the other on a stochas-42

tic point process. These two methods use different underlying assumptions and may lead43

to different classifications of earthquakes into background events and clustered events.44

Therefore this study aims to compare their performances, including clusters structure45

characterisation, by exploiting tree graph representations and tools from network anal-46

ysis. We found that: (1) the two declustering algorithms produce similar partitions of47

the earthquake catalog; (2) they may differ in the internal structure outlined for indi-48

vidual clusters, with the nearest-neighbor method usually providing simpler structures49

than stochastic declustering method; and (3) these features can be robustly quantified50

by centrality measures widely used in network analysis.51

1 Introduction52

Short-term earthquake clustering is a widely recognised feature of seismic activ-53

ity, which eventually complicates the analysis of seismicity, especially when we evaluate54

long-term earthquake risks. An ideal partition of an earthquake catalog is into two sub-55

sets of events, referred as background seismicity and secondary seismicity, respectively.56

Background events are intended as spontaneous or independent earthquakes; secondary57

events are considered as triggered by other earthquakes, therefore manifestly dependent58

events, generally forming spatio-temporal clusters and producing a significant increase59

of the seismicity rate. It is often supposed that background events are representative of60

the long-term spatio-temporal behaviour of seismicity in a region. Poisson model, renewal61

model, and stress release model are typically assumed as suitable stochastic processes62

to describe background events (Vere-Jones, 1978; Rotondi, 2010; Rotondi & Varini, 2019).63

On the other hand, the identification of earthquake clusters is important to understand64

and to forecast the spatio-temporal evolution of a seismic sequence on short time scales;65

the Omori-Utsu formula, the Epidemic-Type Aftershock-Sequence model and its exten-66
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sions are typically used to model earthquake clusters, such as swarms or aftershock se-67

quences (Ogata, 1998).68

However, an objective and commonly agreed method for separating earthquake clus-69

ters from each other and from the background seismicity is critical. There are several70

declustering algorithms in the literature (van Stiphout et al. (2012) and references therein),71

which are likely to identify different earthquake clusters and, accordingly, different declus-72

tered versions of a catalog.73

The most used declustering algorithms are the mainshock-window method by Gardner74

and Knopoff (1974) and the linked-window method by Reasenberg (1985), due to their75

simplicity and software availability: the former removes all earthquakes in a certain space-76

time window around each suitably defined mainshock; the latter performs scans within77

certain space-time windows of each event in the catalog in order to form clusters of events78

and then replace each cluster with a single event (e.g. the first, or the larger). The draw-79

back of window methods is that they require some subjective choices, such as the def-80

inition of mainshock or the dimensions of the space-time windows, which might seriously81

influence the results.82

Among the valid alternatives to window-based methods, we focus on two recently83

proposed declustering algorithms: the nearest-neighbor method by Zaliapin and Ben-84

Zion (2013, 2016) and the stochastic declustering method by Zhuang et al. (2002, 2004)85

and Zhuang (2006). They have been the subject of several recent papers to which the86

readers can refer for additional details (e.g. Peresan and Gentili (2018), Zhang and Shearer87

(2016), Nandan et al. (2019) for the nearest-neighbor method and Davoudi et al. (2018),88

Zhuang et al. (2005), Talbi et al. (2013) for the stochastic declustering method). Both89

methods are data-driven and can be satisfactorily applied to decompose the seismic cat-90

alog into background seismicity and sequences of clustered earthquakes.91

In addition, both methods allow studying the internal structure of the identified92

sequences (or several probable realizations of it, in the case of stochastic declustering method)93

since they provide the connections between events forming each cluster.94

For example Wang et al. (2010) compared the Reasenberg’s, Kagan’s, and Zhuang’s95

methods; Talbi et al. (2013) dealt with the methods of Gardner and Knopoff, Reasen-96

berg, and stochastic declustering. However, in-depth comparison was carried out so far97

between these more recent methods.98

This study focuses on the nearest-neighbor and the stochastic declustering algo-99

rithms because they can be used not only to identify background seismicity, but also to100

investigate the properties and internal structure of seismic clusters (Zhuang et al., 2004;101

