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Abstract

Ground-clutter is a major cause of large detection and underestimation errors in satellite-based (e.g. Global Precipitation

Measurement Dual Polarization Radar, GPM DPR) precipitation radar retrievals in complex terrain. Here, an Artificial

Intelligence (AI) framework consisting of sequential precipitation detection and vertical structure prediction algorithms is

proposed to mitigate these errors using machine learning techniques to uncover predictive associations among satellite- and

ground-based measurements aided by Numerical Weather Prediction model analysis, specifically the High-Resolution Rapid

Refresh (HRRR) model. The framework is implemented and tested for quantitative estimation of orographic precipitation in

the Southern Appalachian Mountains (SAM). Precipitation detection relies on a Random Forest Classifier to identify rainfall

based on GPM Microwave Imager (GMI) calibrated brightness temperatures (Tbs) and HRRR mixing ratios in the lower

troposphere (˜ 1.5 km above ground level). The vertical structure of precipitation prediction algorithm is a Convolution Neural

Network trained to learn associations among GPM DPR Ku-band reflectivity profiles, GMI Tbs, and orographic precipitation

regimes in the SAM including low level light rainfall, shallow rainfall with low-level enhancement, stratiform rainfall with bright

band, and deep heavy rainfall with low- and mid-level enhancement. Vertical structure classes corresponding to the distinct

orographic precipitation regimes were isolated through k-means clustering of ground-based Multi-Radar/Multi-Sensor radar

reflectivity profiles. The AI framework is demonstrated for automatic retrieval of warm season precipitation in the SAM over a

3-year period (2016-2019) achieving large reductions in false alarms (77%) and missed detections (82%) relative to GPM Ku-PR

precipitation products, and significant rain-rate corrections (up to one order of magnitude) by using a physically-based model

to capture the microphysics of low-level enhancement (i.e. seeder-feeder interactions).
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Abstract

Ground-clutter is a major cause of large detection and underestimation errors in satellite-

based (e.g. Global Precipitation Measurement Dual Polarization Radar, GPM DPR) precipitation

radar retrievals in complex terrain.  Here, an Artificial Intelligence (AI) framework consisting of

sequential  precipitation  detection  and  vertical  structure  prediction  algorithms  is  proposed  to

mitigate  these  errors  using  machine  learning  techniques  to  uncover  predictive  associations

among satellite- and ground-based measurements aided by Numerical Weather Prediction model

analysis,  specifically  the  High-Resolution  Rapid  Refresh  (HRRR) model.  The  framework  is

implemented and tested for quantitative estimation of orographic precipitation in the Southern

Appalachian Mountains (SAM).  Precipitation detection relies on a Random Forest Classifier to

identify  rainfall  based on GPM Microwave Imager  (GMI) calibrated  brightness temperatures

(Tbs) and HRRR mixing ratios in the lower troposphere (~ 1.5 km above ground level). The

vertical structure of precipitation prediction algorithm is a Convolution Neural Network trained

to learn associations among GPM DPR Ku-band reflectivity profiles, GMI Tbs, and orographic

precipitation regimes in the SAM including low level light rainfall, shallow rainfall with low-

level enhancement, stratiform rainfall with bright band, and deep heavy rainfall with low- and

mid-level  enhancement.  Vertical  structure  classes  corresponding  to  the  distinct  orographic

precipitation  regimes  were  isolated  through  k-means  clustering  of  ground-based

Multi-Radar/Multi-Sensor  radar  reflectivity  profiles.  The  AI  framework  is  demonstrated  for

automatic retrieval of warm season precipitation in the SAM over a 3-year period (2016-2019)

achieving large reductions in false alarms (77%) and missed detections (82%) relative to GPM

Ku-PR  precipitation  products,  and  significant  rain-rate  corrections  (up  to  one  order  of
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magnitude)  by  using  a  physically-based  model  to  capture  the  microphysics  of  low-level

enhancement (i.e. seeder-feeder interactions).

Keywords:  Precipitation  Detection,  Orographic  Precipitation,  Convolution  Neural

Network, Global Precipitation Measurement Mission, Precipitation Radar
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1. Introduction

Satellite-based  Quantitative  Precipitation  Estimation  (QPE)  products  are  the  only

information on precipitation intensity and amount available over vast regions of the world where

ground-based  observing  systems  are  lacking.  The  accuracy  of  tropical  and  subtropical

precipitation products improved significantly in the two decades after the launch of the Tropical

Rain Measurement Mission (TRMM, Simpson et al. 1996) satellite in 1997 with an instrument

payload that included a Ku-Band (13.8 GHz) precipitation radar (PR) for the first time. Extensive

error analysis of TRMM-PR precipitation products (Barros et al. 2000; Tian and Peters-Lidard,

2010; Amitai et al. 2009, 2012; Prat and Barros, 2010; Kirstetter et al. 2013; Duan et al. 2015;

Maggioni  et  al.  2016)  showed  strong  dependence  of  QPE  on  topography  and  precipitation

regime, with detection errors predominating in light and low-level rainfall, and underestimation

errors for heavy precipitation and cold season storm systems (Prat and Barros, 2010; Duan et al.

2015; Wilson and Barros, 2014; Duan and Barros, 2017).  Further, Prat and Barros (2010) and

Duan et al. (2015) assessed the TRMM-PR QPE estimates against measurements from a long-

term spatially dense rain-gauge network in the Southern Appalachian Mountains (SAM, Fig. 1)

and found robust multi-year patterns in the spatial and temporal organization of detection and

estimation errors at diurnal and seasonal scales conditional on regional precipitation regime. 

<Figure 1 here please>

The Global Precipitation Measurement Mission (GPM; Hou et al. 2014) was launched in

2014  as  a  TRMM  follow-on  to  observe  and  quantify  the  three-dimensional  structure  of

precipitation systems on a global scale (approximately between latitudes ±67°). GPM has a dual-

frequency precipitation radar (DPR) that operates at Ku- (13.8 GHz; Ku-PR) and Ka-Bands (35.5
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GHz; Ka-PR). The Ka-PR was included in the GPM mission to improve the detectability of light

precipitation and snow. The minimum detectable precipitation-rate for TRMM-PR retrievals was

0.5 mm/hr and is approximately 0.2 mm/h for GPM Ku-PR (Hou et al. 2014; Speirs et al. 2017).

In  practice,  however,  both  TRMM-PR  and  GPM-DPR  exhibit  higher  sensitivity  than  their

nominal  design  specifications  (Hamada  and  Takayabu,  2016).  Overall,  comparative  error

diagnostic studies indicate improved performance in GPM DPR detection and estimation scores

relative to TRMM-PR (Liu, 2016; Arulraj and Barros; 2019), albeit retaining similar spatial and

temporal  organization  characteristics.  This  extends  to  precipitation  products  such  as  the

Integrated  Multisatellite  Retrievals  for  GPM (IMERG) that  combines  precipitation  estimates

from several microwave and infrared sensors calibrated using GPM measurements to produce

global maps. Rios Gaona et al. (2016) determined that IMERG underestimates precipitation by

only approximately 2% in the smooth topography of the Netherlands, and Khan and Maggioni

(2019)  reported  a  detection  accuracy  of  80%  for  oceanic  rain  in  IMERG  albeit  with

underestimated intensity.  This is in contrast with results from similar studies in mountainous

regions.  Barros and Arulraj (2020) assessed IMERG against ground-based radar and rain-gauge

observations in the SAM, and documented persistent space-time patterns of very low probability

of detection (0.3-0.4)  consistent with the spatial organization of  the diurnal cycle of low-level

clouds and fog (see also Wilson and Barros 2014, 2015 and 2017; Duan and Barros, 2017).

Speirs et al. (2017) found that GPM-DPR precipitation products underestimate precipitation by

more than 50% in the winter season compared to ground-based radar QPE in the Swiss Alps and

Plateau. Severe underestimation of precipitation in the SAM was reported by Arulraj and Barros

(2019), especially where and when seeder-feeder interactions (SFI) play a governing role on low-
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level  orographic  precipitation  enhancement.  Satellite-based  radar  QPE  in  complex  terrain

remains therefore a critical challenge to satellite-based precipitation monitoring in the GPM era.

Previous studies including Prat and Barros (2010), Duan et al. (2015), Speirs et al. (2017)

and Arulraj and Barros (2019) point to three key sources of error associated with TRMM and

GPM PR measurements of shallow precipitation systems in complex terrain such as the SAM:

(1) non-uniform beam filling (NUBF) artifacts tied to the horizontal resolution of the radar beam;

(2) ground-clutter contamination in the near-surface reflectivity; and (3) incorrect microphysical

parameterization in the radar-retrieval algorithms. NUBF artifacts are enhanced in mountainous

regions due to the three-dimensional (3D) complexity of low-level circulations modulated by the

terrain resulting in high spatial variability of clouds and precipitation systems at scales below the

radar measurement scale. Ground clutter severely contaminates reflectivity profiles up to 3 km

above ground level (AGL) depending on the radar viewing-angle (Arulraj and Barros, 2019).  At

present, the PR retrieval algorithm extrapolates the reflectivity factor at  the lowest no-clutter

level to the surface.  This yields uniform reflectivity profiles in the clutter affected vertical levels

that lead to underestimation (UND) and missed detection (MD) of shallow precipitation (Prat

and Barros, 2007; Wilson and Barros, 2014; Porcacchia et al.  2018; Duan and Barros, 2017;

Arulraj  and  Barros,  2019).   Concurrent  ground-clutter  and  NUBF  artifacts  can  result  in

overestimation as well as spurious detection (false alarms, FA) of precipitation thus undermining

the reliability of common statistically-based correction of these errors a posteriori. These errors

are further compounded by retrieval uncertainty due to high spatial and temporal heterogeneity

in the vertical  structure of low level  orographic precipitation systems that  is  apparent  in the

spatial variability of the diurnal and seasonal cycles of the vertical structure of hydrometeor size
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distributions (Prat and Barros, 2010; Wilson and Barros, 2014; Duan et al. 2015; Barros and

Arulraj, 2020). 

Arulraj and Barros (2019) demonstrated the effectiveness of a physically-based retrieval

approach to improve QPE in complex terrain by applying a dynamic stochastic column model of

rainfall  microphysics  including  layered  low-level  clouds  and  fog  (LLCF)  and  initial

(hydrometeor  size  distributions)  and boundary  conditions  based  on GPM Ku-PR reflectivity

above ground-clutter  height  to simulate  observed low-level  enhancement  in the SAM.  They

proposed  two  conceptual  models  of  the  vertical  structure  of  LLCF  based  on  extensive

observations  including  concurrent  GPM  overpasses  and  ground  measurements  during  the

Integrated  Precipitation  and Hydrology Experiment  (IPHEx;  Barros et  al.  2014)  and showed

improvements  in  rain-rate  estimates  up to  one  order  of  magnitude.  However,  typically  such

comprehensive  data  are  not  available.  Critical  advances  needed in satellite-based orographic

QPE including low-level enhancement processes are two-fold: 1) precipitation detection; and 2)

vertical structure diagnostics (i.e. layered LLCF configuration). 

Previously,  Arulraj  and  Barros  (2017)  demonstrated  the  potential  for  using  multi-

frequency (Ku, Ka, and W-band) satellite and, or surface-based radar to improve detection and

classification  of  shallow  precipitation  systems.  However,  dual-frequency  measurements  at

specific locations are only possible at present where GPM and CloudSat overpasses (EarthCare

in the future) are nearly coincident, or where ground-based radars operate. To overcome this

limitation, an alternative Artificial Intelligence (AI) framework is proposed here to detect and

characterize the vertical structure of orographic precipitation systems leveraging coupled high-

resolution Numerical Weather Prediction (NWP) models and GPM measurements, which can be
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used subsequently to constrain physically-based retrieval of near-surface rainfall rates (Arulraj

and Barros, 2019; Fig. 2). 

