Late Paleozoic and Mesozoic Magmatism in Jilin Area, NE China: Implications for 2 the Transition from Convergence at the Paleo-Asian Ocean to Paleo-Pacific Subduction 4

Wenliang Xu¹, Jin-Peng Luan¹, Gideon Rosenbaum², Jack F Ward², Peng Guo¹, and Jian-Guo Wang¹

¹Jilin University ²The University of Queensland

November 26, 2022

Abstract

During the late Paleozoic and Mesozoic, convergent plate boundary processes in northeastern Asia shifted from the Paleo-Asian Ocean to Paleo-Pacific Ocean, influencing the tectonic regime. To better understand this tectonic transition, we investigated the petrology, geochronology and geochemistry of igneous rocks from the Jilin area in the eastern part of the Central Asian Orogenic Belt. We identified four stages of magmatism at ~261, 253–244, 183–175 and 173–164 Ma. The ~261 Ma magmatism was generated in an active continental margin by partial melting of juvenile mafic lower crustal material. This stage of continental arc magmatism continued with the emplacement of 253–244 Ma adakitic magamas, which were generated by partial melting of subducted oceanic crustal material and metasomatized with overlying mantle wedge. The 183–175 Ma monzogranitic and dioritic magmas were generated in a continental arc environment via melting of juvenile lower continental crust and mixing of basaltic magma with crustal melt, respectively. Magmatism at 173–164 Ma was developed in an active continental margin, and were generated by melting of a juvenile lower continental crust. The integrated evidence suggests that the closure of the Paleo-Asian Ocean could occur at 244–227 Ma, whereas the timing of tectonic regime transition from the convergence of Paleo-Asian Ocean to the subduction of the Paleo-Pacific Ocean occurred at 223–185 Ma. The Changchun-Yanji Suture, which marks the easternmost closure of the Paleo-Asian Ocean, experienced multiple tectonic mode switches, and was controlled by subduction of the Paleo-Asian Ocean since Early Jurassic.

1	
2	Late Paleozoic and Mesozoic Magmatism in Jilin Area, NE China: Implications for
3	the Transition from Convergence at the Paleo-Asian Ocean to Paleo-Pacific
4	Subduction
5	Jin–Peng Luan ^{1,2} , Wen–Liang Xu ^{1,3*} , Gideon Rosenbaum ² , Jack F. Ward ² , Peng Guo ¹ ,
6	Jian-Guo Wang ¹
7	¹ College of Earth Sciences, Jilin University, Changchun 130061, China
8	² School of Earth and Environmental Sciences, The University of Queensland, Brisbane,
9	Queensland 4072, Australia
10	³ Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and
11	Resources, Changchun 130061, China
12	
13	Corresponding author: Wen-Liang Xu (xuwl@jlu.edu.cn)
14	
15	Key Points:
16	• P ₂ to J ₂ magmatism is identified in Jilin area in the eastern Central Asian Orogenic Belt
17	• Final closure of the Paleo-Asian Ocean occurred at 244-227 Ma, and its double
18	subduction resulted in P_2 to T_1 magmatism
19	• Tectonic regime transition from the convergence of Paleo-Asian Ocean to subduction of
20	Paleo-Pacific Ocean occurred at T_3 to J_1
21	

22 Abstract

During the late Paleozoic and Mesozoic, convergent plate boundary processes in northeastern 23 Asia shifted from the Paleo-Asian Ocean to Paleo-Pacific Ocean, influencing the tectonic regime. 24 To better understand this tectonic transition, we investigated the petrology, geochronology and 25 geochemistry of igneous rocks from the Jilin area in the eastern part of the Central Asian 26 Orogenic Belt. We identified four stages of magmatism at ~261, 253-244, 183-175 and 173-164 27 Ma. The ~261 Ma magmatism was generated in an active continental margin by partial melting 28 of juvenile mafic lower crustal material. This stage of continental arc magmatism continued with 29 the emplacement of 253-244 Ma adakitic magamas, which were generated by partial melting of 30 subducted oceanic crustal material and metasomatized with overlying mantle wedge. The 183-31 175 Ma monzogranitic and dioritic magmas were generated in a continental arc environment via 32 melting of juvenile lower continental crust and mixing of basaltic magma with crustal melt, 33 respectively. Magmatism at 173-164 Ma was developed in an active continental margin, and 34 were generated by melting of a juvenile lower continental crust. The integrated evidence 35 suggests that the closure of the Paleo-Asian Ocean could occur at 244-227 Ma, whereas the 36 timing of tectonic regime transition from the convergence of Paleo-Asian Ocean to the 37 subduction of the Paleo-Pacific Ocean occurred at 223-185 Ma. The Changchun-Yanji Suture, 38 which marks the easternmost closure of the Paleo-Asian Ocean, experienced multiple tectonic 39 40 mode switches, and was controlled by subduction of the Paleo-Pacific Ocean since Early Jurassic.

41 1 Introduction

42 The eastern part of the Central Asian Orogenic Belt (CAOB) occupies the area between the

43 Siberian and North China cratons, and consists of microcontinental massifs, accretionary orogens

44 and other terranes (Fig. 1; Sengör et al., 1993; Ye and Zhang, 1994; Jahn, 2000; Xie, 2000; Xiao

45 et al., 2003, 2015; Li et al., 2006). The microcontinental massifs in the eastern CAOB, which

46 include the Erguna, Xing'an, Songnen, Jiamusi, and Khanka massifs, consist of Archean to

47 Neoproterozoic continental crust (Khanchuk et al., 2010; Wu et sl., 2011; Tang et al., 2013; Zhao

48 et al., 2016; Han et al., 2017; Luan et al., 2017a, b, 2019; Yang et al., 2017, 2018; Qian et al.,

49 2018; Zhang et al., 2018; Xu et al., 2019). Separating these massifs are the faults and/or

50 accretionary orogens, and the architecture of the region is dominated by the Mongol-Okhotsk

51 Orogen, South Mongolian-Great Khing'an Orogen, and Suolunshan-Central Jilin Orogen (Fig. 1;

52 Li et al., 2006). They were produces of subduction of the Paleo-Asian Ocean, and were affected

53 by subsequent evolution of the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean.

54

56 Figure 1. Simplified tectonic map of the northeastern Asian continent (after Li et al., 2006).

55

During the Paleozoic and early Mesozoic, the tectonic evolution of northeastern China and 57 adjacent regions was closely linked to plate tectonic processes along the margins of the Paleo-58 Asian and Paleo-Pacific oceans (Li, 2006; Xu et al., 2009, 2013; Wu et al., 2011; Liu et al., 2017; 59 Wang et al., 2017, 2019; Zhou et al., 2017a, 2018). Subsequently, during the Mesozoic and 60 Cenozoic, the tectonic regime was influenced mainly by processes along the Mongol-Okhotsk 61 and western Pacific oceans (Li et al., 2015, 2020; Xu et al., 2009, 2013; Tang et al., 2016). The 62 CAOB in northeastern China is a key area for understanding the transition from the earlier 63 influence of the Paleo-Asian Ocean to the later influence of the Paleo-Pacific Ocean. 64

The Paleo-Asian Ocean was consumed entirely by subduction processes, with the suture marked by the Solonker Suture (Wu et al., 2002; Xiao et al., 2003; Li, 2006) and its eastward extension along the Xar Moron-Changchun (Wu et al., 2002) and Changchun-Yanji sutures (Li, 2006) (Fig. 1). However, the timing of ocean closure at the Paleo-Asian Ocean and the timing of subduction initiation at the Paleo-Pacific Ocean are a matter of debate. For the Paleo-Asian Ocean, the final closure has been suggested to occur in the late Permian to Early Triassic (Li et al., 2006; Cao et al., 2013; Eizenhöfer et al., 2014; Safonova and Santosh, 2014; Wang et al.,

2015; Ma et al., 2017, 2019), Middle to Late Triassic (Zhou et al., 2014; Shi et al., 2019; Wang
et al., 2019), or Early–Middle Jurassic (Sun et al., 2004, 2005; Wu et al., 2007; Zhou et al., 2009;
Yu et al., 2012). Better constraints on the timing of deformation and magmatism along the
Solonker-Xar Moron-Changchun-Yanji Suture might help understanding the timing of this
tectonic transition.

In this paper, we present new geochronological, whole-rock geochemical data, and zircon 77 Hf isotopic data from middle Permian to Middle Jurassic igneous rocks that occur near the 78 Changchun-Yanji Suture in the area of Jilin city (Fig. 2). Using these new data, we aim to: (1) 79 constrain the timing of magmatism and elucidate the spatio-temporal distribution of magmatism; 80 81 (2) characterize the petrogenesis of the igneous rocks and their possible sources; and (3) provide new insights into the tectonic setting during magmatism. The collective geological and 82 geochemical data from this area allow us to better understand the transition in the tectonic 83 84 regime during the Paleozoic and Mesozoic.

85 86

Figure 2. Detailed geological map of the eastern part of the Suolunshan-Central Jilin Orogen.