Guo et al., 2015, 2017). The aim is to compare the features of clusters identified by the102

two algorithms exploiting tools and measurements from network analysis. Moreover the103

research aims to improve our understanding of the role of moderate earthquakes in the104

region, providing in the meanwhile a characterization of seismicity patterns and their vari-105

ations at short-term space-time scales.106

This article is organised as follows: a short description of both declustering meth-107

ods is given in Section 2; the seismicity of Northeastern Italy and the related earthquake108

data sets, to be used as a case study, are introduced in Section 3. Section 4 gives the com-109

putational details to fit the declustering algorithms to the data and then it provides a110

global comparison of the background seismicity and earthquakes clusters obtained from111

the two methods. Section 5 deals with the analysis of the clusters structure by exploit-112

ing graphical tools and quantitative methods from network theory. Conclusions are drawn113

in Section 6.114
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2 Declustering Algorithms Under Examination115

Given a catalog {(ti, xi, yi,mi) : i = 1, · · · n}, where n is the total number of116

earthquakes, and ti, (xi, yi), and mi are the occurrence time, epicentral location, and117

magnitude, respectively, the numerical algorithms of these two declustering methods are118

given in following subsections.119

2.1 Nearest-neighbor algorithm (NN)120

This approach is based on the NN-distance (nearest-neighbor distance) between121

two earthquakes in the space-time-energy domain, as defined by Baiesi and Paczuski (2004):122

ηij = (tj − ti)r
df
ij 10−bmi (1)123

where ti < tj and rij is the spatial distance between events i and j. This metric ex-124

ploits the following statistical properties of seismicity to quantify the correlation between125

earthquakes: the inter-occurrence time, the fractal dimension of the hypocentres distri-126

bution, and the Gutenberg–Richter law. There are only two unknown parameters, namely127

fractal dimension df and b-value, which are jointly and robustly estimated by the Uni-128

fied Scaling Law for Earthquakes (USLE) method (Nekrasova et al., 2011); a separation129

distance η0 is also estimated in order to identify clusters of events (details in Peresan and130

Gentili (2018)).131

The nearest-neighbor distance ηij can be equivalently decomposed into the corre-132

sponding rescaled space (Rij) and rescaled time (Tij) distances from the parent to its133

offspring event (Zaliapin et al., 2008), namely ηij=Tij Rij , where: Tij = tij10−bmi/2
134

and Rij = r
df
ij 10−bmi/2.135

Accordingly each event j is connected to its nearest-neighbor i = arg mink:k<j ηkj .136

Then, by removing all connections ηij such that ηij > η0, the earthquake catalog is un-137

ambiguously partitioned on distinct clusters, each containing at least one event (Zaliapin138

& Ben-Zion, 2013, 2016). The maximum magnitude event of each cluster is labelled as139

background event and the remaining events of the clusters are included in the secondary140

seismicity.141

2.2 Stochastic declustering algorithm (SD)142

This approach is based on the space-time ETAS (epidemic-type aftershock sequence)143

model (Ogata, 1998), a branching point process defined by its intensity function condi-144

tional on the observation history Ht:145

λ(t, x, y | Ht) = µ(x, y) +
∑
k:tk<t

g(t− tk, x− xk, y − yk;mk) (2)146

where µ(x, y) is the spatial background rate of a time-homogeneous Poisson process and,147

at time t, g(t−tk, x−xk, y−yk; mk) is the contribution to seismic hazard due to trig-148

gering effects of the k-th earthquake. The explicit functional forms in Eq. (1) are the149

following:150

µ(x, y) = ν · u(x, y)151

g(t, x, y;m) = Aeα(m−m0) · (p− 1)cp−1 (t+ c)
−p · (3)152

· 1

2πdeα(m−m0)
exp

{
−1

2

x2 + y2

deα(m−m0)

}
153

where ν,A, c, α, p, d, q, γ are positive parameters and u(x, y) is an unknown spatial func-154

tion (Zhuang et al., 2002). An iterative algorithm simultaneously provides the maximum155

likelihood estimates of the eight model parameters and a non parametric kernel estimate156

of the spatial background rate.157
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According to point process theory, the probability that event j is generated by the158

background process is ϕj = µ(xj , yj)/λ(tj , xj , yj |Htj ), and the probability that it is159

triggered from previous event i is ρij = g(tj−ti, xj−xi, yj−yi; mi)/λ(tj , xj , yj |Htj ).160