<Figure 2 here please>

Section 2 of this manuscript provides a brief description of the data used in this study

including the reference ground-based radar reflectivity  observations  from Multi-Radar Multi-

Sensor System (MRMS), satellite-based GPM DPR and GPM Microwave Imager (GMI) data,

NWP model analysis, and the IPHEx rain-gauge network used for ground-validation. Section 3

explains the overall AI framework including precipitation detection and classification algorithms

to  predict  low-level  precipitation  structure,  and  error  analysis  methodology  to  characterize

uncertainty. Algorithm implementation and application results are presented in Sections 4 and 5,

respectively. Section 6 provides a brief summary and conclusion.

2. Data Description

2.1 Multi-Radar/ Multi-Sensor System (MRMS) 

The MRMS reflectivity profiles are derived from the S-Band (3 GHz) dual-polarization

Weather Surveillance Radar- 1988 Doppler (WSR-88D) radars operating as a part of the Next

Generation Weather Radar (NEXRAD) network across the contiguous United States (CONUS).

S-Band radar reflectivity  values are comparable to the Ku-Band radar  for reflectivity  values

below 35 dBZ (Biswas and Chandrasekar, 2018).  The data used in this study are the merged,

quality-controlled  and  gridded  NEXRAD  3D  reflectivity  profiles  at  spatial  resolution  of

0.01×0.01 degrees (~1×1 km2), vertical height varying from 0.5 km to 19 km, range resolution

between 250 m and 1 km, and temporal resolution of 2 minutes. The time-period of analysis is

between November 2016 and May 2019 that is the period for which MRMS reflectivity profiles
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were  available  for  this  project.  The  quality-control  process  removes  echoes  from  non-

hydrometeors and random clutters due to beam blockage (Zhang et al. 2011). NEXRAD radars

operate at Plan Position Indicator (PPI) scanning mode. The schematic of the PPI scanning mode

is shown in Fig. 3(a). Due to geographic location of the radars, surrounding topography, and

precipitation  type,  some  of  the  profiles  are  severely  attenuated  near  the  surface.  All  the

reflectivity  profiles with reflectivity  less than 10 dBZ in the lowest 2 km are removed from

processing and analysis. 

<Figure 3 here please>

In  addition  to  the  3D  reflectivity  profiles,  Level  2  MRMS  precipitation  rate  and

precipitation type products in the nearest 2-minutes of a GPM overpass are used in this study.

The resolution of these products is also 0.01×0.01 degrees (~ 1×1 km2). MRMS precipitation

rates are gauge-corrected using 9000 rain-gauges across the CONUS, while the snow events are

radar only estimates (Hong and Gourley, 2015). MRMS precipitation types identified based on

MRMS reflectivity  profiles and collocated operational NWP model temperature profiles (e.g.

Rapid Refresh (RAP); see Section 2.3) are as follows: warm stratiform rain, snow, convective,

hail, tropical/stratiform mix, tropical/convective mix, and cool stratiform. A detailed description

of the precipitation type classification methodology is available in Hong and Gourley (2015). 

2.2 Global Precipitation Measurement (GPM) DPR and GMI 

The GPM DPR operates  at  Ku- (13.6 GHz) and Ka- (35.5 GHz) band with a spatial

resolution of approximately 5×5 km2. GPM Ku-PR Level-2A Version 06A data are used in this

study. In particular, measured reflectivity profiles (Zm), corrected reflectivity profiles (Ze), near-

surface precipitation rate, no clutter bin height, melting layer height and terrain elevation are

used for the analysis. The Ku-PR operates in normal scan (NS) mode with a cross-track swath
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width of 245 km, a sampling resolution of 125 m, and a range resolution of 250 m (Hou et al.,

2014 and Iguchi et al., 2017). The viewing angle varies from nadir (0°) to ±18°. 

The GMI is  a  multi-channel  conical  scanning microwave radiometer  that  operates  at

thirteen microwave channels in the frequencies ranging between 10 GHz and 183 GHz at vertical

(V) and horizontal (H) polarization: 10.65 V/H, 18.70 V/H, 23.8 V, 36.64 V/H, 89 V/H, 188

V/H,  183.31±3  V  and  183.31±7  V.  GMI  Level-1C  Version  05A  calibrated  brightness

temperatures (Tbs) are used in this study.  The mean footprint (pixel) resolution depends on the

operating frequencies varying between 6 and 25 km (Draper et al. 2015). To avoid excessive

spatial resolution differences among GMI and Ku-PR products, the 183 and 188 GHz channels

are not considered for algorithm development. The GPM DPR and GMI data are available from

March 2014 to present. Here, data between March 2014 and May 2019 are considered for the

analysis. 

2.3 High Resolution Rapid Refresh (HRRR) Model

The RAP is a version of the Weather Research and Forecasting model developed by the

NOAA Earth System Research Laboratory Global Systems Division. This is an hourly updating,

cloud-resolving,  convection-allowing  model  run  operationally  by  the  National  Centers  for

Environmental Prediction's Environmental Modeling Center with a nominal horizontal resolution

of 13 km (Benjamin et al., 2016) over CONUS. Subsequently, a high-resolution nested version

of the RAP, the HRRR, was developed with 3-km horizontal resolution. HRRR is a convection-

allowing  model  and  is  strongly  dependent  upon  RAP  data  assimilation  including  radar

reflectivity from the NEXRAD network. Whereas the HRRR model produces 1- to 18-hour lead-

time forecasts, only the 0-hour HRRR analysis (data assimilation update) product has vertical
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profiles  of  mixing  ratios.  These  products  are  downloaded  from a  private  cloud  object  store

developed by the Center for High Performance Computing at the University of Utah (Blaylock et

al. 2017). 

HRRR data are available from July 2016 onwards and the database is updated in real-

time. Specifically, hourly instantaneous of surface precipitation rate [mm/hr], rain water mixing

ratio [RWMR; kg/kg], snow water mixing ratio [SWMR; kg/kg], graupel mixing ratio [GRLE;

kg/kg], specific humidity [SPFH; kg/kg], temperature [TMP; K]  and geopotential height [HGT;

gpm] at pressure levels between 50 hPa and 1000 hPa with a vertical resolution of 25 hPa were

obtained for the SAM from July 2016 to May 2019. 

2.4 Rain-gauge Network 

The  ground-based  rain-gauge  data  used  for  the  evaluation  of  HRRR model  results  are

obtained from the IPHEx long-term spatially dense tipping bucket rain-gauge network operating

in the Great Smoky Mountains National Park within the SAM (Barros et al., 2014; Barros et al.

2017).  The instantaneous observations from the rain-gauges are available  from June 2007 to

present. The network has three different types of tipping bucket rain-gauges operating at various

locations of the SAM: Hydrological Services (HS) HS-TB3 model with tipping resolution of

0.2 mm tip−1, HS-TB3/0.1 with tipping resolution of 0.1 mm tip−1, and HS-305 with tipping

resolution of 1.0 mm tip−1. HS-TB3 rain-gauges were collocated with HS-305 models at selected

locations for quality control purposes due to significant differences in tipping resolution. Duan et

al. (2015) provide a detailed description of rain-gauge data processing and quality-control. 
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3. Methods

3.1 Data Evaluation

The proposed AI machine learning strategy to predict low-level precipitation structure is

to implement detection and classification algorithms sequentially (see Fig. 2).  The output of the

precipitation detection algorithm (PDA) is binary: rain or no-rain. The PDA is driven by GPM

and  HRRR  data.  Rainfall  is  not  occurring  most  of  the  time  during  GPM  overpasses,  and

therefore it is critical to distinguish active from non-active precipitation conditions to establish a

balanced PDA training database. Precipitation occurrences according to MRMS and rain-gauge

measurements are used for training with cross-error characterization to quantify GPM Ku-PR

and  HRRR  detection  errors  relative  to  the  reference.  Statistics  of  GPM  Ku-PR  detection

discrepancies  with respect  to  the  rain-gauges  are  available  from previous  work (Arulraj  and

Barros, 2019; Barros and Arulraj, 2020), and thus error analysis is not repeated here. 

The  precipitation  classification  model  parses  GPM  data  and  predicts  the  underlying

precipitation vertical structure (tied to orographic precipitation regime class) by selecting one

among the various classes derived from MRMS climatology through clustering analysis.  Thus,

MRMS is the reference data set (i.e. “ground-truth”). It is important to highlight that MRMS is

limited by the number of radars and radar operations in the region of study that are strongly

constrained  by  topography  blocking.  Nevertheless,  the  underlying  assumption  is  that  the

information content in GPM measurements regarding vertical structures of precipitation in the

SAM is generalizable to other geographic regions, even if it is not comprehensive to capture the

full breath of orographic precipitation regimes across the world’s mountains. 
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In  regions  where  ground-based  measurements  are  not  available,  using  the  vertical

distribution of clouds and precipitation from NWP model output can be potentially used instead.

Indeed, a HRRR-based classification of shallow precipitation systems was attempted to mitigate

and complement  MRMS in the inner region and along the outer regions of the SAM where

blocking and ground-clutter are artifacts that affect how NEXRAD operates.  For this purpose,

HRRR climatologies of precipitable water, cloudiness, and precipitation rate were evaluated, and

4-years of hourly reflectivity profiles over the SAM were derived using a radar simulator based

on Leinonen et al. (2015).  Although HRRR shows good agreement in the timing of precipitation

maxima on the eastern ridges of the SAM, which is attributed to the assimilation of NEXRAD

observations, it fails to capture the spatial distribution of cloudiness and precipitation maxima

over the western ridges (see Figures S1-S4 in Supplementary Data) likewise attributed to biases

in  NEXRAD  data  that  result  from  radar  operations  in  regions  of  complex  terrain  (e.g.

overshooting  to  mitigate  ground-clutter  and blocking),  and consequently  HRRR and MRMS

reflectivity profiles are largely incompatible.    Therefore, MRMS reflectivity profiles alone are

used to characterize vertical  precipitation structures representative of predominant orographic

precipitation regimes.  

3.1.1 Error Analysis: GPM Ku-PR and MRMS 

Instantaneous GPM Ku-PR QPE from individual  overpasses are evaluated against the

nearly (within 2 minutes) coincidental Level-2 MRMS precipitation rates. Note that the spatial

resolution  of  the  MRMS products  is  approximately  1  km while  the  GPM Ku-PR  footprint

resolution is approximately 5 km, and thus one GPM pixel corresponds to 25 MRMS pixels as

illustrated by the schematic  of the footprints  in Fig. 3(b). Because of the different foot-print
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resolutions,  the QPE comparison can be performed by either averaging the MRMS to match

GPM Ku-PR’s resolution and, or by comparing the GPM Ku-PR against the nearest  MRMS

pixel. In both these approaches, the spatial heterogeneity of the precipitation systems is not taken

into  consideration,  resulting  in  biased  detection  metrics  such as  the  probability  of  detection

(POD) and false alarm ratio (FAR; Wilks, 2011). To address this challenge, error analysis was

performed by thresholding the fractional area “x%” of MRMS rainy pixels within a GPM pixel

(25 MRMS pixels in all): if “x%” of the MRMS pixels observe precipitation greater than 0.1

mm/h then the ground truth is an affirmative “rain” detection, else the default is “no-rain”. Based

on this approach, the number of correct hits (CD; when both GPM Ku-PR and MRMS detect

precipitation), the number of correct misses (NN; when both GPM Ku-PR and MRMS register

no rain), the number of false alarms (FA; when GPM Ku-PR detects rain and MRMS does not),

and the number of missed detections (MD; when MRMS detects rain and GPM Ku-PR does not)

are computed for different values of “x%” ranging from 4% (if 1 pixel out of 25 pixels observes

rain, then the ground-truth is rain) to 100% (ground-truth is rain only if all the MRMS pixels

observe rain). The frequency bias (FB; Wilks, 2011) for every threshold value “x%” is computed

subsequently as follows:

FB=
YY +FA
NN+MD

     

    (1)

FB is the ratio of frequency of precipitation detection by the GPM-DPR to the frequency

of  precipitation  detection  by  MRMS.  If  FB is  greater  than  1,  then  increased  FA cases  are

observed; and if FB is less than unity, MDs dominate. The optimal value of FB is 1 signifying

that the number of FA cases are equal to the number of MD cases. Thus, the “x%” value with FB
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close to 1 is considered the optimal threshold to classify as “rain” the aggregated MRMS pixel

corresponding to the GPM pixel.