Table 1: Geochronological data for the intrusive rocks in central Jilin area

0.1	G 1	GPS L	ocation	T [4] - 1		N	lode	l mi	inera	als (V	'ol %)			D.C.
Order	Sample	Longitude	Latitude	Lithology	Q	Af	Pl	Bi	Hb	Cpx	SP	AM	Age	References
Late I	Permian													
1	17JZ9-1	126°01'57"	43°19'45"	Syenogranite	25	50	20				Mt 3%	2	261±1 Ma	This study
2	12JL1-1	126°01'10"	43°23'56"	Syenogranite	30	48	20					2	260±1 Ma	Cao et al., 2013
3	LK36-1	125°44'41"	42°52'12"	Syenogranite	45	30	18	5				2	259±2 Ma	Cao et al., 2013
4	17JZ4-1	126°31'36"	43°24'54"	Monzonite	5	30	30	2	25	5	Mt 4%	1	253±2 Ma	This study
5	13JH1-1	125°59'52"	43°26'42"	Quartz monzonite	15	35	40		8			2	252±2 Ma	Wang et al., 2015
6	DY143-2	125°06'22"	43°02'31"	Monzogranite									252±2 Ma	Wu et al., 2011
Early	Triassic													
7	DY123-4	125°57'29"	43°06'40"	Alkali feldspar granite									251±2 Ma	Wu et al., 2011
8	9923-1	126°28'05"	43°07'55"	Granodiorite									248±4 Ma	Wu et al., 2011
9	42758	126°28'05"	43°07'55"	Granodiorite									248±4 Ma	Wu et al., 2011
10	YZ02-27-5	5 128°49'32"	' 43°03'10"	Monzogranite									248±2 Ma	Zhang et al., 2004
11	FW00-110	128°51'02"	43°07'33"	Monzogranite									247±1 Ma	Wu et al., 2011
12	12LY2-1	125°24'13"	43°02'42"	Monzogranite	32	32	30	4				2	247±1 Ma	Cao et al., 2013
Middl	e Triassic													
13	JK5-2	126°26'45"	' 43°11'02"	Hornblende gabbro									246±4 Ma	Wang et al., 2013
14	YZ02-22-2	2 128°49'21"	42°12'14"	Monzogranite									245±6 Ma	Zhang et al., 2004
15	YZ02-25-2	2 128°44'58"	42°10'57"	Monzogranite									245±3 Ma	Zhang et al., 2004
16	14YT14-1	125°17'16"	43°17'34"	Monzogranite	30	28	34				Ms 5%	2	244±2 Ma	Wang et al., 2015
17	17JZ5-1	126°29'54"	43°22'49"	Ouartz monzonite	10	25	40	5	17			3	244±2 Ma	This study
Late 7	Triassic													
18	FW00-50	128°33'13"	43°04'28"	Hornblende diorite									223±1 Ma	Wu et al., 2011
19	99SW109	126°25'22"	42°53'52"	Gabbro									216±5 Ma	Wu et al., 2004
20	FW00-73	130°57'58"	43°53'30"	Monzogranite									214±10 Ma	Wu et al., 2011
Early	Jurassic													
21	9718-1	126°58'50"	43°50'54"	Alkali feldspar granite									190±2 Ma	Wu et al., 2002
22	FW00-56	129°06'19"	42°59'02"	Monzogranite									186±1 Ma	Wu et al., 2011
23	DY0506-1	126°31'46"	42°47'26"	Syenogranite									185±2 Ma	Wu et al., 2011
24	HTW1-1	129°12'51"	48°32'24"	Hornblende gabbro									185±2 Ma	Yu et al., 2012
25	9909-4	125°21'28"	42°57'15"	Monzogranite									184±3 Ma	Wu et al., 2011
26	D1-7	126°29'48"	43°58'24"	Monzogranite	30	24	40	3				3	181±1 Ma	This study
27	DY0504-2	126°27'20"	42°45'20"	Syenogranite									182±3 Ma	Wu et al., 2011
28	DY118-1	126°45'03"	43°05'06"	Granodiorite									182±2 Ma	Wu et al., 2011
29	FW00-54	126°59'28"	42°02'31"	Granodiorite									182±2 Ma	Wu et al., 2011
30	HYC10-1	128°23'23"	47°42'37"	Hornblende gabbro									182±2 Ma	Yu et al., 2012
31	DY0509-5	126°35'14"	42°59'18"	Diorite									182±1 Ma	Wu et al., 2011
32	17JZ1-1	126°27'55"	43°31'58	Monzogranite	26	35	32	5				2	181±1 Ma	This study
33	17JZ3-1	126°25'23"	43°25'37"	Monzogranite	30	25	40	4				1	181±1 Ma	This study
34	17JZ2-1	126°25'23"	43°25'37"	Monzogranite	25	30	35	5			Ms 3%	2	180±1 Ma	This study
35	17JZ6-1	126°18'44"	' 43°33'07"	Monzogranite	30	30	30	4	4			2	180±1 Ma	This study
36	DY020-1	125°17'12"	43°17'30"	monzogranite									178±4 Ma	Wu et al., 2011
37	DY023-2	125°16'40"	43°14'48"	Svenogranite									178±2 Ma	Wu et al., 2011
38	D5-1	126°28'08"	43°52'19"	Monzogranite	28	25	43	3				1	178±2 Ma	This study
39	DY018-1	126°10'30"	43°23'35"	Monzogranite	_								177±2 Ma	Wu et al., 2011
40	98SW126	126°55'01"	43°53'56"	Diorite inclusion									175±4 Ma	Wu et al. 2011
41	98SW125	126°55'01"	43°53'56"	Monzogranite									175±3 Ma	Wu et al., 2011
42	SCS01-1	126 08'30"	42°59'25"	Granodiorite									175±3 Ma	Wu et al. 2011
43	LK20-2	126°13'41"	43°21'10"	Monzogranite									175±2 Ma	Zhang et al. 2016
44	D6-1	126°27'50"	43°52'08"	Diorite	5	10	60	8	15			2	175±2 Ma	This study
45	D15-1	126°31'34"	43°50'21"	Monzogranite	25	23	45	5				2	175±2 Ma	This study
46	LK 20-2	125 26 34	43°23'05"	Monzogranite	23	23	15	2				-	175+1 Ma	Zhang et al 2016
40	LR 20-2	125 20 54	45 25 05	Monzogranite									175-1 1414	Enang et al., 2010

88

|--|

0.1	GPS Location		1.54 1		Ν	lode	el m	inerals (V		D.C.			
Order	er Sample	Longitude	Latitude	Lithology	Q	Af	Pl	Bi	Hb Cpx	SP	AM	Age	Keterences
47	15JJW6	126°31'22"	43°16'08"	Granite								175±1 Ma	Zhang et al., 2016
Middl	e Jurassic												
48	SC02	126°45'28"	41°49'48"	Monzogranite								174±3 Ma	Sun et al., 2005
49	98SW124	126°43'44"	43°58'10"	Granodiorite								173±4 Ma	Wu et al., 2011
50	D1-1	126°29'48"	43°58'24"	Monzogranite	30	35	30	3			2	173±3 Ma	This study
51	FW00-88	126°31'52"	43°38'10"	Monzogranite								173±2 Ma	Wu et al., 2011
52	MG-12	125°12'14"	42°55'45"	Monzogranite								171±6 Ma	Wu et al., 2011
53	17JZ8-1	126°08'15"	43°22'52"	Monzogranite	30	28	35	5			2	171±2 Ma	This study
54	17JZ7-1	126°05'38"	43°28'15"	Syenogranite	30	50	15	4			1	171±1 Ma	This study
55	17JZ8-4	126°08'15"	43°22'52"	Monzogranite	30	30	35	3			2	171±1 Ma	This study
56	97103-1	126°19'50"	43°06'05"	Granodiorite								170±1 Ma	Wu et al., 2011
57	FW00-37	127°52'50"	42°47'49"	Monzogranite	25	18	40	15			2	168±3 Ma	Zhang et al., 2002
58	DY144-1	126°31'31"	43°51'16"	Syenogranite								166±2 Ma	Wu et al., 2011
59	D12-1	126°27'55"	42°56'32"	Monzogranite	32	25	35	5			3	164±5 Ma	This study
Late J	urassic												
60	DY141-1	125°07'58"	43°10'12"	Monzogranite								163±1 Ma	Wu et al., 2011
61	CH11	125°36'29"	43°37'47"	Monzogranite	40	30	27	2			1	162±2 Ma	Xu et al., 2008
62	SCS01-1	126°08'30"	42°59'25"	Granodiorite								161±3 Ma	Wu et al., 2011
63	X13	125°36'13"	43°36'05"	Syenogranite	30	58	10	1			1	159±3 Ma	Xu et al., 2008
64	DY129-5	124°48'11"	42°59'40"	Monzogranite								158±3 Ma	Wu et al., 2011
65	DY015-1	124°36'57"	42°36'03"	Monzogranite								158±4 Ma	Wu et al., 2011

90

89

Q:quartz; Af: alkali feldspar; Pl: plagioclase; Bi: biotite; Hb: hornblende; Cpx: clinopyroxene;
 Ms: muscovite; Mt: magnetite; SP:special mineral; AM:accessory mineral

93 2 Geological setting

The study area is located near the city of Jilin (Fig. 2). This area comprises the eastern part of the Suolunshan-Central Jilin Orogen, which is bounded by the Changchun-Yanji Suture in the north and the Kaiyuan-Shanchengzhen-Fuerhe Fault in the south (Fig. 2). These major structures are cut by two northeast-striking sinistral strike-slip faults (Fig. 2).

Widespread late Paleozoic to early Mesozoic igneous rocks occur in the eastern part of the Suolunshan-Central Jilin Orogen. Their ages can be subdivided into three groups: middle Permian to Middle Triassic (261–240 Ma), Late Triassic (223–214 Ma), and Early-Middle Jurassic (194–172 Ma). Middle Permian to Middle Triassic igneous rocks include mafic to felsic volcanic (trachyandesite and rhyolite) and intrusive (alkali granite, quartz diorite, granodiorite, and monzogranite) rocks, which are aligned along an E–W trending belt (Fig. 2; Wu et al., 2011; Yang et al., 2012; Xu et al., 2013; Ma et al., 2017, 2019). Late Triassic igneous rocks are

scattered in the study area, and consist of hornblende gabbro, trachyandesite, hornblende diorite,
granodiorite, and monzogranite (Wu et al., 2011; Wang et al., 2019). Early Jurassic igneous
rocks are I- and A-type granitoids, including granodiorite, monzogranite, syenogranite, and
alkali-feldspar granite (Wu et al., 2011, Yu et al., 2013).

Sedimentary rocks in the study area are Carboniferous to Early Cretaceous in age (Jilin 109 Bureau of Geology and Mineral Resources, JBGMR, 1988). Carboniferous rocks are dominated 110 111 by marine volcano-sedimentary strata. Along the Changchun-Yanji Suture, ophiolitic material occurs in association with the late Carboniferous strata (Zheng et al., 1999, Zhou et al., 2009). 112 Permian marine volcano-sedimentary strata are widespread in the study area. The Triassic strata 113 are dominated by marine volcano-sedimentary rocks (Peng et al., 2012 and references therein), 114 but the sedimentary environment gradually changes into terrestrial facies in the Late Triassic 115 rocks. The Permian and Triassic strata are intruded by Permo-Triassic mafic to felsic plutons (Li, 116 117 2006; Wu et al., 2011; Zhou et al., 2017b). Jurassic and Cretaceous rocks are associated mainly with terrigenous clastic strata that contain abundant fossils. The deposition of these rocks was 118 accompanied by volcanic activity (Xu et al., 2013). 119

120 **3 Sampling and analytical methods**

Samples of intrusive rocks were taken from 12 plutons in the area of Jilin city (Fig. 2). A summary of the petrography is summarized in Table 1. Representative photomicrographs are shown in Figure 3. Zircon U-Pb dating and Hf isotope analyses were performed at the Wuhan SampleSolution Analytical Technology Co., Ltd., whereas the whole-rock geochemical analyses were measured at the State Key Laboratory of Geological Processes and Mineral Resources of China University of Geosciences.

Figure 3. Photomicrographs (all cross-polarized light) of selected samples from the middle
Permian to Middle Jurassic intrusive rocks in study area. Qz, quartz; Pl, plagioclase; Af, alkaline
feldspar; Bt, biotite; Mus, muscovite; Hb, hornblende; Cpx, clinopyroxene.

131

132 **3.1. Zircon U–Pb dating**

Zircon grains were extracted from samples using standard density and magnetic separation techniques, followed by handpicking under a binocular microscope. Cathodoluminescence (CL) images were obtained to reveal internal structures of zircon. zircon U–Pb analyses were performed using an Agilent 7500a ICP–MS equipped with a 193 nm laser. The analyses created

a crater diameter of 32 μ m. For further information on the instrument settings and analytical procedures, see Yuan et al. (2004). Data reduction and Correction for common Pb referred to methods by Liu et al. (2010), Ludwig (2003) and Anderson (2002). Results are presented in Table S1 in supplementary material.

141 **3.2. Major and trace element analyses**

Fresh samples were crushed into $\sim 200 \text{ }\mu\text{m}$ mesh size by using agate mill. Whole-rock 142 sampled were then digested in Teflonbombs and measured for major and trace elements 143 144 compositions using X-ray fluorescence (Rigaku RIX 2100 spectrometer), fused-glass disks and ICP-MS (Agilent 7500a with a shield torch). Analytical uncertainties are in the range of 1%-3%. 145 The analytical results for the BHVO-1 (basalt), BCR-2 (basalt), and AGV-1 (andesite) 146 standards indicate that the analytical precision is better than 5% and 10% for the major and trace 147 elements, respectively (Rudnick et al., 2004). Results are presented in Table S2 in supplementary 148 149 material.

150 **3.3. Zircon Hf isotope analyses**

In situ zircon Hf isotope analyses were performed using a Neptune MC–ICP–MS with an ArFexcimer laser ablation system (193 nm). Compared with the standard arrangement, the addition of nitrogen, in combination with the use of a newly designed X skimmer cone and Jet sample cone in the Neptune Plus, improved the signal intensities of Hf, Yb, and Lu by factors of 5.3, 4.0, and 2.4, respectively. All data were acquired on zircon in a single spot ablation mode with a spot size of 44 µm. For details on the operating conditions and analytical method, see Hu et al. (2008, 2012). The Hf isotope results are presented in Table S3 in supplementary material.

158 4 Analytical results

159 **4.1. Geochronology**

Zircon grains separated from 15 granitoid samples are euhedral-subhedral, with the exception of sample 17JZ4-1 (monzonite), in which most zircon grains are xenomorphic granular. All zircon grains display banded structures or oscillatory growth zoning, which is visible in cathodoluminescence (CL) images. Th/U ratios are high (>0.2). All these observations are indicative of a magmatic origin (Table S1; Belousova et al., 2002; Rubatto, 2002). Representative zircon CL images are shown in Fig. 4.

