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Abstract

While many studies comparing atmospheric reanalysis and surface observations have focused on the similarity of mean fields,

trends, or frequencies of extreme events, very few have assessed how similar surface observations and reanalysis data sets are

in terms of their specific identification of extreme temperature event days. Here, we assess the similarity between surface

observations and three reanalysis products: ERA5, ERA5-LAND, and NARR, in terms of the days on which they identify

extreme temperature events. We assess similarity from 1979-2016 for 231 locations in the United States and Canada, assessing

Extreme Heat and Cold Event days, as well as their counterpart events that are relative for the time of year. Cold Events have

a greater match than Heat Events. ERA5 has the greatest match percentage with station data across the study region. Match

percentage is greatest in mid-latitude, continental locations, with poorer performance in coastal areas, and the Arctic.
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Abstract 7 

While many studies comparing atmospheric reanalysis and surface observations have focused on the 8 

similarity of mean fields, trends, or frequencies of extreme events, very few have assessed how similar 9 

surface observations and reanalysis data sets are in terms of their specific identification of extreme 10 

temperature event days. Here, we assess the similarity between surface observations and three reanalysis 11 

products: ERA5, ERA5-LAND, and NARR, in terms of the days on which they identify extreme temperature 12 

events.  We assess similarity from 1979-2016 for 231 locations in the United States and Canada, assessing 13 

Extreme Heat and Cold Event days, as well as their counterpart events that are relative for the time of 14 

year.  Cold Events have a greater match than Heat Events.  ERA5 has the greatest match percentage with 15 

station data across the study region.  Match percentage is greatest in mid-latitude, continental locations, 16 

with poorer performance in coastal areas, and the Arctic. 17 

Plain Language Summary 18 

Atmospheric reanalysis products are simulations of the atmosphere that create gridded historical data 19 

sets.  While many studies have looked at how well these products match surface observations overall, 20 

very few have examined how similar they are in identifying extreme weather event days.  Here, we explore 21 

this similarity using three reanalysis products: ERA5, ERA5-LAND, and NARR, in terms of the days on which 22 

they identify extreme temperature events.  We do this for 231 locations in the United States and Canada 23 

from 1979-2016, for both Extreme Heat and Cold.  Cold Events have a greater match than Heat Events.  24 

ERA5 has the greatest match percentage with station data across the study region.  Match percentage is 25 

greatest in mid-latitude, continental locations, with poorer performance in coastal areas, and the Arctic. 26 

 Keywords: extreme temperature events, heat waves, cold waves, reanalysis, North America 27 

  28 



1 Introduction 29 

Over the past 25 years, as the availability of atmospheric reanalysis data sets has proliferated, their 30 

prominence in climate research has grown considerably.  These reanalysis products, in which observed 31 

data from a number of platforms are assimilated and then gridded through short-term simulations within 32 

a modern forecast system, have much to offer climate science – the data sets are complete, available for 33 

many atmospheric variables, produced on a regular grid at many vertical levels, can have extremely fine-34 

scale spatial resolution, and comprise multiple decades (Dee et al., 2014). All of these facets greatly 35 

standardize and enhance spatio-temporal analyses, and thus it is unsurprising that these data sets are 36 

frequently used in climate change and variability research.  Indeed, for many climate change and 37 

variability applications, such as the global energy balance (Trenberth et al., 2011), global reanalysis 38 

products are a necessity. 39 

Nevertheless, there are marked differences between reanalysis and observation data sets.  Some of this 40 

is by design; for instance, the NCEP-NCAR reanalysis (NNR; Kalnay et al. 1996) intentionally does not 41 

incorporate surface temperature observations, as a means of potentially identifying the influence of 42 

urbanization or other land use changes have on the climate system (Cornes and Jones, 2013). 43 

Alternatively, the JRA-55 reanalysis eschews satellite data to provide an historical reconstruction more 44 

consistent in terms of input variables (Kobayashi et al., 2015). There is a general understanding that some 45 

of the variables must be used with greater caution, particularly those related to the hydrologic cycle and 46 

in areas with sparse surface data, nevertheless these reanalysis products are still valuable (Essou et al., 47 

