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Abstract

Water retention curves (WRCs) and hydraulic conductivity functions (HCFs) are critical soil-specific characteristics necessary

for modeling the movement of water in soils using the Richardson-Richards equation (RRE). Well-established laboratory mea-

surement methods of WRCs and HCFs are not usually unsuitable for simulating field-scale soil moisture dynamics because of the

scale mismatch. Hence, the inverse solution of the RRE is used to estimate WRCs and HCFs from field measured data. Here,

we propose a physics-informed neural networks (PINNs) framework for the inverse solution of the RRE and the estimation of

WRCs and HCFs from only volumetric water content (VWC) measurements. Unlike conventional inverse methods, the proposed

framework does not need initial and boundary conditions. The PINNs consists of three linked feedforward neural networks, two

of which were constrained to be monotonic functions to reflect the monotonicity of WRCs and HCFs. Alternatively, we also

tested PINNs without monotonicity constraints. We trained the PINNs using synthetic VWC data with artificial noise, derived

by a numerical solution of the RRE for three soil textures. The PINNs were able to reconstruct the true VWC dynamics.

The monotonicity constraints prevented the PINNs from overfitting the training data. We demonstrated that the PINNs could

recover the underlying WRCs and HCFs in non-parametric form, without a need for initial guess. However, the reconstructed

WRCs at near-saturation–which was not fully represented in the training data–was unsatisfactory. We additionally showed

that the trained PINNs could estimate soil water flux density with a broader range of estimation than the currently available

methods.
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Abstract16

Water retention curves (WRCs) and hydraulic conductivity functions (HCFs) are crit-17

ical soil-specific characteristics necessary for modeling the movement of water in soils us-18

ing the Richardson-Richards equation (RRE). Well-established laboratory measurement19

methods of WRCs and HCFs are not usually unsuitable for simulating field-scale soil mois-20

ture dynamics because of the scale mismatch. Hence, the inverse solution of the RRE21

is used to estimate WRCs and HCFs from field measured data. Here, we propose a physics-22

informed neural networks (PINNs) framework for the inverse solution of the RRE and23

the estimation of WRCs and HCFs from only volumetric water content (VWC) measure-24

ments. Unlike conventional inverse methods, the proposed framework does not need ini-25

tial and boundary conditions. The PINNs consists of three linked feedforward neural net-26

works, two of which were constrained to be monotonic functions to reflect the monotonic-27

ity of WRCs and HCFs. Alternatively, we also tested PINNs without monotonicity con-28

straints. We trained the PINNs using synthetic VWC data with artificial noise, derived29

by a numerical solution of the RRE for three soil textures. The PINNs were able to re-30

construct the true VWC dynamics. The monotonicity constraints prevented the PINNs31

from overfitting the training data. We demonstrated that the PINNs could recover the32

underlying WRCs and HCFs in non-parametric form, without a need for initial guess.33

However, the reconstructed WRCs at near-saturation–which was not fully represented34

in the training data–was unsatisfactory. We additionally showed that the trained PINNs35

could estimate soil water flux density with a broader range of estimation than the cur-36

rently available methods.37

1 Introduction38

Accurate prediction of soil moisture dynamics is vital for many applications, in-39

cluding weather forecasts, agricultural water management, and prediction of natural dis-40

asters, such as landslides and floods, and drought (Robinson et al., 2008; Babaeian et41

al., 2019). Notably, detailed information about near-surface soil moisture dynamics is42

essential for land surface modeling and remote sensing applications.43

Mathematically, soil moisture dynamics is described by a non-linear partial differ-44

ential equation (PDE), commonly referred to as the Richardson-Richards equation (RRE)45

(Richardson, 1922; Richards, 1931). The RRE is composed of the continuity equation46

and the Buckingham-Darcy law (Buckingham, 1907) and consists of three primary vari-47

ables: matric potential ψ, volumetric water content θ, and hydraulic conductivity K. The48

latter two variables are commonly expressed as functions of matric potential using wa-49

ter retention curves (WRCs) and hydraulic conductivity functions (HCFs), respectively.50

Furthermore, the two soil hydraulic functions (also referred to as constitutive relation-51

ships) are often treated as interdependent by employing conceptual models of unsatu-52

rated flow, such as the bundle of capillaries (Mualem, 1976; Burdine, 1953) or angular-53

pores and slits model (Tuller & Or, 2001). These assumptions simplify soil water dynam-54

ics models by allowing WRCs and HCFs to be expressed using a shared set of param-55

eters. Several parametric models have been proposed to describe soil hydraulic functions56

(Brooks & Corey, 1964; van Genuchten, 1980; Durner, 1994; Kosugi, 1996; Tuller & Or,57

2001; Assouline, 2006).58

The constitutive relationships embody the characteristic features of soil pore net-59

work and are the manifestation of the interactions between soil texture and structure.60

Hence, the reliability of simulated soil water dynamics largely depends on the accuracy61

of these soil hydraulic functions (Farthing & Ogden, 2017; Zha et al., 2019). Although62

well-established laboratory methods for characterizing WRCs and HCFs are available,63

their direct application for field-scale simulations is typically unsatisfactory because of64

the scale mismatch as well as sampling and measurement artifacts (Hopmans et al., 2002).65
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Therefore, it is indispensable to estimate WRCs and HCFs using time-series data66

from field experiments and the inverse solution of the RRE. Commonly, the inverse prob-67

lem requires finding the parameters of the constitutive relationships that best describe68

observed time-series data. In principle, it is possible to fit WRCs and HCFs indepen-69

dently, albeit at the expense of significant increase of the tunable parameters. Several70

studies also employed free-form functions to estimate WRCs and HCFs (Bitterlich et al.,71

2004; Iden & Durner, 2007). Inverse methods for characterizing soil hydraulic proper-72

ties often involve the repeated solution of the forward problem, which requires knowl-73

edge of the relevant initial and boundary conditions of the RRE. Global optimization74

algorithm (Durner et al., 2008) and Gaussian processes (Rai & Tripathi, 2019) are other75

approaches used to find the best-fitted constitutive relationships.76

Here, we propose a deep-learning framework for the inverse solution of the time-77

dependent RRE and the estimation of both WRCs and HCFs, with fewer assumptions78

and constraints than approaches described above. The method is based on physics-informed79

neural networks (PINNs) developed by Raissi et al. (2019). PINNs employs the univer-80

sal approximation capability of neural networks (Cybenko, 1989) to approximate the so-81

lution of PDEs. The neural networks’ parameters are trained by minimizing the sum of82

data-fitting error and the residual of the PDEs simultaneously. This simultaneous fit-83

ting enables PINNs to learn the dynamics of the system from measurement data and known84

physics. This novel PINNs approach has shown promising successes in computational85

physics (Raissi & Karniadakis, 2018; Raissi et al., 2019; Tartakovsky et al., 2020; He et86

al., 2020). Notably, Tartakovsky et al. (2020) employed PINNs to determine the hydraulic87

conductivity function of an unsaturated homogeneous soil from synthetic matric poten-88

tial data based on the two-dimensional time-independent RRE. In this study, we cou-89

pled the PINNs framework with two additional monotonic neural networks (Daniels &90

Velikova, 2010) to describe the known monotonicity of WRCs and HCFs.91

Although matric potential is the variable of choice for training purposes, the range92

and accuracy of matric potential sensors are still limited (Degré et al., 2017). Therefore,93

the proposed approach uses only volumetric water content time-series data. There are94

numerous fully developed methods to measure volumetric water content in fields, includ-95

ing the TDR-array probe (Sheng et al., 2017) and the heat-pulse method (Kamai et al.,96

2008, 2010).97

Unlike conventional inverse methods, this proposed approach does not require the98

repeated solution of the forward problem. Instead, it simultaneously learns (1) the physics99

of soil water dynamics as defined by the RRE and the monotonicity of the constitutive100

relationships and (2) the volumetric water content time-series data. The simultaneous101

learning eliminates the critical shortcomings of conventional inverse approaches, includ-102

ing (1) the need for initial and boundary conditions to solve the forward problems; (2)103

the dependence of the optimization algorithms on good prior approximations of WRCs104

and HCFs; and (3) the need to define the shapes of WRCs and HCFs and their inter-105

dependence a priori.106

In this study, we generated synthetic training data by forward modeling of the RRE107

using HYDRUS-1D (Šimůnek et al., 2013). Using synthetic data has distinct advantages108

for testing this novel inverse-solution framework. First, it eliminates the uncertainties109

of field conditions that equally affect other inverse methods. Second, the synthetic data110

provide information that is not typically available in routine field measurements, includ-111

ing matric potential and soil water flux density at every location and time.112

The robustness of using monotonic neural networks to represent WRCs and HCFs113

in the PINNs is demonstrated by comparing the results with those from the PINNs that114

lacks the monotonicity constraints. The performance of the framework was further tested115

by introducing varying degrees of noise to the synthetic volumetric water content data,116

altering the spacing between the locations at which volumetric water content data were117
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sampled, using different initial weight parameters of the neural networks. The general-118

ization capability of the framework was investigated by training the PINNs with volu-119

metric water content data for three soils (sandy loam, loam, and silt loam soil) and for120

two different scenarios of the upper boundary condition. Finally, we show the potential121

application of the PINNs to estimate soil water flux density using only an array of soil122

moisture sensors.123

2 Background124

2.1 Richardson-Richards Equation125

We consider one-dimensional liquid water flow in a homogeneous rigid soil and ig-126

nore water vapor, sink term, and hysteresis. The mass balance of water in the soil leads127

to the continuity equation:128

∂θ

∂t
= −∂q

∂z
, (1)

where θ is volumetric water content [L3 L−3]; t is time [T]; z is vertical coordinate (pos-129

itive upward) [L]; q is soil water flux density [L T−1]. Soil water flux density q is related130

to matric potential of water in the soil ψ [L] through the Buckingham-Darcy law (Buckingham,131

1907):132

q = −K
(
∂ψ

∂z
+ 1

)
, (2)

where K is hydraulic conductivity [L T−1]. The two equations (Equation (1) and (2))133

are combined to derive the Richardson-Richards equation (RRE) (Richardson, 1922; Richards,134

1931):135

∂θ

∂t
=

∂

∂z

[
K

(
∂ψ

∂z
+ 1

)]
. (3)

To solve the RRE, matric potential ψ is commonly treated as the primary variable that136

is dependent on t and z, and volumetric water content θ and hydraulic conductivity K137

are parameterized through matric potential ψ, as in138

∂θ(ψ(t, z))

∂t
=

∂

∂z

[
K(ψ(t, z))

(
∂ψ(t, z)

∂z
+ 1

)]
. (4)

The functions θ(ψ) and K(ψ) are called constitutive relationships of the RRE and re-139

ferred to as water retention curves (WRCs) and hydraulic conductivity functions (HCFs),140

respectively. WRCs and HCFs are commonly expressed by parametric models (e.g., Brooks141

and Corey (1964); van Genuchten (1980); Durner (1994); Kosugi (1996); Tuller and Or142

(2001); Assouline (2006)). The WRCs and HCFs for three types of soil (sandy loam, loam,143

and silt loam soil) using the Mualem-van Genuchen model (van Genuchten, 1980) are144

shown in Figure 1. As shown in the figure, both WRCs and HCFs are monotonically in-145

creasing functions with respect to matric potential ψ, which is an accepted physical prin-146

ciple of water movement in soils. The monotonicity of WRCs and HCFs will be employed147

to design the architecture of the neural networks in this study later on.148

2.2 Feedforward Neural Networks149

A standard fully-connected feedforward neural network with three layers (one hid-150

den layer) is introduced here for readers who are not well versed in the topic. The read-151

ers should refer to textbooks (e.g., Goodfellow et al. (2016)) for more general explana-152

tions.153

Given a training dataset {x(i),y(i)}, where superscript (i) denotes the ith train-154

ing data; x(i) ∈ Rnx is input vector for the size of the input nx, y(i) ∈ Rny is output155

vector for the size of the output ny, a neural network f̂ is a mathematical function map-156

ping the input vector x(i) to predicted output vector ŷ(i) ∈ Rny :157

ŷ(i) = f̂(x(i)). (5)
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Figure 1. Constitutive relationships for three types of soil (sandy loam, loam, and silt loam

soil) generated by using the Mualem-van Genuchen model (van Genuchten, 1980). (a) Water

retention curves (WRCs). (b) Hydraulic conductivity functions (HCFs).