The results show four groups of U–Pb zircon ages: ~261 Ma, 253–244 Ma, 183–175 Ma, and 173–164 Ma. The oldest ages (~261 Ma) are found in a syenogranite pluton (sample 17JZ9-1). This sample yielded zircon grains that are 100–180 μ m long, with length/width ratios of 2:1– 3:1, and Th/U values of 0.61–1.60. A total of 24 analytical spots were conducted on 24 grains, yielding 21 concordant ages. The weighted mean ²⁰⁶Pb/²³⁸U age is 261 ± 1 Ma (MSWD = 0.66, n = 21). Three grains yielded slightly discordant ages due to the loss of radioactive Pb (Fig. 4a; Table S1). The weighted mean age is interpreted as the age of crystallization.

Samples from a monzonite (sample 17JZ4-1) and quartz monzonite (sample 17JZ5-1) pluton yielded zircon ages of 253–244 Ma. The zircon grains are 50–150 μ m long, their length/width ratios are 1:1–2:1, and their Th/U values are 0.46–1.06. All analytical spots for the two samples yielded concordant ages (Fig. 4b, c; Table S1). The weighted mean ²⁰⁶Pb/²³⁸U ages of 253 ± 2 Ma (MSWD = 0.49, n = 23) and 244 ± 2 Ma (MSWD = 0.94, n = 18) are interpreted as the crystallization age of the monzonite and quartz monzonite, respectively.

Seven granitoid plutons and one diorite pluton yielded zircon ages of 183–175 Ma. Granitoid samples included monzogranite (D1-7, 17JZ1-1 and 17JZ3-1), biotite monzogranite (D5-1 and D15-1), two-mica monzogranite (17JZ2-1), and hornblende biotite-bearing

monzogranite (17JZ6-1). Zircon grains from these granitoids are 100 -230 µm long, their 182 length/width ratios are 1.5:1-4:1, and their Th/U values are high (>0.22). Most of analytical 183 spots yielded concordant ages, but a few slightly discordant ages were also obtained (possibly 184 due to radioactive Pb loss) (Fig. 4). The minimum weighted mean ²⁰⁶Pb/²³⁸U ages of these 185 granitoids, which range from 183 ± 1 Ma to 175 ± 2 Ma (Fig. 4d–j; Table S1), are interpreted as 186 crystallization ages. Several zircon grains from samples D5-1 and D15-1 yielded older 187 concordant ages (Fig. 4i and j), which are interpreted to represent the crystallization of inherited 188zircon entrained by these granitoids. Zircon grains from sample D6-1 (diorite) are 50-140 µm 189 long, their length/width ratios are 1:1-3:1, and their Th/U values are 0.38-1.2. A total of 19 190 analytical spots were conducted on 19 grains, yielding 18 concordant 206 Pb/ 238 U ages of 175 ± 2 191 Ma (MSWD = 1.8, n = 13), 183 ± 2 Ma (MSWD = 0.21, n = 2) and 203 ± 2 Ma (MSWD = 0.32, 192 n = 3) (Fig. 4k; Table S1). One grain yielded concordant ²⁰⁶Pb/²³⁸U age of 233 ± 2 Ma. The 193 weighted mean age of 175 ± 2 Ma is interpreted as the crystallization age of the diorite. The 194 195 older ages are interpreted as crystallization ages of captured zircon grains entrained by the diorite. Samples from five granitoid plutons yielded zircon ages of 173-164 Ma. The granitoids 196 include biotite monzogranite (D1-1, 17JZ8-4, and D12-1), hornblende-bearing biotite 197 monzogranite (D5-1 and D15-1) and sygngranite (17JZ7-1). Zircon grains from these granitoids 198 199 are 90-230 µm long, their length/width ratios are 2:1-4:1, and the Th/U values are 0.20-0.96 (Fig. 41-p; Table S1). Most analytical spots yielded concordant ages, with minimum weighted 200 mean 206 Pb/ 238 U ages that range from 173 ± 1 Ma to 164 ± 5 Ma (Fig. 4l-p; Table S1), which are 201 interpreted as crystallization ages. Several zircon grains from samples D1-1 and D12-1 yielded 202 203 older ages (Fig. 41 and p), which are interpreted to represent the crystallization of inherited zircon. 204

Figure 4. Zircon U–Pb concordia diagrams and representative cathodoluminescence (CL) images of selected zircons from the middle Permian to Middle Jurassic intrusive rocks.

208

4.2. Major and trace element geochemistry

210 Sample 17JZ9-1 (~261 Ma syenogranite) is characterized by high SiO₂ (73.83–74.53 wt.%), low Al₂O₃ (13.76–13.94 wt.%), total Fe₂O₃ of 0.97–1.22 wt.%, MgO of 0.09–0.11 wt.%, and 211 CaO of 0.20–0.59 wt.%. Na₂O/K₂O ratios are 0.91–0.97 (Table S2). Plotted on total alkali vs. 212 SiO₂ (TAS) and K₂O vs. SiO₂ diagrams, the sample shows a subalkaline series and a high-K 213 calc-alkaline field, respectively (Fig. 5a, b). The values of A/CNK ($Al_2O_3/(CaO + K_2O + Na_2O)$) 214 are 1.02–1.08, indicating a weakly peraluminous composition (Fig. 5c). The sample shows 215 enrichment in light rare earth elements (LREE) and depletion in heavy rare earth elements 216 217 (HREE), with chondrite-normalized La/Yb (La/Yb N) values of 13.10-14.67 (Table S2). In addition, there is a negative Eu anomaly ($\delta Eu = 0.40-0.46$), enrichment in large ion lithophile 218 elements (LILE; e.g., Rb and K), and depletion in Sr and high field strength elements (HFSE; 219 e.g., Nb, Ta, P and Ti) (Fig. 6a, b; Table S2). 220

Samples 17JZ4-1 (~253 Ma monzonite) and 17JZ5-1 (~244 Ma quartz monzonite) show 221 similar geochemical features, particularly for trace elements (Table S2; Figs. 5 and 6). They 222 contain low concentrations of SiO₂ (58.11-62.83 wt.%) and K₂O (1.44-2.53 wt.%), and 223 relatively high N₂O (4.00-5.03 wt.%). Plotted on the TAS diagram, they appear in the 224 subalkaline and calc-alkaline series (Fig. 5a, b). The values of Al₂O₃ (16.00–16.64 wt.%) and 225 CaO (4.41-6.43 wt.%) are relatively high, and the A/CNK values are 0.80-0.88, indicating a 226 metaluminous composition (Fig. 5c). The samples also show high contents of TiO_2 (0.67–0.88 227 wt.%), total Fe₂O₃ (4.51–6.39 wt.%), and MgO (3.01–4.59 wt.%). The samples are enriched in 228 LREEs and LILEs (e.g., Rb Ba and K), and depleted in HREEs and HFSEs (e.g., Nb, Ta, P and 229 Ti; Fig. 6b). They contain high concentrations of Sr (>632 ppm) and low concentrations of Y 230

231 (12.5 ppm). The values of Sr/Yb are relatively high (>54). The samples show negligibly negative

to slightly positive Eu anomalies ($\delta Eu = 0.83 - 1.13$) (Fig. 6a; Table S2).

Figure 5. (a), (d), (g), and (j) Total alkali versus SiO₂ diagrams (TAS; after Irvine and Baragar, 1971); (b), (e), (h), and (k) K₂O versus SiO₂ diagrams (after Peccerillo and Taylor, 1976); (c), (f), and (i) A/NK (Al₂O₃/(Na₂O + K₂O)) versus A/CNK (Al₂O₃/(CaO + K₂O + Na₂O)) diagrams (after Maniar and Piccoli, 1989). The referenced samples for middle Permian to Middle Jurassic igneous rocks are from Cao et al., (2013), Pei et al., (2011), Wang et al., (2009, 2015, 2019) and Wu et al., (2002).

Granitoids samples dated 183–175 Ma (D1-7, 17JZ3-1, 17JZ1-1, D5-1, D15-1, 17JZ6-1, and 17JZ2-1) show similar major and trace element compositions (Table S2; Fig. 5 and 6). They have high concentrations of SiO₂ (70.74–77.14 wt.%) and low concentrations of Al₂O₃ (12.32– 15.20 wt.%). Concentrations of other major elements are: total Fe₂O₃ (0.92–2.83 wt.%), MgO (0.10–0.77 wt.%), CaO (0.33–1.85 wt.%), Na₂O (3.52–4.46 wt.%), K₂O (2.97–4.93 wt.%), and

TiO₂ (0.07–1.31 wt.%) (Table S2). The compositions are associated with the subalkaline and high-K calc-alkaline series (Fig. 5d, e). Their low A/CNK values (1.00–1.09) are indicative of weakly peraluminous rocks (Fig. 5f). Trace element concentrations show enrichment in LREEs, depletion in HREEs ((La/Yb) $_{N}$ =2.90–8.96), negative Eu anomalies (except of sample D5-1), enrichment in LILEs (e.g., Rb and K), and depletion in Ba, Sr and HFSEs (e.g., Nb, Ta, P and Ti) (Fig. 6c, d; Table S2).

251

Figure 6. (a), (c), (e), and (g) Chondrite–normalized REE patterns diagrams; (b), (d), (f), and (h) Primitive mantle (PM) normalized trace element diagrams. The chondrite and PM values used for normalization are from Boynton (1984) and Sun and McDonough (1989), respectively. The shadow and dotted samples represent middle Permian to Middle Jurassic mafic and felsic rocks, respectively, which are from Cao et al., (2013), Pei et al., (2011), Wang et al., (2009, 2015, 2019)

- 257 and Wu et al., (2002).
- The ~175 Ma diorite sample (D6-1) is characterized by low concentrations of SiO₂ (57.68– 58.10 wt.%), TiO₂ (1.18–1.31 wt.%), Na₂O (3.73–3.78 wt.%), and K₂O (2.22–2.41 wt.%), and high concentrations of Al₂O₃ (16.33–16.62 wt.%). The other major element concentrations are: total Fe₂O₃ (7.76–7.99 wt.%), MgO (2.91–3.04 wt.%), and CaO (5.68–5.74 wt.%) (Table S2). This rock belongs to the subalkaline and high-K calc-alkaline series (Fig. 5d, e). A/CNK values are low (0.85–0.87), indicating a metaluminous composition (Fig. 5f). The rock is enriched in LREEs and LILEs (e.g., Rb and K), and depleted in Ba, HREEs, and HFSEs (e.g., Nb, Ta, P and
- Ti) (Fig. 6d). It shows a negligible negative Eu anomaly ($\delta Eu = 0.74-0.81$) (Fig. 6c; Table S2).
- Granitoid samples dated 173-164 Ma (D1-1, 17JZ8-4, D12-1, 17JZ8-1, and 17JZ7-1) 266 contain high concentrations of SiO₂ (72.20-81.09 wt.%) and low concentrations of TiO₂ (0.03-267 0.34 wt.%). Other major element concentrations are Al₂O₃ (10.78–14.14 wt.%), total Fe₂O₃ 268 (0.13-2.56 wt.%), MgO (0.03-0.77 wt.%), CaO (0.20-1.99 wt.%), Na₂O (3.00-4.44 wt.%), and 269 K₂O (3.49–4.89 wt.%) (Table S2). The rocks belong to the subalkaline series and high-K calc-270 alkaline field (Fig. 5g, h). A/CNK values are 0.97–1.15, indicative of metaluminous and weakly 271 peraluminous rocks (Fig. 5i). Trace element concentrations show enrichment in LREEs and 272 LILEs (e.g., Rb and K), and depletion in Ba, Sr, HREEs, and HFSEs (e.g., Nb, Ta, P and Ti). All 273 samples, except of D1-1 and D1-2, show negative Eu anomalies ($\delta Eu = 0.14-0.58$) (Fig. 6e; 274 Table S2). 275

Figure 7. Correlations between Hf isotopic compositions and ages of zircons from the middle Permian to Middle Jurassic intrusive rocks. The Hf isotopic compositions of Eastern CAOB and Yanshan Fold and Thrust Belt (YFTB) are from Yang et al., (2006).