2016). 48 

There is often an assumption made that surface observation data and reanalysis data are one and the 49 

same, or at least similar enough for most comparative or integrative purposes, although this is not without 50 

contention (Parker, 2016). A number of studies as a result have focused on confirming that reanalysis and 51 

observation data sets have similar climatologies. (e.g. Schoof et al., 2017; Kishore et al., 2016; Behrangi et 52 

al., 2016), although nearly all studies identify regional biases or distinctions when multiple reanalysis data 53 

sets are compared. 54 

Extreme events are the most critical aspect of many applied climatological studies as they can be harmful 55 

to human and natural systems. In particular, heat and cold events have been linked to anomalous human 56 

mortality (e.g., Sheridan and Allen, 2018; Smith and Sheridan, 2019), agricultural losses (e.g., Teixera et 57 

al., 2013), infrastructure damage (e.g. Xia et al., 2013) and other detrimental effects. In turn, studies 58 

comparing reanalysis and observational data sets have explored differences in the climatologies of such 59 

events, some downscaling to the individual station level. Broadly, there is a strong correlation between 60 

temperatures derived from reanalysis and their station counterparts, yet there can be substantial bias 61 

that impacts the climatology of extreme temperature days (Lader et al., 2016).  Some studies have shown 62 

a general alignment in trends between data sets, such as for the US in Schoof et al. (2017). However, in 63 

other studies, trends in the most extreme hot days have the poorest alignment among the reanalysis data 64 

sets themselves (Pitman and Perkins, 2009), as well as with observations (Europe; Cornes and Jones, 2013; 65 

Africa; Ceccherini et al., 2015). Over China, You et al. (2013) showed that patterns of cold-related variables 66 

were reproduced most poorly. Within all temperature reanalysis products, complex geography can make 67 



it difficult to resolve precise temperature values for locations due to the scale of reanalysis being 68 

inconsistent with many physical climate processes (Holden et al., 2016). 69 

Nevertheless, for many applications, such as heat-related mortality, the identification of specific events is 70 

critical – namely, do reanalysis and observation data sets identify the same heat events as occurring?  This 71 

is indispensable for research, but not very well understood. We only know of one previous work that 72 

examined alignment between observations and reanalysis of specific extreme temperature event 73 

identification (Ceccherini et al., 2015), and another that assessed the differences in the weather-human 74 

mortality relationship between station data and gridded interpolations (Spangler et al., 2019).   Thus, in 75 

this paper, we directly address this question by analyzing the similarity between extreme temperature 76 

event identification within four data sets: surface synoptic weather observations (SYNOP) in the United 77 

States and Canada, the newly released ECMWF-based reanalysis (ERA5, Hersbach et al., 2019) – which 78 

does assimilate surface temperature observations and has been shown to reduce temperature bias from 79 

the previous generation ERA-Interim (Betts, Chan, & Desjardins, 2019; Johannsen et al., 2019), the ERA5-80 

LAND reanalysis, which offers enhanced resolution compared to ERA5 itself but does not directly 81 

assimilate surface observations, and the North American Regional Reanalysis (NARR; Mesinger et al., 82 

2006), which also does not use surface observations in its assimilation scheme.  The comparisons are 83 

made across 230 locations in the United States and Canada for the period 1979-2016.  We address 84 

similarities in the climatology, as well as the identification of specific extreme temperature events (ETE) 85 

among the data sets. 86 

 87 

2 Data and methods 88 

2.1 Meteorological Data 89 

Station-observation data for the 231 stations in North America were obtained from the National Center 90 

of Environmental Information (NCEI) and Environment Canada for all sites in Table S1.  The threshold for 91 

inclusion of this study was at least 97.5% completeness in the station observation record. 92 

In order to calculate daily-scale apparent temperatures, 2-m temperature, 2-m dew points, and 10-m 93 

zonal and meridional components of the wind were obtained from the National Centers for Environmental 94 

Prediction (NCEP) North American Regional Reanalysis (NARR) data set and the ERA5  and ERA5-LAND 95 

reanalysis data sets from the European Centre for Medium-Range Weather Forecast for 1979-2016 (1981-96 

2016 for ERA5-LAND). These data were acquired for the nearest land-based grid point in each reanalysis 97 

domain to each of the 231 surface weather stations. The spatial resolution of the NARR (~32km) and ERA5 98 

(~30km) are very similar, thus complex geography, such as mountains or water bodies, are likely to have 99 

a consistent impact on both data sets and were not therefore considered when finding the nearest grid-100 

point.  The native resolution of ERA5-LAND is ~9km.    101 

The study period of 1979-2016 is entirely within the satellite era to remove potential biases (Jones et al., 102 