The standard POD and FAR are the detection error metrics used to evaluate GPM Ku-PR

near-surface precipitation estimates. POD is the probability of precipitation detection by GPM

Ku-PR given that the MRMS detects precipitation:

POD=
YY

YY +MD
         (2)

The desired value of POD is 1. FAR is the probability of false alarms given the GPM Ku-

PR detects precipitation:

FAR=
FA

YY+FA
        (3)

The optimal value of FAR is 0. If both GPM and MRMS detect precipitation, the GPM-

MRMS discrepancy (estimation error) is the bias (ε):

ε=log(
∑
i

Ri , GPM

∑
i

Ri ,MRMS )            (4) 

where  Ri,GPM is  the  near-surface  precipitation  rate  estimated  by GPM and Ri,MRMS is  average

MRMS rain-rate within the GPM radar footprint. The optimal value of ε is 0. Negative values of

ε signify underestimation, and positive values signify overestimation.

3.1.2 Error Analysis: Uncertainty in HRRR rainfall 

NWP simulations can exhibit 3 to 5-hour delays (phase errors) in predicting the arrival and

propagation of certain types of precipitation systems (e.g. Wilson and Barros, 2015 and 2017;

Erlingis and Barros, 2014 and many others). Lag-correlations between HRRR analysis and rain-
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gauge  observations  were  examined  to  investigate  timing  errors.   For  this  purpose,  the

instantaneous  HRRR  rain-rates  at  every  hour  are  computed  at  500  m  AGL  by  fitting  the

simulated  rain-water  mixing ratios  to  the  Marshall-Palmer  distribution.  The Marshall-Palmer

drop size distribution (Marshall and Palmer, 1948) follows a negative exponential distribution of

the form:

N (D )=N0 exp (−Λr D) (5)

where N0 is the intercept parameter with fixed value of 8x106 m-4 while the slope parameter is

derived from the rain-water mixing ratios. The slope parameter is computed based on Thompson

et al. (2004) as follows:

Λr=(
π N0 ρr
ρair qr )

1
4 (6)

where N0 is the intercept parameter, ρr is the density of rain (1000 kg m-3), ρair is the density of air

and qr is the rain-water mixing ratio from the model simulations (kg/kg). The density of air is

computed as follows:

ρair=
P

R❑DT v
(7)

P is the pressure in hPa, RD is the gas constant for air [287 Jkg-1K-1], and Tv is the virtual

temperature [K]. The virtual temperature is computed as:

T v=T ×
0.622+qv

0.622×(1+qv)
(8)

Where T is the temperature [K] and qv is the mixing ratio of water vapor [kg/kg].

Finally, the rain-rate [mm/h; RHRRR] is calculated as shown below:
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RHRRR=∑
6 π

105
N0 exp (−Λ D )D3 v (D)ΔD (9)

where v(D) is the fall velocity of drops [m/s] with diameter D [mm] and ΔD is the bin size of

drop diameter [mm]. For the inter-comparison, rain-gauge observations [RRG] correspond to the

30-minute accumulation of precipitation centered at the HRRR simulation time stamps.  

The Pearson correlation coefficient (r2) is computed as follows: 

r2=
Ĉov2 (RHRRR ,RRG )

V̂ar (RHRRR)×V̂ar (RRG)

(10)

Where Cov and Var are respectively the covariance and the variance.  The value of r2 varies

between 0 and 1, the latter being the perfect score.

3.1.3 Clustering of MRMS Reflectivity Profiles

A primary objective of this study is to predict the precipitation vertical structure in the

lower 2 km that  is  contaminated by ground clutter  in GPM-DPR measurements.  In order to

characterize  and  classify  the  vertical  structure  of  precipitation  systems  in  the  SAM,  the

reflectivity profiles from MRMS are organized into precipitation regime classes using a k-means

clustering algorithm after Anderberg (1973) in a manner similar to Zhang et al.  (2007), who

clustered CloudSat Cloud Profiling Radar (CPR) reflectivity profiles and successfully identified

5 cloud regimes in the tropics (low cloud and cirrus, subtropical maritime stratus, anvil cirrus

cloud, cumulus congestus, and deep convection).  
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The k-means clustering algorithm aggregates data points with ‘N’ different features into

‘K’  different  clusters  based  on  the  intra-cluster  and  inter-cluster  distance. The  features

considered  here  are  the  maximum  reflectivity  (Zmax),  maximum  reflectivity  height  (Hmax),

reflectivity near the surface (Zsurf), echo top height of precipitation systems (Htop), and the slope

of the reflectivity profiles within 2 km near the surface as illustrated in Fig. 4. The near-surface

slope is computed as follows:

Slopesurf=
Z H1−Z H2

H 1−H 2

(11)

where ZH1 and ZH2 are reflectivity values at heights H1 and H2 respectively. H1 is specified at 2 km

AGL since the focus here is on shallow precipitation systems, and H2 is specified at 500 m AGL.

The  optimal  number  of  clusters  is  determined  according  to  the  Davies  Bouldin  (DB)  index

(Davies and Bouldin, 1979) that is calculated based on the ratio of intra-cluster (minimization of

variance within each cluster) and inter-cluster (maximization of variance among clusters). The

optimum number of clusters is the number corresponding to the lowest DB index indicating a

balance between low variance within each cluster and high variance among clusters. 

<Figure 4 here please>

Finally, the reflectivity profiles in each cluster are examined in the light of precipitation

type and intensity to identify the underlying precipitation regime. Each cluster is further expected

to be associated  with specific  detection  and estimation  errors  tied to  their  vertical  structure.

Subsequently, these clusters are used to train the classification framework and therefore to guide

the configuration of layered LLCF in the physically-based rainshaft model and thus effectively

fill in the near-surface structure of GPM Ku-PR reflectivity contaminated by ground-clutter. 
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3.2 AI Framework

3.2.1 Precipitation Detection 

Whether  the  optimal  number  of  clusters  can  be  mapped  to  physically  meaningful

reflectivity  morphologies  depends strongly on the  quality  of  the  dataset  as  measured by the

ability to identify unambiguous precipitation regimes. In the context of this work, this translates

to improved precipitation detection by removing from training the large number of no-rain cases

that  introduce  high  frequency  bias.  For  this  purpose,  GMI  Tbs  that  are  concurrent  but

independent of the DPR measurements and low-level HRRR mass ratios are selected to drive the

precipitation  detection  framework.  The  GMI  Tbs  at  various  frequencies  can  be  useful  to

discriminate between deep convection (e.g. ice scattering signal at 89 GHz) and the presence of

mid-level clouds and rain (e.g. attenuation at 37 GHz). The low-level condensed water mass

from HRRR provides information relevant to identify shallow clouds as shallow precipitation. 

The precipitation detection model relies on a random forest classifier (RFC; Breiman,

2001)  to  learn  from  the  data.  RFCs  are  well-suited  to  handle  high-dimensional  non-linear

classification problems and have been applied with great success in remote-sensing applications

such as land-cover classification (Ham et al. 2005; Belgiu and Dragut, 2016; and Kulkarni and

Lowe, 2016 among others). RFC input features include data from HRRR and GMI. GPM DPR

metadata  such  as  the  terrain  elevation,  the  pixel-specific  ground-clutter  bin  height,  and  the

melting layer height are considered as input features also. The GMI input features consist of

calibrated multichannel Tbs from 9 channels (10.65 – 89 GHz V/H) within 10 km of the GPM

Ku-PR pixel. Input features from HRRR include RWMR, SNWR, and GRLE values and the

depth (number of non-zero vertical model layers) of the rain, snow, and graupel with 1.5 km

AGL. Because the hourly HRRR analysis is available on–the-hour, the two nearest times (before
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and after the GPM overpass) are used. This corresponds to time-differences on the order of 30

minutes  at  least  between the  overpass  and model  real-time which can  introduce  ambiguities

especially in the case of fast-evolving convective precipitation systems, though less severe in the

case of stratiform and shallow precipitation in the SAM. Nonetheless, higher temporal resolution

NWP data would be highly desirable in realistic operational applications.

The  RFC  is  trained  using  5-fold  cross-validation  (i.e.  using  separately  5  mutually

exclusive subsamples and then training and testing the algorithm 5 times using 4 subsamples to

train and the remainder for validation) to generate five decision tree ensembles each with 100

members, and thus the total  number of decision trees is 500.  The maximum depth of 20 (i.e. the

number of splits in each decision tree), and the minimum number of features per node is set as 5.

When any node reaches 5 samples, further splitting is halted. Further detail regarding the RFC

algorithm is provided in Appendix A. The precipitation detection model architecture is shown in

Fig. 5. Because there are substantially fewer “rain” than “no-rain” samples, class weights are

defined to penalize the misclassification of precipitation events. 

<Figure 5 here please>

3.2.2 Precipitation Classification

Artificial  Neural  Network  (NN) algorithms  such  as  back-propagation  NNs  have  proven

successful in precipitation classification and estimation over the past three decades (Heermann

and Khazenie, 1992; Bruzzone and Serpico, 1997; Kuligowski and Barros, 1998). Deep learning
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algorithms (e.g.  Fig.  6)  such as  convolutional  neural  networks  (CNN) utilized  in  supervised

classification and regression problems (Li et al. 2014; Kim and Moon, 2016; Maggiori et al.

2017; Li et al. 2017; Faridee et al. 2018; Zhang et al. 2018; Shao et al. 2019) are similar to back-

propagation  NNs with  fully-connected  multiple  hidden  layers  for  classification,  and  include

upfront data feature extraction capabilities conceptually similar to unsupervised self-organizing

maps (LeCun et al. 1998). Feature extraction refers to the systematic processing of the data in the

convolution and the pooling layers. A convolution layer consists of a set of convolving filters

with specific kernel size to isolate features from the input data. The pooling layer down-samples

the number of  features  identified  in  the convolution  layer  to  retain  only the most  important

according to a specified criterion.  In deep CNNs, feature extraction goes through several stages

that are implemented by stacking multiple convolution-pooling layer pairs. Classification proper

is  carried out by a back-propagation NN. Output from feature extraction is organized into a

vector (flattening step) as input to the first fully-connected layer of the classification NN.  

