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Abstract

In recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics

in the equatorial plane. These neural network-based models capture the large-scale dynamics of the plasmasphere, such as

plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the

availability of training data. When the data coverage is limited or non-existent, as occurs during geomagnetic storms, the

performance of NNs significantly decreases, as networks inherently cannot learn from the limited number of examples. This

limitation can be overcome by employing physics-based modeling during strong geomagnetic storms. Physics-based models

show a stable performance during periods of disturbed geomagnetic activity, if they are correctly initialized and configured.

In this study, we illustrate how to combine the neural network- and physics-based models of the plasmasphere in an optimal

way by using the data assimilation Kalman filtering. The proposed approach utilizes advantages of both neural network- and

physics-based modeling and produces global plasma density reconstructions for both quiet and disturbed geomagnetic activity,

including extreme geomagnetic storms. We validate the models quantitatively by comparing their output to the in-situ density

measurements from RBSP-A for an 18-month out-of-sample period from 30 June 2016 to 01 January 2018, and computing

performance metrics. To validate the global density reconstructions qualitatively, we compare them to the IMAGE EUV

images of the He+ particle distribution in the Earth’s plasmasphere for a number of events in the past, including the Halloween

storm in 2003.
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Key Points:7
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Abstract14

In recent years, feedforward neural networks (NNs) have been successfully applied to re-15

construct global plasmasphere dynamics in the equatorial plane. These neural network-16

based models capture the large-scale dynamics of the plasmasphere, such as plume for-17

mation and erosion of the plasmasphere on the nightside. However, their performance18

depends strongly on the availability of training data. When the data coverage is limited19

or non-existent, as occurs during geomagnetic storms, the performance of NNs signif-20

icantly decreases, as networks inherently cannot learn from the limited number of ex-21

amples. This limitation can be overcome by employing physics-based modeling during22

strong geomagnetic storms. Physics-based models show a stable performance during pe-23

riods of disturbed geomagnetic activity, if they are correctly initialized and configured.24

In this study, we illustrate how to combine the neural network- and physics-based mod-25

els of the plasmasphere in an optimal way by using the data assimilation Kalman filter-26

ing. The proposed approach utilizes advantages of both neural network- and physics-based27

modeling and produces global plasma density reconstructions for both quiet and disturbed28

geomagnetic activity, including extreme geomagnetic storms. We validate the models quan-29

titatively by comparing their output to the in-situ density measurements from RBSP-30

A for an 18-month out-of-sample period from 30 June 2016 to 01 January 2018, and com-31

puting performance metrics. To validate the global density reconstructions qualitatively,32

we compare them to the IMAGE EUV images of the He+ particle distribution in the Earth’s33

plasmasphere for a number of events in the past, including the Halloween storm in 2003.34

1 Introduction35

The plasmasphere is a region of cold (< 10 eV) and dense (10−104cm−3) plasma36

encircling the Earth and corotating with it (Lemaire & Gringauz, 1998). It is located37

in the inner magnetosphere and extends several Earth radii (RE) into space out to a bound-38

ary known as the plasmapause (Gringauz, 1963; Carpenter, 1963). At this boundary, the39

plasma density decreases drastically by several orders of magnitude. The plasmasphere40

is a very dynamic region, and its shape and size are strongly dependent on solar and ge-41

omagnetic conditions (O’Brien & Moldwin, 2003; Chappell et al., 1970b). The size and42

shape of the plasmasphere are controlled by two regimes: sunward convection and coro-43

tation with the Earth (Darrouzet et al., 2009; A. Singh et al., 2011). The corotation regime44

dominates during quiet geomagnetic times, and the plasma trapped inside the closed mag-45
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netic field lines corotates with the Earth (Carpenter, 1966). At the same time, the plas-46

masphere is refilled from the dayside ionosphere (N. Singh & Horwitz, 1992; Goldstein,47

Sandel, Hairston, & Reiff, 2003; Krall et al., 2008). It has a nearly circular shape with48

a dusk side bulge (Nishida, 1966). Contrastingly, the sunward magnetospheric convec-49

tion begins to dominate during intervals of high geomagnetic activity (Carpenter, 1970;50

Chappell et al., 1970a; Goldstein, Sandel, Hairston, & Reiff, 2003) and erodes the plas-51

masphere. The stronger the geomagnetic disturbance, the more severely the plasmas-52

phere is eroded (as far as 2 RE during severe disturbances). The combination of convec-53

tion and corotation electric fields causes the development of a plasmaspheric plume in54

the dusk local time sector (e.g., Spasojević et al., 2003; Grebowsky, 1970).55

The plasmasphere is important for a number of physical processes. Its size and shape56

control the propagation and growth of plasma waves, and affect wave-particle interac-57

tions, thus greatly influencing distributions of energetic ions and electrons across a broad58

range of energies (e.g., Spasojević et al., 2004; Horne et al., 2005; Y. Y. Shprits et al.,59

2016; Orlova et al., 2016). The plasmaspheric material eroded during periods of strong60

convection is transported sunward and is observed near the dayside magnetopause reg-61

ularly (e.g., Chen & Moore, 2006; Lee et al., 2016). The enhanced plasma density at the62

dayside magnetopause can limit the rate of reconnection, thus affecting the global con-63

vection pattern (e.g., André et al., 2016; Borovsky & Denton, 2006). The plasma den-64

sity is also a crucial parameter in a variety of applications in the field of space weather,65

such as spacecraft anomaly analysis due to spacecraft charging (e.g., Reeves et al., 2013)66

and GPS navigation (e.g., Mazzella, 2009; Xiong et al., 2016). It is therefore important67

to model the dynamics of the plasmasphere accurately in order to be able to reliably pre-68

dict the aforementioned processes.69

A number of physics-based and empirical models have been developed in recent decades.70

The most commonly used empirical models are the Carpenter and Anderson (1992), D. L. Gal-71

lagher et al. (2000), and Sheeley et al. (2001) models. The Carpenter and Anderson (1992)72

model is based on measurements of electron density derived from radio measurements73

made with the sweep frequency receiver (SFR) on board the International Sun-Earth Ex-74

plorer (ISEE-1) spacecraft and ground-based whistler measurements. It is a model of sat-75

urated density and, thus, represents the distribution of density after several days of re-76

filling. The model covers the range from 2.25 to 8 in L-shell, and the interval of 0-15 MLT77

(magnetic local time). The model provides the mean value of density at different L-shells.78
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D. L. Gallagher et al. (2000) developed the Global Core Plasma Model (GCPM), which79

combined several previously developed models (such as Carpenter and Anderson (1992)80

and D. Gallagher et al. (1998)) by means of transition equations, in order to provide a81

more comprehensive description of the inner-magnetospheric plasma. The models of plas-82

masphere and plasma trough developed by Sheeley et al. (2001) provide statistical av-83

erages of density based on density measurements obtained from the swept frequency re-84

ceiver onboard the Combined Release and Radiation Effects Satellite (CRRES) by iden-85

tifying the upper hybrid resonance frequency. The models cover all local times and 3 ≤86

L ≤ 7. Moreover, Sheeley et al. (2001) also provide the standard deviation of density87

for both the plasmasphere and trough models to describe depleted and saturated den-88

sity levels for various L-shells and MLT sectors for the trough.89

Despite the extensive use of these empirical density models for the inner-magnetospheric90

simulations, they provide statistically averaged values and do not account for the chang-91

ing geomagnetic conditions, and therefore, cannot produce reliable estimates of density92

during extreme geomagnetic events. The models described above do not include the dy-93

namic dependence of plasma density on geomagnetic and solar wind conditions, and den-94

sity is known to vary substantially during periods of strong geomagnetic activity (e.g.,95

Park & Carpenter, 1970; Park, 1974; Moldwin et al., 1995).96

This fact motivated the development of time-dependent models of plasma density.97

In recent years, a number of models utilizing neural networks and taking into account98

solar or geomagnetic conditions have been developed (Bortnik et al., 2016; I. Zhelavskaya99

et al., 2017; Chu, Bortnik, Li, Ma, Angelopoulos, & Thorne, 2017; Chu, Bortnik, Li, Ma,100