The hat operator represents prediction throughout the paper. The inside of the neural158

network f̂ is commonly represented by layers of units (or neurons), as shown in Figure159

2. Herein, a[L] ∈ Rn[L]

denotes the vector value for the Lth layer of the neural network,160

where the Lth layer is composed of n[L] units. To calculate the predicted output vec-161

tor ŷ(i), the input vector x(i) is entered in the first layer:162

a[1] = x(i), (6)

where the number of units in the first layer n[1] is equal to nx. Then, the value for the163

jth unit of the second layer a[2] is calculated from all the units in the previous layer (i.e.,164

the first layer) with the weight matrix W[1] and bias vector b[1] for the first layer in the165

following way:166

a
[2]
j = g[1]

n[1]∑
k=1

W
[1]
j,ka

[1]
k + b

[1]
j

 , (7)

where g[1] is a non-linear activation function for the first layer, such as the hyperbolic167

tangent function (tanh) shown in Figure 2 (b). The jth unit of the third layer is com-168

puted from all the units of the second layer (hidden layer):169

a
[3]
j =

n[2]∑
k=1

W
[2]
j,ka

[2]
k + b

[2]
j . (8)

Finally, the predicted output vector ŷ(i) is derived from the last layer with an output170

function h:171

ŷ
(i)
j = h(a

[3]
j ), (9)

where the number of the units in the last layer n[3] is equal to ny. In this study, the sig-172

moid function (Figure 2 (c)) and the exponential function (Figure 2 (d)) are used as out-173

put functions.174

The collection of the weight matrices W = {W[1],W[2]} and bias vectors b =175

{b[1],b[2]} are the parameters of the neural network, which are estimated by minimiz-176

ing a loss function comprising of the output vector y(i) (training data) and the predicted177

–5–



manuscript submitted to Water Resources Research

Figure 2. A fully-connected feedforward neural network consisting of three layers (one hidden

layer) with activation and output functions. (a) A fully-connected feedforward neural network

consisting of the input layer with two units, the hidden layer with five units, and the output layer

with one unit. (b) Hyperbolic tangent function. (c) Sigmoid function. (d) Exponential function.

output vector ŷ(i). The definition of the loss function varies depending on the purpose178

of the training, and the loss function used in this study is defined in Equation (14).179

It is well known that a feedforward neural network with more hidden layers has a180

better capability of function approximation (Goodfellow et al., 2016), and such a neu-181

ral network with more than two hidden layers is called a deep neural network. In such182

a case, a unit of a hidden layer is computed from all the units of the previous hidden layer183

in the same way explained above (Equation (7)).184

In the next section, three fully-connected feedforward neural networks are combined185

to construct physics-informed neural networks (PINNs) for the RRE, and the loss func-186

tion for the PINNs framework is defined to estimate WRCs and HCFs from volumet-187

ric water content measurements.188

3 Methods189

3.1 Physics-Informed Neural Networks with Monotonicity Constraints190

for RRE191

Physics-informed neural networks (PINNs) has been proposed as a deep learning192

framework to derive the forward and inverse solution of PDEs (Raissi et al., 2019). In193

this study, PINNs was used to derive the inverse solution of the RRE and the constitu-194

tive relationships (i.e., WRCs and HCFs) from a set of volumetric water content time-195

series data measured at different depths in soils {t(i), z(i), θ(i)}i=Ni=1 , where N is the num-196

ber of measurement data.197

PINNs for the RRE was constructed using three fully-connected feedforward neu-198

ral networks, as shown in Figure 3. The neural network f̂ψ (Figure 3 (a)) is a function199

mapping from time t and vertical coordinate z into predicted matric potential ψ̂:200

ψ̂(i) = f̂ψ(t(i), z(i); Wψ,bψ), (10)

–6–
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Figure 3. Physics-informed neural networks (PINNs) for the Richardson-Richards equation

consisting of three fully-connected feedforward neural networks to predict (a) matric potential

ψ̂, (b) hydraulic conductivity K̂, and (c) volumetric water content θ̂. The number of layers and

units in the figure is not actual.

where Wψ and bψ are the collection of weight and bias parameters in the neural net-201

work. The hyperbolic tangent function (Figure 2 (b)) is used for the activation function,202

as recommended by Raissi et al. (2019). As for the output function, the negative expo-203

nential function (i.e., −exp(x), see Figure 2 (d)) is used to force the predicted matric204

potential to be negative.205

The predicted matric potential ψ̂(i) is used to estimate volumetric water content206

θ̂(i) and hydraulic conductivity K̂(i) through two distinct neural networks f̂θ, f̂K (Fig-207

ure 3 (c) and (b), respectively). In other words, the two neural networks are used to rep-208

resent the WRC and HCF for a given soil. Since WRCs and HCFs become simpler if ma-209

tric potential is plotted in logarithmic scale, as in Figure 1, the predicted matric poten-210

tial is converted into logarithmic scale by the following transformation:211

ψ̂
(i)

log
= − loge(−ψ̂(i)). (11)

Then, the predicted matric potential in logarithmic scale ψ̂
(i)

log
is used as the input value212

for the two neural networks to represent WRCs and HCFs:213

θ̂(i) = f̂θ(ψ̂
(i)

log
; Wθ,bθ), (12)

214

K̂(i) = f̂K(ψ̂
(i)

log
; WK ,bK). (13)

The tanh function is used as the activation function for both neural networks. The out-215

put functions for f̂θ and f̂K are the sigmoid function and the exponential function, re-216

–7–
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spectively to ensure predicted volumetric water content between 0 and 1 and positive217

predicted hydraulic conductivity (see Figure 2 (c) and (d)).218

To embrace the monotonicity of WRCs and HCFs, the weight parameters Wψ and219

WK are constrained to be non-negative so that f̂θ and f̂K are monotonically increas-220

ing functions with respect to the predicted matric potential ψ̂ (Daniels & Velikova, 2010).221

This type of neural networks is called (totally) monotonic neural networks, where the222

output values depend monotonically on all the variables in the input vector. It is known223

that a three-layer fully-connected feedforward neural network with non-negative weights224

can arbitrarily approximate any monotonic scalar functions (Daniels & Velikova, 2010).225

Readers interested in monotonic neural networks should refer to Daniels and Velikova226

(2010), where various types of monotonic neural networks are explained.227

Incorporating monotonicity constraints in the neural networks representing WRCs228

and HCFs honors the physical nature of the movement of water in all soils. This approach229

is similar to the free-form approach (Bitterlich et al., 2004; Iden & Durner, 2007), where230

cubic Hermite interpolation was used to approximate WRCs and HCFs. Unlike their stud-231

ies, our monotonic neural network approach does not assume predetermined saturated232

water content and saturated hydraulic conductivity because they are not easily available233

in field applications.234

The collection of the parameters in the three neural networks W = {Wψ,Wθ,WK}235

and b = {bψ,bθ,bK} are identified by minimizing a loss function defined as236

L(W,b) :=

N∑
i=1

(θ̂(i) − θ(i))2 +

N∑
i=1

(r̂(i))2, (14)

where r̂ is the residual of the RRE defined as237

r̂ :=
∂θ̂

∂t
− ∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
=
∂θ̂

∂t
− ∂K̂

∂z

∂ψ̂

∂z
− K̂ ∂2ψ̂

∂z2
− ∂K̂

∂z
. (15)

The first term of the loss function (Equation (14)) represents the fitting error of volu-238

metric water content, and the second term represents the contraint by the RRE. This239

simultaneous learning enables the PINNs to learn the dynamics of water in soils from240

both volumetric water content data and knowledge in soil physics (i.e., the RRE). In the241

other studies on PINNs (e.g. Raissi et al. (2019); Tartakovsky et al. (2020); He et al. (2020)),242

the boundary and initial conditions of PDEs are also included in the loss function. How-243

ever, we omitted these terms because they are difficult to obtain in real applications.244

To calculate the residual of the RRE r̂ at all the data points, the derivatives (i.e.,245

∂θ̂
∂t ,

∂ψ̂
∂z , ∂2ψ̂

∂z2 , ∂K̂
∂z ) are evaluated at the data points by using automatic differentiation (Nocedal246

& Wright, 2006). It should be noted that the residual of the RRE r̂ can be evaluated247

at any point in the domain (called collocation points). However, we forced the colloca-248

tion points to be the same as the measurement locations.249

Before training the PINNs, the weight parameters W are initialized through Xavier250

initialization (Glorot & Bengio, 2010), and the bias parameters b are all set to zero. Then,251

these parameters W and b are trained by minimizing the loss function:252

min
W,b
L(W,b). (16)

The optimization problem was solved by the Adam algorithm (Kingma & Ba, 2014) fol-253

lowed by the L-BFGS-B algorithm (Byrd et al., 1995). This two-step training procedure254

has been reported to be effective to train PINNs (Raissi et al., 2019; He et al., 2020). In255

our implementation, the default settings of the Adam optimizer in TensorFlow (Abadi256

et al., 2015) was used until 300,000 iterations finished. Then, the L-BFGS-B optimizer257

from Scipy (Virtanen et al., 2020) with maxcor = 50, maxls = 50, maxiter = 50, 000,258

–8–
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Table 1. Two scenarios of surface water flux density [cm day−1] (positive upward) were ap-

plied to generate synthetic data using HYDRUS-1D (Šimůnek et al., 2013).

Time (day) Scenario 1 Scenario 2

0.25 -10 -10
0.50 0 0
1.0 0.3 0.3
1.5 0 -5
2.0 0.3 0.3
2.25 -10 -5
2.5 0 -5
3.0 0.3 0.3

maxfun = 50, 000, ftol = 2.220446049250313× 10−16, and the default values for the259

other parameters was applied to achieve the convergence of the loss function. The in-260

vestigation on the hyperparameters of those optimization algorithms is beyond the scope261

of the paper. This PINNs framework for the RRE was implemented through TensorFlow262

1.14 (Abadi et al., 2015), and the source code is available on https://github.com/ToshiyukiBandai/PINNs RRE.263

3.2 Synthetic Data Generated by HYDRUS-1D264

To develop and assess the PINNs framework for the RRE, synthetic soil moisture265

data were generated by using HYDRUS-1D (Šimůnek et al., 2013). The synthetic data266

was used for two purposes: (1) to determine the architecture of the neural networks (i.e.,267

the number of hidden layers and units; Section 3.3) (Section 3.3); (2) to investigate the268

the generalization capability of the PINNs (Section 3.4).269

In the HYDRUS-1D simulation, soil moisture dynamics for three days in the 100270

cm of homogeneous three soils with different textures (sandy loam, loam, and silt loam271

soil) were simulated. The soil column was uniformly discretized at a 0.1 cm interval. The272

initial matric potential was set at -1000 cm for all the depths. The bottom boundary con-273

dition was the Neumann boundary condition:274

∂ψ

∂z
= 0. (17)

The upper boundary was set to the atmospheric upper boundary condition, where two275

different scenarios of time-dependent surface flux density were applied (see Table 1).276

The Mualem-van Genuchen model was used to parameterize WRCs and HCFs in277

the HYDRUS-1D simulation (van Genuchten, 1980):278

θ(ψ) = θr +
θs − θr

(1 + (−αψ)n)m
, (18)

279

K(θ(ψ)) = KsS
l
e(1− (1− S1/m

e )m)2, (19)

where θr, θs, α, n, Ks, and l are the Mualem-van Genuchen fitting parameters; m = 1−280

1/n; and the effective saturation Se is defined as281

Se =
θ − θr
θs − θr

. (20)

The Mualem-van Genuchen fitting parameters for the three soils used in this study are282

summarized in Table 2.283
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Table 2. The Mualem-van Genuchen fitting parameters for three types of soils (van

Genuchten, 1980).

