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Abstract

The inevitable coarse pixels (˜25 km) of satellite passive microwave images introduced large uncertainty to the surface melt area

estimation on Antarctic ice margins. Our test showed that the melt index of the Austral year 2012-13 in the Antarctic Peninsula

calculated from the high resolution product was 33% lower than the original Special Sensor Microwave/Imager (SSM/I) images.

Therefore, by allowing for fractional melt estimation, a subpixel mapping method was adopted in this research to improve

the accuracy and reliability of surface melt measurement from passive microwave images. This innovative method uses the

least squares mixture analysis (LSMA) on the time series of daily passive microwave images by taking advantage of their high

temporal resolution. The endmembers for the unmixing calculation were collected under the constraint of voronoi polygons.

The fractional melt index of each pixel was calculated by multiplying its area with melt fraction. By using the high resolution

passive microwave earth system data record (PMESDR) dataset as the reference, we found that compared with the original

SSM/I images, the overestimation of surface melt was corrected by the unmixing analysis. A log-linear regression between melt

fraction and elevation showed that the melt fraction is inversely correlated to the elevation, and the topography is the dominant

factor for melt fraction distribution in high elevations. We recommend such a treatment of linear unmixing analysis on the

passive microwave images to be used for future surface melt mapping in Antarctica and Greenland.
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Abstract 14 

The inevitable coarse pixels (~25 km) of satellite passive microwave images introduced large 15 

uncertainty to the surface melt area estimation on Antarctic ice margins. Our test showed that the 16 

melt index of the Austral year 2012-13 in the Antarctic Peninsula calculated from the high 17 

resolution product was 33% lower than the original Special Sensor Microwave/Imager (SSM/I) 18 

images. Therefore, by allowing for fractional melt estimation, a subpixel mapping method was 19 

adopted in this research to improve the accuracy and reliability of surface melt measurement 20 

from passive microwave images. This innovative method uses the least squares mixture analysis 21 

(LSMA) on the time series of daily passive microwave images by taking advantage of their high 22 

temporal resolution. The endmembers for the unmixing calculation were collected under the 23 

constraint of voronoi polygons. The fractional melt index of each pixel was calculated by 24 

multiplying its area with melt fraction. By using the high resolution passive microwave earth 25 

system data record (PMESDR) dataset as the reference, we found that compared with the 26 

original SSM/I images, the overestimation of surface melt was corrected by the unmixing 27 

analysis. A log-linear regression between melt fraction and elevation showed that the melt 28 

fraction is inversely correlated to the elevation, and the topography is the dominant factor for 29 

melt fraction distribution in high elevations. We recommend such a treatment of linear unmixing 30 

analysis on the passive microwave images to be used for future surface melt mapping in 31 

Antarctica and Greenland.  32 
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Plain Language Summary 33 

Surface melt could be one of the major causes of the recent and historical disintegration of 34 

Antarctic ice shelves. Tracking and monitoring surface melt from satellites are crucial to better 35 

understanding of how the regional and global climate is changing and the relationship between 36 

climate change and glacier dynamics. However, none of the current satellites provides 37 

sufficiently detailed data for scientists to measure surface melt with high confidence and 38 

accuracy. We found that the current estimation of surface melt in the Antarctic Peninsula could 39 

be 56% larger than its actual value because of the signal mixing problem. Therefore, we propose 40 

a subpixel estimating method that is able to offset the overestimation problem in the previous 41 

research. The new melt map was proved more accurate and reliable for interannual trend 42 

analysis.  43 
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1. Introduction 44 

Mapping surface melt on Antarctic Ice Shelves is of great significance for studying glacier 45 

dynamics and regional and global climate changes. Melting snow has a low visible and near-46 

infrared albedo, absorbing up to four times as much solar radiation as dry snow (Steffen, 1995). 47 

In addition, percolating melt water accelerates iceberg calving and causes ice mass loss and ice 48 

front retreat (Holland, 2010). Antarctica Ice Shelves are sensitive to the warming temperature. 49 

As shown in Zwally and Fiegles (1994), surface melt intensity is related to the locally 50 

accumulative number of days above the melting temperature. Consistent and intense surface melt 51 

contributed to enlarged ice crevasses (Scambos et al., 2000), accelerated glacier flow (Zwally, 52 