Denton, et al., 2017). In all these studies, the authors used feedforward neural networks101

with different architectures to model the plasma density in the equatorial plane or in 3D102

(in Chu, Bortnik, Li, Ma, Denton, et al. (2017)). Feedforward neural networks are a pow-103

erful mathematical tool for finding nonlinear multivariate mappings from input to out-104

put variables, if such a mapping exists (J. A. Anderson, 1995; C. M. Bishop, 1995; Haykin105

et al., 2009). Bortnik et al. (2016) used density measurements inferred from the space-106

craft potential (Li et al., 2010) on board the THEMIS (Time History of Events and Macroscale107

Interactions during Substorms) mission (Angelopoulos, 2009) to train their neural net-108

work model. They used a 5-hour time history of Sym-H index and location as an input109

to the model. The Chu, Bortnik, Li, Ma, Angelopoulos, and Thorne (2017) model is based110

on the same density measurements. The inputs to the model were location and the time111
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histories of Sym-H for the preceding 3 days, AL for 2 hours, and F10.7 for 3 days. Chu,112

Bortnik, Li, Ma, Denton, et al. (2017) built up on those two studies and developed a three-113

dimensional electron density (DEN3D) model based on density measurements from the114

plasma wave experiment on board ISEE (D. A. Gurnett et al., 1978), the plasma wave115

experiment on board the CRRES (R. R. Anderson et al., 1992), the plasma wave instru-116

ment on board Polar (D. Gurnett et al., 1995), and the radio plasma imager (RPI) on117

board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). They used118

location and the time histories of Sym-H for the preceding 3 days, AL for 5 hours, and119

F10.7 for 3 days as inputs to their model. The model of I. Zhelavskaya et al. (2017), Plasma120

density in the Inner magnetosphere Neural network-based Empirical (PINE) model, is121

based on the density measurements obtained from the upper-hybrid resonance frequency122

measured with the EMFISIS instrument on board the Van Allen Probes. This technique123

is known to be one of the most reliable methods for obtaining plasma density (Mosier124

et al., 1973). The inputs to the model were the 96-hour time history of Kp, AE, Sym-125

H, and F10.7 indices and the location given by L and MLT. They showed that neural126

networks-based models can accurately reproduce the dynamics of the plasmasphere (with127

correlation coefficient ≈ 0.95), and can successfully reproduce the asymmetric shape of128

the plasmasphere, including plume formation and erosion on the nightside.129

Neural networks learn from data and are very powerful when data are abundant.130

However, when the data are limited or lacking, their performance may significantly de-131

crease (Priddy & Keller, 2005). This implies that neural networks can be difficult to ap-132

ply to highly unbalanced regression problems and to predict rare events. Extreme ge-133

omagnetic storms are an example of such events. Figure 1 shows the distribution of the134

Kp index over the training period of the PINE model (Oct 2012-Jul 2016, I. Zhelavskaya135

et al. (2017)). As can be seen from the figure, its distribution is highly skewed. Obser-136

vations for Kp > 7 are limited. In fact, there is not a single example of Kp = 9 dur-137

ing this period and, hence, in the training dataset. That implies that NNs may not be138

reliable during periods of high geomagnetic activity, which are the most interesting events.139

One possible way to overcome this limitation is to employ a different approach to140

model the plasmasphere dynamics during disturbed geomagnetic conditions. In partic-141

ular, physics-based modeling is a more stable approach than neural network-based mod-142

eling for high Kp, since it does not depend on data availability. A number of physics-143

based models have been developed in recent years. Pierrard and Stegen (2008) used the144
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Figure 1. Distribution of Kp over October 2012 – June 2016 (the training time interval for

the PINE model). The cadence of bins is 1/3, i.e., the same as the cadence of the Kp index.

kinetic exospheric approach to model the dynamics of the plasmasphere. V. Jordanova145

et al. (2006) coupled their ring current-atmosphere interactions model (RAM) with a 3-146

D equilibrium code (SCB) and a cold plasma model (CPL). The RAM-SCB-CPL model147

calculates the cold electron density in the equatorial plane by following the motion of148

individual flux tubes, using a model of electric field which includes a corotation poten-149

tial and a convection potential that is chosen from either semi-empirical models (Volland,150

1973; Stern, 1975; Weimer, 2005), or self-consistently calculated electric potential (Yu151

et al., 2015), mapped to the equatorial plane along the SCB field lines. Krall et al. (2016)152

coupled this model with SAMI3 (Sami3 is Also a Model of the Ionosphere) to model the153

plasmasphere dynamics during two events in 2001. De Pascuale et al. (2018) used RAM-154

CPL to simulate equatorial plasmaspheric electron densities during two storm events in155

2013, and compared them to in-situ measurements from the Van Allen Probes (Radi-156

ation Belt Storm Probes). Huba and Krall (2013) used the first-principles physics-based157

model SAMI3 to model the plasmasphere in 3D. They incorporated the neutral wind dy-158

namo potential, the corotation potential, and a time-dependent potential from Volland159

(1973) and Maynard and Chen (1975) to model the convection potential for an idealized160

magnetic storm. An overview of various other physics-based models of the plasmasphere161

based on the fluid and the kinetic approaches is given in Pierrard et al. (2009).162

The physics-based models rely on a number of physical processes, which are usu-163

ally parameterized empirically in the model (e.g., refilling, electric and magnetic fields,164
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etc.). Such parameterizations tend to be simplified as they are based on statistical av-165

erages over certain parameters (such as L-shell, MLT, or others). This can lead to in-166

accuracies in the physics-based model associated with such simplified assumptions. There-167

fore, it would be ideal to develop an optimal approach combining the advantages of both168

neural network- and physics-based models, namely the stability of physics-based mod-169

els during geomagnetic storms, and the ability of neural networks to reproduce realis-170

tic density distributions for various events as they are independent of other parameter-171

izations, such as refilling, magnetic and electric field models, etc..172

One possible way to combine the models is to employ data assimilation. Data as-173

similation is a mathematical tool designed for combining a model with typically sparse174

observations in an optimal way (Kalman, 1960). In data assimilation, the information175

provided by both the physical model and the available observations is used to find the176

most likely estimate of the unknown true state of a dynamic system, while taking into177

account their uncertainties. The sequential Kalman filter (Kalman, 1960) is one popu-178

lar algorithm of data assimilation. It uses predictions and observations in a recursive man-179

ner to improve the system measurements. It has numerous applications in technology,180

including the navigational system on Global Positioning System devices and the Apollo181

mission (Grewal & Andrews, 2010), image processing (Salti et al., 2014; Bresson et al.,182

2015), ocean modeling, operational weather forecasting (Kalnay, 2003; Lahoz et al., 2010;183

Sorenson, 1985), and reconstruction of the global state of the radiation belts (e.g., Y. Sh-184

prits et al., 2007, 2013).185

In this study, we employ the Kalman filter technique to combine a neural network-186

and physics-based models in an optimal way. We use a version of the four-dimensional187

physics-based Versatile Electron Radiation Belt code (Y. Y. Shprits et al., 2015; Aseev188

et al., 2016), VERB-CS code (CS stands for “Convection Simplified”), to model the plas-189

masphere dynamics in the equatorial plane. The physics-based VERB-CS code (Aseev190

and Shprits, 2019) was initially developed to model the dynamics of the ring current, but191

can be adjusted to model the plasmasphere dynamics as well, which is done in this study.192

We treat the output of the neural network model PINE (I. Zhelavskaya et al., 2017) as193

“observations” of plasma density in the data assimilation setup. PINE is purely data-194

driven and produces realistic density reconstructions that have a remarkably similar dis-195

tribution to actual density measurements and reproduces the shape of the plasmasphere196

bulge and plumes. To ensure that the models perform well quantitatively and reproduce197
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point satellite measurements accurately, we compare their output to in-situ electron den-198

sity measurements obtained from the Van Allen Probes for an 18-month out-of-sample199

interval from 30 June 2016 to 01 January 2018. Additionally, we compare the global evo-200

lution of plasma density predicted by the models with the global He+ images obtained201

from the IMAGE EUV to validate the models qualitatively and ensure that they repro-202

duce the global dynamics of the plasmasphere correctly.203

The paper is structured as follows: In section 2, we describe the data used for train-204

ing and validation of the models, i.e., in situ density measurements from the Van Allen205