2012).  We also acknowledge that other studies have used gridded surface data (Schoof et al., 2017) such 103 

as PRISM (Daly et al., 2008), that attempt to reconcile station inhomogeneities that are present in many 104 



data sets (e.g., Brown and DeGaetano, 2013); however, for many applied climate studies, particularly 105 

point-based ones, station data are still used, and hence we incorporate the historical station record itself.   106 

Due to the variable amounts of atmospheric moisture associated with heat events in North America, most 107 

assessments of heat events typically use an apparent temperature index accordingly (McGregor and 108 

Vanos, 2018), and apparent temperature metrics are used in official threshold delineation in the US 109 

(Weinberger et al., 2018) and Canada (Benmarhnia et al., 2016).  Thus, for each of the three data sets, 2-110 

m temperature, 2-m dew point, and 10-m wind speed were obtained/calculated for the eight 3-hourly 111 

observations per day, a temporal time frame with improved results over 12-hourly values (Cornes and 112 

Jones, 2013).  For each of these three-hourly observations, an apparent temperature was calculated based 113 

on the Steadman (1984) formula for outdoor shade conditions:  114 

AT = -2.7 + 1.04T + 2.0P - 0.65u; 115 

in which T and AT are temperature and apparent temperature in °C, P is vapor pressure in kPa (calculated 116 

from dew points in °C), and u is wind speed in m/s.  A daily mean apparent temperature (AT) is then 117 

calculated from the 8 observations per day.  To align the definition of a ‘local day’ across the continent, 118 

centered on midnight to midnight, for each day the observations of 0900, 1200, 1500, 1800, 2100, 0000 119 

(+1-day), 0300 (+1-day), and 0600 (+1-day) GMT were used.  These times equate to 0100 to 2200 Pacific 120 

Standard Time, and 0400 to 0100 Eastern Standard Time.  This daily mean AT is the basis for all subsequent 121 

calculations of ETEs. 122 

 123 

2.2 Identification of Extreme Heat and Cold Events 124 

As many studies of ETE are based upon their human impact, in this paper Extreme Heat Events (EHE), 125 

Extreme Cold Events (ECE), Relative Extreme Heat Events (REHE), and Relative Extreme Cold Events (RECE) 126 

are based upon the initial work by Nairn and Fawcett (2014) defining EHE, and later adaptations by the 127 

authors of this article (Sheridan and Lee, 2019; Sheridan et al., 2019), in which a connection between this 128 

definition of ETE and mortality has been shown.   129 

The EHE is initially based on the Excess Heat Factor (EHF), defined as the product of the magnitude of a 130 

heat event and an acclimatization term.  The magnitude of the heat event (excess heat, EH) is calculated 131 

as: 132 

EH = max (0, (∑ 𝐴𝑇𝑖
0
𝑖=−2 )/3 – AT95), (1) 

where ATi is the apparent temperature on day i, averaged over a three-day period, and AT95 is the overall 133 

95th percentile of daily mean apparent temperature for a location (based on the 1981-2010 normal 134 

period).  It should be noted that this percentile is calculated separately for each of the three data sets to 135 

reduce systematic bias in the variables. 136 

The acclimatization term is: 137 

EHaccl = (∑ 𝐴𝑇𝑖
0
𝑖=−2 )/3 - (∑ 𝐴𝑇𝑖

−3
𝑖=−32 )/30, (2) 



representative of the difference between the three-day mean apparent temperature and the mean of the 138 

30 days prior.  This is critical to the Nairn and Fawcett (2014) methodology as it addresses the increased 139 

vulnerability to heat when there has been a lack of short-term acclimatization, something identified in 140 

literature (e.g., Lee et al., 2014). 141 

EHF then is the product of these two terms: 142 

EHF = max (0, EH) x max (1, EHaccl), (3) 

in units of K2.  To define an extreme heat event (EHE), we use the Nairn and Fawcett (2014) definition, 143 

whereby the EHF must exceed the 85th percentile of all positive EHF values for a location over the 144 

climatological period. 145 

The concept of Extreme Cold Event (ECE) identification is similar, except with the 5th percentile of apparent 146 

temperature (AT5) as the basis for excess cold (EC) being identified, and the 15th percentile threshold of 147 

ECF used to identify ECE days, with excess cold factor defined as: 148 

ECF = -1 x min (0, EC) x min (-1, ECaccl). (4) 

In contrast to absolute heat events and cold events, events that are extreme relative to the time of year 149 

are also of interest (Sheridan and Lee, 2019).  We thus also assess relative EHF (REHF) and ECF (RECF). The 150 

definitions are similar to the EHF and ECF above, except that these two variables use a percentile  151 

threshold that varies seasonally, calculated as the 92.5th (REHF)/7.5th (RECF) percentile over the 152 

climatological period for the 15 days centered on the day being evaluated. Relative Extreme Heat Events 153 

