Spatial and seasonal variations of surface ozone formation regime and source attributions in the Guanzhong Basin, China

Guohui Li¹, Ruonan Wang², Naifang Bei³, Jiarui Wu¹, Suixin Liu⁴, Lang Liu¹, Xia Li¹, Jiaoyang Yu¹, Min Zuo¹, Zhenxing Shen⁵, and Xuexi Tie⁶

¹Institute of Earth Environment, Chinese Academy of Sciences
²Institute of Earth Environment, Chinese acdemy of sciences
³Xi'an Jiaotong University
⁴Institute of Earth Environment
⁵Department of Environmental Science and Engineering, Xian Jiaotong University, China
⁶Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

November 26, 2022

Abstract

Rapid increasing industries and city expansions have caused severe air pollution in the Guanzhong Basin (GZB), China in recent decades. Observations reveal that, although implementation of strict mitigation measures since 2014 has considerably reduced particulate matter (PM) pollution, the ozone (O) pollution during the warm season has continuously deteriorated in the basin. Simulations in May and August 2018 have been conducted using the WRF-Chem model to examine spatial and seasonal variations of the O formation regimes as well as source attributions in the GZB. The model generally performs well in simulating meteorological parameters, O, NO, and fine PM against measurements. The identified O formation regimes in cities of the GZB are all VOCs-sensitive in May and become more NO-sensitive in August. Sensitivity studies have shown that the power plants source generally suppresses the Oformation considerably in May and enhances it slightly in August due to its high NO and low VOCs emissions. The residential, transportation and industry sources increase the O concentration in May and August. Moreover, the transportation and industry sources play an increasingly important role in August but opposite for the residential source. The variation of O formation regimes and source attributions from May to August is caused by intensification of solar radiation, which not only promotes photochemical processes, also increases temperature and further enhances biogenic emissions and vertical exchange in the planetary boundary layer. The present study can provide guidelines to devise the effective O abatement strategies suitable for local situations.

1	Spatial and seasonal variations of surface ozone formation regime and source attributions
2	in the Guanzhong Basin, China
3	
4 5	Ruonan Wang ^{1,3,4} , Naifang Bei ² , Jiarui Wu ^{1,3} , Suixin Liu ^{1,3} , Lang Liu ^{1,3} , Xia Li ^{1,3} , Jiaoyang Yu ¹ , Min Zuo ^{1,3} , Zhenxing Shen ² , Xuexi Tie ¹ , and Guohui Li ^{1,3*}
6	
7 8	¹ Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
9 10	² School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
11	³ CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
12	⁴ University of Chinese Academy of Sciences, Beijing, 100049, China
13	
14	*Correspondence to: Guohui Li (<u>ligh@ieecas.cn)</u>
15	
16	Abstract: Rapid increasing industries and city expansions have caused severe air pollution in
17	the Guanzhong Basin (GZB), China in recent decades. Observations reveal that, although
18	implementation of strict mitigation measures since 2014 has considerably reduced particulate
19	matter (PM) pollution, the ozone (O ₃) pollution during the warm season has continuously
20	deteriorated in the basin. Simulations in May and August 2018 have been conducted using
21	the WRF-Chem model to examine spatial and seasonal variations of the O_3 formation
22	regimes as well as source attributions in the GZB. The model generally performs well in
23	simulating meteorological parameters, O ₃ , NO ₂ , and fine PM against measurements. The
24	identified O ₃ formation regimes in cities of the GZB are all VOCs-sensitive in May and
25	become more NO _X -sensitive in August. Sensitivity studies have shown that the power plants
26	source generally suppresses the O_3 formation considerably in May and enhances it slightly in
27	August due to its high NO_X and low VOCs emissions. The residential, transportation and
28	industry sources increase the O ₃ concentration in May and August. Moreover, the
29	transportation and industry sources play an increasingly important role in August but opposite
30	for the residential source. The variation of O ₃ formation regimes and source attributions from
31	May to August is caused by intensification of solar radiation, which not only promotes
32	photochemical processes, also increases temperature and further enhances biogenic emissions 1

- 33 and vertical exchange in the planetary boundary layer. The present study can provide
- 34 guidelines to devise the effective O_3 abatement strategies suitable for local situations.
- **35** Keywords: GZB, WRF-Chem model, O₃ formation regime, source attributions

37 1 Introduction

38 The issue of ozone (O_3) pollution has received considerable attention for the first time in the Los Angeles smog event in 1950s. Since then, the photochemical action of nitrogen 39 40 oxides (NO_X) oxidizing hydrocarbons and thereby forming O₃ as well as concomitant 41 photochemical oxidants has been discussed [Haagen-Smit, 1952]. Since 1990s, stringent 42 precursor emission control strategies have been formulated and carried out to alleviate the 43 severe O₃ pollution in many European and United States urban areas [Cooper et al., 2012; Cooper et al., 2015; Derwent et al., 2010; Simon et al., 2014]. Rapid industrialization and 44 45 urbanization have caused severe air pollution in China within recent decades. The Chinese government has carried out aggressive emission mitigation measures since 2013 and 46 47 considerably reduced particulate pollution, but widespread and persistent O₃ pollution 48 frequently occurs in eastern China during the warm season from April to September. 49 Observations from the Chinese monitoring network, the Ozone Monitoring Instrument, and the recent Tropospheric Ozone Assessment Report (TOAR) have all shown increasing near 50 51 surface O_3 concentrations ([O₃]) and high occurrence frequency of severe O_3 pollution events in China [G Li et al., 2017; K Li et al., 2019a; Lu et al., 2018; Lu et al., 2019; Shen et al., 52 53 2019].

 O_3 is a typical secondary air pollutant produced in the troposphere by the photochemical 54 55 oxidation of hydrocarbons and other volatile organic compounds (VOC_S) in the presence of 56 NO_X and sunlight [W Chameides and Walker, 1973; W L Chameides et al., 1992; Fishman and Crutzen, 1977; Seinfeld, 1989]. The intrusion from the stratosphere is also a critical 57 dynamical source of the tropospheric O₃ [Fishman and Crutzen, 1978; Junge, 1962; 58 59 Mahlman et al., 1980; Stohl, 2003]. High [O₃] can cause intractable hazards to the health of human, crops and ecosystems [Lin et al., 2018; Lippmann, 1993; Mauzerall et al., 2005], 60 61 such as respiratory problems, aggravation asthma and reductions of the crop yields.

Furthermore, these adverse impacts of tropospheric O_3 are spatially and seasonally varied due to regionally different O_3 pollutions [*Daum*, 2004; *Y Wang et al.*, 2011]. Therefore, effective O_3 and precursors control strategies need to be designed for particular regions through identifying O_3 contributions from various emission sources, which is also called ozone source attributions.

Previous studies about O₃ source attributions are generally performed using chemical 67 68 transport models incorporated with methodologies such as the brute force method (BFM), the decoupled direct method (DDM) and the ozone source apportionment technology (OSAT) 69 70 with tagged tracers [Dunker et al., 2002; Napelenok et al., 2008; Yarwood et al., 1996]. These 71 source attribution approaches are widely used to evaluate O₃ contributions of its precursors 72 from each emission sector or a specific region in China [M Y Wang et al., 2019]. Studies on 73 the O₃ source attribution provide fundamental understanding of the chemical and physical 74 processes of O_3 formation, and offer sector or regional source targeted suggestions on O_3 pollution abatement. However, the photochemical regime of the O₃ formation in specific 75 76 locations needs to be further examined to warrant effectiveness of the control strategies. The 77 O₃ formation is traditionally classified in two chemical regimes, i.e., NO_X-limited or 78 VOCs-limited. And the transition regime occurs when the O₃ formation is both sensitive to NO_X and VOCs emissions. Several methods have been used to identify the O₃ formation 79 80 regime including chemistry-sensitive method like the Empirical Kinetic Modeling Approach 81 (EKMA) [Seinfeld, 1988] and species indicators like O₃/NO₂, H₂O₂/HNO₃ and HCHO/NO₂ [L Li et al., 2011c; Martin et al., 2004; Sillman, 1995]. 82

Recent advances in O₃ source attributions in China have concentrated in the
Beijing-Tianjin-Hebei (BTH) region [*G Li et al.*, 2017; *Liu et al.*, 2019], the Yangtze River
Delta (YRD) region [*Gao et al.*, 2016; *L Li et al.*, 2019b] and the Pearl River Delta (PRD)
region [*Y Li et al.*, 2013]. However, few studies have been conducted to investigate O₃ source

87 attributions in the Guanzhong Basin (GZB), which has suffered increasing O₃ pollution recently [Feng et al., 2016]. The GZB, housing five cities in various development phase of 88 89 urbanization and industrilization, is nestled between Qinling in the south and Loess Plateau in 90 the north. The unique topography is unfavorable for the dispersion of air pollutants [Bei et al., 91 2016a; Bei et al., 2016b]. Feng et al. [2016] have found that the industrial emission sector is the largest contributor to [O₃] in Xi'an (the central city in the GZB) compared to biogenic and 92 93 other anthropogenic sources in the summer of 2013. N Li et al. [2018] have disentangled the pure and synergistic effects of anthropogenic and/or biogenic sources on the O₃ formation in 94 95 the GZB and revealed that the anthropogenic source alone dominates the O_3 formation.