280 **4.3. Zircon Hf isotopes**

276

Results of *in situ* Hf isotope analyses are presented in Table S3 and Figure 7. Zircon grains dated ~261, ~253 and ~244 Ma yielded ¹⁷⁶Hf/¹⁷⁷Hf ratios of 0.282739–0.282972, and corresponding $\varepsilon_{Hf}(t)$ values of 4.2–8.9. The zircon grains from sample 17JZ9-1 (~261 Ma) yielded two-stage model ages (T_{DM2}) of 1016–645 Ma. Samples 17JZ4-1 (~253 Ma) and 17JZ5-1 (~244 Ma) yielded one-stage model ages (T_{DM1}) of 538–390 Ma and 563–418 Ma, respectively (Table S3; Fig. 7).

Primary zircon grains from granitoids dated 183-175 Ma yielded ¹⁷⁶Hf/¹⁷⁷Hf ratios of 287 0.282762-0.283082 and $\varepsilon_{Hf}(t)$ values of 3.3-14.7. T_{DM1} and T_{DM2} are 735-299 and 1014-343 Ma, 288 respectively (Table S3; Fig. 7). Primary zircon grains from granitoids dated 171-164 Ma yielded 289 $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ ratios of 0.282785–0.283047 and $\epsilon_{\mathrm{Hf}}(t)$ values of 3.9–13.1. T_{DM1} and T_{DM2} are 701– 290 296 and 970-345 Ma, respectively (Table S3; Fig. 7). Inherited zircon grains dated ~172, ~178, 291 ~183 and ~189 Ma from sample D12-1 (~164 Ma monzogranite) yielded ¹⁷⁶Hf/¹⁷⁷Hf ratios of 292 0.282946 ($\epsilon_{Hf}(t) = 9.8$), 0.282984 ($\epsilon_{Hf}(t) = 11.2$), 0.283072 ($\epsilon_{Hf}(t) = 14.4$) and 0.283016 ($\epsilon_{Hf}(t) = 14.4$) 293 12.6), respectively (Table S3; Fig. 7). 294

295 **5. Discussion**

296 5.1. Spatio-temporal distribution of the middle Permian to Middle Jurassic igneous rocks

Magmatism is a geological record of tectonic evolution, and their temporal switches often is response to convergent boundary process. Consequently, the spatio-temporal distribution of ignoues rocks can inform us on transitions in the tectonic regime. The development of the Suolunshan-Central Jilin Orogen was driven by subduction processes along the northern margin of the North China Craton (Li et al., 2006). The evolution of these subduction processes can be constrained by the spatio-temporal distribution of igneous rocks from this orogen.

Our geochronological results are generally consistent with results from previous studies in 303 the Suolunshan-Central Jilin Orogen (Wu et al., 2011; Cao et al., 2013; Wang et al., 2015, 2019). 304 Middle Permian to Middle Triassic igneous rocks have been reported from the eastern part of the 305 306 Suolunshan-Central Jilin Orogen, represented by ca. 258 Ma olivine gabbro (Meihekou county), ca. 257 Ma monzogabbro (Gongzhuling city), ca. 259 Ma syenogranite (Liaoyuan county), ca. 307 255 Ma granodiorite, and ca. 249 Ma monzogranite (Siping city) (Fig. 2; Cao et al., 2013). 308 Jurassic igneous rocks are widespread in the region and include mafic to felsic volcanic and 309 intrusive rocks, particularly in the eastern part of the Suolunshan-Central Jinlin Orogen (Xu et al., 310 2009, 2013; Pei et al., 2011; Wu et al., 2011; Cao et al., 2013; Wang et al., 2015, 2017, 2019; Ma 311 312 et al., 2017, 2018).

Based on the combination of new and published geochronological data (Table 1), we show that middle Permian to Middle Triassic magmatism in the area form an E-W trending belt along the northern margin of the North China Craton (Fig. 2; Wu et al., 2005). In contrast, the spatial distribution of Late Triassic and Jurassic igneous rocks generally follows a northeast–southwest trend (Fig. 2; Ma et al., 2017; Wang et al., 2019).

318 **5.2. Petrogenesis and tectonic setting**

The petrogenesis of igneous rocks can provide information on the tectonic setting during magmatism (Pearce et al., 1983; Maniar and Piccoli, 1989; Xu et al., 1999, 2013). Using our new petrographic and geochemical data, we discuss below the petrogenesis and inferred tectonic setting during each of the four phases of magmatism in the Suolunshan-Central Jilin Orogen.

323 5.2.1. Middle Permian (~261 Ma) magmatism

The earliest phase of magmatism is represented only by a single pluton of syenogranite 324 dated ~261 Ma. Mechanisms that have been proposed to explain the origin of syenogranite 325 include: (1) partial melting of crustal rocks (Whalen et al., 1987; Tchameni et al., 2001); (2) 326 mixing of basaltic magma with crustal melt (Mingram et al., 2000; Vernikovsky et al., 2003; 327 Macdonald et al., 2008); and (3) fractional crystallization of mantle-derived magmas 328 (Litvinovsky et al., 2002; Wang et al., 2005; Nardi et al., 2008). In our study area, the 329 syenogranite did not show evidence of mafic microgranular enclaves, acicular apatite, or 330 plagioclase with reverse zoning, thus ruling out the possibility that it was derived from mixing of 331 basaltic magma with crustal melt (Vernon, 1984; Mingram et al., 2000; Vernikovsky et al., 2003). 332 In addition, the absence of coeval mafic magmatism in the study area indicates that it is unlikely 333 that the syenogranite formed by fractional crystallization of mantle-derived magmas. It appears, 334 therefore, that the intrusion was likely derived from a primary magma generated by partial 335 melting of crustal material, thus explaining the high concentrations of SiO₂, Na₂O and K₂O, and 336 the low concentrations of Fe₂O₃, MgO, and CaO. 337

The syenogranite yielded a high Th/La ratio of 0.44-0.50, which is consistent with lower continental crust material (Th/La >0.25; Plank, 2005). In addition, it contains relatively high concentrations of LREEs, and is relatively depleted in HREEs and in highly incompatible

elements (Ni, Ta, P, Ti, Ba and Sr) (Fig. 6). This depletion could either be attributed to the 341 source composition or to the presence of residual minerals in the source. The latter possibility is 342 more likely based on the evidence of the coupled variability of some associated elements (e.g., 343 Eu and Sr) in the syenogranite and their inconsistency with the composition of the continental 344 crust (Rudnick and Gao, 2004). We therefore suggest that the presence of garnet and rutile as 345 residual phases was responsible for generating a primary magma that was depleted in HREEs 346 347 and HFSEs (Ni and Ta). Garnet and rutile control the partitioning of HREEs and HFSEs, respectively. Furthermore, the presence of residual rutile also caused a strong negative Ti 348 anomaly. Other minerals that might have existed in residual phases are plagioclase and apatite. 349 350 Plagioclase can explain the depletion in Sr, the presence of a negative Eu anomaly, and the relatively low CaO content (Tamura et al., 2011). The presence of apatite can account for the 351 depletion in P. Considering the ε_{Hf} (t) values (+4.2 to +10.0) and T_{DM2} ages (645 to 1016 Ma), 352 we suggest that the primary magma of the syenogranite was generated by partial melting of a 353 juvenile mafic lower crustal material, and the involvement of other crustal (e.g., Mesoproterozoic) 354 material in the source melts. 355

Coeval igneous rocks have not been found in study area, but syenogranite plutons dated 262–259 Ma are known from adjacent regions. These rocks belong to the high-K calc-alkaline series and their geochemical features are akin to those described above (Cao et al., 2013). Based on the petrogenesis and calc-alkaline affinity of these rocks, we suggest that this phase of magmatism, at ca. 261 Ma, was developed in an active continental margin (Pitcher, 1993).

361 5.2.2. Late Permian – Early Triassic (253–244 Ma) magmatism

The monzonite (~253 Ma) and quartz monzonite (~244 Ma) plutons in the study area are enriched in LREEs and depleted in HREEs. They are characterized by high concentrations of Sr,

low concentrations of Y and Yb, high Sr/Y ratios, and weakly positive Eu anomalies (Fig. 6;

The following models have been suggested to explain the origin of adakitic magmas: (1)

partial melting of subducted oceanic crustal material (Defant and Drummond, 1990); (2) partial 367 melting of delaminated lower crust (Kay and Kay, 1993; Xu et al., 2002; Gao et al., 2004; Xu et 368 al., 2006); (3) partial melting of thickened mafic lower continental crust (Petford and Atherton, 369 1996; Chung et al., 2003; Wang et al., 2005); and (4) derivation by crustal assimilation and 370 371 fractional crystallization (AFC) processes from a basaltic parental magma (Castillo et al., 1999). Adakite magmas generated by partial melting of thickened mafic lower continental crust 372 should have a high content of K₂O, a low Na₂O/K₂O ratio, low Mg#, and low concentrations of 373 MgO, Cr and Ni. Our samples have low concentrations of K₂O and high concentrations of MgO, 374 Cr and Ni, thus ruling out an origin via this mechanism. Likewise, it is unlikely that our samples 375 376 were derived from primary magmas generated lower-crustal delamination, because this process is expected to produce high concentrations of Th (10-20 ppm) and high Th/La ratios (Plank, 377 2005). However, our samples contain relatively low Th concentrations (3.7 to 5.7 ppm). Melting 378 of thickened or delaminated lower crustal material is also unlikely in light of the absence of 379 inherited zircons in our samples (Fig. 4b, c). Geological and geochemical evidence also 380 precludes generation of adakite magmas by AFC, because these adakites does not exhibit linear 381

382 correlation of their composition, and no mafic pluton has been found in the study area.

383

364

366

Table S2). These characteristics are geochemically similar to adakite (Fig. 8a, b).

Figure 8. Discrimination diagrams of adakite. (a) Sr/Y versus Y diagram (after Martin, 2005); (b) 385 La/Yb versus Yb diagram (after Moyen, 2009); (c) MgO versus SiO₂ diagram; (d) Mg# versus 386 387 SiO₂ diagram. In Figs. 8a and b, the gray samples are C-type adakitic rocks within Eastern and Northern China from Moyen (2009) and references therein. In Fig. 8c, the adakites formed by 388 melting of subducted oceanic crust are from Defant and Drummond (1990) and Martin (2005); 389 the adakitic rocks formed by melting of thickened lower crust are from Atherton and Petford 390 (1993) and Petford and Atherton (1996); and the adakitic rocks formed by melting of 391 delaminated lower crust are from Xu et al. (2002). In Fig. 8d, the adakites formed by melting of 392 subducted oceanic crust are from Defant and Drummond (1990) and Martin (2005); and the 393 adakitic rocks formed by melting of lower crust with peridotite contamination and by melting of 394 395 thickened lower crust are from Xiao et al. (2004).

384

The 253–244 Ma monzonite and quartz monzonite in the study area were likely formed by melting of subducted oceanic crustal material and the interaction of this melt with the overlying mantle wedge, which thus generated high concentrations of MgO, Cr and Ni (Defant and Drummond, 1990). This model is supported by discrimination diagrams for the genesis of

adakite (Fig. 8c, d). The zircon $\varepsilon_{Hf}(t)$ values of the adakites (8.2–12.6) suggest that they were generated by melting of a juvenile mafic material. Adakitic rocks occur in both island arcs and continental arcs, but magmas formed in continental arcs are commonly characterized by high Zr/Yb and Nb/Yb ratios (Miyashiro, 1974; Defant and Drummond, 1990; Pearce. 1996). Based on the geochemical data (Table S2), we suggest that the 253–244 Ma monzonite and quartz monzonite in the study area were associated with a continental magmatic arc.

406

Fig. 9. Variations diagrams for Early Jurassic granitoids in study area. (a) the P_2O_5 versus SiO₂ diagram (after Whalen et al., 1987); (b) the Zr concentrations versus 10000*Ga/Al

discrimination diagram (after Chappell et al., 1999; Whalen et al., 1987); (c) the Zr + Nb + Ce +
Y concentrations versus 10000*Ga/Al discrimination diagram (after Eby et al., 1990).