<Figure 6 here please>

The precipitation classification model (Fig. 6) relies on a deep CNN with 2-stage feature

extraction and 2-layer backpropagation NN for classification to predict the vertical structure of

precipitation  given  GPM  Ku-PR  and  GMI  measurements  in  the  absence  of  ground-truth

(observations) by classifying the precipitation regime in the GPM pixel according to MRMS

cluster classes.  A detailed description of the CNN is given in Appendix B. The GPM Ku-PR

input features are the Zm, the melting layer height, the minimum ground-clutter free height and

the local terrain elevation.  GPM Ku-PR Zm profiles are defined by reflectivity values at 176

heights above mean sea level (AMSL).  To prepare the data for input, the reference height of Ku-

PR Zm profiles  is  adjusted to  AGL and the reflectivity  values  are  interpolated  every 125 m
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between 0.125 km (near surface) and 15 km (top of the profile) corresponding to 120 equally

spaced heights. Besides, Zm values lower than the minimum detectability of Ku-PR (12 dBZ)

were ignored in the analysis. GPM GMI input features are the calibrated Tbs from 9 channels

(10.65-89 GHz V/H). For training, the “ground-truth” is the concurrent collocated MRMS cluster

class (Section 3.1.3) for each Ku-PR pixel where “rain” is detected within a GPM overpass. All

25 MRMS reflectivity profiles within each Ku-PR footprint are assigned first to a cluster class,

and the dominating cluster class (mode) determines the collocated MRMS class used in training. 

4. Application

4.1 Data Evaluation 

4.1.1 Error Analysis: GPM Ku-PR and MRMS

GPM  Ku-PR  profiles  for  each  overpass  are  evaluated  against  MRMS  reflectivity,

precipitation rate and precipitation type based on the availability of the MRMS data.  This results

in  the  identification  of  28005  GPM Ku-PR profiles.  Recall  that  one  pixel  of  GPM Ku-PR

corresponds  to  25  (5×5)  MRMS  pixels  (Fig.  3b).  The  contingency  matrix  (not  shown)  is

calculated  first  for  “homogeneous”  cases  (in  terms  of  precipitation  detection)  when  all  25

MRMS pixels within the GPM Ku-PR footprint either register precipitation or not. Out of the

28005  profiles,  24919  are  identified  as  “homogeneous”  cases  with  more  than  92% for  no-

precipitation conditions, and the remainder “heterogeneous” cases (3086 profiles) correspond to

positive detection of non-uniform precipitation (Section 3.1.1).  Table 1 shows the contingency

matrix of both homogeneous and heterogeneous cases. The small number of “rain” cases (5.31%

are  CDs,  1.44% are  MDs and 0.79% are FAs)  highlights  a  critical  challenge  in  data-driven
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modeling of precipitation, that is the need to amass long historical records to assure physical

representativeness and statistical robustness.  

<Table 1 here please>

Figure 7 shows the frequency bias computed by comparing GPM Ku-PR against MRMS

as a function of sub-grid scale  precipitation  fraction “x%”:  FAs dominate  MDs up to 60%

(15/25 MRMS pixels), and the opposite is true for higher values. Overall, more than 30% of the

total  precipitation  detected  by  MRMS is  missed  by GPM Ku-PR,  and  the  number  of  MDs

exceeds the number of FAs. The spatial distributions of POD and FAR exhibit robust spatial

structure with isolated low POD patterns and high FAR over the western ridges and in the inner

region (Fig.  8) which is  attributed in part  to observational  bias in MRMS due to NEXRAD

operations  to mitigate  ground-clutter  artifacts. GPM Ku-PR parallax errors for large viewing

angles can result in significant mapping errors and consequently strongly affect POD and FAR

statistics (see Supplementary Data, Fig. S5), but this was the case for only one overpass for the

period of study.

<Figure 7 here please>

<Figure 8 here please>

The number of samples for bias analysis conditional on MRMS precipitation rate (Fig.

9a)  is  higher  in  the  0.5-2  mm/h  range,  which  explains  the  lower  bias  of  GPM  Ku-PR

precipitation rates with respect to the mean, maximum and nearest MRMS precipitation rates

within the same PR pixel (Fig. 9b). GPM Ku-PR overestimates light precipitation (< 1 mm/h)

and underestimates heavy precipitation similar  to error metrics  of GPM Ku-PR against rain-

gauge measurements in Arulraj and Barros (2019). Figures 9(c) and 9(d) show respectively the
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number of GPM Ku-PR samples and the estimation bias categorized by MRMS precipitation

class. Ku-PR underestimation of mean MRMS precipitation rate occurs across all precipitation

types except snow, with severe underestimation of relatively rare (very small number of samples)

hail, tropical/convective mix and tropical/stratiform mix precipitation regimes. Note, only GPM

samples with liquid near-surface precipitation are considered for this analysis. The bias is very

small for the most frequent case of stratiform precipitation, suggesting that robust relationships

between the two data sets can be found. Spatial sampling (Fig. 9e) and spatial bias patterns (Fig.

9f) should be interpreted in the light of the dominant precipitation regimes. Note the lack of

correct  detection (white  pixels)  of precipitation  between [35.6 and 35.7 N] and [-83.4 and -

83.3W. There is large variability among dominant precipitation regimes in the SAM (see Fig. S6

in Supplementary Data). The eastern region is dominated by frontal and tropical cyclones, while

fog and low-level clouds contribute the most to the precipitation observed in the inner region,

and mesoscale convective systems predominate in the west. Even though GPM Ku-PR estimates

are low relative to MRMS in the inner valleys of the SAM, precipitation along the eastern ridges

and in the northernmost regions is overestimated. Nevertheless, a note of caution is warranted

here.  The  NEXRAD  QPE  estimates  contributing  to  MRMS  are  strongly  affected  by  beam

overshooting in the northern regions distant from regional radars operating at Knoxville, TN and

Greenville,  SC thus missing precipitation at  lower levels,  whereas overcorrection  of ground-

clutter artifacts along mountain ridges to the south result in MRMS underestimation of actual

precipitation rates ( see also Liao and Barros, 2019).

<Figure 9 here please >
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4.1.2  MRMS Precipitation Vertical Structure Classes

A total of 56682 historical MRMS reflectivity profiles concurrent with GPM overpasses are

used  for  clustering  analysis.  Profiles  affected  by  beam  blockage  were  removed  from

consideration. The Davis-Bouldin (DB) index computed for different number of clusters in the k-

means clustering algorithm (Fig. S7 in Supplementary Data) shows a minimum for k=4 clusters.

Because the DB sensitivity is weak, exploratory analysis (not shown) was conducted to assess

the  impact  of  choosing  3-7  clusters  on  independent  misclassification  of  MRMS profiles  to

confirm  best  performance  for  four  clusters  corresponding  to  low-level,  low-level  enhanced,

stratiform  with  bright-band  and  deep  precipitation  with  mid-  and  low-level  enhancement

precipitation regimes.  Contoured frequency by altitude diagrams (CFADs) of the reflectivity

profiles for each of four clusters are in shown Fig. 10, and Table 2 summarizes the maximum,

mean  and standard  deviation  of  the  MRMS surface  precipitation  rate  for  each  of  the  four-

clusters.

<Figure 10 here please>

<Table 2 here please>

Cluster-1 reflectivity profiles represent light shallow precipitation (Fig. 10a). Note that

the echo top heights for the reflectivity profiles in this cluster are concentrated within the lower

4-6 km AGL and the reflectivity values (S-Band) are within 20 dBZ. The mean precipitation of

this  cluster  is  1.22  mm/h  and  the  maximum  is  18.89  mm/h.  Cluster-2  captures  shallow

precipitation with low-level enhancement (Figure 10b) with slightly higher mean and maximum

precipitation  rate  compared  to  Cluster-1  (Table  2).  Cluster-2  reflectivity  profiles  exhibit  an

increase in reflectivity values in the near the surface which is similar to the increases in the
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number and size of raindrops by  SFI as shown in Prat and Barros (2007), Wilson and Barros

(2014), Duan and Barros (2017), Porcacchia et al. (2018), and Arulraj and Barros (2019). The

profiles in Cluster-3 show peak reflectivity at ~ 4 km MSL [2 to 4 km AGL] similar to bright

band morphology, and echo-top heights around 6 to 8 km AGL. The mean precipitation rate is

2.20 mm/h and the maximum precipitation rate is 74.74 mm/h. Cluster-3 is representative of the

vertical structure of stratiform rainfall with bright-band. Finally, Cluster-4 corresponds to deep

precipitation with mid- and low-level enhancement. The echo-top height is approximately around

8 km AGL and can extend up to 10 km, and the near surface reflectivity varies between 25 and

40 dBZ. Cluster-4 mean (9.11mm/h) and maximum (138.75 mm/h) precipitation rates are the

highest among the 4 clusters, with the highest standard deviation among cluster members as well.

The synthesis of the spatial organization of higher frequency zones (hot-spots) for each

cluster over the SAM topography shown in Supplementary Data Fig. S8 reveals that Cluster-1 is

widespread across the ridges of the inner mountain region, whereas Cluster-3 is constrained to

the two broad and deeper  valleys  in the region:  the Broad River to  the north and the Little

Tennessee  River  to  the  South,  and Cluster-2 and -4 are  aligned with the outer  western  and

eastern ridges.  The only class without apparent low-level enhancement in the CFAD is Cluster-

3.  Because the inner valleys are blocked to NEXRAD radars by the outer ridges, low-level SFI

processes that can significantly enhance precipitation in these valleys (e.g. Wilson and Barros,

2014  and  2017)  are  not  captured  in  MRMS,  and  Cluster-3  morphology  reflects  these

observational biases. 

 Figure 11 summarizes the statistics of MRMS reflectivity profile features used in the

clustering algorithm. Figures 11(a) and (b) show the distribution of maximum reflectivity values

and height at which the maximum reflectivity occurs. Cluster-4 shows higher reflectivity values

26

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535



within the lower 2 km AGL on average reflecting low-level enhancement  processes. Class-1

shows the lowest maximum reflectivity  occurring at  ~ 2 km AGL, whereas in Cluster-3 the

maximum reflectivity is observed at approximately 3 km AGL that is also close to the melting

layer height (in AGL). Figure 11(d) shows the distribution of the slope (Eq. 11) where negative

values indicate near-surface enhancement of precipitation. The near surface reflectivity slopes

are negative at the 50th percentile except for Cluster-3, and Cluster-2 shows negative slopes also

at the 75th percentile. The near-surface reflectivity (Fig. 11e) is representative of rain-rate near-

surface. Class-1 shows lower near-surface reflectivity indicating light precipitation followed by

Class-3, whereas the impact of low-level enhancement is apparent in Cluster 2 and 4.  

<Figure 11 here please> 

Table 3 examines the association between GPM Ku-PR precipitation detection errors and

the cluster class of concurrent MRMS reflectivity profiles. For each pixel within an overpass of

GPM Ku-PR, the most frequent cluster type (mode) within the nearest (5x5) MRMS pixels is

considered as the ground-truth. GPM Ku-PR misses approximately 65% of all low-level light

precipitation cases (Cluster-1), while only 0.2% of the deep precipitation events (Cluster-4) are

missed. MDs in Cluster-2 and Cluster-3 amount to ~18% and ~9% respectively. Underestimation

errors  dominate  by more  than  56% in  all  clusters,  with  the  smaller  errors  in  Class-4 (deep

precipitation systems) and larger discrepancies in Class-1 (light low-level precipitation systems).

These results are in agreement with previous error analysis studies performed in the SAM (Prat

and Barros, 2010; Duan et al. 2015; Arulraj and Barros, 2019; Barros and Arulraj, 2020), and

thus provide further support to the four cluster classification to capture the principal precipitation

regimes in the SAM even if low-level enhancement of stratiform system with bright-band is

missed by Cluster-3.  Figure S9 in Supplementary Data contrasts the statistics of GPM Ku-PR
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and MRMS precipitation estimates when both detect precipitation. Although Ku-PR estimates

are lower than MRMS and exhibit  higher variance,  both products show an increase in mean

precipitation with depth of the reflectivity profile except for Cluster-3. Interestingly, the variance

is much higher for Ku-PR than MRMS in the case of Cluster-3 due to ground-clutter artifacts

affecting Ku-PR measurements  in the inner region valleys below the orographic envelope in

contrast to NEXRAD radar beam overshooting above the mountain ridges for MRMS.  