Therefore, in the study, the WRF-Chem model is used to comprehensively investigate the O₃ source attributions and formation regime in the GZB during the warm seasons to support design and implementation of effective emission mitigation strategies for the O₃ pollution. The WRF-Chem model and observation data are described in Section 2. Model results and sensitivity studies are presented in Section 3, and the Conclusions are given in Section 4.

102

- 103 2 Data and method
- 104 2.1 WRF-Chem model and configurations

The WRF-Chem model (Weather Research and Forecasting model with Chemistry)
[*Grell et al.*, 2005] utilized in this study is a specific version modified by *G Li et al* [2011a;
2012; 2010; 2011b]. Briefly, the SAPRC-99 mechanism (Statewide Air Pollution Research
Centre, version 1999) is applied to simulate gas-phase chemistry, and the Community
Multi-scale Air Quality (CMAQ) aerosol module (AERO5) developed by the US EPA is
employed for the aerosol simulation [*Binkowski and Roselle*, 2003]. The Fast Tropospheric
Ultraviolet and Visible (FTUV) radiation module with the aerosol and cloud effects on

photochemistry is incorporated into the model to calculate the photolysis rates of gas-phase 112 113 species [G Li et al., 2005; Tie et al., 2003]. The wet deposition of chemical species is based on the method in the CMAQ module, and surface dry depositions are parameterized 114 115 according to Wesely [1989]. The inorganic components in the model are simulated using the 116 ISORROPIA Version 1.7 [Nenes et al., 1998]. The secondary organic aerosol (SOA) is 117 predicted by a non-traditional SOA module, including the volatility basis set (VBS) modeling 118 approach and contributions from glyoxal and methylglyoxal [G Li et al., 2011b]. 119 Since O_3 pollution generally occurs during the warm season from April to September [G Li et al., 2017], May and August in the year of 2018, representing spring and summer 120 respectively, are selected for O₃ simulations in the GZB in the present study. Two days, 16th 121 May and 7th August, with the average peak 8-h $[O_3]$ of 190 µg m⁻³ and 168 µg m⁻³ 122 123 respectively, are chosen for developing EKMA diagrams to examine the O₃ formation regime

124 in different areas. Figure 1 shows the model simulation domain and the detailed model

125 configuration can be found in Table 1.

The anthropogenic emission inventory is developed by *Zhang et al.* [2009] and the biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) [*Guenther et al.*, 2006]. Figure 2 exhibits the distributions of anthropogenic NO_X, VOCs and biogenic VOCs emission rates in May and August 2018. High emissions of NO_X and anthropogenic VOCs (AVOCs) are concentrated at urban areas of cities in the GZB, while the Qingling mountains, located in the south of the GZB, have abundant biogenic VOCs emissions.

133 2.2 Model sensitive studies

An emission reduction matrix comprising 121 scenarios is designed to develop EKMA diagrams to determine the O_3 formation regime. These scenarios include reductions of NO_X and AVOCs emissions from 0% to 100% with an interval of 10%. Given that the biogenic 137 VOCs (BVOC_s) emissions are uncontrollable, only the AVOCs emission reduction is taken 138 into consideration. Furthermore, the brute force method (BFM) is used to evaluate the O_3 139 contributions of industry, power, residential, transportation and biogenic sources in six cities 140 in spring and summer. The BFM directly closes or cuts out one emission source to calculate 141 its contribution to the O_3 formation[*Dunker et al.*, 1996]. Detailed description of simulation 142 scenarios is shown in Table 2.

143 The O₃ formation is investigated in the five cities of the GZB, including Xi'an, Xianyang, Baoji, Weinan and Tongchuan (Figure 1b). The five cities are now experiencing 144 different development phases of urbanization and industrialization. Xi'an, the provincial 145 146 capital of Shaanxi, has been an industrialized city with the most population exceeding 10 147 million and the heavy traffic. In recent several years, with implementation of strict mitigation 148 measures, industrial sectors with serious pollution have been decreased rapidly. Xianyang is 149 now undergoing rapid industrialization and urbanization, followed by Baoji, Weinan, and 150 Tongchuan. It is worth noting that Weinan is the city with the most power plants in the GZB. 151 For comparison, the O₃ pollution in Hanzhong is also examined, a city located on the 152 southern foot of Qinling Mountains and with less industrial activities and abundant forests 153 surrounded (Figure 1).

154 2.3 Measurements

Measurements of criteria air pollutant concentrations and main meteorological parameters are used for evaluating the model performance. The hourly observations of PM_{2.5}, NO₂ and O₃ mass concentrations are released by the Ministry of Environment and Ecology of China. The meteorological parameters include the temperature and relative humidity at 2 m, wind speed and direction at 10 m at one site in the GZB (Figure 1b).

160 2.4 Statistical methods for model evaluation

```
7
```

For validation of the model performance, we follow performance guidelines for urban scale ozone modeling from the US EPA [*Doll*, 1991; *EPA*, 2005] and for aerosol modeling suggested by *Boylan and Russell* [2006]. Statistical methods for gas pollutants evaluation include the normalized mean bias (NMB) and the normalized mean error (NME), while the mean fractional bias (MFB) and mean fraction error (MFE) are recommended for aerosols validation. The basic statistical cores provided by the US EPA are also used for the evaluation, including the mean bias (MB) and the correlation coefficient (R).

168
$$NMB = \frac{\sum_{i=1}^{N} (P_i - O_i)}{\sum_{i=1}^{N} O_i} \times 100\%$$

169
$$NME = \frac{\sum_{i=1}^{N} |P_i - O_i|}{\sum_{i=1}^{N} O_i} \times 100\%$$

170
$$MFB = \frac{1}{N} \sum_{i=1}^{N} \frac{P_i - O_i}{O_i + P_i/2}$$

171
$$MFE = \frac{1}{N} \sum_{i=1}^{N} \frac{|P_i - O_i|}{O_i + P_i/2}$$

172
$$MB = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$$

173
$$R = \frac{\sum_{i=1}^{N} [(P_i - \bar{P}) \times (O_i - \bar{O})]}{\sqrt{\sum_{i=1}^{N} (P_i - \bar{P})^2 \times \sum_{i=1}^{N} (O_i - \bar{O})^2}}$$

174 Where P_i and O_i denote the predicted and observed variables, respectively. *N* is the total 175 number of the predictions used for comparisons, and \overline{P} and \overline{O} denotes the average of the 176 prediction and observation, respectively.

The model performance criteria suggested by the US EPA for O_3 regulatory applications are ±15% for NMB and below 30% for NME, and both MFB and MFE are less than or equal to approximately ±60% and +75%, respectively, for aerosols. For *MB*, the value of zero indicates that model underestimations and overestimations exactly cancel each other. The *R* 181 of 0 implies that there is no linear relationship; while the R of 1 means a perfect linear

182 between the observations and simulations.