2002), and disintegration of ice tongues (van den Broeke, 2005). Monitoring surface melt 53 

phenomena is a key to understanding regional and global climate changes (Doake & Vaughan, 54 

1991; Gilbert & Domack, 2003; MacAYEAL et al., 2003; Vaughan & Doake, 1996).    55 

Antarctica has the highest winds, lowest temperatures, and highest average elevation on 56 

Earth. Severe weather, poor accessibility, long and dark polar nights in winter, and logistical 57 

difficulties give rise to serious challenges to traditional field observations. Satellite passive 58 

microwave data capture surface emission from water, vegetation, soil, and snow and ice under all 59 

weather conditions, and have become the only data source capable of continuously monitoring 60 

surface melt in Antarctica (Liu et al., 2006) for long terms. The Defense Meteorological Satellite 61 

Program (DMSP) operated by National Oceanic and Atmospheric Administration (NOAA) has 62 

launched a series of satellites since 1978 with the payload of multiple generation passive 63 

microwave sensors including scanning multichannel microwave radiometer (SMMR), Special 64 

Sensor Microwave/Imager (SSM/I), and Special Sensor Microwave Imager Sounder (SSMIS). 65 

Glacier and ice sheet surface melting was mapped from this dataset for Greenland (Abdalati & 66 

Steffen, 1995, 1997, 2001; Liang et al., 2019; Mote et al., 1993; Mote & Anderson, 1995) and 67 

Antarctica (Fahnestock et al., 2002; Liang et al., 2019; Liu et al., 2006; Ridley, 1993; Torinesi et 68 

al., 2003; Zwally & Fiegles, 1994).   69 

Large Instantaneous field of view is required for passive microwave sensors to achieve 70 

sufficient signal-to-noise ratio from satellite orbits that are usually placed at 700~800 km above 71 

the ground elevation. The nominal ground spacing of the SSM/I pixels obtained at the 19 GHz 72 

channel, for example, is 25 km. In other words, any ground objects or processes that are smaller 73 

than 25 km will not be accurately measured. Therefore, uncertainty due to the large pixel size 74 

exists in the melt maps derived at the 25 km scale and could be large enough to distort our 75 

knowledge of climate changes derived from the melt maps. Consistent decreasing trends of 76 

surface melt over the Antarctic continent were reported by different research groups using the 77 

satellite passive microwave data (Liang et al., 2019; Liu et al., 2006; Tedesco, 2009; Wang & 78 

Liu, 2017). These reported trends, however, were contradictory to the warming climate records 79 

in Antarctica (Steig et al., 2009) and increasing sea levels caused by ice sheet melt (Golledge et 80 

al., 2019). The uncertainty of surface melt records from the passive microwave data could 81 

contribute to such inconsistency between the surface melt trend in Antarctica and other 82 

climatological reports. The work by De Freitas et al. (2018) suggested that the Boolean 83 

classification of melt and non-melt status of the large SSM/I pixels would overestimate melt 84 

extents. They proposed an unmixing method using four channels (19H, 19V, 37H, and 37V) of  85 
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Figure 1: Study area of the Antarctic Peninsula. (a) The SSM/I image and (b) the PMESDR image of 

December 31, 2012 

SSM/I to unmix three endmembers: wet snow, dry snow, and rock outcrops. Their method, 86 

however, is limited by the number of channels and cannot unmix more than three endmembers. 87 

And the high similarity among the four channels in their responses to melting and non-melting 88 

status compromises the unmixing model premise. The brightness temperature of dry snow can 89 

range from 175 K to 235 K because of the large variation of the emissivity, which is strongly 90 

dependent on the grain-size (Zwally & Fiegles, 1994). Therefore, it is difficult to determine pure 91 

dry endmembers only based on the absolute brightness temperature. In this research, we propose 92 

a new unmixing algorithm that (1) treats the time series brightness temperature data as 93 

hyperspectral images and (2) identifies endmembers by searching distances. The objective of this 94 