Parameters Sandy Loam Loam Silt Loam

θr [cm3 cm−3] 0.065 0.078 0.067
θs [cm3 cm−3] 0.41 0.43 0.45
α [cm−1] 0.075 0.036 0.02
n [-] 1.89 1.56 1.41

Ks [cm day−1] 106.1 24.96 10.8
l [-] 0.5 0.5 0.5

3.3 Determination of Architecture of Neural Networks284

It is known that the architecture of feedforward neural networks (i.e., the number285

of hidden layers and units) influences their performance. Therefore, the number of hid-286

den layers and units for the three neural networks in the PINNs was determined empir-287

ically in two steps.288

First, we set the number of hidden layers and units of the two neural networks, f̂θ289

for volumetric water content (Figure 3 (c)) and f̂K for hydraulic conductivity (Figure290

3 (b)), to 1 hidden layer with 20 units and varied the number of hidden layers and units291

of the neural network for the predicted matric potential f̂ψ (Figure 3 (a)). Seven differ-292

ent numbers of hidden layers (2, 4, 6, 8, 9, 10, 11) and three different numbers of units293

(10, 20, 40) were tested.294

Second, the number of hidden layers and units of the other two neural networks,295

f̂θ and f̂K , was varied. Three different numbers of layers (1, 2, 3) and units (10, 20, 40)296

were tested for each neural network.297

To determine the architecture of the neural networks in the PINNs, the synthetic298

data for sandy loam soil for Scenario 1 were used (see Section 3.2). As training data, vol-299

umetric water content was sampled every 0.012 day (i.e., 251 data points for a depth)300

at 10 equally spaced different depths within the top of the 20 cm of the soil column (z301

= -1, -3, -5, -7, -9, -11, -13, -15, -17, -19 cm) because our study is focused on soil mois-302

ture dynamics in near-surface soils.303

To evaluate the performance of the PINNs, we compared the predicted and true304

volumetric water content, matric potential, hydraulic conductivity, and soil water flux305

density. The predicted soil water flux density q̂ was derived using the Buckingham-Darcy306

law (Equation (2)) with the estimated hydraulic conductivity K̂ and the gradient of the307

predicted matric potential ∂ψ̂/∂z. We quantified the prediction error over the time t ∈308

[0, 3] day with an interval of 0.012 days and the spatial domain z ∈ (−20, 0] cm with309

an interval of 0.1 cm for all the four variables in terms of the relative L2 errors εγ for310

γ = θ, ψ,K, q., defined as311

εγ :=

∑
t∈[0,3]

∑
z∈(−20,0](γ̂(t, z)− γ(t, z))2∑

t∈[0,3]
∑
z∈(−20,0] γ(t, z)2

(21)

To demonstrate the effectiveness of including monotonic neural networks in the PINNs,312

we also trained the PINNs without monotonicity constraints (i.e., standard feedforward313

neural networks are used to represent WRCs and HCFs) with the same training data.314
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The architecture of the three neural networks in the PINNs without monotonicity was315

also determined in the same way as above.316

Because the results of training PINNs were affected by the initial values of the weight317

parameters of the neural networks determined by Xavier initialization (Glorot & Ben-318

gio, 2010), three different random seeds were used in the code, and three replicates were319

obtained for each of those combinations of the number of hidden layers and units. As320

a result, 63 trainings for f̂ψ (Figure 3 (a)) and 243 ones for f̂θ (Figure 3 (c)) and f̂K (Fig-321

ure 3 (b)) were conducted to determined their architecture for the PINNs both with and322

without monotonicity.323

3.4 Application of PINNs to Various Datasets324

Different types of data were prepared by using HYDRUS-1D to assess the perfor-325

mance of the PINNs with and without monotonicity constraints. First, we investigated326

the effect of noise in the training data. To this end, Gaussian noise with the mean of zero327

and four different values of standard deviation (0, 0.005, 0.01, 0.02) was added to the328

sampled volumetric water content for sandy loam soil for Scenario 1.329

Next, the effect of the sparsity of the training data was studied by using volumet-330

ric water content data for sandy loam soil for Scenario 1 without adding noise. We con-331

sidered three cases for the number of depths at which volumetric water content were sam-332

pled: 10 (z = −1,−3,−5,−7,−9,−11,−13,−15,−17,−19 cm), 5 (z = −1,−5,−9,−13,−17333

cm) and 3 (z = −1,−9,−17 cm).334

Lastly, volumetric water content data for three different types of soils (sandy loam,335

loam, and silt loam soil) with the two different scenarios of upper boundary condition336

(see Table 1) were generated. Gaussian noise with the mean of zero and the standard337

deviation of 0.005 was added to the synthetic data to reflect measurement noise encoun-338

tered in field applications.339

Those training data were applied to the PINNs with and without monotonicity con-340

straints, and the results were evaluated in terms of relative errors defined in Equation341

(21). For all the cases above, five different random seeds were set in the code to inves-342

tigate the effects of neural network initialization on the results.343

4 Results and Discussions344

4.1 Architecture of Neural Networks in PINNs345

To determine the number of hidden layers and units of the three neural networks346

in the PINNs with and without monotonicity, various combinations of layers and units347

were tested. Figure 4 shows relative error ε defined in Equation (21) for volumetric wa-348

ter content θ, matric potential ψ, hydraulic conductivity K, and soil water flux density349

q for different numbers of hidden layers and units for the neural network f̂ψ (Figure 3350

(a)) of the PINNs with and without monotonicity while the architecture of the other two351

neural networks are fixed (1 hidden layer with 20 units). For the PINNs with monotonic352

neural networks (left column), relative error for volumetric water content εθ, hydraulic353

conductivity εK , and soil water flux density εq decreased with the increase in number354

of units, with 40 units resulting in the lowest error (the Pearson correlation coefficient355

is provided in Table S1 in the supplementary information.).356

The lowest arithmetic mean of relative error was observed when the number of hid-357

den layers is 4 for volumetric water content θ, 6 for hydraulic conductivity K, and 8 for358

soil water flux density q when the number of units is 40. Clear trends were not obtained359

for relative error for matric potential εψ. Because relative error for soil water flux den-360

sity q reflects the predictive accuracy of the PINNs for both matric potential ψ and hy-361
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draulic conductivity K fields, we set the neural network for the predicted matric poten-362

tial f̂ψ to 8 layers with 40 units.363

For the PINNs without monotonicity constraints (right column), the architecture364

of the neural network for the predicted matric potential f̂ψ was set to 6 hidden layers365

with 40 units, which coincides with the lowest relative error of soil water flux density εq.366

We observed a non-linear correlation between the number of hidden layers and relative367

error for volumetric water content θ, hydraulic conductivity K, and soil water flux den-368

sity q; relative error reached the lowest when the number of hidden layers was 6 and in-369

creased again. This is clear evidence that the PINNs without monotonicity was overfit-370

ting the training data. On the other hand, such a non-linear behavior was minimized for371

the PINNs with monotonicity constraints, which means imposing monotonicity can pre-372

vent the PINNs from overfitting the training data. In addition, the variability of rela-373

tive errors between different initializations of the neural networks was lower for the PINNs374

with monotonic neural networks than the PINNs with non-monotonic neural networks.375

This further demonstrates the benefit of the monotonicity constraints in improving the376

stability and reliability of the training.377

After determining the architecture of the neural network for the predicted matric378

potential f̂ψ, the number of hidden layers and units for the other two neural networks,379

f̂θ and f̂K , was varied. We did not observe clear trends of relative error for different neu-380

ral network architectures for the PINNs with and without monotonicity (see Table S1381

and Figure S1 in the supplementary information). However, the performance of the PINNs382

without monotonicity constraints was much more sensitive to the neural network archi-383

tecture. This implied that incorporating monotonicity constraints stabilized the train-384

ing, which enabled us to determine the neural network structure easier than the PINNs385

without monotonicity constraints. As a result, the architecture of the two neural net-386

works was set as follows: 1 hidden layer with 40 units for the PINNs with monotonic-387

ity and 3 hidden layers with 40 units for without monotonicity for the neural network388

for the predicted volumetric water content f̂θ; 3 hidden layer with 40 units for PINNs389

with monotonicity and 2 hidden layers with 20 units for without monotonicity for the390

neural network for the predicted hydraulic conductivity f̂K .391

4.2 Effect of Noise and Sparsity of Training Data392

To investigate the effect of measurement noise on the performance of the PINNs,393

Gaussian noise with mean of zero and different values of standard deviation (0, 0.005,394

0.01, 0.02) was added to the synthetic volumetric water content data (see Section 3.4),395

which was used to train the PINNs with and without monotonicity constraints. Figure396

5 (a) shows relative error for soil water flux density εq for different values of noise added397

to the true volumetric water content data. For the PINNs with and without monotonic-398

ity constraints, relative error increased with the standard deviation of noise, although399

the effect of the noise was substantially lower for the PINNs with monotonicity. On the400

other hand, the PINNs without monotonicity constraints exhibited consistently large rel-401

ative error for all levels of noise. These observations indicate that monotonicity constraints402

are critical for ensuring stability and reliability when fitting noisy data. Therefore, PINNs403

without monotonic neural networks is not practically feasible for field applications.404

The number of measurement locations at which simulated volumetric water con-405

tent was sampled data were varied from 10 to 5 and 3 to investigate the effect of the spar-406

sity of the training data. Figure 5 (b) illustrates that smaller relative error for soil wa-407

ter flux density εq was observed for denser training data. Although PINNs have been shown408

to be effective for sparse training data (Raissi et al., 2019; Tartakovsky et al., 2020), the409

PINNs for this application needs dense volumetric water content measurements (e.g., 2410

cm interval).411
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Figure 4. Relative error ε for volumetric water content θ, matric potential ψ, hydraulic con-

ductivity K, and soil water flux density q for different numbers of hidden layers and units in the

neural network for the predicted matric potential f̂ψ (Figure 3 (a)); with (left column) and with-

out monotonicity (right column). The architecture of the other two neural networks are set to

1 hidden layer with 20 units each. The lines represent the arithmetic mean of five replicates for

each neural network architecture.
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Figure 5. Relative error for soil water flux density εq for different values of standard deviation

of noise (a) and measurement locations at which synthetic volumetric water content data were

sampled (b). The number of measurement locations was varied from 10 (z = -1, -3, -5, -7, -9, -11,

-13, -15, -17, -19 cm) to 5 (z = −1,−5,−9,−13,−17 cm) and 3 (z = −1,−9,−17 cm). The lines

represent the arithmetic mean of five replicates.

.

4.3 Generalization Capability of PINNs412

The generalization capability of the PINNs with and without monotonicity con-413

straints was assessed with noisy synthetic volumetric water content data generated by414

HYDRUS-1D for three types of soils (sandy loam, loam, silt loam soil) with two differ-415

ent scenarios of upper boundary conditions (see Table 1). Table 3 shows relative error416

for volumetric water content εθ, matric potential εψ, hydraulic conductivity εK , and soil417

water flux density εq. The PINNs without monotonicity constraints could not produce418

satisfactory results, which is shown by the large values of relative error for hydraulic con-419

ductivity εK and soil water flux density εq for both scenarios. This is mainly caused by420

the noise in the training data, which was indicated in Figure 5 (a). Also, poor general-421

ization capability of the PINNs without monotonicity constraints is implied by the fact422

that higher relative error was observed for loam and silt loam soil. Therefore, in the fol-423

lowing sections, we focus on the results of the PINNs with monotonicity constraints. While424

the trainings were conducted with five different random seeds initializing the weight pa-425

rameters of the neural networks, we provide the results that show medium performance426

in terms of relative error for soil water flux density εq.427

4.3.1 Volumetric water content428

Figure 6 shows predicted volumetric water content by the PINNs with monotonic-429

ity constraints from noisy training data for sandy loam soil for the two scenarios. The430

PINNs could precisely capture the true distribution of soil moisture from the training431

data with the noise (standard deviation of 0.005). The PINNs could capture the distri-432

bution well for the other two soils as well (shown in Figure S2 and S3 in the support-433

ing information).434

Larger errors were observed when the upper boundary condition changed abruptly435

(e.g., t = 1.5 day for Scenario 2 in Figure 6 (e)). This indicated that the neural net-436

works used in the study could not represent such a sharp change in soil moisture dynam-437
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Table 3. Relative error (arithmtic mean (± standard devation)) for volumetric water content

εθ, matric potential εψ, hydraulic conductivity εK , and soil water flux density εq for the PINNs

with and without monotonicity constraints trained by noisy volumetric water content data for

three soils (sandy loam, loam, silt loam soil) for two scenarios (Scenario 1 and 2). The arithmetic

mean and standard deviation were calculated from five replicates.