183

184 **3** Results and discussions

185

3.1 O₃ pollutions in the GZB

To reduce PM_{2.5} concentrations by up to 25% by 2017 compared with 2012 levels, the 186 187 Chinese State Council has carried out the 'Air Pollution Prevention and Control Action Plan' (APPCAP) since September 2013. Implementation of the APPCAP has considerably reduced 188 189 particulate pollution in China [Zhang et al., 2019]. Table 3 provides the observed criteria air 190 pollutant concentrations averaged from April to September in 2014 and 2018 in the GZB. CO, SO₂, PM_{2.5} and PM₁₀ concentrations have remarkably decreased, particularly regarding 191 SO₂, with a reduction of 38% from 2014 to 2018. However, the average NO₂ and peak 8-h 192 193 $[O_3]$ have enhanced by 7.8% and 40.6%, respectively, showing that the O_3 pollution has continuously deteriorated in the GZB from 2014 to 2018 (Figure 3a). 194

O₃ observations from 5 cities with 33 ambient monitoring sites in the GZB as well as 4 195 sites in Hanzhong are analyzed to demonstrate the O_3 pollution condition in 2018. The O_3 196 pollution in the GZB generally occurs from April to August, with average peak 8-h [O₃] 197 exceeding 100 µg m⁻³ (Figure 3b). Generally, maximum 8-h peak [O₃] emerge in June, while 198 the average monthly $[O_3]$ are the highest in August, attaining about 100 µg m⁻³. The average 199 peak 1-h $[O_3]$ are all more than 130 µg m⁻³ in cities of the GZB and much higher in Xi'an and 200 201 Xianyang than the other cities (Figure 4a). Furthermore, the observed maximum peak 1-h $[O_3]$ are much higher in the GZB and Hanzhong, exceeding 200 µg m⁻³ (Figure 4b). Figure 4c 202 and 4d display the days with the peak 1-h $[O_3]$ exceeding 160 µg m⁻³ and 200 µg m⁻³ from 203 April to August 2018, respectively. Four cities in the GZB have more than 60 (40%) days 204

with the peak 1-h $[O_3]$ exceeding 160 µg m⁻³ and more than 15 (10%) days with the peak 1-h [O₃] exceeding 200 µg m⁻³. Apparently, the O₃ pollution in the GZB are more serious and persistent compared with surrounding areas, and Xianyang is the most polluted city in the GZB, with the maximum peak 1-h $[O_3]$ exceeding 300 µg m⁻³ and 45 (30%) days of the peak 1-h $[O_3]$ more than 200 µg m⁻³ in the warm season of 2018.

210 **3.2 Model performance**

Considering the key role of meteorological conditions in air pollution simulations, 211 212 Figures 5 and 6 show diurnal profiles of the simulated and observed near-surface 213 temperature, relative humidity, wind speed and direction at Xianyang meteorological site in 214 May and August, respectively. The WRF-Chem model reproduces successfully the temporal 215 variations of the temperature in the two months, with the R exceeding 0.85, but overestimates 216 the temperature against observations, with the MB ranging from 0.21 to 1.87 °C. The model also performs well in tracking the temporal variations of the near-surface RH, generally with 217 218 the *R* more than 0.75. However, the model is subject to underestimating the RH, with the MB 219 varying from -9.0% to -1.20%. The model reasonably simulates temporal variations of the 220 near-surface wind speed compared to observations, with the R exceeding 0.5 and the MB less than 0.5 m s⁻¹, but fails to replicate the observed temporal variation of wind directions in 221 222 August, with the R less than 0.36.

Figure 7 provides the predicted and observed horizontal distributions of average peak 8-h O_3 and NO_2 concentrations along with the simulated wind fields in May and August 2018 in the GZB. In the east of the GZB, the northeasterly wind is prevailing, causing transboundary transport of air pollutants from outside of the GZB. In the middle and west of the GZB, the wind is weak or disordered generally due to blocking of mountains, which is favorable for accumulation of air pollutants. The calculated near-surface 8-h O_3 and NO_2 distributions are generally consistent well with the observations at the ambient monitoring sites. The average peak 8-h $[O_3]$ in May exceed 100 µg m⁻³ in most areas of the GZB and the elevated NO₂ concentrations mainly occur in city areas, particularly in Xi'an (Figure 7a and 7b). In August, the average peak 8-h $[O_3]$ increase to be more than 140 µg m⁻³ in most areas of the GZB due to intensified solar radiation to enhance photochemical processes during daytime (Figure 7c and 7d).

235 Figure 8 depicts the temporal variations of simulated and observed near-surface O_3 , NO_2 and PM_{2.5} concentrations averaged over monitoring sites in the GZB in May and August 236 237 2018. The model overestimates O₃ and NO₂ concentrations slightly compared to observations in May (Figure 8a and 8b), with MBs of 9.2 μ g m⁻³ and 1.6 μ g m⁻³, respectively. The NO₂ 238 overestimations in19th to 22nd mainly result from model biases in simulating wind fields 239 240 (Figure 5). O₃ and NO₂ concentrations in August are a little bit underestimated against observations, with MBs of -2.2 μ g m⁻³ and -0.4 μ g m⁻³, respectively. The NMB and NME for 241 242 simulated [O₃] range from -3 to 13% and from 19 to 28%, respectively, within the criteria 243 from EPA guidelines (Table 4). The model also exhibits good performance in simulating 244 PM_{2.5} concentrations compared with observations, with the MFB of 0.1- 3.5% and MFE of 57-70%, which are within the model performance criteria suggested by Boylan and Russell 245 [2006]. Table 4 shows the further validation of the WRF-Chem model simulations of O₃ and 246 NO₂ in six cities, based on statistical methods suggested by previous studies [EPA, 2005]. 247 The model generally performs reasonably in simulating O_3 and NO_2 in the six cities in May 248 249 and August.

Generally, the simulated O_3 , NO_2 , and $PM_{2.5}$ concentrations are generally in good agreement with observations, indicating that the WRF-Chem model is capable of representing major physical and chemical processes of tropospheric O_3 and well produces the temporal variations associated with synoptic conditions.

254 3.3 Spatial and seasonal variations of ozone formation regime

255 O₃ formation in the planetary boundary layer (PBL) is complicated, relying on its 256 precursors of NO_X and VOCs from biogenic and various anthropogenic sources as well as 257 solar radiation. Figures 9 and 10 provide the EKMA diagrams for the two O₃ pollution days 258 in May and August in five cities of the GZB and Hanzhong. These diagrams are O₃ isopleths 259 developed by reductions of NO_X and AVOCs emissions in sensitivity simulations. The NO_X-limited regime and VOCs-limited regime are separated by the ridge line, and areas 260 261 closed to the line are defined as the transition regime, implying that the O₃ formation is in the 262 same sensitivity to VOCs and NO_x emissions. The ridge line also indicates the maximum 263 [O₃] for given NO_X and AVOCs emissions to produce. The upper right of the corner is the start (base case) of the emission reduction scenarios with 100% AVOCs and 100% NO_X 264 265 emissions. In the high O₃ pollution day in May, base scenarios of five cities in the GZB are 266 all above ridge lines, showing that the O₃ formation is in a VOCs-limited regime. Further 267 reduction in NO_X emissions or increase in VOCs emissions causes deterioration of the O₃ pollution. The base scenario of Hanzhong is closed to or on the ridge line, so the O_3 268 269 photochemical production is in the transition regime. Changes of the ratio of NO_X to VOCs emissions could increase or decrease $[O_3]$ in this regime. In August, the O_3 formation in 270 271 Weinan and Baoji are still in a VOCs-limited regime, but it is in the transition regime in 272 Xi'an and Xianyang, and becomes NOx-sensitive in Tongchuan. There is no ridge line in 273 August in Hanzhong, as the O₃ formation is always NO_X-limited for any possible 274 AVOCs-NO_X emission combinations.