Probes and the plasmapause position derived from the IMAGE EUV. We describe the206

neural network, the physics-based VERB-CS code, and the Kalman filter and how it is207

used to develop the assimilative model in section 3. In section 4, we present the results208

obtained with the models for the Halloween storm in 2003 and several events from 2001,209

and also for a long-term density reconstruction. Finally, in sections 5 and 6, we discuss210

implications and possible improvements to the models developed in this study.211

2 Data212

All magnetic field, solar wind data, and geomagnetic indices have been downloaded213

from the OMNIWeb data service. We have used the density dataset obtained with the214

NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm (I. Zhelavskaya215

et al., 2016) for the period from 01 October 2012 to 01 July 2016, to train the neural net-216

works. I. Zhelavskaya et al. (2016) employed feedforward neural networks to identify the217

upper hybrid resonance bands in the dynamic spectrograms made with the Electric and218

Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite (Kletzing et219

al., 2013) onboard the Van Allen Probes satellites and calculated the plasma density from220

the upper-hybrid resonance frequency. The electron density data set is publicly avail-221

able at the GFZ Data Services (I. Zhelavskaya et al., 2020). The Van Allen Probes pro-222

vide electron density measurements for all local time sectors and L ∼ 2 − 6 RE. We223

use density measurements for a period of 30 June 2016 to 1 January 2018 (obtained with224

the same method) to quantify the performance of all the models developed in this study225

in section 4.3.226

To validate the global output of our models, we use the plasmapause locations de-227

rived from the EUV instrument on board the IMAGE satellite (Sandel et al., 2000). The228
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IMAGE EUV instrument provided the global images of the plasmasphere for the first229

time. These images can be used to derive the location of the plasmapause by consider-230

ing the outermost sharp edge of He+ (Goldstein, Spasojević, et al., 2003). Goldstein, Sandel,231

Forrester, and Reiff (2003) showed that the sharp edge of He+ in the EUV images cor-232

responds to the actual location of plasmapause. We use the density threshold of 40±233

10 cm−3 as an approximation of the plasmapause position in the global reconstructions234

of density produced by the models, which corresponds to the lower sensitivity thresh-235

old of the IMAGE EUV instrument (Goldstein, Sandel, Forrester, & Reiff, 2003). It is236

worth noting that the IMAGE mission operated in 2000 – 2005, which was a different237

solar cycle compared to the one we used in the training of the neural network. There-238

fore, the IMAGE EUV images are the best available data source for validating the global239

evolution of the shape of the plasmasphere produced by the models developed in this study.240

The plasmapause database derived from the IMAGE EUV instrument was obtained from241

http://enarc.space.swri.edu/EUV/.242

3 Methodology243

3.1 The neural network-based model of plasma density PINE244

We utilize the output of the PINE model (I. Zhelavskaya et al., 2017) as “obser-245

vations”, which we combine with the physics-based VERB-CS code modeling the evo-246

lution of plasma density in the data assimilation setup. I. Zhelavskaya et al. (2017) used247

feedforward neural networks to model the global plasmasphere dynamics in the equa-248

torial plane. They used geomagnetic parameters, their time histories, and the location249

given by L and MLT as input variables to the model. The plasma density in the equa-250

torial plane of the Earth was the only output. The neural networks were trained on a251

4-year plasma density dataset obtained from the Van Allen Probes plasma wave mea-252

surements. These density measurements were derived using the Neural-network-based253

Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of254

the electron number density from plasma wave measurements made by the Van Allen255

Probes (I. Zhelavskaya et al., 2016). The model was extensively validated by means of256

K-fold cross validation to ensure that it does not overfit and generalizes well on unseen257

data. Furthermore, its global output was compared to the collection of global images of258

the He+ distribution in the plasmasphere obtained with the EUV instrument of NASA’s259

IMAGE mission to ensure that the model produces reasonable global density reconstruc-260
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tions (e.g., Figures 4, 8, and 9 in I. Zhelavskaya et al. (2017)). The model works well for261

quiet and moderately disturbed events (Kp < 7), but its performance is limited dur-262

ing strong geomagnetic storms due to the lack of such examples in the training data set.263

In the original study, the authors used K-fold cross validation with K=5 to train264

and validate the model. They used this procedure also to find the optimal inputs to the265

model (for more details, please see Appendix A). The training and validation datasets266

were constructed by randomly dividing the whole dataset into K=5 subsets, where in267

each iteration, one subset was left aside and used to validate the model (not used for train-268

ing), while the rest of the K – 1 subsets were used to train a neural network. It should269

be noted that while the division of data into training, validation, and test sets is carried270

out in a random fashion in that study, the more secure way to perform splitting for the271

time series is to divide data sequentially. The sequential division guarantees indepen-272

dence of all three subsets, while random division may produce optimistic evaluations on273

the validation and test sets for the events outside of the time period of the dataset. Nonethe-274

less, the network resulting from training conducted using the random division would still275

have a good performance when reconstructing the past events.276

In this study, we expand the analysis performed in I. Zhelavskaya et al. (2017) by277

conducting the K-fold cross validation procedure using sequential division of data into278

training and validation sets. We use an approach similar to the one implemented in I. S. Zhelavskaya279

et al. (2019). In that study, the authors implemented an approach incorporating both280

sequentiality and randomness in splitting the data into training and validation sets. The281

motivation behind that is that, as discussed above, random division into folds may lead282

to optimistic evaluations on the validation set, since such splitting causes a correlation283

between the training and validation sets. The sequential splitting, in turn, may lead to284

a significantly different distribution of the target variable in the training and validation285

sets. For example, it may occur that the validation or training set does not contain pe-286

riods of high geomagnetic activity due to the way the data were split. Therefore, I. S. Zhelavskaya287

et al. (2019) implemented an intermediate solution. They first split the data into 35-day288

blocks sequential in time, and then assigned these 35-day blocks randomly to the CV folds289

for either training or validation. The reason for using blocks of a 35-day length is to avoid290

the possible effect of the 27-day recurrence caused by the solar rotation.291
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We apply the K-fold CV procedure described above to the density measurements292

from the Van Allen Probes. The obtained results are described in detail in Appendix A.293

In summary, we confirm the findings of the original study of I. Zhelavskaya et al. (2017).294

The models based on the geomagnetic indices yield the best performance, compared to295

the models based only on solar wind or on both solar wind and geomagnetic indices. As296

discussed in the original study, the models based on the solar wind inputs are less ac-297

curate than models based on geomagnetic indices. At the same time, the models based298

on both data sources tend to overfit the training data. We find that the optimal model299

is based on the 48-hour time history of geomagnetic indices AE, Kp, Sym-H, and also300

F10.7. The model also includes the location input given by L and MLT. This updated301

version of the PINE model is used in this study.302

3.2 The physics-based model of plasma density VERB-CS303

The evolution of the plasmasphere density in the equatorial plane can be described304

by the following equation:305

∂n

∂t
+ vφ

∂n

∂φ
+ vR

∂n

∂R
= S − L (1)306

where n denotes the plasma density; φ is the MLT; R is the radial distance in the equa-307

torial plane; vφ and vR are drift velocities in MLT and radial distance, respectively; S308

is the source of charged particles; and L includes loss processes. The second and third309

terms describe the transport of the plasmaspheric particles due to the E×B drift. Re-310

filling is taken into account by the source term S, and the loss term L accounts for the311

loss of the particles into the interplanetary medium.312

We calculate E×B drift velocities using the dipole magnetic field approximation313

and assuming that the electric field is a superposition of co-rotation, convection, and sub-314

auroral polarization stream (SAPS)-driven electric fields. The co-rotation electric field315

is calculated from the electrostatic potential:316

φCR = −ACR

r
, ACR ≈ 92 kV/RE (2)317

To calculate the convection electric field, we use the Kp-dependent Volland-Stern elec-318

tric field model (Maynard & Chen, 1975; Stern, 1975; Volland, 1973):319

φVS = −AMCr
2 sin(φ), AMC =

0.045

1 − 0.159Kp + 0.0093Kp2
(3)320
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We use a shielding parameter γ = 1.8 instead of standard γ = 2, as our experiments321

show that using γ = 1.8 agrees better with observations (more details are provided in322

the Results and Discussion sections). We include the effect of SAPS in the model by us-323

ing the Kp-dependent model of the SAPS electric field developed by Goldstein et al. (2005).324