paper is twofold: (1) to quantify the overestimation bias of the existing SSM/I surface melt maps 95 

and (2) to verify that our new unmixing method can reduce the uncertainty and correct the bias 96 

of melt map production from passive microwave remote sensing data.  97 

2. Data and study area 98 

Figure 1 shows the boundary and coastline of the study area overlaid with the SSM/I image (a) 99 

and the PMESDR image (b) of December 31, 2012. The study area is measured as 1,150 km by 100 
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1,400 km, with 584,375 km
2
 of land surface area.  The passive microwave images were obtained 101 

by the Special Sensor Microwave/Imager (SSM/I) onboard the Defense Meteorological Satellite 102 

Program (DMSP) satellites, which measures microwave brightness temperature of the 103 

atmosphere, ocean, and terrain (NOAA, 2019). It offers daily data since 1987 in vertical 104 

polarization 22.235 GHz and both horizontal and vertical polarization 19.35, 37.0, and 85.5 GHz 105 

(Armstrong et al., 1994). Among the 7 channels, Liu et al. (2006) made a comparison of the 106 

brightness temperature of different frequencies and polarizations and found that the low 107 

frequency channels were more sensitive to melt initiation than the channels at higher frequencies. 108 

This is mainly because both absorption and emission of microwave radiation are stronger at 109 

higher frequency. About polarization, according to Abdalati and Steffen (1997) and Liu et al. 110 

(2006), at the same frequency, the conversion from dry snow to wet snow leads to a greater 111 

increase in the brightness temperature of horizontal polarization than that of vertical polarization. 112 

Based on these findings, the brightness temperature data at the satellite ascending nodes from 113 

July 1, 2012 to June 30, 2013 at the 19 GHz frequency with the horizontal polarization were 114 

chosen for this study.  115 

For validation of the subpixel fraction derived from the unmixing algorithm, we used the 116 

enhanced resolution passive microwave earth system data record (PMESDR) produced from the 117 

MEaSUREs program funded by NASA, which used the proven interpolation method (David G. 118 

Long & Brodzik, 2016; D. G. Long & Daum, 1998) to reprocess and fuse the complete data 119 

records of SMMR, SSM/I-SSMIS and AMSR-E in a single grid passive microwave ESDR with 120 

improved resolution. The interpolation algorithm takes advantage of overlapping and 121 

oversampling satellite IFOVs to reconstruct the high resolution image (Brodzik & Long, 2015). 122 

The dataset we used was the calibrated enhanced resolution passive microwave daily grid 2.0 123 

brightness temperature ESDR, version 1 (CETB) ESDR using the latest improved level 2 SSM/I-124 

SSMIS and AMSR-E data recording (Brodzik et al., 2018). For channel 19H, the best resolution 125 

achieved by the interpolation is 6.25 km, which is set by the 25-km base resolution and power-126 

of-2 dividers. Therefore, each original SSM/I pixel is nested by 16 PMESDR pixels. We use the 127 

melt fraction derived from each set of 16 PMESDR pixels to verify the melt fraction calculated 128 

from the least squares mixture analysis described below.  129 

3. Methods 130 

3.1. Melt detection 131 

On ice sheets and ice shelves, passive microwave sensors detect naturally emitted microwave 132 

energy from both dry and melting snows within their field of view. Measured passive microwave 133 

data is in the form of brightness temperature calibrated based on the recorded microwave energy. 134 

The relationship between the calculus brightness temperature (Tb) and the near-surface physical 135 

temperature (Ts) can be expressed by first-order Rayleigh-Jeans approximation (Zwally & 136 