Relative Error Sandy Loam Loam Silt Loam

PINNs with monotonicity constraints

Scenario 1
εθ 1.05(±0.75)× 10−4 4.02(±0.26)× 10−5 3.60(±0.48)× 10−5

εψ 4.21(±0.38)× 10−1 6.79(±5.99)× 102 1.14(±1.17)× 101

εK 3.01(±4.78)× 10−2 3.34(±0.63)× 10−2 2.87(±0.23)× 10−1

εq 1.22(±1.05)× 10−2 1.55(±0.32)× 10−2 2.27(±0.25)× 10−2

Scenario 2
εθ 4.89(±0.34)× 10−5 3.03(±0.30)× 10−5 3.66(±2.51)× 10−5

εψ 4.19(±0.43)× 10−1 9.42(±18.0)× 10−1 1.17(±1.09)
εK 5.33(±0.70)× 10−3 2.47(±0.74)× 10−2 5.18(±3.98)× 10−1

εq 5.48(±0.53)× 10−3 1.01(±0.09)× 10−2 3.49(±2.55)× 10−2

PINNs without monotonicity constraints

Scenario 1
εθ 2.38(±2.27)× 10−3 8.38(±9.01)× 10−4 7.25(±5.80)× 10−4

εψ 1.13(±0.58) 1.19(±2.14)× 101 4.46(±7.14)
εK 5.98(±5.70) 1.08(±1.33)× 105 1.54(±1.36)× 105

εq 2.04(±1.92) 1.30(±1.61)× 104 1.15(±1.02)× 104

Scenario 2
εθ 1.50(±1.23)× 10−3 3.13(±3.11)× 10−4 3.19(±2.50)× 10−4

εψ 2.76(±3.75) 3.62(±5.26) 2.30(±2.74)
εK 2.02(±1.74) 1.11(±2.05)× 104 5.95(±6.51)× 104

εq 9.69(±8.30)× 10−1 2.32(±4.30)× 103 7.84(±8.66)× 103
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ics. For the same reason, larger errors were observed just after the initial condition (t =438

0 day). Also, the PINNs could not reproduce the true volumetric water content at depths439

that are not covered in the training data (i.e., near the surface and lower than z = −19440

cm). This means the PINNs could not extrapolate the volumetric water content data441

while it could interpolate. Similar trends were observed for the other two soils (see Fig-442

ure S2 and S3 in the information).443

4.3.2 Residual of RRE444

The PINNs minimizes the data fitting error, as well as the residual of the RRE de-445

fined by Equation (15). The absolute value of the residual of the RRE for sandy loam446

soil at three times for the two scenarios is shown in Figure 7. The values in the spatial447

domain were small (less than 10−3), which means the RRE was satisfied in the spatial448

domain of interest (i.e., (-20cm, 0cm]). Larger deviations from zero were observed near449

the surface and lower than the lowest virtual sensor (z = −19cm). This corresponds450

to the fact that the collocation points at which the residual of the RRE is evaluated were451

set to the measurement locations. This error may be minimized by distributing more col-452

location points in the spatial domain, including near the surface. Tartakovsky et al. (2020)453

reported that the accuracy of the PINNs improved if larger numbers of collocation points454

were provided. The drawback of increasing the number of collocation points is increased455

in computational demand. Further investigations are needed for seeking an efficient strat-456

egy to distribute the collocation points to achieve a better performance of the PINNs.457

The results for the other soils are provided in Figure S4 and S5 in the supporting infor-458

mation.459

4.3.3 Water Retention Curves460

Predicting matric potential from the noisy volumetric water content corresponds461

to estimating WRCs, which is one of the primary goals of the study. The PINNs with462

monotonicity constraints could not precisely predict the WRCs for the three soils, as shown463

in Figure 8. Especially, the prediction was not satisfactory for low and high volumetric464

water content, where the training data points were not provided. This suggests the dif-465

ficulty in representing the two characteristics of WRCs by using a monotonic neural net-466

work: monotonicity and well defined upper and lower limits (saturation and dryness, re-467

spectively). This weakness of the current PINNs needs to be fixed in future research. Nev-468

ertheless, the predicted WRCs were surprisingly similar to the true WRCs in the mid-469

dle range regardless of the fact that any actual value of matric potential was not used470

to train the PINNs.471

How does the PINNs with monotonicity constraints learn WRCs from only volu-472

metric water content data? A possible explanation is that matric potential is estimated473

from the gradient of matric potential ∂ψ̂/∂z, which is calculated in the residual of the474

RRE r̂. Also, a matric potential of zero at saturation is implied by forcing matric po-475

tential to be negative while imposing the monotonically increasing relationship between476

matric potential and volumetric water content. These two explanations partly support477

the possibility that the PINNs with monotonicity constraints can predict WRCs from478

only volumetric water content if sufficient numbers and quality of training data are given.479

4.3.4 Hydraulic Conductivity Functions480

The estimated HCFs for the three soils for the two scenarios are shown in Figure481

9. It should be noted that hydraulic conductivity is plotted against volumetric water con-482

tent, not matric potential, as in Figure 1, because the estimated values of matric poten-483

tial do not match the actual values, unlike volumetric water content.484
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Figure 6. Predicted volumetric water content (PINNs) and noisy synthetic training data

(Training Data) for sandy loam soil for the two scenarios at three different times. The dotted

lines represent the synthetic data before adding the noise (True). Scenario 1 (S1): (a) t = 0.6

day, (b) t = 1.5 day, and (c) t = 2.4 day. Scenario 2 (S2): (d) t = 0.6 day, (e) t = 1.5, and (f)

t = 2.4 day.
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Figure 8. Comparison of true water retention curves (True) to the ones predicted by the

PINNs with monotonicity constraints for the three soils for the two scenarios (S1: Scenario 1, S2:

Scenario 2) with the histogram of the noisy training data. Water retention curve for (a) sandy

loam, (b) loam, and (c) silt loam. Histogram of the training data for (d) sandy loam, (e) loam,

and (f) silt loam.

–19–



manuscript submitted to Water Resources Research

The PINNs with monotonicity constraints could estimate the HCFs, especially for485

the range of the volumetric water content that is covered in the training data. On the486

other hand, the PINNs could not precisely extrapolate the HCFs; dryness and near sat-487

uration. As for a drier range of HCFs, although some of the training data are distributed488

in the range, they did not contribute to the learning of the HCFs. This is caused by the489

fact that these data correspond to the initial volumetric content, which increased rapidly490

due to the prescribed upper boundary conditions, and the PINNs could not capture the491

abrupt change well.492

Hydraulic conductivity was estimated through minimizing the residual of the RRE,493

which contains hydraulic conductivity (see Equation (15)). Tartakovsky et al. (2020) re-494

ported that HCFs could be estimated from matric potential measurements using PINNs495

with the time-independent RRE. Considering our result and their findings, we conclude496

that hydraulic conductivity can be estimated from only either volumetric water content497

or matric potential.498

The advantage of the PINNs approach over the other studies to estimate HCFs was499

that we did not assume any information about HCFs a priori, such as saturated water500

content and saturated hydraulic conductivity. Also, the neural network for HCFs is sep-501

arated from WRCs, which prevents the error in WRCs from propagating into HCFs. Con-502

sidering these advantages, we conclude that the current framework of PINNs for the RRE503

is a powerful way to estimate HCFs from only volumetric water content data, which has504

never been attained to the best of our knowledge.505

4.3.5 Soil Water Flux Density506

In this section, we will show that the current PINNs framework with monotonic-507

ity constraints can be used to estimate soil water flux density from noisy volumetric wa-508

ter content data.509

The comparison of the estimated soil water flux density to the true one calculated510

by HYDRUS-1D at three different depths (z = −1,−9,−17 cm) for sandy loam soil for511

the two scenarios is shown in Figure 10. It was found that the PINNs with monotonic-512

ity constraints could estimate soil water flux density from noisy volumetric water con-513

tent measurements. Larger errors were observed at wetting fronts and near the surface,514

where soil water flux density changed abruptly. Although larger relative error was ob-515

served for loam and silt loam (see Table 3), especially for Scenario 1, the PINNs with516

monotonicity constraints could reasonably capture the trend of soil water flux density,517

which is shown in Figure S6 and S7 in the supporting information.518

The advantage of this approach over the available heat pulse method (Kamai et519

al., 2008, 2010) is that this method can estimate soil water flux density lower than 1 cm520

day−1 (see Figure S8, S9, and S10 in the supporting information). Because continuous521

measurement of volumetric water content at different depths is becoming popular with522

an advanced TDR array (Sheng et al., 2017), this PINNs approach can be used to es-523

timate soil water flux density in fields. This finding has a significant implication in the524

application of land surface modeling, where soil water flux density near the surface is crit-525

ical.526

5 Summary and Conclusions527

A framework of estimating soil hydraulic functions or constitutive relationships of528

the Richardson-Richards equation (RRE) (i.e., water retention curves (WRCs) and hy-529

draulic conductivity functions (HCFs)) from noisy volumetric water content measure-530

ments was proposed using physics-informed neural networks (PINNs). The PINNs for531

the RRE was designed by endowing the neural networks with the monotonicity of WRCs532
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nario 1, S2: Scenario 2) with the histogram of the noisy training data. Hydraulic conductivity

function for (a) sandy loam, (b) loam, and (c) silt loam. Histogram of the training data for (d)
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and HCFs. To demonstrate the effectiveness of incorporating monotonicity constraints533

into the PINNs, we compared the performance of the PINNs between with and without534

monotonicity constraints. As a result, the PINNs with monotonicity constraints has a535

great advantage over the PINNs without monotonicity constraints in terms of its high536

ability to prevent overfitting and reliability of the results for noisy training data.537

The PINNs, with and without monotonicity constraints, were trained using syn-538

thetic volumetric water content data for three distinct soil textures (sandy loam, loam,539

and silt loam) with Gaussian noise. The generalization ability of the framework was as-540

sessed in terms of its ability to estimate WRCs, HCFs, and soil water flux densities. The541

PINNs without monotonicity constraints could not produce satisfactory results. On the542

other hand, the PINNs with monotonicity constraints could estimate true soil moisture543

dynamics from noisy synthetic data for all types of soil. In terms of WRCs, the PINNs544

with monotonicity constraints could not precisely estimate the true WRCs. However,545

the estimated WRCs were surprisingly similar to the true ones in the middle range re-546

gardless of the fact that any matric potential data was provided. Unlike WRCs, the PINNs547

with monotonicity constraints could predict the HCFs well, especially for the range that548

is covered in the training data.549

It was demonstrated that employing monotonic neural networks in the PINNs to550

represent WRCs and HCFs improved the ability of the PINNs to prevent overfitting the551

training data. Furthermore, the PINNs with monotonicity constraints is shown to have552

better durability against noisy data than the PINNs without monotonicity constraints.553

It was illustrated that the PINNs with monotonicity constraints has a great po-554

tential to predict constitutive relationships of the RRE and soil water flux density from555

only noisy volumetric water content data in fields. The advantage of this method is the556

current PINNs framework does not need initial and boundary conditions and any infor-557

mation about the HCF a priori. The current framework must be tested with real exper-558

imental data for homogeneous soil in future research.559

The PINNs with monotonicity constraints could estimate true soil water flux den-560

sity from noisy synthetic volumetric water content data at different depths. At present,561

the only measurement technique for measuring soil water flux density is using heat flux562

sensors, which is limited to soil water flux density larger than 1 cm day−1. The proposed563

method has the potential for determining soil water flux density over a broader range.564

Acronyms565

HCFs Hydraulic Conductivity Functions566

PDE Partial Differential Equation567

PINNs Physics-Informed Neural Networks568

RRE Richardson-Richards Equation569

WRCs Water Retention Curves570

VWC Volumetric Water Content571

Notation572

:= Equal by definition573

ˆ Hat indicating predicted values or functions (e.g., ŷ)574

(i) Superscript (i) denoting ith data (e.g., θ(i))575

[L] Superscript [L] denoting Lth layer576

a[L] ∈ Rn[L]

Vector value for the Lth layer consisting of n[L] units577

b Bias vector578

f̂ Neural network579
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g Activation function580

h Output function581

K Hydraulic conductivity [L T−1]582

Ks Mualem-van Genuchen parameter583

L Loss function584

l Mualem-van Genuchen parameter585

N Number of data points586

n Mualem-van Genuchen parameter587

ni Number of size a vector, as in nx and ny588

n[L] Number of units in Lth layer of a neural network589

q Soil water flux density [L T−1]590

r̂ Residual of the Richardson-Richards euqation591

Se Effective saturation592

t Time [T]593

W Weight matrix594

x ∈ Rnx Input vector for the size of the input nx595

y ∈ Rny Output vector for the size of the output ny596

z Vertical coordinate or depth (positive upward) [L]597

α Mualem-van Genuchen parameter [L−1]598

ε Relative error599

θ Volumetric water content [L3 L−3]600

θr Mualem-van Genuchen parameter [L3 L−3]601

θs Mualem-van Genuchen parameter [L3 L−3]602

ψ Matric potential of water in the soil [L]603

ψlog Matric potential in logarithmic scale604
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Abstract16