This model quantitatively includes the average properties of SAPS reported in Foster325

and Vo (2002). The SAPS has an effect on the location of the dusk side plasmapause and326

influences the shape and location of plasmaspheric plumes.327

To account for refilling, we use refilling rates of equatorial electron density from328

Denton et al. (2012). These rates were inferred from passive radio emissions measured329

by the IMAGE RPI instrument during quiet geomagnetic times and are valid for the range330

L = 2 to 9. The model provides median, mean, 1st and 3rd quartiles of the refilling rates.331

In our study, we have used the median refilling rate: log10(
dne,eq

dt ) = 2.22 − 0.006L −332

0.0347L2 (in cm−3/day).333

The escape of particles from the plasmasphere into the interplanetary medium through334

the magnetopause can be described by the loss term L of the form335

L =
n

τ
(4)336

where τ is a lifetime parameter. To model magnetopause loss, we set τ close to 0 out-337

side of the magnetosphere, and to a very large number inside the magnetosphere. The338

boundary of the magnetosphere, the magnetopause, is calculated using the Shue et al.339

(1998) model.340

To solve equation (1) numerically, we employ the VERB-CS code (Aseev & Shprits,341

2019). The VERB-CS code models electron transport in ambient electric and magnetic342

fields and loss due to interaction with plasma waves. The VERB-CS code solves the two-343

dimensional advection equation that describes the particle drift, and we have extended344

the code to solve equation (1) by introducing losses to the magnetopause and the source345

term S.346

Equation (1) must be complemented by initial and boundary conditions. To spec-347

ify the initial conditions, we use the empirical density model of Sheeley et al. (2001) and348

the model of plasmapause by Carpenter and Anderson (1992). The models by Sheeley349

et al. (2001) provide the mean and the standard deviation of measurements for the plas-350

masphere and trough, and are valid for 3 ≤ L ≤ 7 and all local times. To extend the351
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density to lower L-shells, we use the density at L = 3 for L < 3. We start our simu-352

lations using the VERB-CS code during geomagnetically quiet intervals (Kp ≤ 2) and353

therefore assume that the plasmasphere is symmetric in MLT at the beginning of each354

simulation.355

The boundary conditions are periodic in MLT and constant in R. They are set at356

R0 = 1.75 and 10 RE with 0.2-RE and 0.5-hour grid steps in radial distance and MLT,357

respectively. We use the Sheeley et al. (2001) model to set the inner boundary condi-358

tions at 1.75 RE. We use a statistical model of electron plasma sheet density developed359

by Dubyagin et al. (2016) to set the outer boundary conditions at 10 RE. The model is360

valid for the nightside MLT sectors and distances between 6 and 11 RE and is based on361

∼ 400 h of particle measurements from the THEMIS mission. The model is parameter-362

ized by the average of the solar wind proton density over 4 h and the average of the south-363

ward component of interplanetary magnetic field (IMF BS) over 6 h. We assume that364

the electrons at 10 RE reside on the open drift paths at 10 RE on the dayside and set365

the outer boundary conditions to 0 from 6 to 18 MLT.366

The plasmasphere is known to reach saturation after prolonged periods of quiet ge-367

omagnetic conditions (Park, 1974; Xiao-Ting et al., 1988; Lawrence et al., 1999; Su et368

al., 2001). To account for this effect, we have imposed a saturation upper limit of den-369

sity on the code output. We have used the saturated density model of Carpenter and370

Anderson (1992). It is worth noting that this model provides an average of plasmasphere371

density observed after periods of relatively quiet geomagnetic conditions for at least 62372

hours, rather than a theoretical upper limit. However, the ease of use of this model makes373

it a good choice for the purposes of this study, namely to illustrate the application of data374

assimilation to combining neural network and physics-based models together in an op-375

timal way.376

3.3 The assimilative model377

In this section, we outline the Kalman filter technique and describe its application378

to the fusion of the physics-based and empirical models of the plasmasphere.379

The Kalman filter is a popular technique for data assimilation. It is commonly used380

to adjust model predictions in accordance with available, typically sparse, observations,381

while taking into account uncertainties of both the model and observations (Kalman, 1960).382
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In this study, we adapt the Kalman filter technique to combine the predictions of two383

models, namely the physics-based VERB-CS code and the neural network-based PINE384

model. For this purpose, we consider the VERB-CS code as a model that propagates a385

state of the system in time. The output of the data-driven PINE model, in turn, is used386

as observations.387

3.3.1 The Kalman Filter388

The Kalman filter consists of two steps: the forecast step and the analysis step. These389

steps are repeated in cycles. In the forecast step, the model is used to issue predictions390

at the current time step tk, using the previous state of the system, if available. The out-391

put of this step is called the forecast of the system. In the analysis step, this forecast is392

updated in an optimal way, given the observations at time tk. The output of this step393

is called the analysis. At this point, the cycle of the Kalman filter is complete and the394

next iteration can start at time tk+1. Before describing each of the steps in more detail,395

several notations need to be introduced.396

Let us denote the model forecast of the density at time tk by nfk . Hereinafter, sub-397

script k is an index of time tk, bold lowercase letters denote vectors that are obtained398

after discretization of a physical quantity, and bold upper-case letters denote matrices.399

Please note that all discretized variables are assumed to be vectors.400

If equation (1) is linear, its discretized version can generally be written as

nfk = Mk−1n
a
k−1, (5)

where superscripts f and a denote forecast and analysis, respectively, and Mk−1 is a ma-401

trix, also referred to as the model matrix or the model operator. This matrix can be ob-402

tained, for example, by applying a finite difference method to (1). At a given time tk−1,403

the model matrix Mk−1 propagates the current state of the system nak−1 to the next state404

in time nfk . The analysis nak−1 is the best estimate of the state vector at time tk−1, based405

on the model and the available observations. The evolution of plasma density can be mod-406

eled by sequentially solving equation (5) for k = 1, 2, . . ..407

If applied to a real (“true”) state ntk−1 of the system, the model matrix propagates

ntk−1 with some error εMk . This error can originate from the uncertainties of the model,

such as errors due to missing physical processes in the model or numerical errors due to
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discretization of the continuous equation (1). It is also referred to as the model error:

ntk = Mk−1n
t
k−1 + εMk . (6)

The vector εmk is usually assumed to be a Gaussian white-noise random variable

with zero mean and covariance matrix Qk, which is referred to as the model error co-

variance matrix (i.e., E(εMk ) = 0 and E(εMk ε
M>
k ) = Qk, where E is the expectation op-

erator). To correct the model error εMk , we can exploit the information that observations

provide. Given a true state of the system ntk, that is defined on the same grid as the fore-

cast nfk , the measurements nobsk can be represented as follows:

nobsk = Hkn
t
k + εobsk , (7)

where Hk is referred to as the observation operator and εobsk is the observation error. The408

role of the observation operator is to convert the true state from the model grid onto the409

grid of observations (these two grids are generally different). The observation error εobsk410

can be associated with the measurement technique. Note that when we treat the out-411

put of the data-driven PINE model as observations, the error εobsk includes errors of the412

PINE model predictions. The typical assumption is that vector εobsk is a Gaussian white-413

noise random variable with zero mean and covariance matrix Rk, also referred to as the414

observation error covariance matrix (i.e., E(εobsk ) = 0 and E(εobsk εobs>k ) = Rk).415

The Kalman filter then combines the model forecast nfk with observations nobsk to416

obtain a prediction that is closest to the truth in the least squares sense, given the in-417

formation about the model and observation error covariance matrices Qk and Rk. The418

optimal combination of the forecast and observations is referred to as analysis, nak, as419

mentioned above. The analysis nak at time tk can be obtained from the analysis nak−1420

at the previous time step by sequentially solving the equations that constitute the Kalman421

filter described below.422

Forecast step423

The forecast step advances the forecast and the forecast error covariance. First, the

analysis nak−1 obtained at time tk−1 is propagated to the next time tk using the model

matrix Mk−1:

nfk = Mk−1n
a
k−1. (8)
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Then, the forecast error covariance matrix Pf
k is updated according to:

Pf
k = Mk−1P

a
k−1M

T
k−1 + Qk−1, (9)

where Pa
k is the analysis error covariance matrix. The matrices Pf

k and Pa
k are estimates424

of forecast and analysis errors, respectively. The forecast error covariance matrix Pf
k is425

used later in the analysis step.426

Analysis step427

In the analysis step, the forecast obtained in the previous step is updated accord-

ing to observations:

nak = nfk + Kk

(
nobsk − Hkn

f
k

)
, (10)

where Kk is referred to as the Kalman gain. The Kalman gain is a matrix of optimal

weights that is used to correct the forecast based on available observations. The last term

in the equation represents the correction to the forecast given the observations, weighted

by the Kalman gain. The Kalman gain Kk is updated at time tk as follows:

Kk = Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1
. (11)

Finally, the analysis error covariance matrix Pa
k is updated as follows:

Pa
k = Pf

k − KkHkP
f
k . (12)

This finishes the iteration k of the Kalman filter.428

3.3.2 Details of implementation429

There are several details of the Kalman filter implementation that should be taken430

into account, which we describe below.431

The nonlinear term S in equation (1) does not allow us to write the discretization432

of the equation in the form (8). The non-linearity of the equation requires the extension433

of the Kalman filter equations (8) and (9) by linearizing the model operator. In order434

to simplify the implementation of the Kalman filter, we avoid the linearization of the model435

operator by running one step of the VERB-CS code instead of solving equation (8) to436

obtain the plasma density forecast nfk from a previous (optimal) state nak−1. The VERB-437

CS code solves the partial differential equation (1) numerically by discretizing density438

n, drift velocities vϕ and vR, sources S, losses L, and spatial and temporal derivatives439
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∂
∂vϕ

, ∂
∂vR

, and ∂
∂t . Discretization allows us to consider plasma density and other param-440

eters at discrete times tk, where k is an integer, on the grid consisting of discrete val-441

ues of MLT and R.442

To update the forecast error covariance matrix Pf
k in equation (9), we obtain the443

model matrix Mk−1 by discretizing equation (1) without the source term S. For this,444

we use the first-order explicit upwind finite difference scheme with a time step that au-445

tomatically adapts to changing drift velocities to satisfy the Courant stability condition.446

Such an approach allows us to take into account the refilling only in the forward model.447

Neglecting the refilling rates does not significantly affect the optimality of the Kalman448

filter, if the step of data assimilation is chosen to be much smaller than the character-449

istic time of the refilling (that is on the order of days, Denton et al. (2012) and references450

therein). In this study, the data assimilation is performed every 4 hours.451

As mentioned in the previous paragraph, assimilation of the VERB-CS and the PINE452

model output is performed every 4 hours. This time allows the physics-based code to evolve453

the state of the system starting from the initial “blended” state. We note that this time454

was chosen empirically. Comparison with other times (3 and 5 hours, not shown here)455

showed that using 4 hours provides a slightly better performance. The assimilation is456

not performed when Kp > 6 and for one day after the storm, i.e., only the output of457

the VERB-CS code is taken into account during the storm times and shortly after them,458

and the PINE output is not considered. This is done in order to avoid possible errors459

that can be propagated from the neural network model, as it is not reliable for Kp > 6.460

Another aspect that should be noted is the implementation of the observation op-461

erator Hk. This operator transforms the forecast of the model nfk from the model grid462

onto the grid of observations (see eq. (7)). In our case, the model grid is that of VERB-463

CS, and the observations grid is that of the PINE model. As discussed in the previous464

section, the spatial grid of VERB-CS ranges from 0 to 24 hours with 0.5-hour grid step465

in MLT and from 1.75 to 10 RE with 0.2 RE grid step in radial distance. In order to ob-466

tain the global output using the PINE model (i.e., on the whole equatorial plane and not467

just at specific L and MLT), we need to assume a spatial grid, on which the output is468

produced. The PINE model is valid for all MLT sectors, and from 1.75 to 6.15 RE in ra-469

dial distance due to the use of density measurements from Van Allen Probes for train-470

ing. Therefore, the lower and upper boundaries of the PINE grid are set at 1.75 and 6.15471
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RE in radial distance, respectively. In order to simplify the implementation of the Kalman472

filter, we use a spatial grid of the same resolution as the VERB-CS, namely with 0.5-473

hour and 0.2-RE grid steps in MLT and radial distance, respectively. Thus, the spatial474

grid of PINE is a subset of the VERB-CS grid, which makes it easier to assimilate the475

PINE output. Hk is then defined as a matrix consisting of zeros and ones, where 1 cor-476

responds to an element of this matrix when the model’s (VERB-CS’) grid point coin-477

cides with the observation (PINE’s) grid point, and 0 otherwise. The number of rows478

in Hk is the number of grid points of PINE, and the number of columns is the number479

of grid points of VERB-CS.480

In the standard formulation of the Kalman filter, the model and observation er-481

ror covariance matrices are assumed to be known., That is rarely the case in practice,482

and simple approximations are typically made. One approach is to set up the model and483

observation covariance matrices Qk and Rk as diagonal matrices with elements αm(nf )2484

and αobs(nobs)2, respectively (Kondrashov et al., 2011). αm and αobs are referred to as485

model and observation errors, respectively, and are usually empirically chosen constants.486

If they are chosen to be equal to each other, both model and data contribute equally to487

the result of data assimilation, otherwise the result is dominated by either data or model.488

This approach is used in a number of studies in space physics, in particular for the ra-489

diation belt reanalysis (Daae et al., 2011; Y. Shprits et al., 2013; Kellerman et al., 2014;490

Cervantes et al., 2020). In this study, we employ an approach that builds on and extends491

this methodology. We use the same form of the model and observation covariance ma-492

trices Qk and Rk, namely, diagonal matrices with elements αm(nf )2 and αobs(nobs)2,493

respectively. However, we choose the model and observation errors, αm and αobs, to de-494

pend on the plasmapause position (instead of just being constant). Specifically, we as-495

sign different values to m and obs depending on whether nf and nobs are located inside496

or outside the plasmapause. The plasmapause is calculated according to a fixed density497

threshold of 40 cm−3 (the densities larger than the threshold are assumed to be inside498

the plasmasphere, otherwise – outside). We assign the model error inside the plasma-499

pause αminside = 0.407, the model error outside the plasmapause αmoutside = 0.507, the500

observation error inside the plasmapause αobsinside = 0.335, and the observation error out-501

side the plasmapause αobsoutside = 0.333. The description of how these values were ob-502

tained is presented in Appendix B. Using such an approach, we obtain a better agree-503

ment between the assimilative model and observations, compared to using single con-504
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stants for αm(nf )2 and αobs(nobs)2, respectively. However, we choose the model and ob-505

servation errors, αm and αobs.506

4 Results507

In this section, we perform several tests to compare the performance of the PINE,508

VERB-CS, and assimilative model, which is henceforth referred to as the Assimilative509

Magnetospheric Plasma density (AMP) model. We compare the outputs of the models510

during the 2003 Halloween storm and a number of events during March-June 2001. We511

validate the models by comparing the modeled and observed shape of the plasmasphere512

by using the plasmapause location obtained from the IMAGE EUV instrument. We also513

perform a long-term density reconstruction for the period of 30 June 2016 to 1 January514

2018, using all the models. For the long-term run, we validate the models by compar-515

ing their output to the in-situ density measurements from RBSP-A. This period was not516

used in the training of the PINE model. The setup of all the models used in these tests517

is described in section 3.518

4.1 Test 1: Halloween storm 2003519

The first test we perform is to compare the performance of the models for the 2003520

Halloween storm. The Halloween storm occurred from late October to early November521

2003 and was one of the strongest solar storms observed during the satellite era. Dur-522

ing this period, a series of energetic eruptions occurred, including two CMEs (coronal523

mass ejections), which struck the Earth, one shortly after another, with an extremely524

short (less than a day) Sun-Earth shock transit time (e.g., Gopalswamy, 2006). At the525