The spatial variations of the O₃ formation regime can be attributed to the
inhomogeneous distributions of O₃ precursors. As illustrated in Figure 2, high AVOCs

emissions and BVOCs emissions mainly distribute in cities of the GZB and Qingling

278 mountains, respectively. Given that the key species of VOCs emitted by plants and

279 vegetables, such as isoprene and monoterpenes, are more chemically reactive than the main

280 AVOCs species, BVOCs are more effective to produce O₃ than AVOCs when they are of the 281 same emission intensity and in NO_X-saturated conditions. There is a large amount of NO_X 282 and AVOCs emission in cities of the GZB, but less BVOCs emissions. However, compared 283 to cites in the GZB, Hanzhong is surrounded by abundant forests, and frequently influenced by high BVOCs emissions. Additionally, less industrial activities also lead to low NO_X and 284 AVOCs emissions in the city. Therefore, this emission pattern of precursors causes the O_3 285 286 formation in Hanzhong to be more sensitive to NO_X than in cities of the GZB. The variation 287 of the O₃ formation in cities of the GZB is attributed the different ratio of VOCs to NOx 288 emissions.

289 The seasonal variations of the O₃ formation regime can be attributed to the changes in 290 precursor emissions and solar radiation. AVOCs and NOx emissions in May (Figure 2a and 2b) and August (Figure 2d and 2e) are almost the same. The NOx and AVOCs emissions are 291 292 increased by 1.2% and 1.6% from May to August in the GZB, which cannot explain the 293 variation of the O₃ formation regime, i.e., the O₃ production in all six cities tends to be more 294 NO_X-sensitive in August than May (Figure 10). The most important change from May to 295 August is the intensification of solar radiation and the resultant increase in air temperature. 296 Firstly, BVOCs emissions are dependent on solar radiation and air temperature, so increased 297 solar radiation and air temperature in August enhance BVOCs emissions, providing more 298 background VOCs for O₃ formation and shifting the O₃ formation regime to be more 299 NOx-sensitive. Secondly, enhancement of solar radiation and higher temperature in August 300 facilitate photochemical reactions and escalate atmospheric oxidation capability. Higher 301 temperature is also favorable for development of the planetary boundary layer and vertical 302 exchange of air pollutants in the PBL, decreasing concentrations of near-surface O₃ 303 precursors. Increase in HOx radicals due to active photochemical processes causes the HO_X-loss to be dominated by self-reaction of peroxy radicals rather than reactions of NO₂ 304

305 with OH, further shifting O_3 production to be more NO_X-sensitive (Figure 11). This seasonal 306 transition trend is also found in several previous studies. For examples, *Wu and Xie* [2017] have discussed occurrence of a switch from a NO_X-saturated to NO_X-sensitive O₃ formation 307 308 regime in most suburban and rural areas in China when summer arrives. Ou et al. [2016] have proposed that O₃ formation shifts toward VOC-limited conditions in the PRD from summer 309 310 to autumn. The O₃ formation regime in cities of the GZB varies from being NO_x-sensitive to VOCs-sensitive in August, showing different ratios of VOCs to NO_X emissions. Therefore, 311 312 different emission mitigation strategies need to be devised and implemented for cities in the 313 GZB to reduce the O_3 pollution.

314

3.4 Ozone source attributions

In this section, the peak 8-h O_3 contributions of industrial, residential, transportation, power plants and biogenic sources are evaluated in May and August using the BFM in five cities of the GZB and Hanzhong.

318 Figure 12 represents spatial distributions of average near-surface peak 8-h O₃ 319 contributions of various anthropogenic and biogenic emissions in May. The biogenic source 320 plays a more important role in the O₃ formation than the four anthropogenic sources, with the O_3 contribution of 5~20 µg m⁻³ in the GZB and Hanzhong, particularly in the middle and east 321 of the GZB (including Xi'an, Weinan and Tongchuan) where the O₃ contribution exceeds 10 322 μ m⁻³. The O₃ contribution of the industry source generally is about 5~20 μ m⁻³ in the GZB 323 324 but is negative in the area with high industrial NO_X emissions causing titration of O_3 . The residential and transportation sources play a considerable role in the O₃ formation, 325 contributing about 5~10 μ g m⁻³ O₃ generally, but the transportation source is subject to 326 327 decreasing $[O_3]$ in the city center. Apparently, the O_3 formations around the power plants are significantly suppressed by the high NO_X emission, decreasing $[O_3]$ by up to 30 µg m⁻³. The 328 power source also decreases $[O_3]$ in the middle and east of the GZB by more than 5 µg m⁻³. 329

The adverse contribution of biogenic and power plants sources on the O_3 formation in the middle and east of the GZB can be explained by the chemical regime. The O_3 production of those areas in May is generally in the VOCs-sensitive regime (as Figure 9 shows), so the biogenic emissions (mainly BVOCs) increase $[O_3]$ while the power plants emissions (mainly NO_X) play an opposite role.

335 The horizontal distributions of average peak 8-h O₃ contributions of biogenic and various anthropogenic sources in August are provided in Figure 13. Biogenic and industry 336 337 sources play a more important role in the O_3 formation than the other sources, contributing 20~50 μ g m⁻³ O₃ in the middle of the GZB (including Xi'an and Xianyang) and 5~30 μ g m⁻³ 338 O₃ in Hanzhong, respectively. Different from the O₃ contribution in May, the transportation 339 source consistently increases the $[O_3]$ by 10~30 µg m⁻³ in the GZB and 10~20 µg m⁻³ in 340 Hanzhong. The power plants source in August only suppresses the O₃ production around the 341 source locations but enhances the O_3 formation by 5~20 µg m⁻³ in the rest area of the GZB. 342 343 The O₃ contribution of the residential source is not significant when comparing to the other sources, ranging from 5 to 20 μ g m⁻³ in the GZB. Since the O₃ formation regime becomes 344 more NO_X-sensitive in August than in May, the sources with high NO_X emissions, such as 345 346 industry, power plants and transportation, play an increasingly important role in the O_3 347 formation.

Figure 14 exhibits the average peak 8-h O_3 contributions of industry, transportation, power plants, residential and biogenic sources in cities of GZB in May and August. In May, the power plants emissions are the main sources to suppress the O_3 formation in all cities except Hanzhong due to its transition O_3 formation regime. All emission sources promote the O_3 production in the six cities in August except the power plants in Weinan (Figure 14b), which can be attributed to the VOCs-sensitive O_3 formation regime. The biogenic source plays the most important role in the O_3 pollution in May in the six cities, whereas industry, biogenic and transportation sources become chief contributors to increase $[O_3]$ in August. It is worth noting that the power plants source significantly lowers $[O_3]$ in Weinan whether in May or August due to its massive NO_x emissions.

358 Table 5 provides the O_3 contribution of various sources in the six cities. The O_3 359 contribution of the power plants source manifests considerable seasonal differences while the residential source does not show significant seasonal variations. The power pants source 360 361 plays an opposite role in the O₃ production in May and August in cities of the GZB. For 362 example, the source decreases $[O_3]$ by about 7.3% in Xi'an and 5.9% in Xianyang in May 363 while increases [O₃] by 4.0% in Xi'an and 7.0% in Xianyang in August. The transportation source enhances [O₃] by 3.9~13.9% in August in the six cities, but only contributes 2.2~6% 364 365 of [O₃] in May. Same as the transportation source, the industry and biogenic sources are more 366 effective in enhancing O₃ formation in August than in May. These seasonal differences of source contributions can be chiefly attributed to the variations of the O3 formation regime 367 analyzed in Section 3.3. 368

369

370 4 Summary and conclusions

Observations have shown that the O₃ pollution, generally occurring from April to August, has continuously deteriorated in the GZB since 2014. Simulations in May and August 2018 have been performed using the WRF-Chem model to investigate the O₃ source attributions and formation regime for design and implementation of effective emission mitigation strategies to alleviate the worsening O₃ pollution in the GZB. The model generally performs reasonably well in simulating the meteorological parameters, O₃, NO₂, and PM_{2.5} against observations in the GZB.