Thinning (sampling) the process according to these probabilities allows splitting the cat-161

alog into background events and triggered events, and also setting connections between162

triggering and triggered events (Zhuang et al., 2002, 2004; Zhuang, 2006). The first event163

of each cluster is labelled as background event, which may not be the maximum mag-164

nitude event within the cluster; it is named ancestor because it represent the earthquake165

that triggers others in the cluster. The remaining events of the clusters are included in166

the secondary seismicity and are called descendants. Unlike NN method, SD algorithm167

can provide many declustered catalogs by simulation.168

2.3 Differences and connections between the NN and SD methods169

Notably the two methods have a different definition of background events: while170

NN assigns to the background seismicity the largest event from each cluster (i.e. the main-171

shock), SD assigns to it the first event of the cluster (not necessarily the mainshock); there-172

fore the declustered catalogs may differ, particularly when foreshocks are identified.173

The NN declustering method has some connections with the stochastic decluster-174

ing method. Firstly, the NN-distance ηij takes a similar form as 1/g(tj−ti, xj−xi, yj−175

yi;mi). If we consider an ETAS-like model with the conditional intensity176

λ0(t, x, y | Ht) = µ0 +A
∑
i:ti<t

(t− ti)−1 r(xi, yi;x, y)−df 10bmi , (4)177

where r(x, y;x′, y′) is the Euclidean distance between (x, y) and (x′, y′), the quantity ρ
(0)
ij =178

A(tj − ti)−1 r(xi, yi;xj , yj)−df 10bmi/λ0(tj , xj , yj | Htj ) is proportional to the recipro-179

cal of ηij . In this new model the background rate µ0 is an unknown constant and A is180

also unknown, which are in fact connected to the NN method through η0 = A/µ0.181

The basic differences between these two methods are clear.182

1. The NN method classifies the clusters based on the minimum distance ηij , which183

corresponds, for each event, to the largest probability ρij , among the probabili-184

ties that the event is from background seismicity or triggered by one of the pre-185

vious events, according to the model in (4). The SD method, on the other side,186

makes use of the full probability distribution of ρij , leading to several possible clus-187

ter classifications. As a rule, a probabilistic-manner resampling is recommended188

to reflect the uncertainty in the classification of the family tree; however, SD can189

also classify the clusters based on the maximum probability ρij , in the same man-190

ner as the NN method.191

2. The NN method implicitly estimates the classification parameter η0, approximately192

according to the separation between two modes of the NN-distance distribution;193

the two remaining parameters, namely the b-value and the fractal dimension of194

epicenters, are estimated independently, and used as a priori input information.195

No explicit assumption is made about the background seismicity, which can be in-196

homogeneous in space (Zaliapin et al., 2008) and possibly also in time. The SD197

method is based on the ETAS model, where the model parameters and the op-198

timal non-homogeneous background rate are estimated through MLE procedure,199

thus providing a summary description of the considered data set. Accordingly, the200

NN method allows for a rather fast and robust identification of clusters, with less201

stringent requirements about the catalog completeness and homogeneity, while the202

SD provides a more detailed, specific and sophisticated data description and clas-203

sification, requiring high-quality catalogs.204
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Figure 1. The study region (red polygon) and the epicentres of the earthquakes occurred

since 1977. The strongest earthquakes, with magnitude larger than 5.0, are marked by triangles.

3 Study Region and Data205

The study region, which comprises North-Eastern Italy and Western Slovenia, is206

located along the northern edge of Adria micro-plate, at the transition between Alpine207

and Dinaric fault systems. Earthquakes are mostly shallow (up to 12 km), and are preva-208

lently of thrust type to the west and strike-slip to the east. The instrumental seismic-209

ity recorded during about 40 years, prevalently consists of low to moderate earthquakes,210

only occasionally exceeding magnitude 4.0; the largest earthquake was recorded in 1998211

(M5.6), nearby the border between Italy and Slovenia. Despite the moderate seismic ac-212

tivity that has recently affected this region, the historical seismicity testifies to its high213

seismic hazard and high vulnerability. According to the Italian Parametric Earthquake214

Catalogue CPTI15 (Rovida et al., 2014), at least six destructive earthquakes with mag-215

nitude larger that 6.0 hit that area in the past millennium, the most recent one being216

the M6.4 1976 Friuli earthquake (Slejko et al., 1999).217

To investigate the clustering features in the study region, we consider the earth-218

quake bulletins compiled at the National Institute of Oceanography and Experimental219

Geophysics, which include 27353 earthquakes occurred in the time span from 7 May 1977220

to 30 April 2018, and with duration magnitude up to Md5.6. Fig. 1 shows the distribu-221

tion of earthquake epicentres, as well as the study region, which is a polygonal area de-222

limited by the following five vertices: (11.5, 45.5); (11.5, 46.5); (13.0, 47.0); (14.0, 46.75);223