Earth, Kp reached 9 and Dst nearly -400 nT. Fortunately, the plasmapause locations de-526

rived from IMAGE EUV are available during some parts of the storm, which makes it527

an ideal event for testing the models for extreme geomagnetic conditions.528

Figure 2 shows the global electron density reconstruction during the Halloween storm529

2003 using the PINE (left column), VERB-CS (middle column), and assimilative (right530

column) models. The first four rows show the global snapshots of density, and the bot-531

tom row shows the Kp index during the event. The first four rows correspond to the spe-532

cific times during the event when the plasmapause from the IMAGE EUV instrument533

–19–



manuscript submitted to JGR: Space Physics

Figure 2. Comparison of the PINE (left), VERB-CS (middle), and assimilative model (right)

outputs during the 2003 Halloween storm. The first four rows show the outputs of the mod-

els corresponding to the times marked with the red lines in the bottom panel showing the Kp

index during the 2003 Halloween storm. The black-and-white dots show the location of the

plasmapause derived from the IMAGE EUV images. The color in the first four rows indicates

the logarithm of density (the scale of the colorbar is the same for all models and all times). The

gray and black section of the colorbar indicates a density threshold of 40 ± 10 cm−3 and can be

considered a rough approximation of the plasmapause location for the sake of comparison to the

observed plasmapause position obtained from IMAGE EUV (more details on that are given in

section 2). The Sun is to the left. Row (a) corresponds to the time before the storm, (b) to the

period during the storm (second CME), (c) and (d) to the recovery phase of the storm.
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was available. These times are marked with the red lines and labels (a-d) in the bottom534

panel.535

In order to obtain a global output using the PINE model, it was applied to each536

point on its spatial grid independently (described in section 3.3.2), and the smoothed537

global output shown in Figure 2 was obtained by interpolating between the points. The538

output of the VERB-CS code was obtained by running the model starting from quiet539

geomagnetic conditions (27-Oct-2003 20:00 UT, Kp = 1.7) with the setup described in540

section 3.2. The output of the assimilative model was obtained by running the model541

from the same time. Its setup is described in section 3.3. The time step of the simula-542

tions is 15 minutes for all the models. The time of the IMAGE plasmapause location is543

chosen to be as close as possible to the temporal grid of the models, but not further than544

14 minutes away. Therefore, the time of the IMAGE plasmapause may not exactly co-545

incide with the time of the simulation and may deviate from it by 14 minutes maximum.546

Although it is possible to set the exact time of the simulation for the PINE model, we547

choose to select the same temporal grid as in the VERB-CS and assimilative AMP mod-548

els to ensure an equal comparison between all the models.549

As seen in Figure 2, the PINE model agrees well with the plasmapause derived from550

the IMAGE EUV before the storm, but produces unrealistic global density reconstruc-551

tion during the main phase of the storm. As discussed in the introduction, the reason552

for that is the absence of training examples during extreme geomagnetic events (there553

is no single Kp = 9 in the training dataset of PINE). After the storm (row (c)), the size554

of the plasmasphere reproduced with PINE is in good agreement with the IMAGE ob-555

servations. On the contrary, the VERB-CS model produces an overly extended plasma-556

sphere during the quiet time before the storm, but successfully reproduces the massive557

erosion of the plasmasphere (row (b)) observed in the IMAGE EUV observations as well.558

Several days after the storm (row (d)), VERB-CS produces lower densities inside the plas-559

masphere than those produced by PINE (this can be seen from the color in the density560

snapshots: yellow color in VERB-CS, compared to the red color in the PINE output).561

The assimilative AMP model is in good agreement with IMAGE observations for562

all phases of the disturbance. The size of the plasmasphere before the storm is in bet-563

ter agreement with IMAGE plasmapause observations, compared to the VERB-CS out-564

put, and is closer to the size of the plasmasphere modelled with PINE. During the storm,565
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the PINE output is not taken into account and, therefore, the assimilative model pro-566

duces results similar to the physics-based VERB-CS model, successfully reproducing the567

massive erosion of the plasmasphere. After the storm, it produces densities closer to those568

obtained with PINE inside the plasmasphere (as can be seen from the color in the den-569

sity snapshots), while the shape of the plasmapause is retained from both PINE and VERB-570

CS models. This example illustrates how a neural network-based and physics-based mod-571

els can be combined in an optimal way to produce a more accurate global density recon-572

struction than each of them separately. Such a result is a good indication that the as-573

similative methodology is useful to model the plasmasphere dynamics during extreme574

geomagnetic events.575

4.2 Test 2: Multiple events (March-June 2001)576

In the previous section, we showed that the assimilation of the neural network- and577

physics-based models demonstrated good agreement with the plasmapause observations578

during the 2003 Halloween storm, and performed better than either of the models sep-579

arately. In this section, we test the models further by comparing their output for a num-580

ber of events in March-June 2001. We have selected 5 events corresponding to different581

Kp levels, starting from quiet geomagnetic conditions (Kp = 2.7) and reaching disturbed582

ones (Kp = 8). The motivation behind this selection was to test how the models per-583

form separately and when combined by means of data assimilation for different levels of584

geomagnetic disturbance.585

Figure 3 shows snapshots of global density reconstructions using the PINE, VERB-586

CS, and assimilative models for 5 different events in 2001. The format is similar to Fig-587

ure 2. The columns correspond to models, as labeled in the top row. The rows corre-588

spond to events. The times of the density snapshots and the corresponding Kp values589

are labeled in each row on the left. The events are ordered by increasing Kp index, rather590

than by time. The format of the density snapshots is the same as in the top four rows591

of Figure 2.592

The global density reconstructions are obtained in the same fashion, as described593

in the previous section. Spatial and temporal grids of the models and their setup are also594

the same as used there. We note again that the time grid step is 15 minutes, and there-595

fore may not exactly coincide with the timing of the plasmapause observations derived596

–22–



manuscript submitted to JGR: Space Physics

Figure 3. Comparison of the PINE (left), VERB-CS (middle), and assimilative model (right)

outputs during a series of events in 2001, as indicated in the labels on the left in each row. The

format of the density snapshots is the same as in Figure 2.
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from IMAGE EUV (but is not farther than 14 minutes away). The simulations were run597

separately for 5 different events, each starting from quiet geomagnetic conditions. The598

starting time and Kp at the beginning of the events were: (a) 10 April 2001 03:00 UT599

(Kp = 1.7), (b) 01 June 2001 00:00 UT (Kp = 0.3), (c) 08 May 2001 03:00 UT (Kp =600

0.7), (d) 18 March 2001 12:00 UT (Kp = 1), and (e) 30 March 2001 11:00 UT (Kp =601

2).602

It can be seen that PINE performs well during low and moderate geomagnetic ac-603

tivity (rows a-c), i.e., the modelled plasmapause agrees well with the one observed with604

IMAGE, similar to the results of the previous section. However, for a more disturbed605

event, such as in row (e), when Kp = 8, it produces an abnormal artifact on the night606

side. On the contrary, the physics-based VERB-CS model performs very well for the dis-607

turbed times (rows d and e): the modelled plasmapause matches exactly the one observed608

with IMAGE. However, for the quiet event shown in row (a), it produces an overly ex-609

panded plasmasphere, compared to the observed plasmapause. For the event in row (b),610

when Kp = 4, the plasmasphere produced by VERB-CS is more eroded than was ob-611

served.612

The assimilative model blends the outputs of both models in an optimal way for613

all the tested events. Its output is closer to the output of the VERB-CS code during the614

disturbed intervals (rows d-e) and to the output of the PINE model for the quiet times615

(rows a-b). For the event (c), the output of the assimilation appears to be somewhat in616

between the outputs of the PINE and VERB-CS models. This test illustrates that the617

output of the combined model agrees better with the plasmapause observations from IM-618

AGE than the output of each of the models used separately, not only for extreme geo-619

magnetic storm, but also for quiet and moderately disturbed events.620

4.3 Test 3: Long-term reconstruction of density621

In the two previous sections, we have illustrated the performance of the assimila-622

tive, PINE, and VERB-CS models for different geomagnetic conditions, including quiet,623

moderate, and extreme conditions. The assimilative model demonstrated a better per-624

formance compared to PINE and VERB-CS used separately for all considered events.625