Two O₃ pollution days in May and August 2018 are selected to develop the EKMA
diagrams by reductions of NO_X and AVOCs emissions in sensitivity simulations for five

cities in the GZB and Hanzhong with less industrial activities and more influence of biogenic
emissions. Results show that the O₃ formation in May is VOCs-sensitive in five cities of the
GZB but in the transition regime in Hanzhong. However, in August with intensification of
solar radiation, the O₃ formation regime in cities of the GZB and Hanzhong becomes more
NO_X-sensitive. The O₃ formation is still VOCs-sensitive in Baoji and Weinan, shifts to the
transition regime in Xi'an and Xianyang, and becomes NO_X-sensitive in Tongchuan and
Hanzhong.

387 The BFM is utilized to estimate the O_3 contributions of various anthropogenic and biogenic sources. The biogenic source plays the most important role in the O₃ formation in 388 389 May, with the O₃ contribution ranging from 9% to 15% in the six cities. The power plant 390 source suppresses the O_3 formation in cities of the GZB, decreasing the $[O_3]$ by more than 391 40% in Weinan, but slightly increase $[O_3]$ in Hanzhong due to influence of biogenic 392 emissions. The residential, transportation and industry sources increase the [O₃] in cities of 393 the GZB by 2~8%. In August, the O₃ contribution of the biogenic source is still important, 394 ranging from 10% to 20%. Except in Weinan, the power plant source also increases [O₃] by 395 2~8%. The O₃ contribution of the industry source varies from 6% to 17% in the six cities, 396 exceeding the biogenic source in Xianyang. In addition, the transportation source also plays a 397 considerable role in the O₃ formation, but the O₃ contribution of the residential source is not 398 significant, less than 5%. The variation of O₃ formation regimes and source attributions from 399 May to August can be interpreted by intensification of solar radiation, which not only 400 promote photochemical processes, also increases temperature and further enhances biogenic 401 emissions and vertical exchange in the PBL.

The spatial and seasonal characteristics of O₃ formation regimes and source attributions
in the GZB presented in the study can provide insights into the governing processes

404 controlling the O_3 pollution formation and guidelines to devise the effective O_3 abatement

405 strategies suitable for local situations. For example, in May, reducing AVOCs emissions is 406 optimum in cities of the GZB, but emphases need to be put on different sources for the five cities. For example, emissions of the residential need to be controlled for the O₃ pollution in 407 408 Xi'an but industrial emissions are proposed to be curbed Xianyang in May. However, in 409 August, unified emission control measures, i.e., reducing AVOCs or NO_X emissions, cannot 410 be devised because of different O₃ formation regimes in cities of the GZB. The AVOCs 411 emissions need to be controlled still in Weinan and Baoji due to the VOCs-limited regime, 412 but in Tongchuan, mitigation of NO_X emissions become necessary due to the NO_X-limited 413 regime. In Xi'an and Xianyang, the design of anthropogenic emission mitigation is delicate since the O₃ formation is in the transition regime and might be both sensitive to NO_X and 414 415 VOCs emissions.

Generally, the WRF-Chem model performs well in simulating the O₃ pollution in the
GZB, but model biases still exist, which might be caused by uncertainties in simulations of
meteorological fields and the emission inventory. It is worth noting that the emission
inventory has undergone rapid changes since implementation of strict mitigation measures in
2014 in the GZB. Future works need to be conducted based on the improved meteorological
field simulations and the updated emission inventory.

422

423

Acknowledgments. We would like to acknowledge the National Oceanic and Atmospheric
Administration (NOAA) for ambient weather station observations which are freely obtained
from the website <u>http://gis.ncdc.noaa.gov/maps.</u> The hourly ambient surface O₃, NO₂ and
PM_{2.5} mass concentrations are real-timely released by Ministry of Environmental Protection,
China on the website <u>http://www.aqistudy.cn/</u>, freely downloaded from

- 429 <u>http://106.37.208.233:20035/.</u> This work is financially supported by the National Key R&D
- 430 Plan (Quantitative Relationship and Regulation Principle between Regional Oxidation
- 431 Capacity of Atmospheric and Air Quality (2017YFC0210000)) and National Research
- 432 Program for Key Issues in Air Pollution Control (DQGG0105).

435 **Reference**

- Bei, N., G. Li, R. Huang, J. Cao, N. Meng, T. Feng, S. C. Liu, T. Zhang, Q. Zhang, and L. T.
 Molina (2016a), Typical synoptic situations and their impacts on the wintertime air
 pollution in the Guanzhong basin, China, *Atmos. Chem. Phys.*, *11*, 7373-7387,
 doi:10.5194/acp-16-7373-2016.
- Bei, N., B. Xiao, N. Meng, and T. Feng (2016b), Critical role of meteorological conditions in
 a persistent haze episode in the Guanzhong basin, China, *Sci. Total Environ.*, *550*,
 273-284, doi:10.1016/j.scitotenv.2015.12.159.
- Binkowski, F. S., and S. J. Roselle (2003), Models-3 Community Multiscale Air Quality
 (CMAQ) model aerosol component 1. Model description, *J. Geophys. Res. Atmos.*, *108*(D6), doi:10.1029/2001jd001409.
- Boylan, J. W., and A. G. Russell (2006), PM and light extinction model performance metrics,
 goals, and criteria for three-dimensional air quality models, *Atmos. Environ.*, 40(26),
 4946-4959, doi:10.1016/j.atmosenv.2005.09.087.
- Chameides, W., and J. C. G. Walker (1973), A photochemical theory of tropospheric ozone, *J. Geophys. Res.*, 78(36), 8751-8760, doi:10.1029/JC078i036p08751.
- 451 Chameides, W. L., et al. (1992), Ozone Precursor Relationships in the Ambient Atmosphere,
 452 *J. Geophys. Res.*, 97, 6037-6055.
- 453 Cooper, O. R., R.-S. Gao, D. Tarasick, T. Leblanc, and C. Sweeney (2012), Long-term ozone
 454 trends at rural ozone monitoring sites across the United States, 1990-2010, *J. Geophys.*455 *Res. Atmos.*, *117*(D22), n/a-n/a, doi:10.1029/2012jd018261.
- 456 Cooper, O. R., A. O. Langford, D. D. Parrish, and D. W. Fahey (2015), Challenges of a
 457 lowered U.S. ozone standard.pdf, *Science*, *348*(6239), 1096-1097.
- Daum, P. H. (2004), Origin and properties of plumes of high ozone observed during the
 Texas 2000 Air Quality Study (TexAQS 2000), *J. Geophys. Res.*, 109(D17),
 doi:10.1029/2003jd004311.
- 461 Derwent, R. G., C. S. Witham, S. R. Utembe, M. E. Jenkin, and N. R. Passant (2010), Ozone
 462 in Central England: the impact of 20 years of precursor emission controls in Europe,
 463 *Environ. Sci. Policy*, *13*(3), 195-204, doi:10.1016/j.envsci.2010.02.001.
- 464 Doll, D. (1991), Guideline for regulatory application of the Urban Airshed Model*Rep.*,
 465 Environmental Protection Agency, Research Triangle Park, NC (United States)

- 466 Dunker, A. M., R. E. Morris, A. K. Pollack, C. H. Schleyer, and G. Yarwood (1996),
- 467 Photochemical modeling of the impact of fuels and vehicles on urban ozone using
 468 auto/oil program data, *Environ. Sci. Technol.*, *30*(3), 787-801.
- 469 Dunker, A. M., G. Yarwood, J. P. Ortmann, and G. M. Wilson (2002), Comparison of Source
 470 Apportionment and Source Sensitivity of Ozone in a Three-Dimensional Air Quality
 471 Model, *Environ. Sci. Technol.*, *36*, 2953-2964.
- 472 EPA, U. (2005), Guidance on the Use of Models and Other Analyses in Attainment
- 473 Demonstrations for the 8-hour Ozone NAAQS*Rep.*, EPA-454/R-05-002.
- Feng, T., et al. (2016), Summertime ozone formation in Xi'an and surrounding areas, China, *Atmos. Chem. Phys.*, 7, 4323-4342, doi:10.5194/acp-16-4323-2016.
- Fishman, J., and P. J. Crutzen (1977), A numerical study of tropospheric photochemistry
 using a one-dimensional model, *J. Geophys. Res.*, 82(37), 5897-5906,
 doi:10.1029/JC082i037p05897.
- Fishman, J., and P. J. Crutzen (1978), The origin of ozone in the troposphere, *Nature*, 274,
 855-858.
- Gao, J., B. Zhu, H. Xiao, H. Kang, X. Hou, and P. Shao (2016), A case study of surface
 ozone source apportionment during a high concentration episode, under frequent shifting
 wind conditions over the Yangtze River Delta, China, *Sci. Total Environ.*, *544*, 853-863,
 doi:10.1016/j.scitotenv.2015.12.039.
- Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B.
 Eder (2005), Fully coupled "online" chemistry within the WRF model, *Atmos. Environ.*, *39*(37), 6957-6975, doi:10.1016/j.atmosenv.2005.04.027.
- Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron (2006),
 Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).pdf, *Atmos. Chem. Phys.*, *11*, 3181-3210.
- Haagen-Smit, A. J. (1952), Chemistry and Physiology of Los Angeles Smog, *Ind. Eng. Chem. Res.*, 44(6), 1342-1346, doi:10.1021/ie50510a045.
- Junge, C. E. (1962), Global ozone budget and exchange between stratosphere and
 troposphere, *Tellus B*, *14*, 363-377.