(14.0, 45.5). A detailed analysis of the data completeness in space and time, including224

delineation of the study region and estimation of the scaling parameters of seismicity,225

was carried out by Peresan and Gentili (2018). Within the identified area (red polygon226

in Fig. 1), the bulletins can be considered fairly complete for magnitudes M ≥ 2.0 dur-227

ing the whole time span 1977-2018 (Fig. 2), except for a time interval between Decem-228

ber 1990 and May 1991, when data acquisition was interrupted due to a fire accident (Fig. 3,229

bottom panel).230
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Figure 2. Histogram on magnitude (left) and estimated Gutenberg–Richter law (right) for the

full (1977-2018) and the complete (1994-2018) data sets.
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Figure 3. Full data set (1977-2018, M ≥ 2.0): cumulative number of events versus time (top)

and magnitude versus time (bottom).

Since the data are certainly incomplete in the early 1990s, two subsets of the cat-231

alog are considered hereinafter. The former, referred to as the complete data set, includes232

all the 3219 earthquakes having magnitude at least 2.0 and occurred since 1994; the sta-233

tistical completeness and the b-value of the Gutenberg-Richter law have been estimated234

using only this part of the data (Fig. 2). The latter subset, named the full data set, is235

obtained from the catalog by setting a minimum threshold magnitude equal to 2.0; there-236

fore, it covers the entire time span from 1977 to 2018 and it includes 4247 earthquakes237

(Fig. 3).238

4 Declustering Outputs239

4.1 Declustering settings and global features of the two declustered cat-240

alogs241

Both NN and SD algorithms are applied in order to obtain declustered versions of242

the full data set.243
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Figure 4. Distributions of NN-distances, between each event and its nearest neighbour, esti-

mated for earthquakes with M≥ 2.0 in 1977-2018. Left column: 1D density distribution of log η,

with estimated Gaussian densities for clustered (blue) and background (red) components. Right

column: 2D joint distribution of rescaled space and time distances (R,T).

The scaling parameters of NN-algorithm are simultaneously estimated by the USLE244

method and their values are b = 0.9 and df = 1.1 as defined in Peresan and Gentili245

(2018); the logarithm of the separation distance is automatically set equal to log η0 =246

−4.1 (Fig. 4).247

Based on these parameters, the NN-algorithm delivers its partition of the data set,248

which is hereinafter referred to as the NN-catalog. The background seismicity turns out249

to be composed by the isolated events (singles) and the largest event of each cluster (i.e.250

the mainshocks, the number of which equals the number of clusters); all other events be-251

long to the secondary seismicity. Table 1 (top) summarizes the NN-catalog by provid-252

ing the number of events assigned to background seismicity and to secondary seismic-253

ity, as well as the number of isolated events (singles), the number of identified earthquake254

clusters, and the total number of events that temporally precede/follow the strongest earth-255

quake that occurred in their own cluster (here conventionally referred to as foreshocks256

and aftershocks).257

As for the SD-algorithm, the complete data set (which ranges from 1994 to 2018)258

has been used for the maximum likelihood estimation of ETAS parameters, by assum-259

ing that the past history Ht of the process is given by the full data set (which ranges from260

1977 to 2018). The following estimates of the ETAS parameters are thus given: ν = 0.6772,261

A = 0.6656, c = 0.0146, α = 1.5407, p = 1.0378, d = 0.00007, q = 2.2527, and262

γ = 0.6239.263

Fig. 5 shows the estimated total rate λ̂(t, x, y | Ht) in the region, the ratio between264

estimated cluster rate and total rate, and the histogram of the estimated background prob-265

abilities ϕ̂j of each event j in the catalog (j = 1, ..., n). According to the SD-method,266

several declustered catalogs can be obtained by simulating the connections between events267

based on both the estimated background probabilities {ϕ̂j : j = 1, ..., n} and the es-268

timated triggering probabilities {ρ̂ij : i, j = 1, ..., n, i < j}. To make the comparison269

between the two declustering methods feasible, we decided to select only one of those270

simulated catalogs. A reasonable choice is to select the “most probable declustered cat-271

alog”, which is obtained by retaining the most probable connections between any pair272

of events according to the estimated background and triggering probabilities; the result-273

ing partition of the full data set is hereinafter referred to as the SD-catalog. Table 1 (bot-274
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Figure 5. Some results from the SD-algorithm: map of the estimated logarithm of the total

rate (top left), map of the ratio between estimated cluster rate and total rate (top right), his-

togram of the estimated background probabilities for each earthquake in the data set (bottom).