Water retention curves (WRCs) and hydraulic conductivity functions (HCFs) are crit-17

ical soil-specific characteristics necessary for modeling the movement of water in soils us-18

ing the Richardson-Richards equation (RRE). Well-established laboratory measurement19

methods of WRCs and HCFs are not usually unsuitable for simulating field-scale soil mois-20

ture dynamics because of the scale mismatch. Hence, the inverse solution of the RRE21

is used to estimate WRCs and HCFs from field measured data. Here, we propose a physics-22

informed neural networks (PINNs) framework for the inverse solution of the RRE and23

the estimation of WRCs and HCFs from only volumetric water content (VWC) measure-24

ments. Unlike conventional inverse methods, the proposed framework does not need ini-25

tial and boundary conditions. The PINNs consists of three linked feedforward neural net-26

works, two of which were constrained to be monotonic functions to reflect the monotonic-27

ity of WRCs and HCFs. Alternatively, we also tested PINNs without monotonicity con-28

straints. We trained the PINNs using synthetic VWC data with artificial noise, derived29

by a numerical solution of the RRE for three soil textures. The PINNs were able to re-30

construct the true VWC dynamics. The monotonicity constraints prevented the PINNs31

from overfitting the training data. We demonstrated that the PINNs could recover the32

underlying WRCs and HCFs in non-parametric form, without a need for initial guess.33

However, the reconstructed WRCs at near-saturation–which was not fully represented34

in the training data–was unsatisfactory. We additionally showed that the trained PINNs35

could estimate soil water flux density with a broader range of estimation than the cur-36

rently available methods.37

1 Introduction38

Accurate prediction of soil moisture dynamics is vital for many applications, in-39

cluding weather forecasts, agricultural water management, and prediction of natural dis-40

asters, such as landslides and floods, and drought (Robinson et al., 2008; Babaeian et41

al., 2019). Notably, detailed information about near-surface soil moisture dynamics is42

essential for land surface modeling and remote sensing applications.43

Mathematically, soil moisture dynamics is described by a non-linear partial differ-44

ential equation (PDE), commonly referred to as the Richardson-Richards equation (RRE)45

(Richardson, 1922; Richards, 1931). The RRE is composed of the continuity equation46

and the Buckingham-Darcy law (Buckingham, 1907) and consists of three primary vari-47

ables: matric potential ψ, volumetric water content θ, and hydraulic conductivity K. The48

latter two variables are commonly expressed as functions of matric potential using wa-49

ter retention curves (WRCs) and hydraulic conductivity functions (HCFs), respectively.50

Furthermore, the two soil hydraulic functions (also referred to as constitutive relation-51

ships) are often treated as interdependent by employing conceptual models of unsatu-52

rated flow, such as the bundle of capillaries (Mualem, 1976; Burdine, 1953) or angular-53

pores and slits model (Tuller & Or, 2001). These assumptions simplify soil water dynam-54

ics models by allowing WRCs and HCFs to be expressed using a shared set of param-55

eters. Several parametric models have been proposed to describe soil hydraulic functions56

(Brooks & Corey, 1964; van Genuchten, 1980; Durner, 1994; Kosugi, 1996; Tuller & Or,57

2001; Assouline, 2006).58

The constitutive relationships embody the characteristic features of soil pore net-59

work and are the manifestation of the interactions between soil texture and structure.60

Hence, the reliability of simulated soil water dynamics largely depends on the accuracy61

of these soil hydraulic functions (Farthing & Ogden, 2017; Zha et al., 2019). Although62

well-established laboratory methods for characterizing WRCs and HCFs are available,63

their direct application for field-scale simulations is typically unsatisfactory because of64

the scale mismatch as well as sampling and measurement artifacts (Hopmans et al., 2002).65
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Therefore, it is indispensable to estimate WRCs and HCFs using time-series data66

from field experiments and the inverse solution of the RRE. Commonly, the inverse prob-67

lem requires finding the parameters of the constitutive relationships that best describe68

observed time-series data. In principle, it is possible to fit WRCs and HCFs indepen-69

dently, albeit at the expense of significant increase in the tunable parameters. Several70

studies also employed free-form functions to estimate WRCs and HCFs (Bitterlich et al.,71

2004; Iden & Durner, 2007). Inverse methods for characterizing soil hydraulic proper-72

ties often involve the repeated solution of the forward problem, which requires knowl-73

edge of the relevant initial and boundary conditions of the RRE. Global optimization74

algorithm (Durner et al., 2008) and Gaussian processes (Rai & Tripathi, 2019) are other75

approaches used to find the best-fitted constitutive relationships.76

Here, we propose a deep-learning framework for the inverse solution of the time-77

dependent RRE and the estimation of both WRCs and HCFs, with fewer assumptions78

and constraints than approaches described above. The method is based on physics-informed79

neural networks (PINNs) developed by Raissi et al. (2019). PINNs employs the univer-80

sal approximation capability of neural networks (Cybenko, 1989) to approximate the so-81

lution of PDEs. The neural networks’ parameters are trained by minimizing the sum of82

data-fitting error and the residual of the PDEs simultaneously. This simultaneous fit-83

ting enables PINNs to learn the dynamics of the system from measurement data and known84

physics. This novel PINNs approach has shown promising successes in computational85

physics (Raissi & Karniadakis, 2018; Raissi et al., 2019; Tartakovsky et al., 2020; He et86

al., 2020). Notably, Tartakovsky et al. (2020) employed PINNs to determine the hydraulic87

conductivity function of an unsaturated homogeneous soil from synthetic matric poten-88

tial data based on the two-dimensional time-independent RRE. In this study, we cou-89

pled the PINNs framework with two additional monotonic neural networks (Daniels &90

Velikova, 2010) to describe the known monotonicity of WRCs and HCFs.91

Although matric potential is the variable of choice for training purposes, the range92

and accuracy of matric potential sensors are still limited (Degré et al., 2017). Therefore,93

the proposed approach uses only volumetric water content time-series data. There are94

numerous fully developed methods to measure volumetric water content in fields, includ-95

ing the TDR-array probe (Sheng et al., 2017) and the heat-pulse method .96

Unlike conventional inverse methods, this proposed approach does not require the97

repeated solution of the forward problem. Instead, it simultaneously learns (1) the physics98

of soil water dynamics as defined by the RRE and the monotonicity of the constitutive99

relationships and (2) the volumetric water content time-series data. The simultaneous100

learning eliminates the critical shortcomings of conventional inverse approaches, includ-101

ing (1) the need for initial and boundary conditions to solve the forward problems; (2)102

the dependence of the optimization algorithms on good prior approximations of WRCs103

and HCFs; and (3) the need to define the shapes of WRCs and HCFs and their inter-104

dependence a priori.105

In this study, we generated synthetic training data by forward modeling of the RRE106

using HYDRUS-1D (Šimůnek et al., 2013). Using synthetic data has distinct advantages107

for testing this novel inverse-solution framework. First, it eliminates the uncertainties108

of field conditions that equally affect other inverse methods. Second, the synthetic data109

provide information that is not typically available in routine field measurements, includ-110

ing matric potential and soil water flux density at every location and time.111

The robustness of using monotonic neural networks to represent WRCs and HCFs112

in the PINNs is demonstrated by comparing the results with those from the PINNs that113

lacks the monotonicity constraints. The performance of the framework was further tested114

by introducing varying degrees of noise to the synthetic volumetric water content data,115

altering the spacing between the locations at which volumetric water content data were116

sampled, using different initial weight parameters of the neural networks. The general-117
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ization capability of the framework was investigated by training the PINNs with volu-118

metric water content data for three soils (sandy loam, loam, and silt loam soil) and for119

two different scenarios of the upper boundary condition. Finally, we show the potential120

application of the PINNs to estimate soil water flux density using only an array of soil121

moisture sensors.122

2 Background123

2.1 Richardson-Richards Equation124

We consider one-dimensional liquid water flow in a homogeneous rigid soil and ig-125

nore water vapor, sink term, and hysteresis. The mass balance of water in the soil leads126

to the continuity equation:127

∂θ

∂t
= −∂q

∂z
, (1)

where θ is volumetric water content [L3 L−3]; t is time [T]; z is vertical coordinate (pos-128

itive upward) [L]; q is soil water flux density [L T−1]. Soil water flux density q is related129

to matric potential of water in the soil ψ [L] through the Buckingham-Darcy law (Buckingham,130

1907):131

q = −K
(
∂ψ

∂z
+ 1

)
, (2)

where K is hydraulic conductivity [L T−1]. The two equations (Equation (1) and (2))132

are combined to derive the Richardson-Richards equation (RRE) (Richardson, 1922; Richards,133

1931):134

∂θ

∂t
=

∂

∂z

[
K

(
∂ψ

∂z
+ 1

)]
. (3)

To solve the RRE, matric potential ψ is commonly treated as the primary variable that135

is dependent on t and z, and volumetric water content θ and hydraulic conductivity K136

are parameterized through matric potential ψ, as in137

∂θ(ψ(t, z))

∂t
=

∂

∂z

[
K(ψ(t, z))

(
∂ψ(t, z)

∂z
+ 1

)]
. (4)

The functions θ(ψ) and K(ψ) are called constitutive relationships of the RRE and re-138

ferred to as water retention curves (WRCs) and hydraulic conductivity functions (HCFs),139

respectively. WRCs and HCFs are commonly expressed by parametric models (e.g., Brooks140

and Corey (1964); van Genuchten (1980); Durner (1994); Kosugi (1996); Tuller and Or141

(2001); Assouline (2006)). The WRCs and HCFs for three types of soil (sandy loam, loam,142

and silt loam soil) using the Mualem-van Genuchen model (van Genuchten, 1980) are143

shown in Figure 1. As shown in the figure, both WRCs and HCFs are monotonically in-144

creasing functions with respect to matric potential ψ, which is an accepted physical prin-145

ciple of water movement in soils. The monotonicity of WRCs and HCFs will be employed146

to design the architecture of the neural networks in this study later on.147

2.2 Feedforward Neural Networks148

A standard fully-connected feedforward neural network with three layers (one hid-149

den layer) is introduced here for readers who are not well versed in the topic. The read-150

ers should refer to textbooks (e.g., Goodfellow et al. (2016)) for more general explana-151

tions.152

Given a training dataset {x(i),y(i)}, where superscript (i) denotes the ith train-153

ing data; x(i) ∈ Rnx is input vector for the size of the input nx, y(i) ∈ Rny is output154

vector for the size of the output ny, a neural network f̂ is a mathematical function map-155

ping the input vector x(i) to predicted output vector ŷ(i) ∈ Rny :156

ŷ(i) = f̂(x(i)). (5)
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Figure 1. Constitutive relationships for three types of soil (sandy loam, loam, and silt loam

soil) generated by using the Mualem-van Genuchen model (van Genuchten, 1980). (a) Water

retention curves (WRCs). (b) Hydraulic conductivity functions (HCFs).