Li, G., N. Bei, J. Cao, J. Wu, X. Long, T. Feng, W. Dai, S. Liu, Q. Zhang, and X. Tie (2017),
Widespread and persistent ozone pollution in eastern China during the non-winter

- 497 season of 2015: observations and source attributions, *Atmos. Chem. Phys.*, *17*(4),
 498 2759-2774, doi:10.5194/acp-17-2759-2017.
- Li, G., N. Bei, X. Tie, and L. T. Molina (2011a), Aerosol effects on the photochemistry in
 Mexico City during MCMA-2006/MILAGRO campaign, *Atmos. Chem. Phys.*, 11(11),
 5169-5182, doi:10.5194/acp-11-5169-2011.
- Li, G., W. Lei, N. Bei, and L. T. Molina (2012), Contribution of garbage burning to chloride
 and PM2.5 in Mexico City, *Atmos. Chem. Phys.*, *12*(18), 8751-8761,
 doi:10.5194/acp-12-8751-2012.
- Li, G., W. Lei, M. Zavala, R. Volkamer, S. Dusanter, P. Stevens, and L. T. Molina (2010),
 Impacts of HONO sources on the photochemistry in Mexico City during the
 MCMA-2006/MILAGO Campaign, *Atmos. Chem. Phys.*, *10*(14), 6551-6567,
 doi:10.5194/acp-10-6551-2010.
- Li, G., M. Zavala, W. Lei, A. P. Tsimpidi, V. A. Karydis, S. N. Pandis, M. R. Canagaratna,
 and L. T. Molina (2011b), Simulations of organic aerosol concentrations in Mexico City
 using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, *Atmos. Chem. Phys.*, *11*(8), 3789-3809, doi:10.5194/acp-11-3789-2011.
- Li, G., R. Zhang, J. Fan, and X. Tie (2005), Impacts of black carbon aerosol on photolysis
 and ozone, J. Geophys. Res., 110(D23), doi:10.1029/2005jd005898.
- Li, K., D. J. Jacob, H. Liao, L. Shen, Q. Zhang, and K. H. Bates (2019a), Anthropogenic
 drivers of 2013-2017 trends in summer surface ozone in China, *Proc. Natl. Acad. Sci. U.*S. A., 116(2), 422-427, doi:10.1073/pnas.1812168116.
- Li, L., J. An, L. Huang, R. Yan, C. Huang, and G. Yarwood (2019b), Ozone source
 apportionment over the Yangtze River Delta region, China: Investigation of regional
 transport, sectoral contributions and seasonal differences, *Atmos. Environ.*, 202,
 269-280, doi:10.1016/j.atmosenv.2019.01.028.
- Li, L., et al. (2011c), Ozone sensitivity analysis with the MM5-CMAQ modeling system for
 Shanghai, *J. Environ. Sci.*, 23(7), 1150-1157, doi:10.1016/s1001-0742(10)60527-x.
- Li, N., Q. He, J. Greenberg, A. Guenther, J. Li, J. Cao, J. Wang, H. Liao, Q. Wang, and Q.
 Zhang (2018), Impacts of biogenic and anthropogenic emissions on summertime ozone
 formation in the Guanzhong Basin, China, *Atmos. Chem. Phys.*, *18*(10), 7489-7507,
 doi:10.5194/acp-18-7489-2018.

- Li, Y., A. K. H. Lau, J. C. H. Fung, H. Ma, and Y. Tse (2013), Systematic evaluation of
 ozone control policies using an Ozone Source Apportionment method, *Atmos. Environ.*,
 76, 136-146, doi:10.1016/j.atmosenv.2013.02.033.
- Lin, Y., F. Jiang, J. Zhao, G. Zhu, X. He, X. Ma, S. Li, C. E. Sabel, and H. Wang (2018),
 Impacts of O3 on premature mortality and crop yield loss across China, *Atmos. Environ.*, *194*, 41-47, doi:10.1016/j.atmosenv.2018.09.024.
- Lippmann, M. (1993), Use of human lung tissue for studies of structural changes associated
 with chronic ozone exposure: opportunities and critical issues, *Environ. Health Persp.*, *101*, 209-212.
- Liu, H., M. Zhang, X. Han, J. Li, and L. Chen (2019), Episode analysis of regional
 contributions to tropospheric ozone in Beijing using a regional air quality model, *Atmos. Environ.*, 199, 299-312, doi:10.1016/j.atmosenv.2018.11.044.
- Lu, X., J. Hong, L. Zhang, O. R. Cooper, M. G. Schultz, X. Xu, T. Wang, M. Gao, Y. Zhao,
 and Y. Zhang (2018), Severe Surface Ozone Pollution in China: A Global Perspective, *Environ. Sci. Technol.*, 5(8), 487-494, doi:10.1021/acs.estlett.8b00366.
- Lu, X., L. Zhang, Y. Chen, M. Zhou, B. Zheng, K. Li, Y. Liu, J. Lin, T.-M. Fu, and Q. Zhang
 (2019), Exploring 2016–2017 surface ozone pollution over China: source contributions
 and meteorological influences, *Atmos. Chem. Phys.*, *19*(12), 8339-8361,
 doi:10.5194/acp-19-8339-2019.
- Mahlman, J. D., H. Levy, and W. J. Moxim (1980), Three-Dimansional Tracer Structure and
 Behavior as Simulated in Two Ozone Precursor Experiments.pdf, *J. Atmos. Sci.*, *37*(3),
 655-685.
- Martin, R. V., A. M. Fiore, and A. Van Donkelaar (2004), Space-based diagnosis of surface
 ozone sensitivity to anthropogenic emissions, *Geophys. Res. Lett.*, *31*(6), n/a-n/a,
 doi:10.1029/2004gl019416.
- Mauzerall, D., B. Sultan, N. Kim, and D. Bradford (2005), NO emissions from large point
 sources: variability in ozone production, resulting health damages and economic costs, *Atmos. Environ.*, 39(16), 2851-2866, doi:10.1016/j.atmosenv.2004.12.041.
- Napelenok, S. L., D. S. Cohan, M. T. Odman, and S. Tonse (2008), Extension and evaluation
 of sensitivity analysis capabilities in a photochemical model, *Environ. Modell. Softw.*,
 23(8), 994-999, doi:10.1016/j.envsoft.2007.11.004.