Gloersen, 1977) in the microwave spectra: 137 

       (1) 138 

where ε is the emissivity of snow near the surface. The emissivity of wet snow in the microwave 139 

region is about 0.9, while that of dry snow varies from 0.65 to 0.85, which is depending on the 140 
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particle size, because the scattering by ice grains of the radiation emitting from deeper layers in 141 

snow packs will reduce the emissivity. Therefore, assuming the temperature at the melting point 142 

of ice (273.6 K), the theoretical brightness temperature of wet snows is 246 K, which is about 15 143 

to 70 degrees above the brightness temperature of dry snows (Zwally & Fiegles, 1994). When 144 

dry snow packs start to melt, the brightness temperature will rise drastically even if the physical 145 

temperature does not change. Similarly, brightness temperature will drop back to the premelting 146 

status when the snow packs refreeze. Microwave sensors with a frequency higher than 10 GHz 147 

can detect the increase and decrease of brightness temperature when snow begins to melt and 148 

refreezes, respectively (Liu et al., 2006). Such brightness temperature changes, rather than 149 

physical temperature fluctuations, can be used to track the melt and refreeze events during an 150 

austral summer from satellite observations.  151 

Figure 2: The annual variations of brightness temperature for typical wet and dry pixels under the 19 

GHz horizontal channel of the SSM/I data 

For better generalizability, the algorithm for melt detection is chosen as the one proposed 152 

by Zwally and Fiegles (1994) rather than the sophisticated edge detection methods such as Liu et 153 

al.  (2005). In Zwally and Fiegles (1994), a local mean Tb plus 30 degrees (noted as ZF+30) was 154 

used as the melt detection threshold for each pixel. This algorithm takes the spatial variation of 155 

dry snow emissivity into consideration and allows the threshold values to be adaptive to the local 156 

conditions. Figure 2 compared the time series of a wet pixel (pixel that experienced melt in the 157 

year) and a dry pixel (pixel that did not melt in the year), along with the Zwally and Fiegle 158 

threshold (ZF+30) lines for melt detection in both time series. Thus, the melt detection algorithm 159 

assigned 73 melting days to the wet pixel and 0 melting day to the dry pixel. The melt index (MI) 160 

of the wet pixel at the 25 km cell size, as a variable used for multi-year trend analysis of surface 161 

melt, is then computed as: 73 day × 625 km
2
= 45,625 day·km

2
.  162 

 163 

 164 
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Figure 3: The annual variations of brightness temperature for typical full melt and partial melt pixels 

under the 19 GHz horizontal channel of the SSM/I data. 

3.2. Least squares mixture analysis of partial melt data 165 

Figure 3 illustrates a full melt pixel and a partial melt pixel and their melt detection thresholds. 166 

The melt index for the full melt pixel is 55,625 day·km
2
, and the partial melt pixel is 40,000 167 

day·km
2
. The partial melt pixel had a similar threshold value as the full melt pixel according to 168 

Zwally and Fiegles (1994). However, because the pixel is a mix of melt and none-melt 169 

subregions within the pixel, the brightness temperature at the melt status did not rise higher than 170 

the threshold. The dilemma arises for melt days calculation: do we need to decrease the threshold 171 

to assign higher MI for the partial melt pixel or decrease the MI? From the time series view, it 172 

seems the melt duration was underestimated in the illustrated partial melt pixel. To correct the 173 

problem of underestimation, a lower threshold should be proposed, which requires the 174 

knowledge of each partial melt pixel. Even if the new threshold was assigned, in the spatial point 175 

of view, the Boolean assignment of melt overestimates the melt index because only a fraction of 176 

the 25 km by 25 km pixel actually experienced melting.  177 

In figure 3, the full melt pixel and the partial melt pixel have similar shapes of their time 178 

series plots, indicating the synchronization of the two pixels in melting occurrence due to their 179 

closeness in distance. The difference of the wet snow brightness temperature in these two plots is 180 

presumed to be related to the signal mixture phenomenon. Explicitly, the wet snow brightness 181 

temperature of a partial melting pixel in a time series Tp,t is a linear combination of the brightness 182 

temperature of melting part Tm,t and non-melting component Tn,t for t = 1,2,3…,365 (or 366 in a 183 

leap year), as expressed by equation 2: 184 

     (2) 185 
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where αm is the fraction of the melting area; αn is the fraction of the non-melting area; ε is the 186 

error term. The least-square solution, which minimizes the error term, under the constraints of 187 

unity and positiveness (Chein-I Chang et al., 2004), was used to solve the equation. Once the 188 

melt fraction is calculated, the melt area can be updated by multiplying the total area of an SSM/I 189 

pixel and the fraction number. For example, if a pixel is 50% melt, the total melt area from that 190 

pixel is 25 km × 25 km × 50% = 312.5 km
2 
instead of 625 km

2
.  191 

3.3. Endmember selection 192 

In equation 2, endmembers of melt and non-melt time series should be provided to obtain the 193 

solution of melt and non-melt fraction for each partial melt pixel. Endmembers are defined as 194 

pure pixels, which represent the information of a homogenous phenomenon such as melting or 195 

non-melting. Tn,t is the time series of a non-melt pixel in a year. Tm,t is the time series of a full 196 

melt pixel. It is relatively easy to find the non-melt pixels by using the ZF+30 criterion. 197 