In this section, we test the performance of all models further by performing a long-term626

reconstruction of plasma density using all the models. We compare the modeled density627
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Figure 4. Coverage of RBSP-A during 30 June 2016 – 01 January 2018.

with the in-situ density measurements from RBSP-A during the period between 30 June628

2016 and 01 January 2018. We choose this particular interval for testing, as the density629

measurements during this time were mostly not used in the training of the PINE model.630

Therefore, this choice ensures a fair comparison between the performance of PINE, VERB-631

CS, and the assimilative model. Furthermore, RBSP-A crosses all MLT sectors during632

this interval, as shown in Figure 4, which allows us to evaluate the performance of the633

models in different MLT sectors. The setup of all three models is the same as in the two634

previous sections. Summary plots demonstrating performance metrics calculated dur-635

ing this period for all three models are shown at the end of this section. It is worth not-636

ing that the PINE model was trained on the interval 01 October 2012 – 01 July 2016 (I. Zhelavskaya637

et al., 2017), and therefore, we exclude the period 30 June – 01 July 2016 when calcu-638

lating the performance metrics here. We choose 30 June 2016 as the start time of the639

simulation as the Kp index was smaller than on 02 July 2016 (0.3 vs. 0.7), and also since640

there was a minor disturbance (Kp = 3.3) between 30 June and 02 July, which could641

negatively influence the initial conditions for VERB-CS.642

Figure 5 presents a comparison of the output of the neural network density model643

in-situ density measurements from RBSP-A from 30 June 2016 to 01 January 2018. Panel644

(a) shows the in-situ density observations from RBSP-A. Panel (b) shows the output of645

the PINE model. These two panels have the same format: the x-axis corresponds to time,646

the y-axis to the L-shell, and the color indicates the logarithm of electron density. The647

next two panels (c) and (d) show the difference between the observations and the out-648
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Figure 5. Long-term comparison of the PINE model and the RBSP-A density measurements

during July 2016 – January 2018. Panels (a) and (b) show the RBSP-A density measurements

and the output of the PINE model, respectively, where the L-shell is on the y-axis, time is on

the x-axis, and the color indicates the log of density. Panels (c), (d), and (e) show the abso-

lute difference, the sign of the difference, and the difference between log of the model and data,

respectively.
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put of the model. Panel (c) shows the absolute difference between logarithms of mod-649

elled and observed density. Panel (d) shows the difference itself. The blue color in this650

panel implies underestimation of density by the model (the modelled density is smaller651

than observed), the red color overestimation. Panel (e) shows the location of RBSP-A’s652

apogee during this interval. The gray shaded area implies that the apogee of RBSP-A653

was at the nightside (i.e., from 18 to 6 MLT). It is worth noting that the apogee of RBSP-654

A is located in the night sector during approximately the first half of the interval, and655

therefore, the densities on the farther L-shells are smaller (dark blue color), compared656

to the second half of the interval (where the color is light green on the farther L-shells).657

During the second half of the interval, RBSP-A’s apogee was located on the dayside, and658

therefore, the density is higher there due to plasmaspheric bulge and plume. The bot-659

tom panel shows the Kp index during this period.660

To obtain the model output at the L- and MLT-coordinates of RBSP-A, the model661

was first applied to the full spatial grid of L and MLT. Then, a virtual satellite was flown662

through the model output at the coordinates closest to the L- and MLT-coordinates of663

RBSP-A, and after that, the output was interpolated to these coordinates. Although the664

PINE model can be directly applied to specific L and MLT coordinates without the need665

to make a virtual flyby, such a procedure was nonetheless employed in order to obtain666

a consistent comparison with VERB-CS and the assimilative model.667

It can be seen that the PINE model output is very similar to the observations. The668

model captures the expansion of the plasmasphere that occurs during periods of quiet669

geomagnetic conditions and erosion associated with geomagnetic disturbances. For ex-670

ample, the massive erosion of the plasmasphere during the September 2017 storm is cap-671

tured by the model. Moreover, the positive and negative differences between the model672

output and observations (shown in panel (d)) are spread randomly over the duration of673

the simulation, which indicates that there is no systematic bias in the model. Overall,674

these results show that the PINE model performs well on the out-of-sample period (i.e.,675

the period not used in the training).676

Figure 6 shows the comparison between in-situ density from RBSP-A and the out-677

put of the physics-based VERB-CS code. The format of the figure is the same as in Fig-678

ure 5, where panel (b) presents the output of VERB-CS, and panels (c) and (d) show679

the difference between the modelled and observed density in different formats. The model680
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Figure 6. Long-term comparison of the physics-based model and the RBSP-A density mea-

surements during July 2016 – January 2018. Panels (a) and (b) show the RBSP-A density mea-

surements and the output of the physics-based model, respectively, where the L-shell is on the

y-axis, time is on the x-axis, and the color shows the log of density. Panels (c), (d), and (e) show

the absolute difference, the sign of the difference, and the difference between log of the model and

data, respectively.
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output at the coordinates of RBSP-A was obtained in the same fashion as in Figure 5:681

the model was first run on the full spatial grid, and then the virtual satellite was flown682

through the output at the L- and MLT-coordinates of RBSP-A.683

It can be seen that the VERB-CS model captures the general dynamics of the plas-684

masphere, i.e., its erosion and expansion, well. Again, the model reproduces a massive685

erosion of the plasmasphere during the September 2017 storm. It can be seen, however,686

that the differences between observations and the output of VERB-CS shown in panel687

(c) are larger than those of the PINE model (shown in Figure 5). As can be seen from688

panel (d), the VERB-CS model tends to systematically underestimate observations (vi-689

sually, the blue color is predominant). In particular, an underestimation can be seen in690

the first half of the time interval, when RBSP-A’s apogee was located at the nightside,691

and in the 9-12 MLT sector.692

Finally, Figure 7 presents the comparison between in-situ density measurements693

from RBSP-A and the output of the assimilative model. The format is the same as in694

Figures 5 and 6, where panel (b) shows the output of the assimilative model and pan-695

els (c) and (d) show the difference between the model output and observations in dif-696

ferent formats (as described below in Figure 5). The output of the model was obtained697

in the same manner as for the other models. The assimilative model was first run on the698

full spatial grid, and then a virtual satellite was flown through the global output of the699

assimilative model along the RBSP-A coordinates.700

It can be seen from the figure that the assimilative model successfully captures the701

general dynamics of the plasmasphere, i.e., erosion and expansion associated with cor-702

responding geomagnetic conditions. Although, similarly to VERB-CS, it produces lower703

densities on the nightside (first half of the interval), its output is in better agreement dur-704

ing the rest of the interval, compared to the VERB-CS model: the underestimation that705

was observed in the VERB-CS output is reduced. Consequently, the errors of the assim-706

ilative model are larger than those of PINE on the nightside but are comparable or even707

lower than those of PINE on the dayside. The densities inside the plasmasphere (at low708

L-shells) are lower compared to the observations from RBSP-A, which is caused by the709

use of the saturation density model (Carpenter & Anderson, 1992) in the assimilative710

model setup as well. Overall, the performance of the assimilative model improves on the711

dayside compared to VERB-CS and is similar to that of PINE. On the nightside, the as-712
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Figure 7. Long-term comparison of the assimilative model and the RBSP-A density measure-

ments during July 2016 – January 2018. Panels (a) and (b) show the RBSP-A density measure-

ments and the output of the assimilative model, respectively, where the L shell is on the y-axis,

time is on the x-axis, and the color shows the log of density. Panels (c), (d), and (e) show the

absolute difference, the sign of the difference, and the difference between log of the model and

data, respectively.
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Figure 8. The root-mean-square error (top row) and the bias or mean error (bottom row) of

the PINE, physics-based, and assimilative models for the 02 July 2016 – 01 January 2018 period.