- Nenes, A., S. N. Pandis, and C. Pilinis (1998), ISORROPIA: A new thermodynamic
 equilibrium model for multiphase multicomponent inorganic aerosols.pdf, *Aquat*. *Geochem.*, 4, 123-152.
- Ou, J., Z. Yuan, J. Zheng, Z. Huang, M. Shao, Z. Li, X. Huang, H. Guo, and P. K. Louie
 (2016), Ambient Ozone Control in a Photochemically Active Region: Short-Term
 Despiking or Long-Term Attainment?, *Environ. Sci. Technol.*, 50(11), 5720-5728,
 doi:10.1021/acs.est.6b00345.
- 566 Seinfeld, J. H. (1988), Ozone air quality models. A critical review, *JAPCA*, *38*(5), 616-645,
 567 doi:10.1080/08940630.1988.10466404.
- 568 Seinfeld, J. H. (1989), Urban Air Pollution: State of the Science, *Science*, *243*, 745-752.
- Shen, L., D. J. Jacob, X. Liu, G. Huang, K. Li, H. Liao, and T. Wang (2019), An evaluation
 of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer
 ozone pollution across China: application to 2005–2017 ozone trends, *Atmos. Chem. Phys.*, *19*(9), 6551-6560, doi:10.5194/acp-19-6551-2019.
- 573 Sillman, S. (1995), The use of NOy, H202, and HNO3 as indicators for
 574 ozone-NOx-hydrocarbon sensitivity in urban locations, *J. Geophys. Res.*, 100,
 575 14,175-114,188.
- Simon, H., A. Reff, B. Wells, J. Xing, and N. Frank (2014), Ozone trends across the United
 States over a period of decreasing NOx and VOC emissions, *Environ. Sci. Technol.*,
 49(1), 186-195, doi:10.1021/es504514z.
- Stohl, A. (2003), Stratosphere-troposphere exchange: A review, and what we have learned
 from STACCATO, *J. Geophys. Res.*, *108*(D12), doi:10.1029/2002jd002490.
- Tie, X., S. Madronich, S. Walters, R. Zhang, P. Pasch, and W. Collins (2003), Effect of
 clouds on photolysis and oxidants in the troposphere, *J. Geophys. Res.*, 108(D20),
 doi:10.1029/2003jd003659.
- Wang, M. Y., S. H. L. Yim, D. C. Wong, and K. F. Ho (2019), Source contributions of
 surface ozone in China using an adjoint sensitivity analysis, *Sci. Total Environ.*, 662,
 385-392, doi:10.1016/j.scitotenv.2019.01.116.
- Wang, Y., Y. Zhang, J. Hao, and M. Luo (2011), Seasonal and spatial variability of surface
 ozone over China: contributions from background and domestic pollution, *Atmos. Chem. Phys.*, *11*(7), 3511-3525, doi:10.5194/acp-11-3511-2011.

590 591	Wesely, M. L. (1989), Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models.pdf, <i>Atmos. Environ.</i> , 23, 1293-1304.
592 593	Wu, R., and S. Xie (2017), Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds, <i>Environ. Sci. Technol.</i> , <i>51</i> (5),
594	2574-2583, doi:10.1021/acs.est.6b03634.
595 596 597	Yarwood, G., R. Morris, M. Yocke, H. Hogo, and T. Chico (1996), Development of a methodology for source apportionment of ozone concentration estimates from a photochemical grid model, J. Air Waste Manage., Pittsburgh, PA 15222(USA).[np].
598 599	Zhang, Q., et al. (2009), Asian emissions in 2006 for the NASA INTEX-B mission.pdf, <i>Atmos. Chem. and Phys.</i> , 5131-5153.
600 601	Zhang, Q., et al. (2019), Drivers of improved PM2.5 air quality in China from 2013 to 2017, <i>Proc. Natl. Acad. Sci. U. S. A.</i> , <i>116</i> (49), 24463-24469, doi:10.1073/pnas.1907956116.
602	
603	
604	

001	6	0	7
-----	---	---	---

Region	Guanzhong Basin (GZB)
Simulation period	01-31 May and 02 Aug. to 01 Sep. 2018
Domain size	150×150
Domain center	34.25°N, 109°E
Horizontal resolution	6 km \times 6 km
Vertical resolution	35 vertical levels with a stretched vertical grid with spacing ranging from 30m near the surface to 500m at 2.5 km and 1 km above 14 km
Microphysics scheme	WRF Single-Moment six-class graupel scheme (Hong and Lim, 2006)
Boundary layer scheme	Mellor-Yamada-Janjic turbulent kinetic energy scheme (Janjic, 2002)
Surface layer scheme	MYJ surface scheme (Janjic, 2002)
Land-surface scheme	Unified Noah land-surface model (Chen and Dudhia, 2001)
Longwave radiation scheme	Goddard longwave scheme (Chou and Suarez, 2001)
Shortwave radiation scheme	Goddard shortwave scheme (Chou and Suarez, 1999)
Meteorological boundary and initial conditions	NCEP 1°×1°reanalysis data
Chemical initial and boundary conditions	WACCM 6-h output
Anthropogenic emission inventory	SAPRC-99 chemical mechanism emissions (Zhang et al., 2009)
Biogenic emission inventory	MEGAN model developed by Guenther et al. (2006)

Case	Emissions input
fall	With all anthropogenic and biogenic emissions
f_{ind}	Without industry emissions
f_{tra}	Without transportation emissions
f_{pow}	Without power plant emissions
f _{res}	Without residential emissions
f_{bio}	Without biogenic emissions

 f_{all} : the base case; $f_{all} - f_{ind}$: the contribution of industry emissions; $f_{all} - f_{tra}$: the contribution of transportation emissions; $f_{all} - f_{pow}$: the contribution of power plants emissions; $f_{all} - f_{res}$: the contribution of residential emissions; 614 $f_{all} - f_{bio}$: the contribution of biogenic emissions.

Table 3 Observed hourly mass concentrations of pollutants averaged from April to August in 2014

620 and 2018 in the Guanzhong Basin.

Pollutants	CO (mg m ⁻³)	$SO_2 (\mu g \ m^{-3})$	$NO_2 (\mu g m^{-3})$	$O_3(\mu g m^{-3})$	$PM_{2.5} (\mu g \ m^{-3})$	$PM_{10} (\mu g \ m^{-3})$
2014	1.21	14.9	33.3	90.9	46.3	105.2
2018	0.88	9.2	35.9	127.8	35.8	89.8
Change (%)	-27.3	-38.3	+7.8	+40.6	-22.7	-14.6

622 CO, SO₂, NO₂, PM_{2.5} and PM₁₀ are hourly average concentrations. O₃ are average concentrations from 11:00 to 18:00 BJT.

626 Table 4 Validation of WRF-Chem model performance on simulations of air pollutants in six cit	ies.
--	------

Cities	Cities Species May				August			
		MB	NMB	NME	MB	NMB	NME	
		(µg m ⁻³)			(µg m ⁻³)			
XA	O ₃	9.3	12.7%	29.0%	-3.6	-3.5%	24.9%	
	NO ₂	3.1	6.1%	25.4%	-1.4	-3.9%	22.9%	
XY	O ₃	7,1	11.4%	29.1%	-9.1	-7.5%	23.6%	
	NO_2	1.6	3.4%	26.7%	1.5	5.5%	28.8%	
BJ	O ₃	10.4	14.2%	29.5%	7.6	8.8%	25.8%	
	NO_2	1.2	3.4%	25.9%	0.3	1.3%	27.2%	
WN	O ₃	9,5	13.1%	29.1%	-9.2	-7.6%	23.8%	
	NO_2	1.1	2.4%	28.7%	1.3	5.0%	26.8%	
TC	O ₃	4.0	4.4%	28.8%	-3.0	-3.1%	24.6%	
	NO_2	-1.0	-3.5%	23.8%	-0.5	-2.5%	28.0%	
HZ	O ₃	1.5	2.0%	28.4%	7.4	9.0%	26.6%	
	NO_2	-0.0	-0.2%	24.7%	0.5	3.4%	25.7%	

628 XA, XY, WN, BJ, TC and HZ represent the city of Xi'an, Xianyang, Weinan, Baoji, Tongchuan and Hanzhong respectively.

629 Ref. criteria: within $\pm 15\%$ for NMB and below 30% for NME (EPA, 2005).

633	Table 5 O_3	contribution of	various	sources in	n the six	cities in	May a	and August.
							~	0

G				Peak 8-h O ₃ o	contribution		
Seasons	Cities	Anthro	Ind	Tra	Pow	Res	Bio
	XA	25.8%	3.9%	2.2%	-7.3%	7.3%	10.0%
	XY	31.3%	7.1%	3.9%	-5.9%	6.5%	10.7%
Spring	BJ	24.5%	3.5%	5.2%	-3.2%	4.9%	9.2%
(May)	WN	-2.3%	6.4%	4.8%	-41.6%	3.4%	14.4%
	TC	28.8%	5.8%	4.2%	-1.3%	3.5%	10.4%
	ΗZ	18.8%	-3.4%	6.0%	1.7%	0.7%	9.5%
	XA	47.2%	14.6%	8.8%	4.0%	4.9%	15.8%
	XY	52.0%	16.8%	10.8%	7.0%	4.7%	15.3%
Summer	BJ	46.1%	14.2%	9.2%	3.7%	3.1%	10.8%
(August)	WN	17.2%	9.7%	3.9%	-28.5%	1.5%	20.5%
	TC	40.2%	7.1%	6.8%	8.2%	2.0%	15.1%
	HZ	32.5%	6.6%	13.9%	2.3%	1.5%	18.3%

KA, XY, WN, BJ, TC and HZ represent the urban areas in Xi'an, Xianyang, Weinan, Baoji, Tongchuan and Hanzhong
 respectively. Anthro, Ind, Tra, Pow, Res, and Bio represent total anthropogenic, industry, transportation, power plants,

637 residential, and biogenic source, respectively.