The hat operator represents prediction throughout the paper. The inside of the neural157

network f̂ is commonly represented by layers of units (or neurons), as shown in Figure158

2. Herein, a[L] ∈ Rn[L]

denotes the vector value for the Lth layer of the neural network,159

where the Lth layer is composed of n[L] units. To calculate the predicted output vec-160

tor ŷ(i), the input vector x(i) is entered in the first layer:161

a[1] = x(i), (6)

where the number of units in the first layer n[1] is equal to nx. Then, the value for the162

jth unit of the second layer a[2] is calculated from all the units in the previous layer (i.e.,163

the first layer) with the weight matrix W[1] and bias vector b[1] for the first layer in the164

following way:165

a
[2]
j = g[1]

n[1]∑
k=1

W
[1]
j,ka

[1]
k + b

[1]
j

 , (7)

where g[1] is a non-linear activation function for the first layer, such as the hyperbolic166

tangent function (tanh) shown in Figure 2 (b). The jth unit of the third layer is com-167

puted from all the units of the second layer (hidden layer):168

a
[3]
j =

n[2]∑
k=1

W
[2]
j,ka

[2]
k + b

[2]
j . (8)

Finally, the predicted output vector ŷ(i) is derived from the last layer with an output169

function h:170

ŷ
(i)
j = h(a

[3]
j ), (9)

where the number of the units in the last layer n[3] is equal to ny. In this study, the sig-171

moid function (Figure 2 (c)) and the exponential function (Figure 2 (d)) are used as out-172

put functions.173

The collection of the weight matrices W = {W[1],W[2]} and bias vectors b =174

{b[1],b[2]} are the parameters of the neural network, which are estimated by minimiz-175

ing a loss function comprising of the output vector y(i) (training data) and the predicted176
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Figure 2. A fully-connected feedforward neural network consisting of three layers (one hidden

layer) with activation and output functions. (a) A fully-connected feedforward neural network

consisting of the input layer with two units, the hidden layer with five units, and the output layer

with one unit. (b) Hyperbolic tangent function. (c) Sigmoid function. (d) Exponential function.

output vector ŷ(i). The definition of the loss function varies depending on the purpose177

of the training, and the loss function used in this study is defined in Equation (14).178

It is well known that a feedforward neural network with more hidden layers has a179

better capability of function approximation (Goodfellow et al., 2016), and such a neu-180

ral network with more than two hidden layers is called a deep neural network. In such181

a case, a unit of a hidden layer is computed from all the units of the previous hidden layer182

in the same way explained above (Equation (7)).183

In the next section, three fully-connected feedforward neural networks are combined184

to construct physics-informed neural networks (PINNs) for the RRE, and the loss func-185

tion for the PINNs framework is defined to estimate WRCs and HCFs from volumet-186

ric water content measurements.187

3 Methods188

3.1 Physics-Informed Neural Networks with Monotonicity Constraints189

for RRE190

Physics-informed neural networks (PINNs) has been proposed as a deep learning191

framework to derive the forward and inverse solution of PDEs (Raissi et al., 2019). In192

this study, PINNs was used to derive the inverse solution of the RRE and the constitu-193

tive relationships (i.e., WRCs and HCFs) from a set of volumetric water content time-194

series data measured at different depths in soils {t(i), z(i), θ(i)}i=Ni=1 , where N is the num-195

ber of measurement data.196

PINNs for the RRE was constructed using three fully-connected feedforward neu-197

ral networks, as shown in Figure 3. The neural network f̂ψ (Figure 3 (a)) is a function198

mapping from time t and vertical coordinate z into predicted matric potential ψ̂:199

ψ̂(i) = f̂ψ(t(i), z(i); Wψ,bψ), (10)
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Figure 3. Physics-informed neural networks (PINNs) for the Richardson-Richards equation

consisting of three fully-connected feedforward neural networks to predict (a) matric potential

ψ̂, (b) hydraulic conductivity K̂, and (c) volumetric water content θ̂. The number of layers and

units in the figure is not actual.

where Wψ and bψ are the collection of weight and bias parameters in the neural net-200

work. The hyperbolic tangent function (Figure 2 (b)) is used for the activation function,201

as recommended by Raissi et al. (2019). As for the output function, the negative expo-202

nential function (i.e., −exp(x), see Figure 2 (d)) is used to force the predicted matric203

potential to be negative.204

The predicted matric potential ψ̂(i) is used to estimate volumetric water content205

θ̂(i) and hydraulic conductivity K̂(i) through two distinct neural networks f̂θ, f̂K (Fig-206

ure 3 (c) and (b), respectively). In other words, the two neural networks are used to rep-207

resent the WRC and HCF for a given soil. Since WRCs and HCFs become simpler if ma-208

tric potential is plotted in logarithmic scale, as in Figure 1, the predicted matric poten-209

tial is converted into logarithmic scale by the following transformation:210

ψ̂
(i)

log
= − loge(−ψ̂(i)). (11)

Then, the predicted matric potential in logarithmic scale ψ̂
(i)

log
is used as the input value211

for the two neural networks to represent WRCs and HCFs:212

θ̂(i) = f̂θ(ψ̂
(i)

log
; Wθ,bθ), (12)

213

K̂(i) = f̂K(ψ̂
(i)

log
; WK ,bK). (13)

The tanh function is used as the activation function for both neural networks. The out-214

put functions for f̂θ and f̂K are the sigmoid function and the exponential function, re-215
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spectively to ensure predicted volumetric water content between 0 and 1 and positive216

predicted hydraulic conductivity (see Figure 2 (c) and (d)).217

To embrace the monotonicity of WRCs and HCFs, the weight parameters Wψ and218

WK are constrained to be non-negative so that f̂θ and f̂K are monotonically increas-219

ing functions with respect to the predicted matric potential ψ̂ (Daniels & Velikova, 2010).220

This type of neural networks is called (totally) monotonic neural networks, where the221

output values depend monotonically on all the variables in the input vector. It is known222

that a three-layer fully-connected feedforward neural network with non-negative weights223

can arbitrarily approximate any monotonic scalar functions (Daniels & Velikova, 2010).224

Readers interested in monotonic neural networks should refer to Daniels and Velikova225

(2010), where various types of monotonic neural networks are explained.226

Incorporating monotonicity constraints in the neural networks representing WRCs227

and HCFs honors the physical nature of the movement of water in all soils. This approach228

is similar to the free-form approach (Bitterlich et al., 2004; Iden & Durner, 2007), where229

cubic Hermite interpolation was used to approximate WRCs and HCFs. Unlike their stud-230

ies, our monotonic neural network approach does not assume predetermined saturated231

water content and saturated hydraulic conductivity because they are not easily available232

in field applications.233

The collection of the parameters in the three neural networks W = {Wψ,Wθ,WK}234

and b = {bψ,bθ,bK} are identified by minimizing a loss function defined as235

L(W,b) :=

N∑
i=1

(θ̂(i) − θ(i))2 +

N∑
i=1

(r̂(i))2, (14)

where r̂ is the residual of the RRE defined as236

r̂ :=
∂θ̂

∂t
− ∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
=
∂θ̂

∂t
− ∂K̂

∂z

∂ψ̂

∂z
− K̂ ∂2ψ̂

∂z2
− ∂K̂

∂z
. (15)

The first term of the loss function (Equation (14)) represents the fitting error of volu-237

metric water content, and the second term represents the contraint by the RRE. This238

simultaneous learning enables the PINNs to learn the dynamics of water in soils from239

both volumetric water content data and knowledge in soil physics (i.e., the RRE). In the240

other studies on PINNs (e.g. Raissi et al. (2019); Tartakovsky et al. (2020); He et al. (2020)),241

the boundary and initial conditions of PDEs are also included in the loss function. How-242

ever, we omitted these terms because they are difficult to obtain in real applications.243

To calculate the residual of the RRE r̂ at all the data points, the derivatives (i.e.,244

∂θ̂
∂t ,

∂ψ̂
∂z , ∂2ψ̂

∂z2 , ∂K̂
∂z ) are evaluated at the data points by using automatic differentiation (Nocedal245

& Wright, 2006). It should be noted that the residual of the RRE r̂ can be evaluated246

at any point in the domain (called collocation points). However, we forced the colloca-247

tion points to be the same as the measurement locations.248

Before training the PINNs, the weight parameters W are initialized through Xavier249

initialization (Glorot & Bengio, 2010), and the bias parameters b are all set to zero. Then,250

these parameters W and b are trained by minimizing the loss function:251

min
W,b
L(W,b). (16)

The optimization problem was solved by the Adam algorithm (Kingma & Ba, 2014) fol-252

lowed by the L-BFGS-B algorithm (Byrd et al., 1995). This two-step training procedure253

has been reported to be effective to train PINNs (Raissi et al., 2019; He et al., 2020). In254

our implementation, the default settings of the Adam optimizer in TensorFlow (Abadi255

et al., 2015) was used until 300,000 iterations finished. Then, the L-BFGS-B optimizer256

from Scipy (Virtanen et al., 2020) with maxcor = 50, maxls = 50, maxiter = 50, 000,257
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Table 1. Two scenarios of surface water flux density [cm day−1] (positive upward) were ap-

plied to generate synthetic data using HYDRUS-1D (Šimůnek et al., 2013).

Time (day) Scenario 1 Scenario 2

0.25 -10 -10
0.50 0 0
1.0 0.3 0.3
1.5 0 -5
2.0 0.3 0.3
2.25 -10 -5
2.5 0 -5
3.0 0.3 0.3

maxfun = 50, 000, ftol = 2.220446049250313× 10−16, and the default values for the258

other parameters was applied to achieve the convergence of the loss function. The in-259

vestigation on the hyperparameters of those optimization algorithms is beyond the scope260

of the paper. This PINNs framework for the RRE was implemented through TensorFlow261

1.14 (Abadi et al., 2015), and the source code is available on https://github.com/ToshiyukiBandai/PINNs RRE.262

3.2 Synthetic Data Generated by HYDRUS-1D263

To develop and assess the PINNs framework for the RRE, synthetic soil moisture264

data were generated by using HYDRUS-1D (Šimůnek et al., 2013). The synthetic data265

was used for two purposes: (1) to determine the architecture of the neural networks (i.e.,266

the number of hidden layers and units; Section 3.3) (Section 3.3); (2) to investigate the267

the generalization capability of the PINNs (Section 3.4).268

In the HYDRUS-1D simulation, soil moisture dynamics for three days in the 100269

cm of homogeneous three soils with different textures (sandy loam, loam, and silt loam270

soil) were simulated. The soil column was uniformly discretized at a 0.1 cm interval. The271

initial matric potential was set at -1000 cm for all the depths. The bottom boundary con-272

dition was the Neumann boundary condition:273

∂ψ

∂z
= 0. (17)

The upper boundary was set to the atmospheric upper boundary condition, where two274

different scenarios of time-dependent surface flux density were applied (see Table 1).275

The Mualem-van Genuchen model was used to parameterize WRCs and HCFs in276

the HYDRUS-1D simulation (van Genuchten, 1980):277

θ(ψ) = θr +
θs − θr

(1 + (−αψ)n)m
, (18)

278

K(θ(ψ)) = KsS
l
e(1− (1− S1/m

e )m)2, (19)

where θr, θs, α, n, Ks, and l are the Mualem-van Genuchen fitting parameters; m = 1−279

1/n; and the effective saturation Se is defined as280

Se =
θ − θr
θs − θr

. (20)

The Mualem-van Genuchen fitting parameters for the three soils used in this study are281

summarized in Table 2.282
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Table 2. The Mualem-van Genuchen fitting parameters for three types of soils (van

Genuchten, 1980).

Parameters Sandy Loam Loam Silt Loam

θr [cm3 cm−3] 0.065 0.078 0.067
θs [cm3 cm−3] 0.41 0.43 0.45
α [cm−1] 0.075 0.036 0.02
n [-] 1.89 1.56 1.41

Ks [cm day−1] 106.1 24.96 10.8
l [-] 0.5 0.5 0.5

3.3 Determination of Architecture of Neural Networks283

It is known that the architecture of feedforward neural networks (i.e., the number284

of hidden layers and units) influences their performance. Therefore, the number of hid-285

den layers and units for the three neural networks in the PINNs was determined empir-286

ically in two steps.287

First, we set the number of hidden layers and units of the two neural networks, f̂θ288

for volumetric water content (Figure 3 (c)) and f̂K for hydraulic conductivity (Figure289

3 (b)), to 1 hidden layer with 20 units and varied the number of hidden layers and units290

of the neural network for the predicted matric potential f̂ψ (Figure 3 (a)). Seven differ-291

ent numbers of hidden layers (2, 4, 6, 8, 9, 10, 11) and three different numbers of units292

(10, 20, 40) were tested.293

Second, the number of hidden layers and units of the other two neural networks,294

f̂θ and f̂K , was varied. Three different numbers of layers (1, 2, 3) and units (10, 20, 40)295

were tested for each neural network.296

To determine the architecture of the neural networks in the PINNs, the synthetic297

data for sandy loam soil for Scenario 1 were used (see Section 3.2). As training data, vol-298

umetric water content was sampled every 0.012 day (i.e., 251 data points for a depth)299

at 10 equally spaced different depths within the top of the 20 cm of the soil column (z300

= -1, -3, -5, -7, -9, -11, -13, -15, -17, -19 cm) because our study is focused on soil mois-301

ture dynamics in near-surface soils.302

To evaluate the performance of the PINNs, we compared the predicted and true303

volumetric water content, matric potential, hydraulic conductivity, and soil water flux304

density. The predicted soil water flux density q̂ was derived using the Buckingham-Darcy305

law (Equation (2)) with the estimated hydraulic conductivity K̂ and the gradient of the306

predicted matric potential ∂ψ̂/∂z. We quantified the prediction error over the time t ∈307