411

412 *5.2.3. Early Jurassic (183–175 Ma) magmatism*

413 Early Jurassic granitoids are mainly biotite monzogranites, characterized by high SiO₂, Na₂O and K₂O, low CaO, MgO and total Fe₂O₃, and variable Al₂O₃. Some of the plutons contain 414 hornblende and secondary muscovite. The composition of the rocks corresponds to weakly 415 peraluminous I-type granites, as indicate by the negative correlation between P_2O_5 and SiO₂ (Fig. 416 9a). A discrimination diagram based on Zr concentrations vs 10000*Ga/Al indicates that sample 417 D15-1 might be an A-type granite. However, using the (Zr + Nb + Ce + Y) concentrations vs 418 10000*Ga/Al discrimination diagram, all samples are plotted in the I-type field, with sample 419 420 17JZ15-1 being highly fractionated I-type granite (Fig. 9b and c; Whalen et al., 1987; Chappell et al., 1999; Eby et al., 1990). 421

I-type granites are generally derived from igneous or meta-igneous sources (Whalen et al., 422 1987). The Early Jurassic granitoids in the study area are characterized by major element 423 concentrations that are compatible with a process involving partial melting of crustal material, a 424 425 conclusion that is also supported by the presence of inherited zircon grains and the wide range of zircon Hf isotopic composition (Figs 4 and 7; Table S3). The granitoids contains low 426 concentrations of LREEs, and they are relatively depleted in HREEs and highly incompatible 427 elements (Ni, Ta, P, Ti, Ba and Sr). Some samples are also depleted in La (Fig. 6). Melt 428 generation was likely driven by subduction, and 'subduction components' (LREEs, Ba and Sr; 429 Pearce et al., 2005) can provide information on the subduction processes. Generally, shallow 430 subduction is characterized by enrichments in elements such as Ba, Rb and Sr, which are mobile 431 in low-temperature aqueous fluids; in contrast, deep subduction is characterized by enrichments 432 in the aforementioned elements and LREE as a result of sediment melting (Tamura et al., 2011). 433

The low concentrations of LREEs in the Early Jurassic granitoids indicate that that the primary magma did not experience metasomatism by sediment melting. The depleted concentrations of HREEs, Ni, P and Ti, suggest that garnet, rutile and apatite were present as residual phases (Tamura et al., 2011). In addition, based on the $\varepsilon_{Hf}(t)$ values (3.3–13.4), it is suggested that the magmas were generated by melting of juvenile lower continental crust. We therefore conclude that the origin of the Early Jurassic granitoids was associated with primary magmas that were generated by melting of juvenile lower continental crust.

In addition to the Early Jurassic granitoids, the study area also has a diorite body dated \sim 441 175 Ma. The following models have been suggested for the formation of dioritic magmas: (1) 442 443 partial melting of mantle peridotite under water-saturated conditions (Hirose, 1997); (2) partial melting of subducting oceanic crust (Gerya and Yuen, 2003; Behn et al., 2011); (3) mixing of 444 basaltic magma with crustal melt (Reubi and Blundy, 2009); and (4) fractional crystallization or 445 AFC processes from a basaltic parental magma (Hildreth and Moorbath, 1988; Plank and 446 447 Langmuir, 1988; Dai et al., 2016). The diorite in the study area is characterized by high contents of Al₂O₃, total Fe₂O₃, MgO and CaO, low contents of K₂O, and a low Na₂O/K₂O ratio. The 448 diorite is enriched in LREEs but depleted in highly incompatible elements (Ni, Ta, P, Ti, Ba and 449 Sr). Relative to mantle-derived magmas, the concentrations of MgO, Cr and Ni in the diorite are 450 relatively low. Moreover, evidence that the diorite is enriched in LREEs indicates that it was 451 unlikely derived from partial melting of mantle peridotite under water-saturated conditions, with 452 refractory harzburgite as the residue (Grove et al., 2002). Intermediate magmas formed by 453 melting of subducted oceanic crust are generally characterized by high Na₂O/K₂O ratios 454 (averaging ~2.67), average Mg# values of 48, and Cr and Ni concentrations of 36 and 24 ppm, 455 respectively (Defant and Drummond, 1990). Our data from the diorite sample (D6-1) are 456

inconsistent with these predictions (Table S3). Accordingly, the possibility that the diorite
formed by partial melting of mantle peridotite or by partial melting of subducting oceanic crust
can be ruled out.

Fractional crystallization and assimilation (AFC) commonly occur during magma ascent, 460 but crustal contamination in magma sources also plays an important role in the incorporation of 461 crustal components into mantle-derived magmas. Below, we first evaluate the roles of AFC 462 processes and then constrain the role of crustal contamination. Magma subjected to AFC 463 processes is expected to have enhanced concentrations of SiO₂ and melt-mobile incompatible 464 trace elements, such as Ba, Rb, Sr and Pb. In our data from sample D6-1, these elements show 465 irregular variations, thus indicating that the parental magma was unlikely subjected to AFC 466 processes (Table S2). Crustal contamination in the source is expected to enrich the parental 467 magma with LREEs and incompatible elements, but our data show that Ba and Sr are depleted in 468 469 the diorite sample (Fig. 6). It appears, therefore, that the ~ 175 Ma diorite in the study area was unlikely derived from a basaltic parental magma that underwent fractional crystallization or AFC 470 processes. Considering the evidence of gabbroic fragments and amphibole-enriched haloes 471 surrounding the gabbroic fragments in the diorite, we suggest that the diorite most likely formed 472 from magma that was generated by mixing of basaltic magma with crustal melt. 473

In conclusion, Early Jurassic (183–175 Ma) igneous rocks in the study area belong to the high-K calc-alkaline series and consist of andesite, rhyolite, syenogranite, monzogranite, and diorite (Wang et al., 2019). The monzogranitic magmas were generated by melting of juvenile lower continental crust, whereas diorite was most likely formed from magmas generated by mixing of basaltic magma with crustal melt. The overall petrogenesis and high-K calc-alkaline

479 affinity of the igneous rocks are consistent with formation in a continental arc environment480 (Pitcher, 1997).

481 5.2.4. Middle Jurassic (173–164 Ma) magmatism

Middle Jurassic granitoids in the study area are characterized by high concentrations of SiO₂, Na₂O and K₂O, low concentrations of CaO, MgO and total Fe₂O₃, and variable concentrations of Al₂O₃. The A/CNK values and correlations between P₂O₅ and SiO₂ indicate that these granitoids are typically I-type. The major element signature and the presence of inherited zircon grains in these rocks indicate that they were generated by partial melting of crustal material. This conclusion is also supported by the wide range of zircon Hf compositions (Figs 4 and 7; Table S3).

Interestingly, the Middle Jurassic granitoids have variable concentrations of Eu, U, Sr, P, 489 and Ti. Despite the different concentrations of Eu and Sr, the Eu-Sr coupling indicates a high 490 491 oxygen fugacity of the parental magmas (Drake, 1975; Rowe et al., 2007; Wilke and Behrens, 1999). In addition, the presence of plagioclase as a residual mineral in the source played an 492 important role during magma genesis under oxidizing conditions, thus resulting in variable 493 concentrations of CaO. The variability in U contents and depletion in Ti and P might have 494 resulted from the presence of apatite as a residual mineral. The $\varepsilon_{Hf}(t)$ values (3.9–13.1) suggest 495 that these granitoids were generated by melting of juvenile lower continental crust. The 496 collective petrographic and geochemical evidence, therefore, indicates that Middle Jurassic 497 granitoids in the study area formed from primary magmas generated by melting of juvenile lower 498 continental crust. These granitoids and coeval igneous rock assemblages, which belong to the 499 high-K calc-alkaline series (Wang et al., 2019), were developed in an active continental margin. 500

501 **5.3. Implication for a transition in the tectonic regime**

The early history of the eastern part of the CAOB was influenced mainly by subduction of the Paleo-Asian Ocean. Following the consumption of this oceanic lithosphere and the establishment of new subduction systems at the Paleo-Pacific Ocean, a major transition in the tectonic regime affected the eastern CAOB. Scholars put forward different suggestions about the timing of tectonic overlying and transition. Our results provide new insights into the timing of this transition.

Late Permian to Middle Triassic intrusive rocks in our study area are characterized by 508 positive zircon $\varepsilon_{Hf}(t)$ values. Such positive values are characteristic of the CAOB zircon grains, 509 as opposed to zircons from the North China Craton, which typically have negative $\varepsilon_{Hf}(t)$ values 510 (Yang et al., 2006; Fig. 7). We therefore suggest that the 261–244 Ma igneous rocks in our study 511 area were intimately linked to orogenesis in the CAOB and hence to the subduction of the Paleo-512 513 Asian Ocean. In the area of Faku city, southwest of our study area, high-K adakite dated 227 ± 3 Ma has been found (Shi et al., 2019). Given that the generation of high-K adakite involves partial 514 melting of thickened mafic lower continental crust, the evidence suggests that the Paleo-Asian 515 Ocean was already consumed by ~227 Ma (Shi et al., 2019). Other Late Triassic (220–214 Ma) 516 igneous rocks include a bimodal suite (hornblende gabbro, monzogranite, and granodiorite), 517 associated with the high-K calc-alkaline series, which likely evolved during orogenic uplift and 518 post-orogenic extension (Wu et al., 2011; Wang et al., 2019). This phase of magmatism, similar 519 to the ~227 Ma adakite, postdated the termination of the Paleo-Asian Ocean subduction. 520 Consequently, we conclude that the closure of the Paleo-Asian Ocean could occur between 244 521 Ma and 227 Ma. 522

523 Spatially, Late Triassic and Jurassic intrusive rocks are distributed from roughly northeast 524 to southwest (Fig. 2; Ma et al., 2017, 2019), which is a responding to tectonic regime transition 525 in the Late Triassic. There is an alkaline and ultrabasic complex belt extends east to west from 526 Liaoning province to inner Mongolia province along the northern margin of the North China 527 Craton, and with corresponding ages range from 250 to 219 Ma (Cao et al., 2013; Pei et al., 2008; 528 Peng et al., 2012; Wang et al., 2013, 2019; Wu et al., 2011). The eastern segment of the alkaline

and ultrabasic complex consist of ca. 222–219 Ma A-type granite and ultramafic rocks, which is
also a marker of tectonic transition from orogenic uplift to a post-orogenic extensional setting in
the Late Triassic (Cao et al., 2013; Wang et al., 2019).

The final closure of the Paleo-Asian Ocean is marked by the Solonker-Xar Moron-532 Changchun-Yanji Suture. In segment of Changchun-Yanji, a belt of Carboniferous ophiolitic 533 mélange and deep-sea volcanic rocks in Yantongshan, Shuangyang and Toudaochuan area (Peng 534 et al., 1997), which likely represents relics of the Paleo-Asian Ocean (Xiao et al., 2003; Li, 2006). 535 Cao et al. (2019) have recently suggested that high-pressure metamorphism in the Yantongshan 536 ophiolitic mélange occurred after 237 Ma. Furthermore, mylonites from a ductile shear zone near 537 Yanji city yielded ⁴⁰Ar-³⁹Ar ages of 230–227 Ma (Peng et al., 2012 and references therein). 538 These metamorphic ages might represent a phase of deformation and metamorphism following 539 the final closure of the Paleo-Asian Ocean, further supporting our suggestion that a change in the 540 tectonic regime could occur at ca. 237-227 Ma. 541

Paleontological and stratigraphic studies support the idea that a change in the tectonic regime occurred during the Late Triassic. Some authors have suggested that the final closure of the Paleo-Asian Ocean occurred already in the late Permian, based on the recognition that marine volcano-sedimentary Permian strata gradually change into supposedly late Permian continental

facies (Li et al., 2006, Zhou et al., 2017a). However, this interpretation seems incorrect, as 546 indicated by the occurrence of marine fossil communities and marine interlayers in the late 547 Permian strata (Peng et al., 2012 and references therein). Marine fossils were also found in black 548 shale from the Early Triassic Lujiatun Formation, which is unconformably overlain by Late 549 Triassic strata (Peng et al., 2012 and references therein). This unconformity between Early and 550 Late Triassic strata might be associated with the final closure of the Paleo-Asian Ocean. 551 Elsewhere, the Early Triassic strata are overlain by Middle Triassic marine volcano-sedimentary 552 rocks with carbonate interlayers (e.g., Kedao Formation deposited in 241-233 Ma; JBGMB, 553 1988; Zhou et al., 2017b). Late Triassic strata are associated with volcano-sedimentary rocks and 554 coal seams (e.g., Dajianggang Fm with maximum depositional age of ~217 Ma; Zhou et al., 555 2017b). It appears, therefore, that the sedimentary environment gradually changed from marine 556 to continental facies during the Triassic, supporting our conclusion that the final closure of the 557 558 Paleo-Asian Ocean occurred during late stage of Middle Triassic or early stage of Late Triassic.