<Table 3 here please>

4.1.3 Error Analysis - HRRR 

The spatial distribution of the number of HRRR pixels with precipitation at 500 m AGL

over the 4-year period of interest can be found in Supplementary Data (Fig. S10). The figure

shows high frequency of  precipitation  along the  high  elevation  regions  of  the  Pigeon River

Basin. In addition, this spatial pattern agrees with the 10-year climatology map obtained from the

rain-gauge merged Stage-IV (GPM GV reference product V1; Liao and Barros, 2019) shown in

Supplementary Data, Fig. S11, even if amounts are underestimated especially over the western

ridges.

The HRRR analysis was evaluated using rain-gauge observations from different regions

in  the  SAM  to  investigate  timing  errors  via  correlation  analysis  at  different  time  lags  as

summarized in Fig. 12. Recall  that the HRRR variables are instantaneous and the rain-gauge

observations  represent  30-minute  accumulations  centered  at  HRRR model  time  stamps.  The

maximum correlation  is  observed at  0-lag indicating  that  HRRR does not  exhibit  significant

timing errors (i.e. delay of precipitation arrival), and thus HRRR analysis captures the diurnal
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cycle. While this is expected due to the assimilation of NEXRAD data, it is important that no

time  corrections  or  adjustments  need to  be  applied  to  the  HRRR data  relative  to  the  GPM

overpass.

<Figure 12 here please>

HRRR precipitation rates are much lower than the rain-gauge measurements especially

for intense precipitation as shown in Supplementary Data, Fig. S12 (for rain-gauge locations see

map in Fig. S6). This is also consistent with the previous error analysis conducted in the SAM

region  comparing  the  rain-gauge  observations  with  different  satellite  products  (Barros  and

Arulraj, 2020). Despite ambiguity in the comparison of instantaneous areal estimates (HRRR, 3

km spatial  resolution)  with  time-average  point  measurements  (rain-gauges),  an  even  though

HRRR underestimates precipitation by 2-3 mm/h at all times, the overall structure of the diurnal

cycle is well captured in particular over the western ridges (Fig. 13). Underestimation of rain-

rates in the west is accompanied by underestimation of cloudiness in the model, in particular

shallow cap clouds mapped by Duan and Barros (2017) using MODIS data.  In the east,  the

diurnal cycle simulated by HRRR differs from that of rain-gauges in the early morning hours

until mid-day, while in the inner region the difference is observed only at mid-day tied to LLCF

and SFI among layered clouds that are not described in the model.

<Figure 13 here please>

In summary, the HRRR analysis is a good representative of the climatological and diurnal

behavior of the precipitation observed in the SAM even though rain-rates and cloudiness are

underestimated.  Whereas the vertical structure of water mass in HRRR is not representative of

the actual vertical structure of clouds and precipitation in the region, especially at low levels, the
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fact  that  the  diurnal  cycle  is  captured  well  suggests  that  it  can  be  used  identify  conditions

favorable to precipitation and precipitation type.  This is the basis for using HRRR RWMR,

SWMR, and GRLE in the lower 1.5 km (the depth of Cluster-1 CFAD) as input to the PDA.

4.2 Precipitation Detection 

The  implementation  of  the  precipitation  detection  algorithm  (PDA)  follows  the

methodology described in Section 3.2.1 and Appendix A (Fig. 5). First, HRRR and GMI input

data are normalized between 0 and 1 prior to training the RFC.  Using the 5-fold cross-validation

to train the RFC yields a classification accuracy of approximately 96%. Training reveals that the

GMI Tbs at 89 GHz for both VV and HH polarizations and the RWMR from HRRR are the two

most important sources of information, thus suggesting that the input data can be further reduced

for operational applications.

Table 4 presents the precipitation detection contingency matrix.   MDs are reduced by

82%, and FAs are reduced by 77% compared to the GPM Ku-PR V06A product.  This result is a

dramatic reduction of detection errors. Further, all the instances when “rain” was detected can be

mapped to one of the MRMS precipitation clusters, which demonstrates the robustness of the

precipitation detection model in capturing the breath of regional precipitation systems.   Figure

14 shows the diurnal cycle of the detection error metrics for GPM Ku-PR and for the PDA

application. PDA significantly reduces FAR at all times while POD increases significantly at

mid-day and during the night  and early morning when low level enhancement  processes are

important. The slight decrease in POD between 06 and 12 h EDT is due to missed detection of 2

precipitation events.  

30

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624



<Table 4 here please>

<Figure 14 here please>

4.3 Precipitation Classification

The  classification  model  is  implemented  according  to  Section  3.2.2  and  Appendix  B.

Training is independent of the precipitation detection model by selecting only GPM data for

correct “rain” detections.   First, the GPM DPR and GMI data for rainy conditions are divided

into training, validation and test subsets with equal representation of data samples in each class.

Instead of the original reflectivity profiles, the data were submitted to dimension reduction using

two different methods: Principal Component Analysis and Auto-Encoders with similar validation

and test  accuracy.  The input  features  are  then submitted  to  min-max normalization,  and the

normalized features are provided as input to the CNN for feature extraction.  The number of

convolution and pooling layers and CNN hyper-parameters were defined to avoid overfitting. In

particular, the feature extraction module in the CNN consists of two convolutional layers with 16

and 8 filters respectively, and a hyperbolic tangent activation function to improve sensitivity and

the ability to capture nonlinear relationships. A random dropout rate of 0.25 is enforced after

each  convolution  layer  and  a  maximum  pooling  layer  of  size  2  is  introduced  after  each

convolution layer. Classification proper is conducted in the second module using a NN (Fig. 6)

that consists of two fully-connected layers and a fully-connected output layer with a Softmax

activation function. The Adam optimizer (Kingma and Ba, 2014) is used to train the model, and

the loss function is computed using categorical cross-entropy. Performance is evaluated using

categorical accuracy. The categorical cross-entropy loss function is mathematically defined as,

L ( y , ŷ )= y× log ( ŷ )     (12)
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where y is the actual MRMS Cluster class and  ŷ is the predicted Cluster class.

The CNN validation accuracy is ~ 70%, which is close to the training accuracy (~ 71%) and

indicates that the model is not overfit. There is large epistemic uncertainty implicit in the model

because the empirical ground-truth that the MRMS profiles represent suffers from large bias with

robust spatial patterns due to the location (range limitations) and operations of NEXRAD radars

to  mitigate  ground-clutter  and  blocking.  Other  sources  of  ambiguity  in  the  assignment  of

precipitation class stem from the difference in the resolution of MRMS and GPM Ku-PR and

NUBF effects that hinder the representativeness of the Ku-PR reflectivity profiles. 

Table 5 presents the classification contingency matrix. There is significant improvement in

elucidating  the  vertical  structure  of  precipitation  associated  with  dominant  orographic

precipitation regimes that are not explicitly captured in the stratiform/convective classification in

the Ku-PR V06A product, albeit with leftover ambiguity especially between Class-2 and Class-3,

and between Class 3 and Class 4.  The latter is attributed to the fact that the correct reflectivity

profiles from GPM Ku-PR that are used in training the model are not as deep as the MRM

reflectivity profiles, which creates ambiguity unless there is a strong bright-band.

<Table 5 here please>

Higher  misclassification  rates  are  observed  in  the  attribution  of  Cluster-2  and Cluster-3

classes. The spatial distribution of the MRMS cluster classes and the algorithm predictions were

examined to determine whether the ambiguity in the MRMS-based cluster classification in the

SAM could be interpreted in light of algorithm externalities such as the configuration of the

observing system (i.e. NEXRAD) and regional MRMS precipitation climatology, that is to say

the systematic handicap in detecting shallow precipitation systems in the inner mountain region
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as discussed in Section 3.1.3.  The maps are available in the Supplementary Data, Figs. S13-S16.

Indeed,  the  data  show  that  most  of  the  misclassified  cases  are  in  the  inner  region  where

NEXRAD radars have limited view on account of blocking, and thus overshooting effectively

reduces the depth of the precipitation system over which reflectivity measurements are obtained. 

       Classification ambiguity due to the spatial heterogeneity of precipitation (e.g. NUBF) is

evaluated at the scale of the GPM Ku-PR pixel with a focus on NUBF using the metric SSH

defined as follows,

SSH=
Number of MRMS pixelswith predicted classmode X

Number of MRMS rain pixels
(13)

SSH  is  a  linear  index  of  sub-grid  scale  heterogeneity.  Table  6  shows  the  number  of

misclassification pixels and number of pixels with corresponding SSH values. Class-2 shows

high spatial heterogeneity with approximately 50% instances for SSH < than 0.5, and thus the

relatively high misclassification rate of Class-2 is attributed to NUBF effects.  

<Table 6 here please> 

5. Discussion 

The performance of the precipitation detection and classification algorithm is illustrated first

for  a  precipitation  event  on  October  11,  2019  at  06:59  EDT.  The  precipitation  rate  and

precipitation type according to MRMS are shown in Figs. 15(a-b). This is a stratiform storm

system (blue color) over the mountains with a tropical  mix stratiform sector to the east  and

western  foothills  (red  color).  GPM Ku-PR overpasses  along the  eastern  region  of  the  SAM

capture  the  tropical  mix  stratiform  system  (Fig.  15c).  Overall,  the  spatial  structure  of  the
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precipitation event is well detected by the GPM, albeit underestimating precipitation especially

at higher viewing angles (Fig. S5 in Supplementary Data). 

<Figure 15 here please>

Figure  16(a)  shows the  spatial  distribution  of  precipitation  regimes  for  the  same event.

Class-0 corresponds to “no-rain”. Classes 1-4 correspond to MRMS Clusters 1-4. Figure 16(b)

shows the corresponding map for GPM predicted classes. The model detects precipitation and

predicted the precipitation class accurately although some of the Class-2 events along the edge of

the overpass are misclassified as Class-3 and some Class-3 events are misclassified as class-4 by

the model.

<Figure 16 here please> 

Consider the location marked in Fig. 15(c) (black circle) in the section of the GPM overpass

where viewing angles are the largest, and thus estimation errors are expected to be large. Indeed,

the  Ku-PR near-surface  precipitation  rate  estimate  is  1.76  mm/h.   By  contrast,  the  average

MRMS precipitation  rate  within  the  5  km field  of  view of  GPM Ku-PR is  9.1  mm/h  with

maximum and minimum precipitation-rate within the GPM overpass of 4.86 mm/h and 13.46

mm/h  respectively.  The  MRMS pixel  nearest  to  the  center  of  the  Ku-PR pixel  registered  a

precipitation rate of 10.02 mm/h. The classification algorithm predicts shallow precipitation with

low level enhancement (Class-2), and therefore this is a case that is suitable for physically-based

retrieval using the near-surface LLCF configuration following Arulraj and Barros (2019). 