[0, 3] day with an interval of 0.012 days and the spatial domain z ∈ (−20, 0] cm with308

an interval of 0.1 cm for all the four variables in terms of the relative L2 errors εγ for309

γ = θ, ψ,K, q., defined as310

εγ :=

∑
t∈[0,3]

∑
z∈(−20,0](γ̂(t, z)− γ(t, z))2∑

t∈[0,3]
∑
z∈(−20,0] γ(t, z)2

(21)

To demonstrate the effectiveness of including monotonic neural networks in the PINNs,311

we also trained the PINNs without monotonicity constraints (i.e., standard feedforward312

neural networks are used to represent WRCs and HCFs) with the same training data.313
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The architecture of the three neural networks in the PINNs without monotonicity was314

also determined in the same way as above.315

Because the results of training PINNs were affected by the initial values of the weight316

parameters of the neural networks determined by Xavier initialization (Glorot & Ben-317

gio, 2010), three different random seeds were used in the code, and three replicates were318

obtained for each of those combinations of the number of hidden layers and units. As319

a result, 63 trainings for f̂ψ (Figure 3 (a)) and 243 ones for f̂θ (Figure 3 (c)) and f̂K (Fig-320

ure 3 (b)) were conducted to determined their architecture for the PINNs both with and321

without monotonicity.322

3.4 Application of PINNs to Various Datasets323

Different types of data were prepared by using HYDRUS-1D to assess the perfor-324

mance of the PINNs with and without monotonicity constraints. First, we investigated325

the effect of noise in the training data. To this end, Gaussian noise with the mean of zero326

and four different values of standard deviation (0, 0.005, 0.01, 0.02) was added to the327

sampled volumetric water content for sandy loam soil for Scenario 1.328

Next, the effect of the sparsity of the training data was studied by using volumet-329

ric water content data for sandy loam soil for Scenario 1 without adding noise. We con-330

sidered three cases for the number of depths at which volumetric water content were sam-331

pled: 10 (z = −1,−3,−5,−7,−9,−11,−13,−15,−17,−19 cm), 5 (z = −1,−5,−9,−13,−17332

cm) and 3 (z = −1,−9,−17 cm).333

Lastly, volumetric water content data for three different types of soils (sandy loam,334

loam, and silt loam soil) with the two different scenarios of upper boundary condition335

(see Table 1) were generated. Gaussian noise with the mean of zero and the standard336

deviation of 0.005 was added to the synthetic data to reflect measurement noise encoun-337

tered in field applications.338

Those training data were applied to the PINNs with and without monotonicity con-339

straints, and the results were evaluated in terms of relative errors defined in Equation340

(21). For all the cases above, five different random seeds were set in the code to inves-341

tigate the effects of neural network initialization on the results.342

4 Results and Discussions343

4.1 Architecture of Neural Networks in PINNs344

To determine the number of hidden layers and units of the three neural networks345

in the PINNs with and without monotonicity, various combinations of layers and units346

were tested. Figure 4 shows relative error ε defined in Equation (21) for volumetric wa-347

ter content θ, matric potential ψ, hydraulic conductivity K, and soil water flux density348

q for different numbers of hidden layers and units for the neural network f̂ψ (Figure 3349

(a)) of the PINNs with and without monotonicity while the architecture of the other two350

neural networks are fixed (1 hidden layer with 20 units). For the PINNs with monotonic351

neural networks (left column), relative error for volumetric water content εθ, hydraulic352

conductivity εK , and soil water flux density εq decreased with the increase in number353

of units, with 40 units resulting in the lowest error (the Pearson correlation coefficient354

is provided in Table S1 in the supplementary information.).355

The lowest arithmetic mean of relative error was observed when the number of hid-356

den layers is 4 for volumetric water content θ, 6 for hydraulic conductivity K, and 8 for357

soil water flux density q when the number of units is 40. Clear trends were not obtained358

for relative error for matric potential εψ. Because relative error for soil water flux den-359

sity q reflects the predictive accuracy of the PINNs for both matric potential ψ and hy-360
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draulic conductivity K fields, we set the neural network for the predicted matric poten-361

tial f̂ψ to 8 layers with 40 units.362

For the PINNs without monotonicity constraints (right column), the architecture363

of the neural network for the predicted matric potential f̂ψ was set to 6 hidden layers364

with 40 units, which coincides with the lowest relative error of soil water flux density εq.365

We observed a non-linear correlation between the number of hidden layers and relative366

error for volumetric water content θ, hydraulic conductivity K, and soil water flux den-367

sity q; relative error reached the lowest when the number of hidden layers was 6 and in-368

creased again. This is clear evidence that the PINNs without monotonicity was overfit-369

ting the training data. On the other hand, such a non-linear behavior was minimized for370

the PINNs with monotonicity constraints, which means imposing monotonicity can pre-371

vent the PINNs from overfitting the training data. In addition, the variability of rela-372

tive errors between different initializations of the neural networks was lower for the PINNs373

with monotonic neural networks than the PINNs with non-monotonic neural networks.374

This further demonstrates the benefit of the monotonicity constraints in improving the375

stability and reliability of the training.376

After determining the architecture of the neural network for the predicted matric377

potential f̂ψ, the number of hidden layers and units for the other two neural networks,378

f̂θ and f̂K , was varied. We did not observe clear trends of relative error for different neu-379

ral network architectures for the PINNs with and without monotonicity (see Table S1380

and Figure S1 in the supplementary information). However, the performance of the PINNs381

without monotonicity constraints was much more sensitive to the neural network archi-382

tecture. This implied that incorporating monotonicity constraints stabilized the train-383

ing, which enabled us to determine the neural network structure easier than the PINNs384

without monotonicity constraints. As a result, the architecture of the two neural net-385

works was set as follows: 1 hidden layer with 40 units for the PINNs with monotonic-386

ity and 3 hidden layers with 40 units for without monotonicity for the neural network387

for the predicted volumetric water content f̂θ; 3 hidden layer with 40 units for PINNs388

with monotonicity and 2 hidden layers with 20 units for without monotonicity for the389

neural network for the predicted hydraulic conductivity f̂K .390

4.2 Effect of Noise and Sparsity of Training Data391

To investigate the effect of measurement noise on the performance of the PINNs,392

Gaussian noise with mean of zero and different values of standard deviation (0, 0.005,393

0.01, 0.02) was added to the synthetic volumetric water content data (see Section 3.4),394

which was used to train the PINNs with and without monotonicity constraints. Figure395

5 (a) shows relative error for soil water flux density εq for different values of noise added396

to the true volumetric water content data. For the PINNs with and without monotonic-397

ity constraints, relative error increased with the standard deviation of noise, although398

the effect of the noise was substantially lower for the PINNs with monotonicity. On the399

other hand, the PINNs without monotonicity constraints exhibited consistently large rel-400

ative error for all levels of noise. These observations indicate that monotonicity constraints401

are critical for ensuring stability and reliability when fitting noisy data. Therefore, PINNs402

without monotonic neural networks is not practically feasible for field applications.403

The number of measurement locations at which simulated volumetric water con-404

tent was sampled data were varied from 10 to 5 and 3 to investigate the effect of the spar-405

sity of the training data. Figure 5 (b) illustrates that smaller relative error for soil wa-406

ter flux density εq was observed for denser training data. Although PINNs have been shown407

to be effective for sparse training data (Raissi et al., 2019; Tartakovsky et al., 2020), the408

PINNs for this application needs dense volumetric water content measurements (e.g., 2409

cm interval).410
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Figure 4. Relative error ε for volumetric water content θ, matric potential ψ, hydraulic con-

ductivity K, and soil water flux density q for different numbers of hidden layers and units in the

neural network for the predicted matric potential f̂ψ (Figure 3 (a)); with (left column) and with-

out monotonicity (right column). The architecture of the other two neural networks are set to

1 hidden layer with 20 units each. The lines represent the arithmetic mean of five replicates for

each neural network architecture.
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Figure 5. Relative error for soil water flux density εq for different values of standard deviation

of noise (a) and measurement locations at which synthetic volumetric water content data were

sampled (b). The number of measurement locations was varied from 10 (z = -1, -3, -5, -7, -9, -11,

-13, -15, -17, -19 cm) to 5 (z = −1,−5,−9,−13,−17 cm) and 3 (z = −1,−9,−17 cm). The lines

represent the arithmetic mean of five replicates.

.

4.3 Generalization Capability of PINNs411

The generalization capability of the PINNs with and without monotonicity con-412

straints was assessed with noisy synthetic volumetric water content data generated by413

HYDRUS-1D for three types of soils (sandy loam, loam, silt loam soil) with two differ-414

ent scenarios of upper boundary conditions (see Table 1). Table 3 shows relative error415

for volumetric water content εθ, matric potential εψ, hydraulic conductivity εK , and soil416

water flux density εq. The PINNs without monotonicity constraints could not produce417

satisfactory results, which is shown by the large values of relative error for hydraulic con-418

ductivity εK and soil water flux density εq for both scenarios. This is mainly caused by419

the noise in the training data, which was indicated in Figure 5 (a). Also, poor general-420

ization capability of the PINNs without monotonicity constraints is implied by the fact421

that higher relative error was observed for loam and silt loam soil. Therefore, in the fol-422

lowing sections, we focus on the results of the PINNs with monotonicity constraints. While423

the trainings were conducted with five different random seeds initializing the weight pa-424

rameters of the neural networks, we provide the results that show medium performance425

in terms of relative error for soil water flux density εq.426

4.3.1 Volumetric water content427

Figure 6 shows predicted volumetric water content by the PINNs with monotonic-428

ity constraints from noisy training data for sandy loam soil for the two scenarios. The429

PINNs could precisely capture the true distribution of soil moisture from the training430

data with the noise (standard deviation of 0.005). The PINNs could capture the distri-431

bution well for the other two soils as well (shown in Figure S2 and S3 in the support-432

ing information).433

Larger errors were observed when the upper boundary condition changed abruptly434

(e.g., t = 1.5 day for Scenario 2 in Figure 6 (e)). This indicated that the neural net-435

works used in the study could not represent such a sharp change in soil moisture dynam-436
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Table 3. Relative error (arithmtic mean (± standard devation)) for volumetric water content

εθ, matric potential εψ, hydraulic conductivity εK , and soil water flux density εq for the PINNs

with and without monotonicity constraints trained by noisy volumetric water content data for

three soils (sandy loam, loam, silt loam soil) for two scenarios (Scenario 1 and 2). The arithmetic

mean and standard deviation were calculated from five replicates.