However, as shown in figure 3, both the full melt and partial melt pixels were over the line of the 198 

ZF+30 criterion. Therefore, the ZF+30 criterion cannot separate full melt and partial melt pixels. 199 

However, as can be observed from figure 3, the melt edges of the full melt pixel is greater than 200 

those of the partial melt pixel because the mixture of melt and non-melt signal tends to reduce 201 

the magnitude of these edges. 202 

 

Figure 4: (a) The original daily time series of endmember wet #3 and its wavelet transformation local 

maxima (Liu et al., 2005) at all scales. Particularly, W1f(24,x) at the fourth scale was used to classify the 

edges to large (GL) and small (GS) groups. (b) Locations and labels of the five full melt endmembers 

and four non-melt endmembers and their mean GL edge strength map. The full melt endmembers were 

selected from the locations with high GL strengths and the non-melt endmembers were selected from 

the low GL strength areas. 

It is not difficult to run a wavelet decomposition and use a bimodal classification method 203 

to differentiate melt edges from non-melt edges at the fourth wavelet scale (Liu et al., 2005). 204 

Figure 4 (a) shows the time series of wet endmember #3 (figure 4b) and its wavelet 205 

transformation local maxima used to track melt occurrences (Liu et al., 2005). The wavelet 206 

transformation filtered the noise component and preserved stronger edges at higher scales as 207 
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indicators of melt events. The bimodal classification sorts the edges by their magnitude and 208 

groups them to two classes - large (GL) and small (GS). The goal is to minimize the in-group 209 

variance and maximize the between-group variance (Liu et al., 2005). For a wet pixel, GL 210 

contains the edges caused by melt signals, while GS contains the edges caused by temperature 211 

fluctuations. For non-melt pixels, both groups are non-melt edges, which are low in magnitude. 212 

Therefore, the mean magnitude of the GL of a non-melt pixel is much lower than that of melt 213 

pixels. The mean magnitude of the GL was used as an indicator of pixel purity: the larger the 214 

mean GL edge magnitude, the more likely the pixel to be a pure melt pixel. Figure 4 (b) shows 215 

the GL edge magnitude map in the study area and the locations of wet and dry endmembers. 216 

Indeed, all the red-colored pixels could be considered as areas of full melt. We picked the most 217 

representative ones as endmembers. The blue-colored area contains non-melt (dry) endmembers. 218 

Yellow colors represent mixed pixels. We selected these endmembers to run the least squares 219 

mixture analysis for melt fraction calculation within each 25-km SSM/I pixel. Melt edges are 220 

clearly much stronger than non-melt edges, not only in the magnitude but also in the temporal 221 

continuity. The endmembers are defined locally because the shape of the time series brightness 222 

temperature changes from region to region. Each melt event is bounded by a certain terrain 223 

boundary such as ridges of high mountains on ice sheets. On the other hand, the melt events on 224 

ice shelves could extend far because of the flat topography. For each mixed pixel, the wet and 225 

dry endmembers were picked from a tessellation of voronoi polygons defined by the locations of 226 

endmembers (figure 5). Each voronoi polygon defines the nearest neighbor area to the 227 

endmember candidates. Mixed pixels located within the polygon defined by an endmember will 228 

be unmixed from it. The tessellation map of figure 5(a) is for wet endmember selection. The 229 

tessellation map of figure 5(b) is for dry endmember selection. The nearest neighbor zones 230 

assign one wet endmember based on figure 5(a) and one dry endmember based on figure 5(b) to 231 