The top boundary (TBC; 2 km AGL) and initial conditions of the rain microphysics model

are derived from reflectivity profiles from GPM Ku-PR.  The reflectivity profile of the nearest

MRMS pixel, and Zm and Ze of GPM Ku-PR overpass are shown in Fig. 17(a). The difference in
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the storm top height of Ze and MRMS reflectivity profiles is due to the detectability of GPM Ku-

PR and the attenuation correction on Zm. First, negative exponential DSDs are fit to the GPM

Ku-PR Ze at the TBC height and throughout the column to initialize the rainshaft model. Second,

the LLCF drop size distribution (DSD) is specified based on the mean of the diurnal climatology

derived from a ground-based spectrometer  at  the same time of day (see Arulraj  and Barros,

2019). The model runs for 20 min with the same TBC to reach equilibrium, and the LLCF layer

is introduced then for 30 min.  Three different LLCF depths (e.g.  300 m, 400 m and 500 m) are

used for  sensitivity  analysis.   The  surface  rain-rate  predicted  by the physically-based model

varies between 12.5 and 15 mm/h (Fig. 17b).  The result for the 300m LLCF case (12.5 mm/hr)

that is more consistent with climatology in this region of the SAM than the deeper layers that are

typical  of  the inner  region (e.g.  Duan and Barros,  2017)  is  slightly  higher  than the average

MRMS  estimate.  Nevertheless,  NEXRAD  based  precipitation  products  also  tends  to

underestimate precipitation rate near-surface over the eastern ridges (Liao and Barros, 2019). To

quantify  uncertainty  in  the  physical-retrieval  estimates,  1000  additional  simulations  were

conducted  for  the  300m LLCF configuration  by perturbing the  microphysics  based  on DSD

variance statistics from the spectrometer observations (Fig. 17c).  The ensemble rain-rates in the

25th to 75th percentile intervals are within the range of uncertainty as described by variance of

MRMS estimates within the Ku-PR pixel, that is the Ku-PR subpixel scale spatial variability at

the MRMS spatial resolution.  This gives rise to the interesting challenge that is to determine the

spatial  scale,  or  spatial  scale  range  depending  on  precipitation  regime,  beyond  which

microphysical processes prevail over dynamics to govern the scaling behavior of precipitation.  

<Figure 17 here please>
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The  AI  framework  (precipitation  detection  and  classification)  was  also  independently

applied in fully predictive mode for the (2014-2016) and in the second half of 2019, in which

case confirmed “rain” conditions for error analysis are based on rain-gauge observations alone.

Recall  that  MRMS reflectivity  profiles  that  are  ground-truth  for  precipitation  type  are  only

available between November 2016 and May 2019, and HRRR simulations are available only

after  July  2016.   Figure  18  shows  the  distribution  of  GPM  Ku-PR  underestimation  and

overestimation errors for the predicted four precipitation regimes over the 2014-2019 period.

Underestimation  errors  are  more  frequent  in  all  precipitation  regimes  (Fig.18a).  The  full

climatology of precipitation rate at the rain-gauges during the same period, thus including both

Ku-PR and CD and MD cases, is shown in Fig. 18(b) and in Fig. 18(c) considering only the Ku-

PR  CD  events  the  climatology  of  which  is  presented  in  Fig.  18(d).  Overall,  Ku-PR

overestimation  errors  are  very  small,  and  the  underestimation  errors  are  larger  than  the

overestimation errors in all classes as it can be seen from comparing the skew of the precipitation

rate distributions for Ku-PR correct detections Fig. 18(d) and for the same events at the rain-

gauges Fig.18(c).  On average the Ku-PR CDs underestimate the rain-gauges by ~ 25% for C-4

and ~50% for  the  other  three classes.  Whereas  a  paired  inspection  of  Figs.  18(b)  and 18(c)

indicates that MDs occur mostly for light rainfall events (classes C-1 and C-2), the distribution

for C-3 is more right-skewed when all events are accounted for at the rain-gauges than when

only CDs are accounted for. This suggests that the MD events in the case of stratiform rainfall

with bright-band are heavy rainfall events suggesting low-level enhancement below the ground-

clutter height in the inner mountain region.  

<Figure 18 here please>
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Finally,  the  specific  underestimation  events  identified  as  cases  where  low-level

enhancement  could  be  unambiguously  attributed  to  SFI  by  Arulraj  and  Barros  (2019)  are

revisited here in Table 7. A location map can be found in Supplementary Data, Fig. S17. Except

for two events (Case 1 and Case 4), all the events are classified as Stratiform type by the GPM

algorithm  and all fall into Class-4 and Class-3 according to the AI framework, suggesting deep

precipitation systems with mid and low level  enhancement  (C-4) and stratiform precipitation

systems with bright-band (C-3).  For all of these cases, the physically-based correction algorithm

yields  precipitation  rate  estimates  close  to  the  rain-gauge  and  disdrometer  observations.

However,  it  is  difficult  to  distinguish  between  layered  SFI  (Case  3)  and  low-level  SFI  (all

others).   This  suggests  that  more  information  on vertical  precipitation  structure  needs  to  be

assessed, specifically longer records of MRMS data with known layered SFI cases.  Even if the

vertical structure of C-3 according to MRMS does not exhibit low-level enhancement, all C-3

cases are identified by Arulraj and Barros (2019) as low-level enhancement cases, which further

supports  earlier  discussion  with  regard  to  observational  biases  in  MRMS  that  reflect  the

constraints of NEXRAD operations.  Both cases classified as Convective by GPM are placed

into C-4 class by the AI framework: the first (Case 1) is an NUBF case, and the second (Case 4)

is a case of low-level enhancement with significant improvement relative to Ku-PR (one order of

magnitude),  but  still  an  underestimation  of  the  rain-gauge  measurements.  The  latter  can  be

addressed by lifting the TBC in the rainshaft model to level of highest Ze.  One possible route to

addressing  NUBF requires  introducing  metrics  of  sub-grid  scale  heterogeneity  such  as  SSH

(Eq.13,  Table  6)  explicitly  into  the  classification  model.   Note  that  similar  metrics  can  be

inferred  from high-resolution  infrared  observations  from geostationary  satellites  such  as  the
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Geostationary Operational  Environmental  Satellites  – R series (GOES-R) even when MRMS

data are not available.  

<Table 7 here please> 

6. Conclusion

A data-driven AI framework was developed to improve orographic precipitation detection and

classification of low-level precipitation structure by integrating passive (GMI) and active (Ku-

PR) GPM measurements and NWP analysis, specifically the HRRR model that is available over

CONUS,  and  it  was  demonstrated  in  the  Southern  Appalachian  Mountains  with  dramatic

improvement in detection skill as compares to the GPM products.  The new AI framework can

be used to identify cases where low level enhancement of precipitation is present, and thus to

guide  correction  of  Ku-PR reflectivity  profiles  contaminated  by  ground-clutter  according  to

precipitation regime informed by MRMS precipitation structure classes over CONUS. The major

findings of this manuscript are as follows:

1. Comparison of GPM Ku-PR precipitation estimates with MRMS precipitation rate

confirm that missed detections and false alarms are aligned along the western ridges

of  the  SAM,  which  is  the  region  where  precipitation  is  higher  and  orographic

enhancement  effects  stronger.  In  addition,  GPM  Ku-PR  predominantly

underestimates precipitation rate in this region for most of the precipitation types. 

2. NWP analysis (e.g. HRRR) profiles of condensed water mixing ratios in the lower

troposphere  provide  reliable  and  useful  information  regarding  the  likelihood  of

precipitation activity that can be used in precipitation detection. 
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3. Clustering analysis  of reflectivity  profiles  from ground-based radars (e.g.  MRMS)

allowed  identification  of  four  classes  of  vertical  structure  of  precipitation  that

correspond to distinctive orographic precipitation regimes with well-defined spatial

patterns linked to topography, and strong enhancement of near surface precipitation

rates  due  to  seeder-feeder  interactions  among  low  and  mid-level  layered  clouds:

Cluster-1  represents  shallow  light  precipitation;  Cluster-2  captures  shallow

precipitation  with  low-level  enhancement;   Cluster-3  consists  of  stratiform

precipitation  with  bright-band;   and Cluster-4  captures  deep precipitation  systems

with mid and low-level enhancement.  Error diagnostics indicate that GPM Ku-PR

missed  detection  errors  are  tightly  associated  with  shallow  light  precipitation

(Cluster-1)  while  the  highest  number  of  correct  detection  cases  is  for  deep

precipitation systems (Cluster-4). 

4. A precipitation detection model was developed using a random forest classifier. The

inputs  of  the  precipitation  detection  algorithm  include  GPM  GMI  multichannel

brightness temperatures, DPR Ku-band reflectivity profiles, and HRRR water mixing

ratios. The most important features used in the random forest classifier to accurately

detect precipitation are the calibrated brightness temperatures at 89 GHz both vertical

and horizontal polarizations, followed by the average HRRR rainwater mixing ratio in

the lowest 1.5 km AGL, and the depth of low level clouds as measured by the number

of HRRR model layers with non-zero rainwater in the nearest 1.5 km AGL. 

5. The precipitation detection model significantly improves the probability of detection

and reduces the number of false alarms in GPM KU-PR retrievals. The number of
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missed detections is reduced by 82% while the number of false alarms is reduced by

77% over a three-year period (2016-2019). 

6.  A convolution neural  network algorithm (CNN) was implemented to identify the

vertical structure of detected precipitation. GPM observations from DPR and GMI are

used to train a supervised classification algorithm that maps GPM observations to

different MRMS precipitation classes. The algorithm is general and can be applied in

regions with precipitation climatology similar to the SAM in the absence of ground-

observations. 

The AI framework is composed of sequential detection and classification models.  The

data used in the detection model are not specific to the Southern Appalachian Mountain and are

generally available, thus the detection model can be applied globally.  The classification model is

trained to identify orographic precipitation regimes with low-level enhancement, and thus it is

applicable in regions with similar climatology and precipitation physics, which can be identified

by clustering TRMM and, or GPM observations. To identify additional precipitation regimes, an

adaptive model would be necessary to identify precipitation classes in different climatic regions

with more input from NWP to compensate for the lack of ground-based radars and support from

ground-based measurements.
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Appendix A 

Random  Forest  Classifier -  A  random  forest  classifier  (RFC)  is  a  supervised

classification  method  based  on  decision  trees  that  relies  on  ensemble  statistics  to  predict

individual classes. An individual decision tree is sensitive to the input data and a complex tree

structure can easily tend to overfit the test data (Safavian and Landgrebe, 1991).  To address

these issues,  a  random forest  classifier  was proposed by Breiman (2001) that  consists  of an

ensemble of multiple decision trees. The diversity or variability within the trees in a forest can be

increased by a two-stage randomization procedure as follows: 1) bootstrap the training data, and

2) randomize the features. In the first stage of randomization, the data samples for each tree are

chosen randomly with replacement (bootstrapping). Next, random subsets are extracted for each

tree separately to achieve low correlation among the trees in the forest. The goal is to generalize

the model to avoid overfitting.

Every  “parent”  node  of  the  decision  tree  is  split  into  individual  “offspring”  nodes

according to impurity measures such as the Gini index (Breiman et al. 1984). The Gini index at

node ‘t’ is defined as follows:

G ( t )=∑
i ≠ j

p(i / t) p ( j / t) (A-1)

Where p(i/t) is the probability that the random variable belongs to class ‘i’ given at node ‘t’. The

split at the parent node is performed for the minimal change in the impurity measure between the

“parent” and the “offspring” nodes. These impurity measures implicitly act as a feature selection

method and provide the most important features in the training data for the prediction of classes.

Finally, the output class of a random forest is predicted by applying the most frequent

criterion to the pool of individual predictions among all the trees. Since the output is based on a
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collective decision of all the trees, the variance of the final output decreases by providing a better

prediction.  The RFC algorithm’s  ability  to  highlight  important  features  is  key to  extract  the

physical  interpretability  of  the  model.  Performance  is  evaluated  based  on  the  accuracy  of

prediction on data that are not used in the training.  A k-fold cross-validation (Kohavi 1995)

approach  is  used  to  further  generalize  and  reduce  the  bias  of  the  model.  In  ‘k’-fold  cross-

validation, the data are divided into ‘k’ mutually exclusive subsets. The model is trained and

tested k times where ‘k’-1 subsets are used as train data and the remaining subset is the test data

used to  determine  the  accuracy of  the  method.  The schematic  flowchart  of  a  random forest

classifier is shown in Supplementary Data (Fig. S18).