tom) summarizes some counts on the SD-catalog, which turn out fairly consistent with275

those obtained from NN-method (top of Table 1).276

4.2 Comparison of clusters size277

The clusters identified by the NN and SD methods are first of all compared in terms278

of cluster size (i.e. number of events composing the cluster), by assuming clusters are279

formed by at least two events. The cluster size distributions of NN-catalog and SD-catalog280

are shown in Fig. 6; in both cases about 95% of the clusters are composed by less than281

10 events and about 85% of the identified clusters has even less than 5 events. This means282

that, for both methods, the number of relevant clusters is quite limited, less that 15%283

of identified clusters.284

It is not obvious to establish a one-to-one correspondence between NN-clusters and285

SD-clusters, because events from one NN cluster may be separated into different SD clus-286

ters. To facilitate the comparison of individual clusters identified by the two decluster-287

ing methods, we consider the largest earthquake in each cluster as the representative event288

of the cluster. If a NN-cluster and a SD-cluster have the same representative event, we289
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Table 1. Summaries of the NN-catalog (top) and the SD-catalog (bottom). Tables report the

number of events classified as background/secondary seismicity, the number of single events, the

number of clusters, the total number of secondary events that occur before/after the maximum

magnitude event in their own cluster (foreshock/aftershock). Percentages with respect to the

total number of data are also reported.

NN-catalog

n.background n.secondary n.events
2468 (58.11%) 1779 (41.89%) 4247 (100%)

n.singles n.clusters n.aftershocks n.foreshocks
2123 (49.99%) 345 (8.12%) 1548 (36.45%) 231 (5.44%)

SD-catalog

n.background n.secondary n.events
2255 (53.10%) 1992 (46.90%) 4247 (100%)

n.singles n.clusters n.aftershocks n.foreshocks
1884 (44.36%) 371 (8.74%) 1685 (39.67%) 307 (7.23%)

cluster size

F
re

q
u
e
n
c
y

0
5
0

1
5
0

2
5
0

3
5
0

0 10 20 30 40 50 60+

96.2%

1.7% 0.6% 0.3% 0.3% 0.3% 0.6%

cluster size

F
re

q
u
e
n
c
y

0
1
0
0

2
0
0

3
0
0

0 10 20 30 40 50 60+

94.6%

3.5% 0.5% 0.5% 0% 0.3% 0.5%

Figure 6. Distribution of the cluster size for the NN-catalog (left) and the SD catalog (right).

–10–



manuscript submitted to JGR: Solid Earth

Table 2. Selection of large earthquake clusters identified by both declustering methods. The

table lists: date and magnitude of the largest event in the cluster; cluster size based on the NN-

method and the SD-method; number of events identified by both methods.

largest cluster size matched largest cluster size matched
event NN SD events event NN SD events

12 April 1998 M5.6 720 757 682 20 April 1994 M3.7 21 27 21
12 July 2004 M5.1 201 238 196 14 February 2002 M4.9 19 14 14

13 April 1996 M4.3 52 52 48 5 October 1991 M3.8 18 19 18
16 September 1977 M5.2 41 38 36 12 February 2013 M3.8 15 12 11

1 February 1988 M4.1 34 39 34 25 February 2018 M3.9 15 15 15
18 April 1979 M4.8 28 12 12 29 August 2015 M4.3 5 14 5

say that they are matched clusters. In our application we found exactly 241 pairs of matched290

clusters.291

Table 2 lists some significant clusters, reporting their cluster size according to NN-292

method and SD-method, as well as the number of events associated by both methods,293

i.e. the matched events. We notice that, in general, the number of matching events be-294

tween NN-clusters and SD-clusters is sizable compared to the total cluster size; there-295

fore we can state that the two declustering methods roughly identify the same earthquake296

clusters. However, this comparison neglects the links between the events, which are es-297

tablished by each declustering method. In section 5 we deepen the comparison between298