In conclusion, the integrated evidence from igneous petrology, metamorphic petrology, structural geology, paleontology and stratigraphy suggests that the timing of tectonic regime transition occurred in late stage of Middle Triassic or early stage of the Late Triassic (244–227 Ma).

563 5.4. Tectonic evolution of the Changchun-Yanji Suture

The Changchun-Yanji Suture marks the easternmost location of the Paleo-Asian Ocean closure and provides information on the tectonic evolution of the Suolunshan-Central Jilin Orogen. Following the final closure of the Paleo-Asian Ocean at 244–227 Ma, the area was affected by Late Triassic (223–214 Ma) bimodal igneous rocks, which were possibly linked to long episodes of contraction intermitted by a shorter period of crustal extension. As recorded by

Jurassic igneous rocks, 190-185 Ma alkaline and bimodal igneous rocks indicate study area 569 remained an extensional environment. In contrast, 185-175 Ma granitoids, diorites, andesites and 570 rhyolites are middle- to high-K calc-alkaline rocks and formed in a continental arc environment 571 (Fig. 5a, b), which were likely developed during the early stages of subduction (Pitcher, 1997; 572 Wu et al., 2002, 2011). In addition, a N–S trending Heilongjiang accretionary complex formed in 573 188–177 Ma along the Jiavin-Mudanjiang Fault, and it was considered as produce of subduction 574 of the Paleo-Pacific Ocean (Sun et al., 2018). Therefore, the spatio-temporal coupling between 575 Early Jurassic magmatism and Heilongjiang accretionary complex lend support to our hypothesis 576 that tectonic regime transition from the influence of Paleo-Asian Ocean convergence to the 577 subduction of the Paleo-Pacific Ocean occurred between Late Triassic and Early Jurassic (223-578 185 Ma). 579

Subsequently, the tectonic evolution of the easternmost part of the Suolunshan-Central Jilin 580 Orogen was controlled mainly by subduction of the Paleo-Pacific Ocean. The widespread Middle 581 Jurassic (173–164 Ma) and dotted Late Jurassic (163–158 Ma) igneous rocks were possibly part 582 of a magmatic arc along the active continental margin. Their distribution range suggests that the 583 speed was decreasing gradually as the subduction evolved. The lack of 157–140 Ma magmatism 584 in the easternmost part of the CAOB further is indicative of a probable intermission of 585 subduction. The tectonic evolution history during Middle and Late Jurassic was also recorded by 586 Raohe complex, which consists of 216-166 Ma intraoceanic igneous rocks in an accretionary 587 prism overlain by terrestrial clastic sediments (Sun et al., 2015). These intraoceanic igneous 588 rocks derived from oceanic slab can be interpreted as subduction of the Paleo-Pacific Ocean, 589 whereas the provenance of overlying terrestrial clastic deposits can provide effectively constraint 590 for tectonic evolution of study area. The detrital zircons U-Pb dating and Hf isotopic analysis 591

indicate that all 155–140 Ma zircon grains derived from the North China Craton, and further proves the existent of the intermission during late stage of Late Jurassic. Therefore, the Changchun-Yanji Suture experienced multiple tectonic mode switches from Late Paleozoic to Mesozoic, and was controlled by westward (present-day coordinates) subduction of the Paleo-Pacific Ocean since Early Jurassic.

597

Fig. 10. Scenario for the middle Permian to Middle Jurassic tectonic evolution of theChangchun-Yanji Suture.

600 Our schematic tectonic reconstruction (Fig. 10) assumes that middle Permian to Middle 601 Triassic contraction was ultimately controlled by double-sided subduction of the Paleo-Asian 602 Ocean (Fig. 10a, b). Following the final closure of the Paleo-Asian Ocean, at late stage of Middle

Triassic or early stage of Late Triassic, Carboniferous ophiolitic mélange and deep-sea volcanic rocks were emplaced at the suture zone (Fig. 10c, d). At 223–185 Ma, contraction was disrupted by a shorter period of crustal extension. Subsequently, subduction of the Paleo-Pacific Ocean resulted in widespread 185–164 Ma magmatism and the development of Heilongjiang accretionary complex (Fig. 10e, f).

608 6 Conclusions

Based on zircon U–Pb ages and geochemical data, the following conclusions are drawn.

610 1. Middle Permian to Middle Jurassic igneous rocks in the area of Jilin were emplaced
611 during four major phases, at ca. 261 Ma, 253–244 Ma, 183–175 Ma, and 173–164 Ma.

2. The earliest phase of magmatism, at ca. 261 Ma, was generated in an active continental margin by partial melting of juvenile mafic lower crustal material. Magmatism at 253–244 Ma was generated in a continental arc environment by partial melting of juvenile mafic subducted oceanic crust. At 183–175 Ma, monzogranitic and dioritic magmas were generated in a continental arc environment via melting of juvenile lower continental crust and mixing of basaltic magma with crustal melt, respectively. The final stage of magmatism, at 173–164 Ma, formed in an active continental margin, generated by melting of juvenile lower continental crust.

3. Integrated evidence suggests that the closure of the Paleo-Asian Ocean could occur at
244–227 Ma, whereas the timing of tectonic regime transition from the influence of Paleo-Asian
Ocean subduction to the subduction of the Paleo-Pacific Ocean occurred between Late Triassic
and Early Jurassic (223–185 Ma).

4. The Changchun-Yanji Suture experienced multiple tectonic mode switches from Late
Paleozoic to Mesozoic, and was controlled by subduction of the Paleo-Pacific Ocean since Early
Jurassic.

626 Acknowledgments

627	We thank the staff of the State Key Laboratory of Geological Processes and Mineral
628	Resources, China University of Geosciences, for their advice and assistance during zircon LA-
629	ICP-MS U-Pb dating, major and trace element analyses, and Hf isotope analyses. This work was
630	financially supported by the National Key Basic Research Program of China (2017YFC0601304)
631	and the National Natural Science Foundation of China (Grants 91858211, 41972053). All data
632	are archived at Mendeley Date (http://dx.doi.org/10.17632/383sjsrmtf.1).
633	References
634	Anderson, T. (2002). Correction of common Lead in U-Pb analyses that do not report ²⁰⁴ Pb.
635	Chemical Geology, 192, 59 – 79.
636	Atherton, M.P. & Petford, N. (1993). Generation of sodium-rich magmas from newly
637	underplated basaltic crust. Nature, 362, 144–146.
638	Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. J. (2011). Diapirs as the
639	source of the sediment signature in arc lavas. Nature Geoscience, 4, 641-646.
640	Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. & Fisher, N.I. (2002). Igneous zircon: trace
641	element composition as an indicator of source rock type. Contributions to Mineralogy and
642	<i>Petrology</i> , 143, 602 – 622.
643	Boynton, W.V. (1984). Geochemistry of the rare earth elements: meteorite studies. In:
644	Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63-114.
645	Cao, J.L., Zhou, J.B. & Li, L. (2019). The tectonic evolution of the Changchun-Yanji suture zone:
646	Constraints of zircon U-Pb ages of the Yantongshan accretionary complex (NE China).

Journal of Asian Earth Science, Doi.org/10.1016/j.jseaes.2019.104110.

648	Cao, H.H., Xu, W.L., Pei, F.P., Wang, Z.W., Wang, F. & Wang, Z.J. (2013). Zircon U-Pb
649	geochronology and petrogenesis of late Paleozoic-Early Mesozoic intrusive rocks in the
650	eastern segment of the northern margin of the North China Block. Lithos, 170-171, 191-207
651	Castillo, P.R., Janney, P.E. & Solidum, R.U. (1999). Petrology and geochemistry of Camiguin
652	island, southern Philippines: insights to the source of adakites and other lavas in a complex
653	arc setting. Contributions of Mineralogy and Petrology, 134, 33-51.
654	Chappell, B.W. (1999). Aluminium saturation in I and S-type granites and the characterization of
655	fractionated haplogranites. Lithos, 46, 535–551.
656	Chung, S.L., Liu, D.Y., Ji, J.Q., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q.
657	& Zhang, Q. (2003). Adakites from continental collision zones: melting of thickened lower
658	crust beneath southern Tibet. Geology, 31, 1021–1024.
659	Dai, F.Q., Zhao, Z.F., Dai, L.Q. & Zheng, Y.F. (2016). Slab-mantle interaction in the
660	petrogenesis of Andesitic magmas: Geochemical evidence from postcollisional intermediate
661	volcanic rocks in the Dabie Orogen, China. Journal of Petrology, 06, 1–26.
662	Defant, M.J. & Drummond, M.S. (1990). Derivation of some modern arc magmas by melting of
663	young subducted lithosphere. Nature, 34, 662–665.
664	Drake, M. J. (1975). The oxidation state of europium as an indicator of oxygen fugacity.
665	Geochimica et Cosmochmica Acta, 39, 55–64.
666	Eby, G.N. (1990). The A-type granitoids: A review of their occurrence and chemical
667	characteristics and speculations on their petrogenesis. Lithos, 26, 115–134.
668	Eizenhöfer, P.R., Zhao, G.C., Zhang, J. & Sun, M. (2014). Final closure of the Paleo-Asian
669	Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical
670	data of Permian volcanic and sedimentary rocks. <i>Tectonics</i> , 33, 441-463.

671	Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Lin, W.L., Ayers, J., Wang,
672	X.C. & Wang, Q.H. (2004). Recycling lower continental crust in the North China craton.
673	Nature, 432, 892–897.
674	Gerya, T. V. & Yuen, D. A. (2003). Rayleigh-Taylor instabilities from hydration and melting
675	propel 'cold plumes' at subduction zones. Earth and Planetary Science Letters 212, 47-62.
676	Grove, T., Parman, S., Bowring, S., Price, R. & Baker, M. (2002). The role of an H ₂ O-rich fluid
677	component in the generation of primitive basaltic andesites and andesites from the Mt.
678	Shasta region, N California. Contributions to Mineralogy and Petrology, 142, 375-396.
679	Han, J., Zhou, J.B., Li, L. & Song, M.C. (2017). Mesoproterozoic (~1.4 Ga) A-type Gneisseic
680	Granites in the Break-up of Columbia in the Eastern CAOB. Precambrian Research, 296,
681	20 - 38.
682	Hildreth, W. & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of
683	central Chile. Contributions to Mineralogy and Petrology, 98, 455-489.
684	Hirose, K. (1997). Melting experiments on lherzolite KLB-1 under hydrous conditions and
685	generation of high-magnesian andesites. Geology, 25, 42–44.
686	Hu, Z.C., Liu, Y.S., Gao, S., Hu, S.H., Dietiker, R. & Günther, D. (2008). A local aerosol
687	extraction strategy for the determination of the aerosol composition in laser ablation
688	inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry,
689	23, 1192 – 1203.
690	Hu, Z.C., Liu, Y.S., Gao, S., Liu, W.G., Yang, L., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q.,
691	Li, M., Chen, H.H. & Zhou, L. (2012). Improved in situ Hf isotope ratio analysis of zircon
692	using newly designed X skimmer cone and Jet sample cone in combination with the

- addition of nitrogen by laser ablation multiple collector ICP-MS. *Journal of Analytical Atomic Spectrometry*, 27, 1391 1399.
- Irvine, T.H. & Baragar, W.R.A. (1971). A guide to the chemical classification of the common
 volcanic rocks. *Canadian Journal of Earth Sciences*, 8, 523–548.
- Jahn, B.M., Wu, F.Y. & Chen, B. (2000). Massive granitoid generation in central Asia: Nd
 isotopic evidence and implication for continental growth in the Phanerozoic. *Episodes*, 23,
 82 –92.
- JBGMR (Jilin Bureau of Geology and Mineral Resources), (1997). *Stratigraphy (Lithostatic) of Jilin Province (in Chinese)*. China University of Geosciences Press, Wuhan, pp. 10–13.
- Kay, R.W. & Kay, S.M. (1993). Delamination and delamination magmatism. *Tectonophysics*,
 219, 177–189.
- Khanchuk, A.I., Vovna, G.M., Kiselev, V.I., Mishkin, M.A. & Lavrik, S.N. (2010). First results
 of zircon LA-ICP-MS U-Pb dating of the rocks from the Granulite Complex of Khanka
 Massif in the Primorye region. *Doklady Earth Sciences*, 434 (1), 1164–1167.
- Li, J.Y. (2006). Permian geodynamic setting of Northeast China and adjacent regions: Closure of
 the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. *Journal of Asian Earth Sciences*, 26, 207–224.
- Li, Y., Ding, L.L., Xu, W.L., Wang, F., Tang, J., Zhao, S. & Wang, Z.J. (2015). Geochronology
 and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the
 timing of closure of the Mongol-Okhosk Ocean. *Acta Petrologica Sinica*, 31, 56–66 (in
 Chinese with English abstract).