 

Appendix B

Convolutional Neural Network - Assume ‘X’ is the input data with ‘N’ samples and ‘m’

features (X = [x1, x2,…, xN];  x1=[x11,x12,…,x1m]) and ‘Y’ is the final output vector with class

labels [Number of classes – ‘c’]. ‘X’ is passed as input to the 1st convolutional layer consisting of

‘K’ filters with kernel size ‘k1’. The output from a filter is 

z i=b i+∑
j=1

m

Convolution(w i, j∗x j) (B-1)

Where wi,j is the weight vector between ith and jth feature,  bi is the bias of the ith feature

and zi is the output of ith filter. Further, zi is transformed to si based on the activation function ‘f’.

At the end of the 1st convolutional layer with ‘K’ filter, the output will have the dimension of

‘(N-k1+1) × K’. Next, pooling is applied for the output from the convolutional layer (s = [s1, s2,

…, sK])]. The pooling layer will down-sample the output of the convolution layer by choosing
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the maximum or the average within the kernel size to extract local features. For a pooling of

length ‘P’, the pooling layer output will have a dimension of 
N−k 1+1

P
×K . 

The  Dropout  regularization  technique  (Srivastava  et  al.  2014)  by  which  randomly

selected features (neurons) are temporarily removed during training and not passed to the next

layer, and the weights of the dropped neurons are not updated in the backward pass is applied to

avoid overfitting. Finally, the outputs from the last layer are stacked in a 1-D vector (extracted

features;  F)  in  the  flatten  layer  and  sent  to  the  fully  connected  layer  (FC)  or  multi-layer

perceptron layer for the classification. The output at the FC is computed as follows:

ŷ f 1=f ¿ (B-2)

Where w1,i is the weight of the ith neuron, F are the features extracted, bf1 is the bias, c1 is

the number of neurons and f is the activation function of the FC layer. The final class prediction

will be performed by the FC output layer where the input will be from the previous FC layer (or

from the flatten layer in the absence of multiple FC).

In this study, the hyperbolic tangent (tanh) function is used as the activation function for

all the convolutional and FC layers except the FC output layer. The tanh is a monotonic function

which is similar to the logistic sigmoid with range between -1 and 1. Here, the negative inputs

are mapped to strong negative values while the zeros inputs are mapped close to zero. In the FC

output layer, a Softmax function is chosen as the activation function since it is a generalized

logistics function used for a multiclass classification. In the pooling layer, maximum pooling of

size 2 is preferred. Maximum pooling considers the largest element within the kernel size.
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The weights of the filters are calculated iteratively by minimizing the loss function using

an optimizer.  Some of  the common optimizers  are  the  gradient  descent  and the  Root  Mean

Square prop (RMSprop) optimizer. In a gradient descent optimizer, at each iteration, a gradient

of the loss function is computed to update the weights and biases to get the global minima. The

gradient  descent  with  momentum (Qian 1999) has  faster  converging rate  that  the  traditional

gradient  descent  algorithm  since  the  exponential  weighted  averages  are  computed  from the

gradients to update the weights. The weights in a gradient descent with momentum are computed

as follows:

vdW=β vdW+(1−β )dW (B-3a)

vdW=β vdW+(1−β )dW (B-3b)

W=W−α v dW (B-3c)

B=B−α vdB (B-3d)

Where W is the weight vector, B is the bias, vdW is gradient update of the weights at tth

iteration,  vdB is gradient update of the bias at t th iteration,  α is the learning rate and β is the

momentum parameter. 

The RMSprop optimizer are similar to that of the gradient descent with momentum but it

normalizes  the  gradient  using  moving  average.  The  weights  in  RMSprop  are  calculated  as

follows:

sdW=β sdW+ (1−β )dW 2 (B-4a)

sdW=β sdW+ (1−β )dW 2 (B-4b)
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W=W−
α dW

√sdW
(B-4c)

B=B−
α dB

√sdB
(B-4d)

The Adaptive Momentum Estimation optimizer (ADAM; Kingma and Ba 2014) is the

combination of gradient descent with momentum and RMSprop optimizer where a decreasing

learning rate is adapted as the global minima approaches. 
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Table 1: Contingency matrix comparing GPM Ku-PR and MRMS rainfall occurrences.  The 
values in the parenthesis are the corresponding percentages. 

MRMS = 0 MRMS ≠0

GPM KU-PR = 0
24438 (86.9%)

NN

824 (3.3%)

MD

GPM KU-PR ≠ 0
779 (2.8%)

FA

1964 (7.0%)

CD

54

1134
1135

1136



Table 2: Mean, maximum and standard deviation of the MRMS precipitation rates corresponding
to each of the 4 vertical structure classes after k-means clustering of MRMS reflectivity profiles. 

MAXIMUM PRECIPITATION

[mm/hr]
MEAN PRECIPITATION

[mm/hr]
STANDARD DEVIATION

[mm/h]

CLUSTER 1
18.89 1.22 0.98

CLUSTER 2
48.76 2.45 2.14

CLUSTER 3
74.74 2.20 2.77

CLUSTER 4
138.75 9.11 10.21
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Table 3: Distribution of GPM Ku-PR precipitation errors relative to MRMS. 

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

MISSED DETECTION

GPM = 0 AND MRMS ≠ 0
649 (65.1 %) 112 (17.7%) 62 (9.3%) 1 (0.2%)

CORRECT DETECTION

GPM ≠ 0 AND MRMS ≠ 0
 348 (34.9%)  522 (82.3%)   604 (90.7%) 490 (99.8%)

UNDERESTIMATION

GPM < MRMS

245

(70% OF CD)

331

(63% OF CD)

381

(63% OF CD)

275

(56% OF CD)

OVERESTIMATION

GPM > MRMS

103

(30% OF CD)

191

(37% OF CD)

223

(37% OF CD)

215

(44% OF CD)
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Table 4: Contingency matrix of predicted GPM detection and MRMS rainfall occurrences.  The 
values in the parenthesis are the corresponding percentages. 

MRMS = 0 MRMS ≠0

GPM PREDICTION = 0 25040 (89.4%) 148 (0.5%)

GPM PREDICTION ≠ 0
177 (0.6%) 2640 (9.5%)
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Table 5: Contingency matrix of the predicted GPM classification against MRMS. 

MRMS

GPM PREDICTED

CLUSTER-1 CLUSTER-2 CLUSTER-3 CLUSTER-4

CLUSTER-1
874 61 61 1

CLUSTER-2
151 359 106 18

CLUSTER-3
41 80 466 79

CLUSTER-4
2 13 71 405
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Table 6: Distribution of predicted classification errors conditional on subgrid scale heterogeneity 
as measured by SSH (Eq.13) at the GPM Ku-PR pixel scale. 

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

NUMBER OF

MISCLASSIFICATIONS

                

123 275 200 86

SSH < 0.5 
80 (65.0%) 138 (50.2%) 117 (58.5%) 52 (60.5%)

0.5 ≤ SSH < 0.75
24 (19.5%) 60 (21.8%) 50 (25.0%) 22 (25.6%)

SSH ≥ 0.75
19 (15.5%) 77 (28.0%) 33 (16.5%) 12 (13.9%)
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Table 7: Vertical structure classes (MRMS cluster index) for GPM Ku-PR underestimation cases
when rain-gauge (RG) measurements are available. AB19 - QPE estimates using the rainshaft 
microphysics model reported by Arulraj and Barros (2019). Large disagreement among AB19 
estimates and rain-gauge measurements for Case 1, Class 4 is highlighted in italics and   
superscript *.  This case is associated with high NUBF by AB19. 

Case
ID

Date – Time
EDT GPM

Ku-PR
RG

AB19 
Without
LLCF

AB19
With

LLCF

Predicted
GPM 
Class

GPM  
Precipitatio

n Type

1*
May 31, 2016 

19:20
5.9 13.9 27.9

31.0–
33.0

4* Convective

2
May 21, 2017

11:30
2.2 9.6 8.4

11.3 –
13.4

3 Stratiform

3
June 17, 2018

16:49
0.5 6.4 0.8

4.5 –
7.2

4 Stratiform

4
August 11,

2014
19:52

2.2 20.0 9.1
12.7 –
15.2

4 Convective

5
August 17,

2016
20:27

2.0 8.3 5.9
10.4 –
13.5

3 Stratiform

6
August 17,

2016
20:27

2.0 10.8 5.3
9.8 –
13.0

4 Stratiform

P5
August 8, 2014

20:55
4.67 11.56 14.5

18.1 –
22.0

4 Stratiform

P6
September 2,

2014
22:59

2.51 10.41 5.24
10.2 –
16.4

3 Stratiform

RG110
June 17, 2018

16:49 EDT
1.60 37.4 4.5

30.5 –
48.5

4 Stratiform
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Figure 1: Digital Elevation Model (DEM) map of the Southern Appalachian Mountains (SAM)

Figure 2: Overall architecture for physically-based precipitation retrieval. Dark blue - Input data. 
Brown and black- AI framework including detection and classification models (this work); 
Bright Blue – Physically-based model for quantitative precipitation estimation after Arulraj and 
Barros (2019)

Figure 3: (a) Schematic showing the PPI (Plan Position Indicator) scanning pattern of the 
ground-based radar network (NEXRAD) used in MRMS and the vertical scanning pattern of the 
GPM DPR. (b) Contrast in spatial resolution between MRMS and GPM DPR with 25 (5×5) 
MRMS pixels (1×1 km2) for each GPM DPR pixel.  

Figure 4: Features extracted from the MRMS reflectivity profiles for clustering algorithm. 

Figure 5: Schematic of the precipitation detection model (Appendix A, Section 3.2.1). The inputs
of this framework are obtained from GPM GMI calibrated brightness temperatures and selected 
features from GPM DPR reflectivity profiles, and water mixing ratios (MR) from HRRR analysis
(Rainwater RW; Snow SW; and Graupel GRLE).

Figure 6: Schematic of the precipitation classification model (Appendix B, Section 3.2.2).  The 
convolutional neural network (CNN) maps individual GPM Ku-PR pixels where "rain" is 
detected to MRMS vertical structure clusters (i.e. precipitation regimes). The CNN consists of a 
feature extraction sub-model that identifies the main associations among the input data, and a 
classification neural network sub-model that links the features to precipitation class (i.e. MRMS 
vertical structure clusters).

Figure 7: Frequency bias as a function of the fraction of non-uniformly precipitating MRMS 
pixels within the GPM Ku-PR footprint.

Figure 8: Spatial distribution of the detection metrics of GPM Ku-PR near-surface precipitation 
estimates relative to Level 2 MRMS precipitation. a) Probability of Detection - POD; b) False 
Alarm Ratio - FAR. The underlying black and gray contours represent elevation contours (Fig.1).

Figure 9: Histograms of number of samples (a, c) and the corresponding bias (b, d) in GPM Ku-
PR relative to MRMS precipitation rate and type. Spatial distribution of number of samples (e)
and  bias  (f).   Precipitation  type:  Strat  -  warm  stratiform;  Conv  -  convective;  Strat  Mix  -
tropical/stratiform mix; Conv Mix - tropical/convective mix; Cool Strat - cool stratiform.

Figure 10: Contoured frequency altitude diagram (CFADs) of the four distinct clusters of vertical
structure of MRMS reflectivity profiles identified by the k-means algorithm in the SAM domain.
Cluster-1: light low-level precipitation; Cluster-2 Shallow precipitation with low level 
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enhancement; Cluster-3: stratiform precipitation with bright-band; and Cluster-4: deep 
precipitation with mid- and low-level enhancement.