641	Figure Captions
642 643 644 645	Figure 1 WRF-Chem simulation domain with topography. The filled black circles represent centers of cities with ambient monitoring sites and the size of circles denotes the number of ambient monitoring sites of cities. The diamond denotes the meteorological observation station. The areas surrounded by deep blue lines are focused in this study (GZB and Hanzhong city).
646 647	Figure 2 Spatial distribution of (a)/(d) anthropogenic NO _X , (b)/(e) anthropogenic VOCs, and (c)/(f) biogenic isoprene emission rates in May/August.
648 649 650 651 652	Figure 3 (a) trends of observed average peak 8-h [O ₃] in warm seasons (from April to August) in the GZB from 2014 to 2018, and (b) maximum peak 8-h [O ₃] (dark blue line), average peak 8-h daily [O ₃] (light blue line) and monthly average [O ₃] (yellow line) in 2018 in the GZB. The red line indicates the first grade of National Ambient Air Quality Standards for average peak 8-h daily [O ₃] in China.
653 654 655 656	Figure 4 Distribution of observed (a) average daily peak 1-h [O ₃], (b) maximum daily peak 1-h [O ₃], (c) days with the observed peak 1h [O ₃] exceeding 160 µg m ⁻³ and (d) days with the observed peak 1-h [O ₃] exceeding 200 µg m ⁻³ in the GZB and surrounding areas from April to August 2018.
657 658 659 660	Figure 5 Temporal variations of predicted (red) and observed (black) (a) temperature at 2 m, (b) relative humid at 2 m, (c) wind direction and (d) wind speed at 10 m at Xianyang meteorological monitoring site in May 2018. The model performance statistic metrics of MB and R are also shown.
661	Figure 6 Same as Figure 5, but for August 2018.
662 663 664	Figure 7 Pattern comparisons of simulated versus observed average (a)/(c) daily peak 8-h O ₃ and (b)/(d) NO ₂ concentrations in May/August 2018. Colored circles: O ₃ observations; color contour: O ₃ simulations; black arrows: simulated near-surface winds.
665 666 667	Figure 8 Diurnal profiles of measured (black dots) and predicted (red line) (a)/(d) O ₃ , (b)/(e) NO ₂ and (c)/(f) PM _{2.5} concentrations averaged over all ambient monitoring stations in the GZB in May/August 2018.
668 669 670	 Figure 9 O₃ isopleth profiles (μg m⁻³ of average daily peak 8-h concentrations) in urban areas of (a) Xi'an, (b) Xianyang, (c) Weinan, (d) Baoji, (e) Tongchuan and (f) Hanzhong on16 May 2018. The VOC-limited and NOx-limited regimes are separated by the red ridge lines.
671	Figure 10 Same as Figure 9, but for 7 August 2018.
672 673 674	Figure 11 Average daytime NO ₂ , HO ₂ and HO concentrations during springtime on 16 May 2018 and 7 August 2018 in urban areas of (a) Xi'an, (b) Xianyang, (c) Weinan, (d) Baoji, (e) Tongchuan and (f) Hanzhong.
675 676 677	Figure 12 Distributions of the average peak 8-h O ₃ contribution in May 2018 from (a) industry, (b) transportation, (c) residential, (d) power plants, (e) total anthropogenic, and (f) biogenic sources.
678	Figure 13 Same as Figure 12, but for August 2018.

679	Figure 14 Average peak 8-h O ₃ contributions from various sources in (a) May and (b) August 2018 in
680	cities of the GZB and Hanzhong (XA, XY, WN, BJ, TC and HZ represent the urban areas in
681	Xi'an, Xianyang, Weinan, Baoji, Tongchuan and Hanzhong respectively).
682	
683	
684	
685	
686	

Figure 1 WRF-Chem simulation domain with topography. The filled black circles represent centers of
cities with ambient monitoring sites and the size of circles denotes the number of ambient monitoring
sites of cities. The diamond denotes the meteorological observation station. The areas surrounded by
deep blue lines are focused in this study (GZB and Hanzhong city).

Figure 2 Spatial distribution of (a)/(d) anthropogenic NO_X, (b)/(e) anthropogenic VOCs, and (c)/(f) biogenic isoprene emission rates in May/August.

704

Figure 3 (a) trends of observed average peak 8-h $[O_3]$ in warm seasons (from April to August) in the GZB from 2014 to 2018, and (b) maximum peak 8-h $[O_3]$ (dark blue line), average peak 8-h daily $[O_3]$ (light blue line) and monthly average $[O_3]$ (yellow line) in 2018 in the GZB. The red line indicates the

first grade of National Ambient Air Quality Standards for average peak 8-h daily [O₃] in China.

709

710

Figure 4 Distribution of observed (a) average daily peak 1-h [O₃], (b) maximum daily peak 1-h [O₃], (c) days with the observed peak 1h $[O_3]$ exceeding 160 µg m⁻³ and (d) days with the observed peak 1-h [O₃] exceeding 200 µg m⁻³ in the GZB and surrounding areas from April to August 2018.

relative humid at 2 m, (c) wind direction and (d) wind speed at 10 m at Xianyang meteorological

monitoring site in May 2018. The model performance statistic metrics of MB and R are also shown.

Figure 7 Pattern comparisons of simulated versus observed average (a)/(c) daily peak 8-h O₃ and
(b)/(d) NO₂ concentrations in May/August 2018. Colored circles: O₃ observations; color contour: O₃
simulations; black arrows: simulated near-surface winds.

Figure 8 Diurnal profiles of measured (black dots) and predicted (red line) (a)/(d) O₃, (b)/(e) NO₂ and (c)/(f) PM_{2.5} concentrations averaged over all ambient monitoring stations in the GZB in May/August 2018.

Figure 9 O_3 isopleth profiles (µg m⁻³ of average daily peak 8-h concentrations) in urban areas of (a) Xi'an, (b) Xianyang, (c) Weinan, (d) Baoji, (e) Tongchuan and (f) Hanzhong on 16 May 2018. The VOC-limited and NOx-limited regimes are separated by the red ridge lines.

Figure 11 Average daytime NO₂, HO₂ and HO concentrations during springtime on 16 May 2018 and
7 August 2018 in urban areas of (a) Xi'an, (b) Xianyang, (c) Weinan, (d) Baoji, (e) Tongchuan and (f)
Hanzhong.

Figure 12 Distributions of the average peak 8-h O₃ contribution in May 2018 from (a) industry, (b)

transportation, (c) residential, (d) power plants, (e) total anthropogenic, and (f) biogenic sources.

Figure 13 Same as Figure 12, but for August 2018.

Figure 14 Average peak 8-h O₃ contributions from various sources in (a) May and (b) August 2018 in

- cities of the GZB and Hanzhong (XA, XY, WN, BJ, TC and HZ represent the urban areas in Xi'an,
- Xianyang, Weinan, Baoji, Tongchuan and Hanzhong respectively).