NN-clusters and SD-clusters by analyzing also their internal structure.299

5 Topological Structure of Earthquake Clusters300

Connections between events of a cluster, as established by the considered declus-301

tering methods, allow us to represent the cluster as a network graph. In this section we302

focus on some centrality measures developed in network theory, which should quantita-303

tively express the way earthquakes get organized within clusters.304

5.1 Tree graph representation of clusters305

By construction, the identified clusters are organized in rooted time-oriented tree306

graphs, where each tree root represents the triggering event and the other nodes are the307

triggered secondary events. For example, Fig. 7 illustrates the tree graph representation308

of the earthquake cluster occurred in 1988, according to NN-algorithm (left) and SD-algorithm309

(right). Nodes are joined by edges, which represent the connections between pairs of events.310

Each node (event), other than the root, is directly connected to its only parent (which311

triggers the event); in other words, that node is a direct descendant of its parent. The312

nodes along the path between the root and a node v are named ancestors of node v. The313

descendants of node v are those nodes of which v is an ancestor.314

It is worth noting that the triggering earthquake of the sequence (tree root) is not315

necessarily the strongest event of the cluster. Let us consider, for instance, the 1988 clus-316

ter (Fig. 7): both declustering methods recognised that the 1 February 1988 11:12:41.28317

earthquake, with magnitude M3.0, is the triggering earthquake of the sequence; there-318

fore, this event turns out to be an ancestor of the largest event within the cluster, an earth-319

quake with magnitude M4.1 that occurred on 1 February 1988 14:21:38.29.320

As for 1988 cluster, there is little difference between NN-cluster and SD-cluster in321

terms of cluster size, tree graphs, and spatio-temporal distribution of the cluster events322
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(Tab. 2 and Fig. 7). But this is not always the case. Indeed we noticed that NN-method323

is prone to cluster some events relatively distant in space and, conversely, SD-method324

tends to cluster events close in space, but quite far in time, as for the clusters occurred325

in 1996 and 1998, respectively (e.g. Figs. 8-9). Moreover, SD-method may provide a more326

complex structure for clusters, reflecting the multilevel triggering property of the ETAS327

model (Fig. 9).328

5.2 Some centrality measures329

We have chosen some tools from network theory in order to study the structural330

properties of clusters through their network representations (tree graphs).331

We focus hereafter on the concept of centrality measure, which is strictly related332

to the topology (structural properties) of the network (Freeman, 1978). A centrality value333

is attributed to each node according to its importance (centrality) within the network.334

Since “importance” has a relative meaning and appropriate interpretation with respect335

to circumstances, several centrality measures have been proposed in the literature (Wasserman336

and Faust (1994), Freeman (1978), Bonacich (1987), Bonacich and Lloyd (2001), Borgatti337

(2005), and references therein). A brief overview of two centrality measures we consid-338

ered as relevant for our analysis, is provided hereinafter.339

Outdegree centrality. The simplest centrality measures are based on the degree, in-340

degree, and outdegree of a node v, which are respectively defined as the number of edges341

(links) that are connected to v, the number of incoming edges to v, and the number of342

outgoing edges from v. We notice that, by construction, each event of a declustered cat-343

alog has indegree equal to 0 or 1 (corresponding to background events or secondary events,344

respectively), and we expect that high outdegrees are especially associated with main-345

shocks within a cluster. Therefore outdegree turns out to be more suitable than inde-346

gree in our application. Let δ(v) be the outdegree of node v in tree T ,347

δ(v|T ) = number of edges in tree T that go down from v. (5)348

Since the outdegree of a node is at most #T−1, where #T is the total number of nodes349

in T , the outdegree centrality of v is defined as the proportion of direct offsprings from350

v in the entire tree T :351

cδ(v|T ) =
δ(v|T )

#T − 1
, (6)352

so as to obtain a measure independent on network size. Outdegree centrality ranges in353

[0, 1], where high degree values denote the most important nodes, to which most of the354

events are connected.355

Closeness centrality. The most important node according to closeness centrality356

has minimum distance from every other nodes. Closeness centrality of a node v is de-357

fined as358

cc(v|T ) =
#T − 1∑
w∈T d(v, w)

, (7)359

where d(v, w) is the shortest distance in T from v to w (i.e., the number of edges in the360

shortest path from v to w); the numerator #T−1 is the minimum value that the sum361

in the denominator can take. If there is no path from v to w (e.g. from a node to the362

root), then d(v, w) is set equal to the total number of nodes in T . Closeness centrality363

ranges in [0, 1] and, in analogy with outdegree centrality, high degree values denote the364

most important nodes.365

Finally, a global index, named centralization, is introduced in order to summarize366

the centrality measures of all the nodes in the network: Centralization quantifies the dif-367

ferences between the centrality of the most central node v∗ and that of all other nodes.368
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Figure 7. NN-cluster (left) and SD-cluster (right) of the seismic sequence occurred in 1988:

(a-b) tree graph representation, (c-d) magnitude versus occurrence times, (e-f) map of the epicen-

tres. Date and magnitude of the largest event is also reported.
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Figure 8. NN-cluster (left) and SD-cluster (right) of the seismic sequence occurred in 1996:

(a-b) tree graph representation, (c-d) magnitude versus occurrence times, (e-f) map of the epicen-

tres. Date and magnitude of the largest event is also reported.
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Figure 9. NN-cluster (left) and SD-cluster (right) of the seismic sequence occurred in 1998:

(a-b) tree graph representation, (c-d) magnitude versus occurrence times, (e-f) map of the epicen-

tres. Date and magnitude of the largest event is also reported.
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The following formulas define the centralization based on outdegree centrality and close-369

ness centrality:370

Cδ(T ) =

∑
v cδ(v

∗|T )− cδ(v|T )

#T − 1
outdegree centralization, (8)371

372

Cc(T ) =

∑
v cc(v

∗|T )− cc(v|T )

#T − 1
closeness centralization. (9)373

Centralization also ranges in [0, 1] and high centralization indicates the tendency of a374

single node (i.e. an earthquake) to be more central than other nodes in the network (i.e.375

in the cluster). Both centrality measures and centralization are normalized on [0, 1] and376

thus independent on the cluster size; this makes the topological comparison among tree377

graphs easier, compared to the use of other indices (e.g., average node depth and aver-378

age leaf depth proposed by Zaliapin and Ben-Zion (2013)), especially for clusters with379

very different numbers of nodes.380

Tab. 3 lists the centralization values of matched clusters with large cluster size. Fig. 10381

compares all the matched clusters that have at least 5 events, in terms of both Cδ and382

Cc. Fig. 11 shows the spatial distribution of the epicentres of the representative events383

for all the matched NN-clusters and the SD-clusters. Overall, it emerges that central-384

ization values of the NN-clusters are comparable to or higher than those of the SD-clusters.385

Thus, both centralizations Cδ and Cc are proved to be effective indices for expressing386

what has been observed in Figs. 7-9: whenever a NN-cluster exhibits similar or even sim-387

pler structural complexity than its matched SD-cluster, its centralization value is sim-388

ilar to or greater than that of its matched SD-cluster.389

We also verified that Cδ and Cc have a strong positive correlation to each other (0.87390

for NN-clusters and 0.86 for SD-clusters). Their correlations to the magnitudes of the391

representative events are moderate (0.60 and 0.46 for NN-clusters, and 0.42 and 0.26 for392

SD-clusters, respectively) and also their correlations with clusters size are close to zero393

(between -0.2 and 0.2). This suggests that the complexity of clusters structure does not394

depend simply on magnitude and related clusters size.395

The spatial distribution of centralization values obtained for NN- and SD-clusters396

(Fig. 11) highlights the basic difference between the two approaches, namely the com-397

paratively higher complexity of SD-clusters structure, which reflects the multilevel trig-398

gering property of this approach; in the color scale dark colors correspond to low val-399

ues of centralization, which are associated with swarm-like sequences, whereas light col-400

ors correspond to burst-like sequences. This is particularly evident for the largest earth-401

quakes (events with M ≥ 5 in Table 2), which are represented by stars in the maps. These402

events are associated to rather simple clusters by NN (i.e. high centrality values, close403

to 1), whereas they correspond to complex clusters in SD (i.e. low centrality values, close404

to 0); this effect is less evident for the 1977 earthquake, possibly because the event oc-405

curred at the beginning of the considered data set. In addition, while the spatial distri-406

bution of centralization values from NN-clusters does not contradict the spatial pattern407

identified by Peresan and Gentili (2018), in both maps from SD-clusters, the complex408

swarm-like sequences appear scattered all over the study area.409

6 Conclusions410

In this study, we compared the performances of the NN and SD algorithms in clas-411

sifying events from an earthquake catalogue into clusters and background seismicity. Both412

methods provide data-driven identifications of earthquake clusters and permit to disclose413

possible complex features in their internal structure. The two declustering algorithms414

have been applied to the seismicity data of Northeastern Italy, whose completeness and415

scaling parameters were already analysed in some detail by Peresan and Gentili (2018).416
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Table 3. Centralization scores based on outdegree centrality (Cδ) and on closeness centrality

(Cc) for the selection of matched large clusters listed in Table 2. The clusters including earth-

quakes with M ≥ 5 are marked by numbers as in Fig. 10.