Relative Error Sandy Loam Loam Silt Loam

PINNs with monotonicity constraints

Scenario 1
εθ 1.05(±0.75)× 10−4 4.02(±0.26)× 10−5 3.60(±0.48)× 10−5

εψ 4.21(±0.38)× 10−1 6.79(±5.99)× 102 1.14(±1.17)× 101

εK 3.01(±4.78)× 10−2 3.34(±0.63)× 10−2 2.87(±0.23)× 10−1

εq 1.22(±1.05)× 10−2 1.55(±0.32)× 10−2 2.27(±0.25)× 10−2

Scenario 2
εθ 4.89(±0.34)× 10−5 3.03(±0.30)× 10−5 3.66(±2.51)× 10−5

εψ 4.19(±0.43)× 10−1 9.42(±18.0)× 10−1 1.17(±1.09)
εK 5.33(±0.70)× 10−3 2.47(±0.74)× 10−2 5.18(±3.98)× 10−1

εq 5.48(±0.53)× 10−3 1.01(±0.09)× 10−2 3.49(±2.55)× 10−2

PINNs without monotonicity constraints

Scenario 1
εθ 2.38(±2.27)× 10−3 8.38(±9.01)× 10−4 7.25(±5.80)× 10−4

εψ 1.13(±0.58) 1.19(±2.14)× 101 4.46(±7.14)
εK 5.98(±5.70) 1.08(±1.33)× 105 1.54(±1.36)× 105

εq 2.04(±1.92) 1.30(±1.61)× 104 1.15(±1.02)× 104

Scenario 2
εθ 1.50(±1.23)× 10−3 3.13(±3.11)× 10−4 3.19(±2.50)× 10−4

εψ 2.76(±3.75) 3.62(±5.26) 2.30(±2.74)
εK 2.02(±1.74) 1.11(±2.05)× 104 5.95(±6.51)× 104

εq 9.69(±8.30)× 10−1 2.32(±4.30)× 103 7.84(±8.66)× 103
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ics. For the same reason, larger errors were observed just after the initial condition (t =437

0 day). Also, the PINNs could not reproduce the true volumetric water content at depths438

that are not covered in the training data (i.e., near the surface and lower than z = −19439

cm). This means the PINNs could not extrapolate the volumetric water content data440

while it could interpolate. Similar trends were observed for the other two soils (see Fig-441

ure S2 and S3 in the information).442

4.3.2 Residual of RRE443

The PINNs minimizes the data fitting error, as well as the residual of the RRE de-444

fined by Equation (15). The absolute value of the residual of the RRE for sandy loam445

soil at three times for the two scenarios is shown in Figure 7. The values in the spatial446

domain were small (less than 10−3), which means the RRE was satisfied in the spatial447

domain of interest (i.e., (-20cm, 0cm]). Larger deviations from zero were observed near448

the surface and lower than the lowest virtual sensor (z = −19cm). This corresponds449

to the fact that the collocation points at which the residual of the RRE is evaluated were450

set to the measurement locations. This error may be minimized by distributing more col-451

location points in the spatial domain, including near the surface. Tartakovsky et al. (2020)452

reported that the accuracy of the PINNs improved if larger numbers of collocation points453

were provided. The drawback of increasing the number of collocation points is increased454

in computational demand. Further investigations are needed for seeking an efficient strat-455

egy to distribute the collocation points to achieve a better performance of the PINNs.456

The results for the other soils are provided in Figure S4 and S5 in the supporting infor-457

mation.458

4.3.3 Water Retention Curves459

Predicting matric potential from the noisy volumetric water content corresponds460

to estimating WRCs, which is one of the primary goals of the study. The PINNs with461

monotonicity constraints could not precisely predict the WRCs for the three soils, as shown462

in Figure 8. Especially, the prediction was not satisfactory for low and high volumetric463

water content, where the training data points were not provided. This suggests the dif-464

ficulty in representing the two characteristics of WRCs by using a monotonic neural net-465

work: monotonicity and well defined upper and lower limits (saturation and dryness, re-466

spectively). This weakness of the current PINNs needs to be fixed in future research. Nev-467

ertheless, the predicted WRCs were surprisingly similar to the true WRCs in the mid-468

dle range regardless of the fact that any actual value of matric potential was not used469

to train the PINNs.470

How does the PINNs with monotonicity constraints learn WRCs from only volu-471

metric water content data? A possible explanation is that matric potential is estimated472

from the gradient of matric potential ∂ψ̂/∂z, which is calculated in the residual of the473

RRE r̂. Also, a matric potential of zero at saturation is implied by forcing matric po-474

tential to be negative while imposing the monotonically increasing relationship between475

matric potential and volumetric water content. These two explanations partly support476

the possibility that the PINNs with monotonicity constraints can predict WRCs from477

only volumetric water content if sufficient numbers and quality of training data are given.478

4.3.4 Hydraulic Conductivity Functions479

The estimated HCFs for the three soils for the two scenarios are shown in Figure480

9. It should be noted that hydraulic conductivity is plotted against volumetric water con-481

tent, not matric potential, as in Figure 1, because the estimated values of matric poten-482

tial do not match the actual values, unlike volumetric water content.483
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Figure 6. Predicted volumetric water content (PINNs) and noisy synthetic training data

(Training Data) for sandy loam soil for the two scenarios at three different times. The dotted

lines represent the synthetic data before adding the noise (True). Scenario 1 (S1): (a) t = 0.6

day, (b) t = 1.5 day, and (c) t = 2.4 day. Scenario 2 (S2): (d) t = 0.6 day, (e) t = 1.5, and (f)

t = 2.4 day.
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Figure 7. The absolute value of the residual of the Richardson-Richards equation at three

different times for sandy loam soil for the two scenarios. Scenario 1 (S1): (a) t = 0.6 day, (b)

t = 1.5 day, and (c) t = 2.4 day. Scenario 2 (S2): (d) t = 0.6 day, (e) t = 1.5, and (f) t = 2.4 day.
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Figure 8. Comparison of true water retention curves (True) to the ones predicted by the

PINNs with monotonicity constraints for the three soils for the two scenarios (S1: Scenario 1, S2:

Scenario 2) with the histogram of the noisy training data. Water retention curve for (a) sandy

loam, (b) loam, and (c) silt loam. Histogram of the training data for (d) sandy loam, (e) loam,

and (f) silt loam.
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The PINNs with monotonicity constraints could estimate the HCFs, especially for484

the range of the volumetric water content that is covered in the training data. On the485

other hand, the PINNs could not precisely extrapolate the HCFs; dryness and near sat-486

uration. As for a drier range of HCFs, although some of the training data are distributed487

in the range, they did not contribute to the learning of the HCFs. This is caused by the488

fact that these data correspond to the initial volumetric content, which increased rapidly489

due to the prescribed upper boundary conditions, and the PINNs could not capture the490

abrupt change well.491

Hydraulic conductivity was estimated through minimizing the residual of the RRE,492

which contains hydraulic conductivity (see Equation (15)). Tartakovsky et al. (2020) re-493

ported that HCFs could be estimated from matric potential measurements using PINNs494

with the time-independent RRE. Considering our result and their findings, we conclude495

that hydraulic conductivity can be estimated from only either volumetric water content496

or matric potential.497

The advantage of the PINNs approach over the other studies to estimate HCFs was498

that we did not assume any information about HCFs a priori, such as saturated water499

content and saturated hydraulic conductivity. Also, the neural network for HCFs is sep-500

arated from WRCs, which prevents the error in WRCs from propagating into HCFs. Con-501

sidering these advantages, we conclude that the current framework of PINNs for the RRE502

is a powerful way to estimate HCFs from only volumetric water content data, which has503

never been attained to the best of our knowledge.504

4.3.5 Soil Water Flux Density505

In this section, we will show that the current PINNs framework with monotonic-506

ity constraints can be used to estimate soil water flux density from noisy volumetric wa-507

ter content data.508

The comparison of the estimated soil water flux density to the true one calculated509

by HYDRUS-1D at three different depths (z = −1,−9,−17 cm) for sandy loam soil for510

the two scenarios is shown in Figure 10. It was found that the PINNs with monotonic-511

ity constraints could estimate soil water flux density from noisy volumetric water con-512

tent measurements. Larger errors were observed at wetting fronts and near the surface,513

where soil water flux density changed abruptly. Although larger relative error was ob-514

served for loam and silt loam (see Table 3), especially for Scenario 1, the PINNs with515

monotonicity constraints could reasonably capture the trend of soil water flux density,516

which is shown in Figure S6 and S7 in the supporting information.517

The advantage of this approach over the available heat pulse method (Kamai et518

al., 2008, 2010) is that this method can estimate soil water flux density lower than 1 cm519

day−1 (see Figure S8, S9, and S10 in the supporting information). Because continuous520

measurement of volumetric water content at different depths is becoming popular with521

an advanced TDR array (Sheng et al., 2017), this PINNs approach can be used to es-522

timate soil water flux density in fields. This finding has a significant implication in the523

application of land surface modeling, where soil water flux density near the surface is crit-524

ical.525

5 Summary and Conclusions526

A framework of estimating soil hydraulic functions or constitutive relationships of527

the Richardson-Richards equation (RRE) (i.e., water retention curves (WRCs) and hy-528

draulic conductivity functions (HCFs)) from noisy volumetric water content measure-529

ments was proposed using physics-informed neural networks (PINNs). The PINNs for530

the RRE was designed by endowing the neural networks with the monotonicity of WRCs531
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Figure 9. Comparison of true hydraulic conductivity functions (True) to the ones predicted

by the PINNs with monotonicity constraints for the three soils for the two scenarios (S1: Sce-

nario 1, S2: Scenario 2) with the histogram of the noisy training data. Hydraulic conductivity

function for (a) sandy loam, (b) loam, and (c) silt loam. Histogram of the training data for (d)

sandy loam, (e) loam, and (f) silt loam.

–21–



manuscript submitted to Water Resources Research

−10

−8

−6

−4

−2

0

(a) S1: z =−1 cm

Sandy Loam

(d) S2: z =−1 cm

−10

−8

−6

−4

−2

0

S
o
il

W
at

er
F

lu
x

D
en

si
ty

q
[c

m
d
ay

−
1
] (b) S1: z =−9 cm (e) S2: z =−9 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−10

−8

−6

−4

−2

0

(c) S1: z =−17 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(f) S2: z =−17 cm

True

PINNs

Time t [day]
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and HCFs. To demonstrate the effectiveness of incorporating monotonicity constraints532

into the PINNs, we compared the performance of the PINNs between with and without533

monotonicity constraints. As a result, the PINNs with monotonicity constraints has a534

great advantage over the PINNs without monotonicity constraints in terms of its high535

ability to prevent overfitting and reliability of the results for noisy training data.536

The PINNs, with and without monotonicity constraints, were trained using syn-537

thetic volumetric water content data for three distinct soil textures (sandy loam, loam,538

and silt loam) with Gaussian noise. The generalization ability of the framework was as-539

sessed in terms of its ability to estimate WRCs, HCFs, and soil water flux densities. The540

PINNs without monotonicity constraints could not produce satisfactory results. On the541

other hand, the PINNs with monotonicity constraints could estimate true soil moisture542

dynamics from noisy synthetic data for all types of soil. In terms of WRCs, the PINNs543

with monotonicity constraints could not precisely estimate the true WRCs. However,544

the estimated WRCs were surprisingly similar to the true ones in the middle range re-545

gardless of the fact that any matric potential data was provided. Unlike WRCs, the PINNs546

with monotonicity constraints could predict the HCFs well, especially for the range that547

is covered in the training data.548

It was demonstrated that employing monotonic neural networks in the PINNs to549

represent WRCs and HCFs improved the ability of the PINNs to prevent overfitting the550

training data. Furthermore, the PINNs with monotonicity constraints is shown to have551

better durability against noisy data than the PINNs without monotonicity constraints.552

It was illustrated that the PINNs with monotonicity constraints has a great po-553

tential to predict constitutive relationships of the RRE and soil water flux density from554

only noisy volumetric water content data in fields. The advantage of this method is the555

current PINNs framework does not need initial and boundary conditions and any infor-556

mation about the HCF a priori. The current framework must be tested with real exper-557

imental data for homogeneous soil in future research.558

The PINNs with monotonicity constraints could estimate true soil water flux den-559

sity from noisy synthetic volumetric water content data at different depths. At present,560

the only measurement technique for measuring soil water flux density is using heat flux561

sensors, which is limited to soil water flux density larger than 1 cm day−1. The proposed562

method has the potential for determining soil water flux density over a broader range.563

Acronyms564

HCFs Hydraulic Conductivity Functions565

PDE Partial Differential Equation566

PINNs Physics-Informed Neural Networks567

RRE Richardson-Richards Equation568

WRCs Water Retention Curves569

VWC Volumetric Water Content570

Notation571

:= Equal by definition572

ˆ Hat indicating predicted values or functions (e.g., ŷ)573

(i) Superscript (i) denoting ith data (e.g., θ(i))574

[L] Superscript [L] denoting Lth layer575

a[L] ∈ Rn[L]

Vector value for the Lth layer consisting of n[L] units576

b Bias vector577

f̂ Neural network578
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g Activation function579

h Output function580

K Hydraulic conductivity [L T−1]581

Ks Mualem-van Genuchen parameter582

L Loss function583

l Mualem-van Genuchen parameter584

N Number of data points585

n Mualem-van Genuchen parameter586

ni Number of size a vector, as in nx and ny587

n[L] Number of units in Lth layer of a neural network588

q Soil water flux density [L T−1]589

r̂ Residual of the Richardson-Richards euqation590

Se Effective saturation591

t Time [T]592

W Weight matrix593

x ∈ Rnx Input vector for the size of the input nx594

y ∈ Rny Output vector for the size of the output ny595

z Vertical coordinate or depth (positive upward) [L]596

α Mualem-van Genuchen parameter [L−1]597

ε Relative error598

θ Volumetric water content [L3 L−3]599

θr Mualem-van Genuchen parameter [L3 L−3]600

θs Mualem-van Genuchen parameter [L3 L−3]601

ψ Matric potential of water in the soil [L]602

ψlog Matric potential in logarithmic scale603
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