(REHE) are identified as all days above the 85th percentile distribution of REHF, and relative extreme cold 154 

events (RECE) as days below the 15th percentile distribution of RECF. 155 

 156 

2.3 Match of days identified as EHE and ECE 157 

In addition to the overall similarity of trends, a comparison is made between the similarity of the exact 158 

days that are identified as EHE, ECE, REHE, and RECE within the 4 data sets. Of principal interest is the 159 

match between each of the three reanalysis data sets and the station data, and so our primary calculation 160 

is the match percentage defined as the percent of ETE days that are identified in the station data that are 161 

also identified in each reanalysis data set.  To assess the identification more broadly, we also calculate the 162 

match percentage when there is any extreme temperature factor, as defined above.     163 

 164 

3 Results 165 

Table 1 shows the overall sample size of ETE.  Each data set identifies between 2.2-2.8 ETE events across 166 

the study region, with 14.4-18.7 days/year identified as having some extreme temperature factor.  It 167 

should be noted that, while each data set’s thresholds are separately identified by using the same 168 

percentage thresholds, values will not be identical across data sets due to the multiple-day component of 169 

ETE definition.  Thus, there are a greater number of days identified in areas that ETEs persist longer.  170 



Further, the definitions are defined using the 1981-2010 normal period, and with REHE in particular, the 171 

substantive increase in the 2010s increases the overall sample size. 172 

The spatial pattern of ETE is shown in Figure 1.  ECE tend to be most frequent in the midwestern US and 173 

Rocky Mountains, and least frequent in the southern US and other coastal regions.  EHE are most frequent 174 

across the southern tier of the US, and least frequent farther north.  The frequency of RECE is roughly 175 

equal everywhere except eastern Canada and the northeastern US, where it is less frequent.  REHE also 176 

roughly equally common everywhere, except in some areas of the High Plains.  The spatial patterns of ETE 177 

as defined by the three reanalysis products are all similar to those of the station data, although there is 178 

an overestimation of most ETE across the midwestern US, particularly with NARR. 179 

Of the event types, ECE have the greatest correlations between station and reanalysis data sets (Table 1; 180 

Figures 2-4), with the overall match ranging from 72% with NARR to 74% with ERA5-LAND and 81% with 181 

ERA5. Days with any ECF identified range in match percentage from 81% to 89%.  Spatially, there is 182 

considerable variability – station-defined ECEs are best matched across the more continental locations 183 

with little topography, peaking with a 98.6% match percentage between ERA5 and station ECE days at 184 

Montgomery, Alabama.  The similarity between ETEs extends all the way to the Gulf and Atlantic coast, 185 

where ECEs generally arrive from the north and thus coastal interactions would be minimized. There is a 186 

notable drop in match percentage at several stations downwind of the Great Lakes, such as Buffalo, New 187 

York, and Erie, Pennsylvania, suggesting that lake-induced air mass-modification may not be well captured 188 

in ECEs. 189 

A much greater variability in match percentage occurs across the topographically varied terrain of the 190 

western half of Canada and the US.  At some sites where extreme cold air masses have a very specific 191 

trajectory, such as the immediate coastal cities of Prince Rupert, British Columbia and Quillayute, 192 

Washington, there is strong agreement, while at others where the coastal plain is extremely narrow (e.g. 193 

Arcata, California), match percentage is much lower.  The weakest agreement is at the northernmost 194 

stations, generally inland or Arctic-facing locations north of 60°N, where all reanalysis products struggle 195 

to simulate the coldest days.  Match values are below 20% at several stations; the NARR data set identifies 196 

only 25% of the excess cold factor days that are identified by the station data set.  197 

The ERA5 reanalysis performs better for ECE than NARR by 9 percentage points overall (Figure S1).  Most 198 

stations are better simulated by ERA5, with the greatest improvement seen at some western stations as 199 

well as some, but not all, locations around 60°N.  The ERA5-LAND match percentage is generally in 200 

between that of the other two datasets, generally mimicking ERA5 itself spatially but with slightly worse 201 

match throughout the study region. However, in some individual cases, the match is considerably 202 

different; for instance, ERA5-LAND is by far the worst in terms of station-data match at Traverse City, 203 

Michigan, but consistently best at all Alaskan stations on the Bering Sea coast. 204 