the partial melting pixels. With the wet and dry endmembers, the fraction of the melt and non-232 

melt area in each partial melting pixel were computed using equation 2.  233 

3.4. Accuracy Assessment 234 

To verify the unmixing model, we employed the high resolution product of passive microwave 235 

earth system data record (PMESDR) program. The product was created by fusing multiple 236 

passive microwave observations from overlapping orbits of the same sensor and/or different 237 

sensors to reconstruct the super-resolution brightness temperature data. In terms of the spatial 238 

resolution, this product is comparable to another high resolution product from the QUIKSCAT 239 

satellite SeaWinds Ku band radar image using a similar high-resolution reconstruction algorithm. 240 

In fact, the super-resolution QUIKSCAT product was used for accuracy assessment in many 241 

snow melt mapping projects (Bhattacharya et al., 2009; De Freitas et al., 2018). However, the 242 

problem of QUIKSCAT data is its short life. It collected global images from 1999 to 2009 for 243 

about ten years, which already exceeded its designed life. The PMESDR program created super-244 

resolution passive microwave images spanning much longer time than QUIKSCAT, and because 245 

it is a product of radiometers rather than scatterometers, it is superior to QUIKSCAT images for 246 

verifying the unmixing algorithm on passive microwave images.    247 

https://docs.google.com/document/d/16uVtmAP0OU2QtVXw9Z96RWBO3nWNV3EgR99xkTy0d8U/edit#fig_voronoi
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Figure 5: Spatially constrained endmember selection defined by voronoi polygons 

The comparison between the model output and the high resolution data used the melt 248 

index (MI) variable derived from the time series of passive microwave data. Melt index (in 249 

day·km
2
) is the sum of the daily melt extents for a certain area (e.g. the entire Antarctica or the 250 

Antarctic Peninsula) for the entire season (Liu et al., 2006). Melt index is a convenient variable 251 

to study the interannual trends of surface melt in Antarctica and Greenland and an indicator for 252 

climate change (Bhattacharya et al., 2009; Liu et al., 2006; Oza, 2015; Tedesco, 2009). The 253 

formula of the melt index is: 254 

      (3) 255 

where A is the area size of one pixel (assuming it is a constant for all pixels), N is the total 256 

number of pixels, and mdi is the number of melt days (melting duration) within a year for the 257 

pixel i. Each 25 km × 25 km SSM/I pixel contains 16 high resolution PMESDR pixels (6.25 km 258 

× 6.25 km). The total MI of the 16 PMESDR pixels was compared to the unmixed SSM/I pixel 259 

MI. The sum of MI for the entire study area as well as the root mean square error (RMSE) from 260 

pixel-wise comparison of all the land pixels were reported in table 1.  261 
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4. Results and discussions 262 

4.1. Linear mixture analysis and accuracy assessment 263 

Figure 6: Comparing MI of (a) original SSM/I, (b) PMESDR, and (c) LSMA result. 

Table 1 summarizes the total melt index of the Antarctic Peninsula and pixel-wise statistical 264 

values calculated from the three datasets: (1) original SSM/I (2) unmixed SSM/I from LSMA, 265 

and (3) high-resolution PMESDR images. The total melt index of the entire study area in the 266 

Austral summer of 2012-13 differed from each other. The melt index calculated from the original 267 

SSM/I data is about 50% larger than that from PMESDR, showing that there was a significant 268 

bias of overestimation of the reported surface melt using the original SSM/I data. The MI of the 269 

least squares mixture analysis (LSMA) was 43% smaller than the original SSM/I data and 270 

slightly (14%) smaller than the PMESDR result.  271 

Table 1: Comparison of MI from different datasets and their RMSE referenced to PMESDR data. 272 

Melt index (10
6
 

day·km
2
) 

 

SSM/I LSMA PMESDR 

Study area total  11.365 6.478 7.565 

RMSE 0.0104 0.0083 N/A 

The lower RMSE of the LSMA result indicates that the subpixel melt index improved the 273 

confidence and accuracy over the Boolean calculation of melt index from SSM/I images. The 274 