Cδ Cc
largest event NN-cluster SD-cluster NN-cluster SD-cluster

(1)12 April 1998 M5.6 0.6490 0.1868 0.6307 0.1601
(2)12 July 2004 M5.1 0.8191 0.4576 0.7832 0.1431

13 April 1996 M4.3 0.3802 0.3602 0.2274 0.2335
(4)16 September 1977 M5.2 0.8462 0.5836 0.8472 0.6763

1 February 1988 M4.1 0.3756 0.1627 0.2632 0.2754
18 April 1979 M4.8 0.4623 0.5041 0.4798 0.5013
20 April 1994 M3.7 0.5275 0.4808 0.1898 0.2162

14 February 2002 M4.9 0.8827 0.9172 0.4466 0.4476
5 October 1991 M3.8 0.5640 0.2377 0.3855 0.2052

12 February 2013 M3.8 0.1200 0.1074 0.1798 0.1063
25 February 2018 M3.9 0.4643 0.3878 0.3737 0.3351

29 August 2015 M4.3 1.0000 0.6686 1.0000 0.6985

Figure 10. Comparison of the matched clusters that have at least 5 events, in terms of outde-

gree centralization (left) and closeness centralization (right); correlation values are also reported.

The colors and sizes of the dots refer to the magnitude level of the largest event in the clusters.

Numbered symbols refer to the events listed in Tab. 3.
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Figure 11. Spatial distribution of the epicentres of the representative events (the largest

events within each of the NN-clusters (left) and the SD-clusters (right)) for the clusters that

have at least 5 events. Each epicentre is associated with the outdegree centralization (top) or the

closeness centralization (bottom) of its cluster. The matched clusters are denoted by circles and

the events with M ≥ 5 are highlighted by stars.

–18–



manuscript submitted to JGR: Solid Earth

The global features of the resulting background seismicity and earthquake clusters417

turn out well consistent, though the partitions are slightly different. Specifically, the statis-418

tics of clusters, singles and fore/aftershocks are quite comparable (Tab. 1). Both NN and419

SD results consistently show that background seismicity is composed by a large propor-420

tion of single events (about 45-50%) and by a limited number of clustered events (8-9%).421

However the events forming the background may be different (especially in presence of422

foreshocks), due to the different definitions used by the two methods: NN assigns to back-423

ground the largest earthquake from each cluster, whereas SD the first independent earth-424

quake in the cluster.425

Since the two methods also allow to outline the internal structure of clusters, an426

in-depth comparison was carried out both for selected clusters (Figs. 7, 8, 9) and for all427

matching clusters identified by NN and SD (Figs. 10, 11). The concepts of outdegree cen-428

trality and closeness centrality have been introduced from network theory to quantita-429

tively compare the characteristics of the declustering outputs, by regarding earthquake430

clusters as tree graphs. The proposed centrality measures, Cδ and Cc, are especially ad-431

vantageous when clusters with different and large sizes are compared; in these cases, the432

tree graph representation of the cluster might be very unclear due to the large number433

of nodes, while centralization indices are still able to capture some key properties of the434

hierarchical complexity of the cluster and to rank earthquakes within the cluster accord-435

ing to their importance/centrality. These quantitative measures are shown to be able to436

characterize the internal structure of the clusters in a robust and consistent way. Accord-437

ingly, we found that NN-clusters usually display simpler internal structures than SD-clusters438

and that the corresponding centralization values of NN-clusters are higher than those439

of SD-clusters.440

Given the outcomes of this in-depth comparative analysis of NN and SD methods,441

there are still some open issues that need to be addressed and will be matter for future442

research. The main outcome of this study consists in the identification of the basic sim-443

ilarities and differences between the NN and SD methods, both in their theoretical for-444

mulation and operational results. From a methodological point of view, we believe the445

use of centrality measures and other tools borrowed from network theory may open new446

possibilities in the study of earthquake sequences and their evolution. Another issue is447

to verify generality of above conclusions, that is to assess to what extent they depend448

on the considered catalog and study area by performing the same analysis in different449

regions. Finally, there is the problem of investigating how these declustering algorithms450

influence the forecasting performance in short-term and long-term earthquake hazard451

assessment.452
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