EHEs, in contrast, do not show as large of an association between the reanalysis and the station data sets, 205 

in particular for NARR, for which there is only a 57% match overall.  The relationship is quite variable 206 

across space, with once again the peak similarity observed in the most continental locations, albeit shifted 207 

rather north from the ECE peak, with the absolute highest match (91.3%) in Kaspuskaing, Ontario, and 208 

match percentages above 80% north through the Arctic.  The matches are considerably weaker in the 209 



southern and eastern US, where the contribution of humidity to the overall apparent temperature would 210 

be greatest, and thus any discrepancies in resolution of high dew points may be magnified.  The ability to 211 

simulate EHEs is especially poor in the extreme southern regions of the study where summertime thermal 212 

variability is low, with only a 40-50% match at Miami, Florida, and a 21-31% match at Key West, Florida. 213 

Across the western half of the study region, there is once again considerable spatial variability with EHE; 214 

many of the locations in the Great Basin and intermountain west are very well simulated, although there 215 

are a number of outliers.  Across the Pacific coast, match percentages tend to drop precipitously, with the 216 

lowest values at stations along the Pacific Coast, reaching as low as a 10% match between stations-data 217 

and NARR EHE days in Arcata, California. 218 

The difference between the ERA5 and the NARR is greater with EHE than it was with ECE, with a 15-219 

percentage-point difference overall; ERA5-LAND again is roughly halfway in between.  These differences 220 

are greatest across several different regions of the east central US, but are most pronounced across the 221 

rapidly urbanizing southwestern US cities, likely a result of the different data assimilation schemes.  For 222 

example, in Phoenix, Arizona and Las Vegas, Nevada, with their substantive and complex heat islands 223 

(Wang et al., 2018), ERA5 has 76% and 86% match with station data,  respectively, compared to only 41% 224 

and 56% with the NARR data set, and 65% and 69% with ERA5-LAND.   225 

For the relative events, RECE and REHE, the patterns are broadly similar to their absolute counterparts, 226 

ECE and EHE.  Interestingly, there is an overall modest improvement in REHE match compared to EHE, 227 

whereas RECE show a slightly lower correspondence among the data sets.  In comparing the NARR to 228 

ERA5, the NARR REHE match drops substantively in the Canadian Rockies compared to the EHE, whereas 229 

with the ERA5 the match percentages for EHE and REHE here are relatively similar.  Conversely, across the 230 

midwestern US, NARR improves considerably in match with REHE identification, to the point where it is 231 

similar in skill to ERA5. 232 

Across all data sets, there is no statistically significant improvement in terms of match percentage over 233 

time. 234 

 235 

4 Discussion and conclusions 236 

In this research, we have shown that, while all reanalysis data sets tested broadly replicate the spatial 237 

pattern of extreme temperature events, there is a clear discrepancy of which days are actually identified. 238 

Coastal locations show the greatest discrepancy with station observations among reanalysis data sets, 239 

though we noticed no clear difference in match based on level of urbanization, aside from the very rapidly 240 

urbanizing areas of the desert southwestern US.  These results are similar to those of Ceccherini et al. 241 

(2015), who examined the match across Africa, although their work only evaluated one reanalysis (ERA-242 

INTERIM). The ERA5, which is the only one of the three reanalysis data sets that directly integrates surface 243 

observations, was the best performing reanalysis data set. The indirect data assimilation of surface 244 

observations by the ERA5-LAND and lack of atmosphere and ocean coupling (Yang and Sabater, 2020) may 245 

explain why the ERA5-LAND has generally lower match percentages with station observations than the 246 

ERA5. While the ERA5-LAND has a higher spatial resolution than the NARR, it also benefits from newer 247 



bias correction and parameterization schemes, thus it is difficult to determine whether the improvement 248 

of the ERA5-LAND over the NARR is more attributed to model physics or spatial resolution. However, the 249 

difference between the ERA5-LAND and the NARR is largest across geographically diverse regions such as 250 

western North America, with several ERA5-LAND locations along the coast of Alaska having higher skill 251 

than the ERA5. This suggests that not only are improvements in data assimilation important, but higher 252 

spatial resolution is critical to accurately reproducing extreme events observed from surface weather 253 

stations.  254 

 255 

We acknowledge that, of course, the surface-observation data set is not without bias itself; there are a 256 

number of potential discontinuities due to equipment changes over time (Guttman and Baker, 1996), and 257 

there are trends due to urbanization (which may or may not be desired, based on application; e.g. Jin et 258 

al., 2018). However, data observed at airports represent the most complete set of historical 259 

meteorological observations and are often used as the ‘reference’ data set in climatological research, as 260 

they are herein. While some new research has shown that the weather-human health relationship can be 261 

successfully simulated using gridded interpolations (Spangler et al., 2019) from reconstructed data sets, 262 

nevertheless, it is quite likely that the use of a single observation site to represent a broad area will still 263 

be used moving forward.  For some application studies, e.g. human health, there has been a greater 264 

emphasis found on finding the ‘best’ exposure metric (Anderson et al., 2013) than studies evaluating the 265 

appropriateness of the site or data source, such as evaluating the selection of which station to use 266 