714	Li, Y., Xu, W.L., Zhu, R.X., Wang, F., Ge, W.C. & Sorokin, A.A. (2020). Late Jurassic to Early
715	Cretaceous tectonic nature on NE Asia continental margin: Constraints from Mesozoic
716	accretionary complexes. Earth-Science Reviews, 200, 103042.
717	Litvinovsky, A.A., Jahn, B.M., Zanvilevich, A.N., Saunders, S., Poulain, S., Kuzmin, D.V.,
718	Reichow, M.K. & Titov, A.V. (2002). Petrogenesis of syenite-granite suites from the
719	Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoids
720	magmas. Chemical Geology, 189, 105 – 133.
721	Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q. & Wang, D.B. (2010). Continental and
722	oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China
723	Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths.
724	Journal of Petrology, 51, 537–571.
725	Luan, J.P., Wang, F., Xu, W.L., Ge, W.C., Sorokin, A.A., Wang, Z.W. & Guo, P. (2017a).
726	Provenance, age, and tectonic implications of Neoproterozoic strata in the Jiamusi Massif:
727	evidence from U-Pb ages and Hf isotope compositions of detrital and magmatic zircons.
728	Precambrian Research, 297, 17–32.
729	Luan, J.P., Xu, W.L., Wang, F., Wang, Z.W. & Guo, P. (2017b). Age and geochemistry of
730	Neoproterozoic granitoids in the Songnen - Zhangguangcai Range Massif, NE China:
731	Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 148, 265–276.
732	Luan, J.P., Yu, J.J., Yu, J.L., Cui, Y.C. & Xu, W.L. (2019). Early Neoproterozoic magmatism
733	and associated metamorphism in the Songnen Massif, NE China: Petrogenesis and tectonic
734	implications. Precambrian Research, 328, 250–268.

Ludwig, K.R. (2003). ISOPLOT 3: a geochronological toolkit for microsoft excel. *Berkeley Geochronology Centre Special Publication*, 4, 74.

737	Ma, X.H., Zhu, W.P., Zhou, Z.H. & Qiao, S.L. (2017). Transformation from Paleo-Asian Ocean
738	clousure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-
739	Heilongjiang Belt, NE China. Journal of Asian Earth Sciences, 144, 261–286.
740	Ma, X.H., Chen, C.J., Zhao, J.X., Qiao, S.L. & Zhou, Z.H. (2019). Late Permian intermediate
741	and felsic intrusions in the eastern Central Asian Orogenic Belt: Final-stage magmatic
742	record of Paleo-Asian Ocean subduction? Lithos, 326-327, 265-278.
743	Macdonald, R., Belkin, H.E., Fitton, J.G., Rogers, N.W., Nejbert, K., Tindle, A.G. & Marshall,
744	A.S. (2008). The roles of fractional crystallization, magma mixing, crystal mush
745	remobilization and Volatile- melt interactions in the genesis of a young basalt-peralkaline
746	rhyolith suite, the Great Olkaria Volcanic Complex, Kenya Rift Valley. Journal of
747	<i>Petrology</i> , 49 (8), 1515 – 1547.
748	Maniar, P.D. & Piccoli, P.M. (1989). Tectonic discrimination of granitoids. Geological Society
749	of American Bulletin, 101, 635–643.
750	Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. & Champion, D. (2005). An overview of
751	adakite, tonalite-tondhjemite-granodiorite (TTG), and sanukitoid: relationships and some
752	implications for crustal evolution. Lithos, 79, 1–24.
753	Mayshiro, A. (1974). Volcanic rock series in island arcs and active continental margins.
754	American Journal of Science, 274, 321–355.
755	Mingram, B., Trumbull, R.B., Littman, S. & Gerstenberger, H. (2000). A petrogenetic study of
756	androgenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence
757	for mixing of crust and mantle-derived components, $Lithos$, 54, 1 – 22.
758	Moyen, J.F. (2009). High Sr/Y and La/Yb ratios: A meaning of the "adakitic signature". Lithos,
759	112, 556–574.

760	Nardi, L.V.S., Placid, J., Bitencourt, M.D.F. & Stabel, L.Z. (2008). Geochemistry and
761	petrigenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil:
762	the Piquiri Syenite Massif. Annals of the Brazilian Academy of Sciences, 80 (2), 353 – 371.
763	Peccerillo, A. & Taylor, A.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from
764	the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58 (1),
765	63 -81.
766	Pearce, J.A. (1983). The role of sub-continental lithosphere in magma genesis at destructive plate
767	margins. In: Hawkesworth, C.J., Norry, M.J., (Eds.), Continental Basalts and Mantle
768	Xenoliths, Nantwich, Shiva, pp. 230–249.
769	Pearce, J.A. (1996). Source and settings of granitic rocks. <i>Episodes</i> , 19, 120–125.
770	Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. (2005). Geochemical mapping of the
771	Mariana arc^basin system: implications for the nature and distribution of subduction
772	components. Geochemistry, Geophysics, Geosystems, 6 (7), 1–27.
773	Pei, F.P., Xu, W.L., Yu, Y., Zhao, Q.G. & Yang, D.B. (2008). Petrogenesis of the Late Triassic
774	Mayihe Pluton in Southern Jilin province: evidence from zircon U-Pb Geochronology and
775	Geochemistry. Journal of Jilin University (English Science Edition), 38 (3), 351–362.
776	Pei, F.P., Xu, W.L., Yang, D.B., Yu, Y., Wang, W. & Zhao, Q.G. (2011). Geochronology and
777	geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and
778	southern Jilin province, NE China: Constraints on the spatial extent of destruction of the
779	North China Craton. Journal of Asian Earth Sciences, 40, 636–650.
780	Peng, Y.J., Qi, C.D., Zhou, X.D., Lu, X.B., Dong, H.C. & Li, Z. (2012). Transition from Paleo-
781	Asian Ocean domain to circum-Pacific Ocean domain for the Ji-Hei composite orogenic
782	belt (in Chinese with English abstract). Geology and resources, 21 (3), 261–265.

783	Petford, N. & Atherton, M. (1996). Na-rich partial melts from newly underplated basaltic crust:
784	the Cordillera Blanca Batholith, Peru. Journal of Petrology. 37, 1491–1521.
785	Pitcher, W.S. (1993). The nature and origin of Granite. Blackie Academic and Professional. pp.
786	321.
787	Plank, T. & Langmuir, C. H. (1988). An evaluation of the global variations in the major element
788	chemistry of arc basalts. Earth and Planetary Science Letters, 90, 349-370.
789	Plank, T. (2005). Constraints from thorium/lanthanum on sediment recycling at subduction zones
790	and the evolution of the continents. Journal of Petrology, 46, 921 – 944.
791	Qian, C., Chen, H.J., Lu, L., Pang, X.J., Qin, T. & Wang, Y. (2018). The discovery of
792	Neoarchean granite in Longjiang area, Heilongjiang province. Acta Geoscientica Sinica, 39
793	(1), 27 – 36 (in Chinese with English abstract).
794	Reubi, O. & Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes and
795	the petrogenesis of arc andesites. Nature, 461, 1269–1273.
796	Rowe, M.C., Wolff, J.A., Gardner, J.N., Ramos, F.C., Teasdale, R. & Heikoop, C.E. (2007).
797	Development of continental volcanic field: Petrogenesis of pre-caldera Intermediate and
798	silicic rocks and origin of Bandelier magmas, Jemez Mountains (New Mexico, USA).
799	Journal of Petrology, 48 (11), 2063 –2091.
800	Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link
801	between U–Pb ages and metamorphism. Chemical Geology, 184, 123 – 138.
802	Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S. & Mc Donough, W.F. (2004). Petrology and
803	geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton.
804	Lithos, 77, 609–637.

805	Safonova, I.Y. & Santosh, M. (2014). Accretionary complexes in the Asia-Pacific region: tracing
806	archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25
807	(1), 126–158.
808	Sengör, A.M.C., Natal'in, B.A. & Burtman, V.S. (1993). Evolution of the Altaid tectonic collage
809	and Paleozoic crustal growth in Eurasia. Nature, 364, 299 – 307.
810	Shi, Y., Liu, Z.H., Liu, Y.J., Shi, S.S., Wei, S.S., Yang, J.J. & Gao, T. (2019). Late Paleozoic-
811	Early Mesozoic southward subduction-closure of the Paleo-Asian Ocean: Proof from
812	geochemistry and geochronology of Early Permian-Late Triassic felsic intrusive rocks from
813	North Liaoning, NE China. Lithos, 346-347, Doi.org/10.1016j.lithos.2019.105165.
814	Sun, C.Y., Long, X.Y., Xu, W.L., Wang, F., Ge, W.C., Guo, P. & Liu, X.Y. (2018). Zircon U-Pb
815	ages and Hf isotopic compositions of the Heilongjiang Complex from Jiayin, Heilongjiang
816	province and Kundur, Russian Far East and their geological implications. Acta Petrologica
817	<i>Sinica</i> , 34 (10): 2901–2916.
818	Sun, M. D., Xu, Y. G., Wilde, S. A. & Chen, H. L. (2015). Provenance of Cretaceous trench
819	slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for
820	determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 34,
821	1269–1289.
822	Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts:
823	implications for mantle composition and processes. In: Saunders, A. D. and Norry, M. J.,
824	eds., Magmatism in ocean basins: Geological Society, London, Special Publications 42, no.
825	1, pp. 313–345.

Tang, J., Xu, W.L., Wang, F., Wang, W., Xu, M.J. & Zhang, Y.H. (2013). Geochronology and
geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis

828	and implications for the breakup of the Rodinia supercontinent. Precambrian Research, 224,
829	597 – 611.