14% lower MI of the unmixed SSM/I data is also justifiable, because later in the discussion 4.4 275 

we will show the LSMA result from the PMESDR images, which was further lower than the 276 
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Boolean calculation from PMESDR data. In other words, overestimation also exists in the high 277 

resolution PMESDR images. Therefore, the 14% lower MI from the LSMA of SSM/I images 278 

was actually correct. Though, the LSMA calculation of melt index was satisfactory given the 279 

large bias of the Boolean calculation products. Figure 6 shows the maps of the original SSM/I MI 280 

(figure 6a), PMESDR MI (figure 6b), and the MI by unmixing calculation (figure 6c) for each 281 

land pixel. Compared with the high resolution PMESDR MI map (figure 6b), the overestimation 282 

of the SSM/I MI (figure 6a) mainly occurred on the Larsen Ice Shelf and the coast of Wilkins. 283 

The unmixing result (figure 6c) had overestimation on the Larsen Ice Shelf but underestimation 284 

on the Wilkins Ice Shelf. The overall pattern of the LSMA MI map matches the PMESDR MI 285 

map better, indicating a better accuracy of the estimated melt index from the unmixing method. 286 

4.2. Impact of pixel size and endmembers purity on least squares mixture analysis 287 

The LSMA model assumes the wet and dry pixels (figure 4b) picked from the study area are pure 288 

endmembers. However, with such a large pixel size of the 25-km SSM/I images, it would be 289 

difficult to find fully melted pixels. Therefore, we have to acknowledge that the endmembers of 290 

wet pixels could only be approximations and uncertainty could be brought to the LSMA model 291 

by the impurity of endmembers. Strictly, we may not be able to find real pure endmembers to 292 

implement the unmixing method at such a scale as satellite radiometer mapping. It is interesting 293 

to test, however, if some relaxation on the pure endmember selection criterion is acceptable and 294 

if the LSMA model can be improved by using the endmembers derived from the high resolution 295 

product rather than from the same SSM/I scene. 296 

Figure 7: The comparison between the PMESDR pixel and the SSM/I pixel as endmembers. 

 297 

          Theoretically, the high resolution images should contain more pure pixels for the unmixing 298 

algorithm to use. To test how much the impurity of endmembers had impacted the unmixing 299 

results, we chose endmembers from the high resolution PMESDR images to implement the 300 

LSMA unmixing calculation. The PMESDR pixels were picked up from the center location of 301 

the SSM/I endmember pixels. As shown in figure 7, the PMESDR endmember has slightly 302 

higher brightness temperature values during the melting time. Then, the unmixing of the SSM/I 303 
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image was performed using the endmembers that were supposed to be more “pure” because the 304 

resolution of the PMESDR pixels was better. However, the unmixing results showed the RMSE 305 

of unmixing the SSM/I images using the PMESDR endmembers was 0.0088 (10
6
 day·km

2
), 306 

which was very close to but 6.02% higher than that using the SSM/I endmembers. Therefore, 307 

although the endmember impurity could cause uncertainty for unmixing, the endmembers 308 

obtained from the high resolution image did not improve the LSMA model. On the other hand, 309 

the high similarity between the unmixing results from SSM/I endmembers and the PMESDR 310 

endmembers indicates that the pixel resolution and impurity of endmembers did not bring much 311 

uncertainty to the LSMA model. 312 

Figure 8: (a) The melt fraction map calculated from LSMA and (b) the scatterplot of between the melt 

fraction and mean elevation of the pixel. 

4.3. Relationship with elevation  313 

The spatial pattern of the melt fraction map in figure 8(a) shows a high resemblance with the 314 

topographic maps published for the Antarctic Peninsula. Therefore, we suspect the elevation may 315 

play an important role in the partial melting problem. We obtained a 1-km elevation model of 316 