(de’Donato et al., 2018) or the relationship between indoor and outdoor conditions (e.g, Nguyen and 267 

Dockery, 2016).  Given many applied studies require event identification as a the fundamental starting 268 

point, while there have been many studies evaluating how well data sets align in terms of climatology or 269 

trends (e.g., Schoof et al., 2017; Cornes et al., 2013), there needs to be considerably more research on 270 

how well the identified events themselves match across data sets. 271 

 272 

Data Availability 273 

Binary data sets of heat event identification will be uploaded to Mendeley and are attached as supported 274 

information for the review process. 275 
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 390 

Figure 1.  Mean annual number of days classified as ECE (extreme cold event), EHE (extreme heat event), 391 

RECE (relative extreme cold event), and REHE (relative extreme heat event) for each of the four data sets 392 

of the study. 393 

  394 



 395 

 396 

Figure 2.  ETE match percentage between station-defined events and those defined using NARR.  The left 397 

column compares days that are identified as being events (ECE, EHE, RECE, REHE) while the right column 398 

compares days in which each excess factor is non-zero (ECF, excess cold factor; EHF, excess heat factor; 399 

RECF, relative excess cold factor; REHF, relative excess heat factor). 400 



 401 

Figure 3.  Same as Figure 2 except for comparison between station-defined events and ERA5. 402 
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Figure 4.  Same as Figure 2 except for comparison between station-defined events and ERA5-LAND. 405 



 406 

Figure S1.  Like Figure 1, except for difference in match percentage points between ERA5 and NARR.  Red 407 

(blue) colors show ERA5 is better (worse) than NARR at matching station-defined events. 408 



  409 

Figure S2.  Like Figure 1, except for difference in match percentage points between ERA5-LAND and NARR.  410 

Red (blue) colors show ERA5-LAND is better (worse) than NARR at matching station-defined events. 411 

 412 



 413 
Figure S3.  Like Figure 1, except for difference in match percentage points between ERA5 and ERA5-LAND.  414 

Red (blue) colors show ERA5 is better (worse) than ERA5-LAND at matching station-defined events. 415 

 416 



 417 

 418 

Table 1. Median and range of annual frequencies for all data sets, and overall match percentage representing the percent of days identified using 419 

the station-based data that were also identified by each reanalysis data set. 420 

 421 

Event Station-based NARR ERA5 ERA5-LAND Match percentage with station 

 Median Range Median Median Median Median Median Range NARR ERA5 ERA5-LAND 

ECE 2.16 1.53 2.71 2.33 2.33 2.33 2.25 1.61 2.63 2.33 1.83 2.61 72.0% 81.4% 74.0% 

ECF > 0 14.43 11.37 17.03 15.56 15.56 15.56 14.95 11.92 17.42 15.56 12.28 17.33 81.3% 88.8% 82.5% 

EHE 2.39 1.95 3.08 2.47 2.47 2.47 2.39 2 3.08 2.47 2.11 3.03 57.5% 72.2% 63.9% 

EHF > 0 15.87 12.97 20.74 16.42 16.42 16.42 15.92 13.37 20.53 16.42 14.11 20.25 74.2% 82.7% 77.1% 

RECE 2.3 1.47 2.89 2.47 2.47 2.47 2.37 1.47 3 2.47 1.72 3.06 66.9% 78.6% 70.5% 

RECE > 0 15.16 10.63 19.03 16.42 16.42 16.42 15.76 10.87 20.11 16.42 11.44 20.33 71.5% 82.2% 74.8% 

REHE 2.58 1.97 4.39 2.75 2.75 2.75 2.64 2.08 3.84 2.75 2.14 3.67 61.0% 76.5% 69.6% 

REHF > 0 17.5 13.34 28.76 18.36 18.36 18.36 17.63 13.89 25.61 18.36 14.31 24.36 66.8% 78.7% 72.8% 

 422 