- 830 Tang, J., Xu, W.L., Niu, Y.L., Wang, F., Ge, W.C., Sorokin, A.A. & Chekryzhov, I.Y. (2016).
- 831 Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-
- Alin Orogenic Belt: Petrologenesis and implications for the oblique subduction of the paleoPacific plate. *Lithos*, 266-267, 202 212.
- Tamura, A., Ishizuka, O., Stern, R.J., Shukuno, H., Kawabata, H., Embley, R.W., Hirahara, Y.,
- 835 Chang, Q., Kimura, J.I., Tatsumi, Y., Nunokawa, A. & Bloomer, S.H. (2011). Two primary
- basalt magma types from Northwest Rota-1 Volcano, Mariana arc and its mantle diaper or mantle wedge plume. *Journal of Petrology* 0, 1 - 41.
- Tchameni, R., Mezger, K., Nsifa, N.E. & Pouclet, A. (2001). Crustal origin of early Proterozoic
 syenites in the Congo Craton (Ntem Complex), South Cameroon. *Lithos*, 57, 23 42.
- 840 Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van
- Calsteren, P. & Deng, W. (1996). Post-collision, shoshonitic volcanism on the Tibetan
 Plateau: implications for convective thinning of the lithosphere and the source of ocean
 island basalts. *Journal of Petrology*, 37, 45–71.
- Vernikovsky, V.A., Pease, V.L., Vernikovskaya, A.E., Romanov, A.P., Gee, D.G. & Travin,
 A.V. (2003). First report of early Triassic A-type granite and syenite intrusions from Taimyr:
 product of the northern Eurasian superplume. *Lithos*, 66, 23 66.
- 847 Vernon, R.H. (1984). Micro-granitoid enclaves: globules of hybrid magma quenched in a
- plutonic environment. *Nature*, 304, 438 439.
- 849 Wang, F., Xu, W.L., Li, J., Pei, F.P. & Cao, H.H. (2009). Chronology and geochemistry of Early
- 850 Cretaceous gabbro-diorite in Yantongshan area of Jilin. *Global Geology*, 28 (4), 403–413.

851	Wang, F., Xu, W.L., Xu, Y.G., Gao, F.H. & Ge, W.C. (2015). Late Triassic bimodal igeous
852	rocks in the eastern Heilongjiang province, NE China: Implications for the initiation
853	subduction of the Paleo-pacific plate beneath Eurasia. Journal of Asian Earth Sciences, 97,
854	406 – 423.

- Wang, F., Xu, Y. G., Xu, W. L., Yang, L., Wu, W., & Sun, C. Y. (2017). Early Jurassic calcalkaline magmatism in Northeast China: Magmatic response to subduction of the PaleoPacific plate beneath the Eurasian continent. *Journal of Asian Earth Sciences*, 143, 249–268.
- 858 Wang, F., Xu, W.L., Xing, K.C., Wang, Y.N., Zhang, H.H., Wu, W., Sun, C.Y. & Ge, W.C.
- (2019). Final closure of the Paleo-Asian Ocean and onset of subduction of Paleo-Pacific
 Ocean: Constraints from Early Mesozoic magmatism in the central southern Jilin province,
 NE China. *Journal of Geophysical Research: Solid Earth*, 124, 2601-2622.
- Wang, Q., Li, J.W., Jian, P., Zhao, Z.H., Xiong, X.L., Bao, Z.W., Xu, J.F., Li, C.F., Ma, J.L.
 (2005). Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic
 transtension. *Earth and Planetary Science Letters*, 230, 339 354.
- Whalen, J.B., Currie, K.L. & Chappell, B.W. (1987). A-type granites: geochemical
 characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*,
 95, 407 419.
- Wilke, M. & Behrens, H. (1999). The dependence of the partitioning of iron and europium
 between plagioclase and hydrous tonalitic melt on oxygen fugacity. *Contributions to Mineralogy and Petrology*, 137, 102–114.
- Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M. & Wilde, S. (2002). A-type granites in northeastern
 China: age and geochemical constraints on their petrogenesis. *Chemical Geology*, 187 (1),
 143–173.

874	Wu, F.Y., Yang, J.H., Wilde, S.A. & Zhang, X.O. (2005). Geochronology, petrogenesis and
875	tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical
876	<i>Geology</i> , 221, 127–156.
877	Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A. & Jahn, B.M. (2011).
878	Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth
879	<i>Sciences</i> , 41 , $1 - 30$.
880	Xiao, W.J., Windley, B.F., Hao, J. & Zhai, M.G. (2003). Accretion leading to collision and the
881	Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic
882	Belt. <i>Tectonics</i> , 22,1069 – 1089.
883	Xiao, W.J., Zhang, L.C., Qin, K.Z., Sun, S. & Li, J.Y. (2004). Paleozoic accretionary and
884	collisional tectonics of the eastern Tienshan (China): implications for the continental growth
885	of Central Asia. American Journal Sciences, 304, 370-395.
886	Xiao, W.J., Windley, B.F., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Yuan, C., Sun, M. & Chen,
887	H.L. (2015). A tale of amalgamation of three Permo-Triassic collage systems in Central
888	Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary
889	<i>Sciences</i> , 43, 477 – 507.

- Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q. & Rapp, R.P. (2002). Origin of Mesozoic adakitic
 intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower
 continental crust? *Geology*, 30, 1111–1114.
- Xu, W.L., Gao, S., Wang, Q.H., Wang, D.Y. & Liu, Y.S. (2006). Mesozoic crustal thickening of
 the eastern North China Craton: Evidence from eclogite xenoliths and petrologic
 implications. *Geology*, 34, 721–724.

896	Xu, W.L., Pei, F.P., Gao, F.H., Yang, D.B. & Bu, Y.J. (2008). Zircon U-Pb age from Basement
897	Granites in Yishu graben and its tectonic implications. Earth Science, 33 (2), 145-150 (in
898	Chinese with English abstract).
899	Xu, W.L., Ji, W.Q., Pei, F.P., Meng, E., Yu, Y., Yang, D.B. & Zhang, X.Z. (2009), Triassic
900	volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology,
901	geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34, 392 – 402.
902	Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B. & Wang, W. (2013). Spatial-
903	temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic
904	overprinting and transformations between multiple tectonic systems. Journal of Asian Earth
905	<i>Sciences</i> , 74, 167 – 193.
906	Xu, W.L., Sun, C.Y., Tang, J., Luan, J.P. & Wang, F. (2019). Basement nature and tectonic
907	evolution of Xing'an-Mongolian Orogenic Belt. Earth Science, 44 (5), 1620 - 1646 (in
908	Chinese with English abstract).
909	Xu, X.S., Dong, C.W., Li, W.X. & Zhou, X.M. (1999). Late Mesozoic intrusive complexes in the
910	coastal area of Fujian SE China: Significance of the gabbro-diorite-granite association.
911	<i>Lithos</i> , 46, 299 – 315.
912	Yang, H., Ge, W.C., Bi, J.H., Wang, Z.H., Tian, D.X., Dong, Y. & Chen, H.J. (2018). The
913	Neoproterozoic-early Paleozoic evolution of the Jiamusi Block, NE China and its east
914	Gondwana connection: Geochenmical and zircon U-Pb-Hf isotopic constraints from the
915	Mashan Complex. Gondwana Research, 54, 102 – 121.
916	Yang, H., Ge, W.C., Zhao, G.C., Bi, J.H., Wang, Z.H., Dong, Y. & Xu, W.L. (2017). Zircon U-
917	Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan

918	region, NE China: Constraints on the high-grade metamorphism and tectonic affinity of the
919	Jiamusi-Khanka Block. <i>Lithos</i> , 268–271, 16–31.
920	Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W. & Liu, X.M. (2006). Constraints on the
921	timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planetary Science
922	Letters, 246, 336–352.
923	Yang, J. H., Sun, J. F., Zhang, M., Wu, F. Y., & Wilde, S. A. (2012). Petrogenesis of silica-
924	saturated and silica-undersaturated syenites in the northern North China craton related to
925	post-collisional and intraplate extension. Chemical Geology, 328, 149-167.
926	Ye, H.W. & Zhang, X. (1994). The ⁴⁰ Ar- ³⁹ Ar age of the vein crossite in blueschist in
927	Mudanjiang area, NE China and its geological implication. Journal of Changchun
928	University of Earth Sciences, 24, 369 – 372 (in Chinese with English abstract).
929	Yu, J.J., Wang, F., Xu, W.L., Gao, F.H. & Tang, J. (2013). Late Permian tectonic evolution at
930	the southeastern margin of the Songnen-Zhangguangcai Range Massif, NE China:
931	Constraints from geochronology and geochemistry of granitoids. Gondwana Research, 24,
932	635–647.
933	Yu, J. J., Wang, F., Xu, W. L., Gao, F. H., & Pei, F. P. (2012). Early Jurassic mafic magmatism
934	in the Lesser Xing'an - Zhangguangcai Range, NE China, and its tectonic implications:
935	Constraints from zircon U-Pb chronology and geochemistry. Lithos, 142–143, 256–266.
936	Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Günther, D. & Wu, F.Z. (2004). Accurate U-Pb age
937	and trace element determinations of zircon by laser ablation inductively coupled plasma
938	mass spectrometry. Geostandard Newsletter, 28, 353 – 370.
939	Zhang, C., Wu, X.W., Liu, Z.H., Zhang, Y.J., Guo, W. & Quan, J.Y. (2018). Precambrian
940	geolohical events on the western margin of Songnen Massif: Evience from LA-ICP-MS U-

941	Pb Geochronology of Zircons from Paleoproterozoic granite in the Longjiang Area. Acta
942	Petrologica Sinica, 34 (10), 3137 – 3152 (in Chinese with English abstract).

- 243 Zhang, H.H., Wang, F., Xu, W.L., Cao, H.H. & Pei, F.P. (2016). Petrogenesis of Early-Middle
- Jurassic intrusive rocks in northern Liaoniang and Central Jilin provinces, northeast China:
 Implications for the extent of spatial-temporal overprinting of the Mongol-Okhotsk and
 Paleo-Pacific tectonic regimes. *Lithos*, 256-257, 132–147.
- 947 Zhang, Y.B., Wu, F.Y., Li, H.M., Lu, X.P., Sun, D.Y. & Zhou, H.Y. (2002). Single grain zircon
- U-Pb ages of Huangniling granite in the Jilin province. *Acta Petrologica Sinica*, 18 (4):
 475–481 (in Chinese with English abstract).
- Zhang, Y.B., Wu, F.Y., Wilde, S.A., Zhai, M.G., Lu, X.P. & Sun, D.Y. (2004). Zircon U–Pb
 ages and tectonic implications of "Early Paleozoic" granitoids at Yanbian, Jilin Province,
 NE China. *The Island Arc*, 13, 484–505.
- Zhao, S., Xu, W.L., Tang, J., Li, Y. & Guo, P. (2016). Timing of formation and tectonic nature
 of the purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China:
- Constraints from field geology and U-Pb geochronology of detrital and magmatic zircons.
 Precambrian Research, 281, 585 601.
- Zheng, C.Z., Wang, G.Q., Yang, S.Y. & Peng, Y.J. (1999). Discovery of Late Carboniferous
 Weining age fauna from Shitoukoumen Faulted through basin in Jilin and its implication. *Geological Review*, 45 (6), 632–639 (in Chinese with English abstract).
- 960 Zhou, J. B., Wilde, S. A., Zhang, X. Z., Zhao, G. C., Zheng, C. Q., Wang, Y. J. & Zhang, X. H.
- 961 (2009). The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang
- high pressure metamorphic belt. *Tectonophysics*, 478, 230–246.

963	Zhou, J.B. & Li, L. (2017a). The Mesozoic accretionary complex in Northeast China: Evidence
964	for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145,
965	91–100.
966	Zhou, J.B., Wilde, SA., Zhao, G.C. & Han, J. (2018). Nature and assembly of microcontinental
967	blocks within the Paleo-Asian Ocean. Earth Science Reviews, 186, 76–93.
968	Zhou, X.D., Sun, C.L. & Peng, Y.J. (2009). Reference sections of Carboniferous and Permian
969	boundary in Xing'an-Mongolia and Jilin-Heilongjiang Orogenic Belt. Journal of Jilin
970	University (Earth Science Edition), 39 (1), 72–79 (in Chinese with English abstract).
971	Zhou, Z.B., Pei, F.P., Wang, Z.W., Cao, H.H., Xu, W.L., Wang, Z.J. & Zhang, Y. (2017b).
972	Using detrital zircons from late Permian to Triassic sedimentary rocks in the south-eastern
973	Central Asian Orogenic Belt (NE China) to constrain the timing of final closure of the
974	Paleo-Asain Ocean. Journal Asian Earth Sciences, 144, 82 – 109.