Antarctica (Bamber et al., 2009) to analyze its correlation with the melt fraction map. In the 317 

scatterplot (figure 8b), each elevation class is defined by a 100-m interval from the lowest to the 318 

highest and named by the integer number rounded up from the 100th of their elevation values. In 319 

each elevation class, the mean melt fraction was calculated to make the scatterplot with the 320 

elevation class. Because of the non-linearity of the original scatterplot, a logarithm was taken on 321 

the mean melt fraction values. The melt fraction is almost 100% on the ice shelves near the coast 322 

and goes down sharply with the increasing elevation towards the mountains. The scatterplot 323 

shows a clear inverse log-linear trend (p < 0.0001) between the elevation class and the mean melt 324 

fraction. It suggests that, in the study area, the partial melting problem on the ice sheets is mainly 325 

caused by the elevation change. The logarithm relationship between elevation and melt fraction 326 
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indicates that the elevation has little impact on melt fraction over low-lying and flat ice shelves 327 

and, when the elevation is getting higher (e.g., 1000 m), it becomes a dominant variable to 328 

control partial melt fractions. 329 

4.4. Unmixing the high resolution PMESDR images 330 

Figure 9: Subpixel melt index map from (a) PMESDR images and (b) original SSM/I images. 

From the above discussions, we have proved the ability of LSMA to correct the bias introduced 331 

by the Boolean calculation of melt index. It is interesting to test how much difference is in the 332 

melt index derived from high resolution PMESDR images if the Boolean calculation was 333 

replaced by the LSMA model. The purpose of the test is to validate the application of LSMA to 334 

higher resolution image products. Therefore, we applied the same approach to the high resolution 335 

PMESDR images and compared the unmixed MI with that from the SSM/I images. 336 

Figure 9a shows the melt index map from the LSMA calculation of PMESDR images 337 

using the spatially constrained endmembers. Compared to the unmixed melt index map from the 338 

original SSM/I images (figure 9b), the resolution and spatial details look much better. The melt 339 

index from the least squares mixture analysis for the whole study area was 4.417 (10
6
 day·km

2
), 340 

which is about 41.6% lower than the Boolean calculation MI from PMESDR. This difference is 341 

consistent with the comparison between the Boolean MI and unmixed MI from SSM/I images, 342 
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where the unmixed product was 43% lower. The overestimation bias of the Boolean calculation 343 

was therefore corrected by the LSMA method. We used the high resolution product of PMESDR 344 

images as a reference and confirmed such treatment improved the accuracy of the melt index 345 

estimation. Although owing to the unavailability of a higher resolution product than PMESDR 346 

data to verify its LSMA result, we can reasonably infer that the unmixed PMESDR melt index is 347 

the best map product for surface melt.  348 

5. Conclusions 349 

The large pixel size of passive microwave images has caused large uncertainty for monitoring 350 

surface melt over Antarctic Ice Margins. The melt maps need to be updated using high resolution 351 

data to reduce uncertainty. This paper proposes a least squares mixture analysis (LSMA) of the 352 

brightness temperature time series to calculate the subpixel melt index that is comparable with 353 

the high resolution products. We found that the map of Boolean surface melt derived from the 354 

SSM/I images could overestimate surface melt by 50% in Larsen and Wilkins Ice Shelves. With 355 

the treatment of LSMA, the overestimation of surface melt was offset and the uncertainty was 356 

also reduced. 357 

The second finding from our analysis was that the unmixing method would reduce the MI 358 

estimate by a certain amount (e.g., 40-45% in our study area) regardless of the resolution of the 359 

image used. As the partial melting problem has caused overestimation of MI, the reduction of MI 360 

from the unmixing analysis was correct and necessary. Therefore, we recommend such an 361 

unmixing approach to be always applied to surface melt calculation from satellite radiometer 362 

data.  363 

The third finding is that the melt fraction is inversely related to the elevation at a log-364 

linear form. The log-linear regression equation between melt fraction and elevation suggests that 365 

the partial melting phenomenon in our study area could be largely controlled by topography on 366 

the high-elevation ice sheets. Therefore, partial melting of the passive microwave image pixels 367 

could be a severe problem for melt occurred near the Antarctic ice shelf grounding lines.  368 

To illustrate and verify the time series unmixing method, we focused on the study area of 369 

the Antarctic Peninsula. With the evidence collected from this area, we will be able to generalize 370 

the application of the spatially constrained least squares mixture analysis to other major ice 371 

shelves of Antarctica and refine the trend analysis of Antarctic surface melt with higher 372 

confidence and less uncertainty.   373 
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