Figure 11: Mean (marker) with the standard deviation (error bars) of the features used to cluster 
MRMS reflectivity profiles: (a) maximum reflectivity; (b) height of maximum reflectivity 
[AGL]; (c) storm top height [AGL]; (d) near surface slope; and (e) near surface reflectivity. 

Figure 12: Pearson correlation coefficient computed between the instantaneous hourly HRRR 
rain-rate at 500 m AGL and concurrent rain-gauge records.

Figure 13: Diurnal cycle of precipitation rate observed by the HRRR compared with that of the 
rain-gauge observations. The blue boxes highlight the time of day when the diurnal cycle 
patterns differ the most.

Figure 14: Diurnal cycle of (a) POD and (b) FA. GPM Ku-PR – GPM Algorithm Level 2A 
Version 6A. PDA - Precipitation Detection Algorithm (this work).

Figure 15: (a) MRMS precipitation rate, (b) MRMS precipitation type, and (c) GPM Ku-PR 
estimated near-surface precipitation rate for the overpass on October 11, 2018. The black circle 
in (c) marks the location selected for illustrating physically-based retrieval in Fig. 17.

Figure 16: (a) Cluster classes to GPM pixels by matching Ku-PR pixels with the MRMS mode. 
(b) Model predicted precipitation classes for the GPM overpass. Class 0: represents no-
precipitation; Class-1: shallow light precipitation systems; Class-2: shallow surface enhanced 
precipitation; Class-3: stratiform precipitation; Class-4: deep intense precipitation systems with 
mid and low-level enhancement.

Figure 17: (a) Concurrent and nearest MRMS reflectivity and GPM Ku-PR Zm and Ze for the 
October 11, 2018 GPM overpass on the eastern ridges of the SAM (black circle in Fig. 15c). (b) 
Surface rain-rate simulated by the column microphysics model simulation for a shallow SFI 
scenario for three LLCF depths (300, 400 and 500 m) compared with MRMS mean precipitation 
rate within the Ku-PR pixel (dashed pink line) and KU-PR estimates (black dotted line).  The 
pink shaded band delimits ± MRMS variance within the Ku-PR pixel. (c) Ensemble statistics 
(25th, 50th and 75th percentiles) for 1000 simulations of near-surface rain-rate by the column 
microphysics model to capture uncertainty in LLCF microphysics and LLCF depth of 300m.

Figure 18: (a) Underestimation (blue) and overestimation (orange) errors for correct detection 
(CD) GPM Ku-PR cases organized by predicted precipitation class (i.e. MRMS cluster) and rain-
rate relative to collocated rain-gauge measurements. Statistics of precipitation rate [25th, 50th 
(black circle) and 75th percentiles]: (b) rain-gauge (RG) measurements; (c) RG measurements 
only for Ku-PR CD; and (d) CD for Ku-PR
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Figure 1: Digital Elevation Model (DEM) map of the Southern Appalachian Mountains (SAM).
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Figure 2: Overall architecture for physically-based precipitation retrieval. Dark blue - Input data. 
Brown and black- AI framework including detection and classification models (this work); 
Bright Blue – Physically-based model for quantitative precipitation estimation after Arulraj and 
Barros (2019).
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Figure 3: (a) Schematic showing the PPI (Plan Position Indicator) scanning pattern of the 
ground-based radar network (NEXRAD) used in MRMS and the vertical scanning pattern of the 
GPM DPR. (b) Contrast in spatial resolution between MRMS and GPM DPR with 25 (5×5) 
MRMS pixels (1×1 km2) for each GPM DPR pixel.  
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Figure 4: Features extracted from the MRMS reflectivity profiles for clustering algorithm. 
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Figure 5: Schematic of the precipitation detection model (Appendix A, Section 3.2.1). The inputs
of this framework are obtained from GPM GMI calibrated brightness temperatures and selected 
features from GPM DPR reflectivity profiles, and water mixing ratios (MR) from HRRR analysis
(Rainwater RW; Snow SW; and Graupel GRLE).
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Figure 6: Schematic of the precipitation classification model (Appendix B, Section 3.2.2).  The 
convolutional neural network (CNN) maps individual GPM Ku-PR pixels where "rain" is 
detected to MRMS vertical structure clusters (i.e. precipitation regimes). The CNN consists of a 
feature extraction sub-model that identifies the main associations among the input data, and a 
classification neural network sub-model that links the features to precipitation class (i.e. MRMS 
vertical structure clusters).
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Figure 7: Frequency bias as a function of the fraction of non-uniformly precipitating MRMS 
pixels within the GPM Ku-PR footprint.
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Figure 8: Spatial distribution of the detection metrics of GPM Ku-PR near-surface precipitation 
estimates relative to Level 2 MRMS precipitation. a) Probability of Detection - POD; b) False 
Alarm Ratio - FAR. The underlying black and gray contours represent elevation contours (Fig.1).
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Figure 9: Histograms of number of samples (a, c) and the corresponding bias (b, d) in GPM Ku-
PR relative to MRMS precipitation rate and type. Spatial distribution of number of samples (e)
and  bias  (f).   Precipitation  type:  Strat  -  warm  stratiform;  Conv  -  convective;  Strat  Mix  -
tropical/stratiform mix; Conv Mix - tropical/convective mix; Cool Strat - cool stratiform.
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Figure 10: Contoured frequency altitude diagram (CFADs) of the four distinct clusters of vertical
structure of MRMS reflectivity profiles identified by the k-means algorithm in the SAM domain.
Cluster-1: light low-level precipitation; Cluster-2 Shallow precipitation with low level 
enhancement; Cluster-3: stratiform precipitation with bright-band; and Cluster-4: deep 
precipitation with mid- and low-level enhancement.
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Figure 11: Mean (marker) with the standard deviation (error bars) of the features used to cluster 
MRMS reflectivity profiles: (a) maximum reflectivity; (b) height of maximum reflectivity 
[AGL]; (c) storm top height [AGL]; (d) near surface slope; and (e) near surface reflectivity. 
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Figure 12: Pearson correlation coefficient computed between the instantaneous hourly HRRR 
rain-rate at 500 m AGL and concurrent rain-gauge records.
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Figure 13: Diurnal cycle of precipitation rate observed by the HRRR compared with that of the 
rain-gauge observations. The blue boxes highlight the time of day when the diurnal cycle 
patterns differ the most.
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Figure 14: Diurnal cycle of (a) POD and (b) FA. GPM Ku-PR – GPM Algorithm Level 2A 
Version 6A. PDA - Precipitation Detection Algorithm (this work). 
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Figure 15: (a) MRMS precipitation rate, (b) MRMS precipitation type, and (c) GPM Ku-PR 
estimated near-surface precipitation rate for the overpass on October 11, 2018. The black circle 
in (c) marks the location selected for illustrating physically-based retrieval in Fig. 17.
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Figure 16: (a) Cluster classes to GPM pixels by matching Ku-PR pixels with the MRMS mode. 
(b) Model predicted precipitation classes for the GPM overpass. Class 0: represents no-
precipitation; Class-1: shallow light precipitation systems; Class-2: shallow surface enhanced 
precipitation; Class-3: stratiform precipitation; Class-4: deep intense precipitation systems with 
mid and low-level enhancement.
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Figure 17: (a) Concurrent and nearest MRMS reflectivity and GPM Ku-PR Zm and Ze for the 
October 11, 2018 GPM overpass on the eastern ridges of the SAM (black circle in Fig. 15c). (b) 
Surface rain-rate simulated by the column microphysics model simulation for a shallow SFI 
scenario for three LLCF depths (300, 400 and 500 m) compared with MRMS mean precipitation 
rate within the Ku-PR pixel (dashed pink line) and KU-PR estimates (black dotted line).  The 
pink shaded band delimits ± MRMS variance within the Ku-PR pixel. (c) Ensemble statistics 
(25th, 50th and 75th percentiles) for 1000 simulations of near-surface rain-rate by the column 
microphysics model to capture uncertainty in LLCF microphysics and LLCF depth of 300m. 
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Figure 18: (a) Underestimation (blue) and overestimation (orange) errors for correct detection 
(CD) GPM Ku-PR cases organized by predicted precipitation class (i.e. MRMS cluster) and rain-
rate relative to collocated rain-gauge measurements. Statistics of precipitation rate [25th, 50th 
(black circle) and 75th percentiles]: (b) rain-gauge (RG) measurements; (c) RG measurements 
only for Ku-PR CD; and (d) CD for Ku-PR. 
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Supplementary Data 

 

 

 

Figure S1. Four-year climatology of (a) Liquid water content and (b) Rain-rate at 500 m AGL 

estimated by HRRR in the summer (May-October).  

  



 

Figure S2. Diurnal cycle of the HRRR rain-rate climatology at 500 AGL in summer (May-

October). 

  



 

Figure S3. Diurnal cycle 4-year climatology of HRRR estimated cloud-water mixing ratio at 

500 m AGL in summer months (May-October). 

  



 

Figure S4. Spatial distribution of surface enhancement of HRRR rain liquid water content. 

Difference between mean rain liquid water content at (a) 1 km and 0.5 km; (b) 2 km and 0.5 km 

and (c) 3 km and 0.5 km AGL. High negative values indicate near-surface enhancement of 

precipitation tied to detection and estimation errors in GPM Ku-PR precipitation products. 

  



 

 

 

Figure S5. Example of GPM overpass on February 18, 2019 with large parallax errors in Ku-

PR rainfall estimates compared to MRMS due to the large viewing angle.  

 

  



 

Figure S6. Map showing the region of study at the Southern Appalachian Mountains (SAM) 

with locations of long-term rain-gauge network. The green, blue and red boxes denote western, 

inner and eastern region [from Arulraj and Barros, 2019]. 

 



 

Figure S7. Davies-Bouldin (DB) index computed for different number of clusters of MRMS 

reflectivity features in the k-means algorithm.   

  



 

Figure S8. Synthesis of the spatial patterns of most frequent occurrences (hot-spots) of the four 

MRMS cluster classes. 

  



 

 

Figure S9. Concurrent mean precipitation rate (marker) with the standard deviation (error bars) 

for each of the MRMS clusters: (a) MRMS and (b) Ku-PR.  

  



 

 

Figure S10. Spatial distribution of HRRR precipitation frequency. 

 

  



 

 

Figure S11. Spatial distribution of the 10-year average precipitation climatology from GPM 

GV reference precipitation product (Liao and Barros 2019). 

  



 

Figure S12. Density plot comparing the rain-rate derived from the rain-gauges with the HRRR 

simulated rain-rates at 500-m AGL. 

 

  



 

 

Figure S13. Left panel - Spatial distribution of MRMS Cluster-1 frequency of occurrence. 

Right panel – Spatial distribution of Cluster-1 GPM Ku-PR reflectivity profiles predicted by the 

precipitation classification algorithm.  CXY denotes the output of the classification algorithm 

where X is the true class and Y is the model output.   

 

  



 

Figure S14. Same as Fig. S13 but for Class-2.   

 

 

 

  



 

Figure S15. Same as Fig. S13 but for Class-3.   

 

 

 

  



 

 

Figure S16. Same as Fig. S13 but for Class-4.   

 

  



 

 

Figure S17. Spatial distribution of predicted classification labels for GPM overpasses listed in 

Table 7. Legend: 0 - No rain ; X – Rain in Cluster-X, X=1,2,3,4. 

  



 

 

Figure S18. Schematic representation of the Random Forest Classifier (RFC) used for 

precipitation detection. 
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