The Sun is to the left. The colorbar of each row shows the value of the corresponding metric

(RMSE or ME). The colorbar limits are the same for all models in each row.

similative model produces results closer to the VERB-CS and tends to underestimate713

the density.714

4.3.1 Performance metrics715

To obtain a general overview of the performance of all the models, it is helpful to716

examine the performance metrics calculated for each model over the whole time period717

under consideration. We use the root-mean-square error (RMSE) and mean error (ME)718

or bias to analyse the performance of all the models in different L and MLT sectors.719

Figure 8 shows the RMSE (top row) and ME/bias (bottom row) of the PINE (left720

column), assimilative (middle), and VERB-CS (right) models calculated over the period721

from 02 July 2016 to 01 January 2018, used in the long-term simulations shown in Fig-722

ures 5-7. It is worth mentioning again that the PINE model was trained on the inter-723

val 01 October 2012 – 01 July 2016 (I. Zhelavskaya et al., 2017), and therefore we ex-724
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clude the period 30 June – 01 July 2016, when calculating the performance metrics here.725

In order to calculate the metrics, the data are binned in L and MLT, and the performance726

metrics are computed separately for each bin. The bins in L range from 1.5 to 6.5 with727

0.5 bin size, and in MLT from 0 to 24 with bin size 1.728

It can be seen that all the models have lower errors closer to the Earth (inside the729

plasmasphere), and that the errors increase with L. The errors of the PINE model are730

the lowest out of all models in terms of both RMSE and bias in all bins. The errors of731

the physics-based model are larger on the nightside and smaller for 10-18 MLT. This re-732

sult is similar to the one shown in Figure 6, and implies that the VERB-CS model sys-733

tematically produces a more eroded plasmasphere on the nightside than is observed. Af-734

ter performing sensitivity tests to all the input parameters of the VERB-CS code (mag-735

netic field, electric field, initial conditions, boundary conditions, etc.), we found that changes736

in the electric field have the most impact on this behavior (not shown here). Modifying737

the shielding parameter γ changes the extent of erosion significantly. From sensitivity738

tests (not shown), we found that using γ = 1.8 provides better agreement with obser-739

vations than using the standard γ = 2 (Maynard & Chen, 1975). Therefore, we use γ =740

1.8 in these simulations. This aspect of the VERB-CS code requires further investiga-741

tion and testing, which we discuss in more detail in section 5.742

It can be seen that the errors of the assimilative model are significantly reduced743

in the day and dusk sectors, compared to the physics-based model, but are still large on744

the nightside (21-7 MLT). This implies that the assimilative technique works well for blend-745

ing the models on the dayside: the error of the assimilative model is smaller than that746

of VERB-CS and is closer to the PINE error. However, on the nightside, the assimila-747

tive model performance is similar to that of VERB-CS rather than PINE. The reason748

for that could lie in the performance of VERB-CS and in the choice of model and ob-749

servation errors αm and αobs in the Kalman filter. VERB-CS has considerably larger er-750

rors on the nightside than PINE does, and it is probable that αm and αobs used here do751

not account for such a difference in errors between VERB-CS (model) and PINE (used752

as observations). If the VERB-CS model is improved, the results of data assimilation753

will consequently be improved as well. We discuss this in more detail in the Discussion754

section.755
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This test still illustrates that the assimilative methodology provides quantitative756

improvement in performance compared to the performance of the VERB-CS model (in757

particular, on the dayside). The performance of the assimilative model is comparable758

to the PINE model performance on the dayside but is closer to the performance of VERB-759

CS on the night side. It is clear that further improvement in the physics-based model760

(VERB-CS), or using a more advanced model, will improve the performance of the as-761

similative model.762

As discussed above and can be seen from the results obtained in all three tests, neu-763

ral networks have a good performance in general (in terms of performance metrics), but764

their performance decreases during extreme geomagnetic storms. At the same time, the765

physics-based VERB-CS code reproduces the plasmasphere dynamics during geomag-766

netic storms well but tends to be less accurate quantitatively, compared to the neural767

network PINE model. The assimilative methodology employed here performs well at com-768

bining both models during different levels of geomagnetic disturbance and shows the best769

agreement with the plasmapause derived from the IMAGE EUV instrument out of all770

models. The comparison with the in-situ density from RBSP-A over a long-term recon-771

struction of plasma density shows that the assimilative model can reach the performance772

of PINE on the dayside, but at the moment, its errors are closer to the VERB-CS model773

errors on the nightside, and consequently are larger than PINE’s. This aspect can be im-774

proved in the future by either improving the VERB-CS model and/or by adjusting model775

and observation errors in the assimilative model. Overall, the assimilative model devel-776

oped in this study demonstrates a potential to combine the advantages of both neural777

network and physics-based models, namely to have a good quantitative performance on778

average, and produce realistic global density reconstructions during the extreme geomag-779

netic events.780

5 Discussion781

Our results show that the assimilative methodology employed in this study for com-782

bining the neural network PINE model and the physics-based VERB-CS code demon-783

strates great potential for combining advantages of both models. Namely, the assimila-784

tive model demonstrated good performance on a series of test events from the IMAGE785

era for a variety of geomagnetic conditions: quiet, moderate, disturbed, and extreme ge-786

omagnetic storms. The output of the model showed better agreement with the plasma-787
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pause locations derived from IMAGE EUV than PINE or VERB-CS, when used sepa-788

rately (Figures 2 and 3). As discussed above, the performance of neural networks is lim-789

ited by the training data. As there are no examples of extreme geomagnetic storms in790

the training dataset of PINE, its performance is reduced during such events. The assim-791

ilative methodology helps eliminate this limitation. The assimilative model also demon-792

strated good capabilities in combining quantitative advantages of models in terms of per-793

formance metrics. Long-term simulations of plasma density using all the models show794

that the current setup of the assimilative model allows for improving the performance795

of VERB-CS considerably in the dayside local time sector.796

An advantageous feature of the assimilative model is that it can reconstruct the797

dynamics of the plasma density beyond the domain of the neural network-based model.798

The domain of the data assimilative model extends to 10 RE in radial distance (as in799

the physics-based VERB-CS model), compared to 6.15 RE of the PINE model. The PINE800

model is valid from ∼ 1.75 to 6.15 RE due to the use of density from the Van Allen Probes801

for training, and the domain of the assimilative model is the same as that of the physics-802

based model, VERB-CS. Therefore, the predictions of the neural network PINE model803

can be extended further to the plasma sheet by using the physics-based VERB-CS model804

as a “smart” extrapolator. It is worth noting that we have used in-situ density measure-805

ments from RBSP-A to validate the models. Therefore, all the models in this study were806

quantitatively validated up to 6.15 RE. The quantitative validation beyond this radial807

distance is out of the scope of this study, but including density measurements from other808

missions, such as THEMIS, will aid in the quantitative validation of both the VERB-809

CS and the assimilative models beyond 6.15 RE. Moreover, including such density mea-810

surements into the training dataset of the neural network will also allow for extending811

it to larger radial distances.812

An important aspect of the assimilative approach employed here is the choice of813

model and observation errors αm and αobs. In this study, we employed an approach sim-814

ilar to Kondrashov et al. (2011), which was adjusted to use different constant values for815

model and observation errors αm and αobs inside and outside of the plasmasphere. We816

have compared the results obtained using such an approach to using constant values of817

errors throughout all radial extent of models (not shown here). We found that using dif-818

ferent values of errors for inside and outside the plasmapause works better in our case819

and provides better agreement with observations. It is worth noting that selecting the820
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model and observation errors is one of the most difficult topics in data assimilation and821

is still an active area of research (e.g., Berry & Harlim, 2017; C. H. Bishop, 2019; Hamil-822

ton et al., 2019); the existing approaches to select them are mostly empirical. Investi-823

gating the selection of these errors in a systematic way and experimenting with the de-824

pendence of the errors on other parameters such as L, MLT, and/or geomagnetic activ-825

ity should be the subject of future research.826

As this is the first study in which a neural network model was combined with a physics-827

based model of the plasmasphere, it is focused on demonstrating the assimilative method-828

ology and its potential rather than reaching the best possible accuracy for either of the829

models in this study. Consequently, we made a number of assumptions and simplifica-830

tions, in particular regarding the electric field, refilling, and saturation density models831

used in the physics-based VERB-CS code. We discuss them below in the context of the832

results obtained in this study.833

In this study, we have used the electric field model of Volland (1973) and Stern (1975)834

parameterized by Kp (Maynard & Chen, 1975). Since Kp is a 3-hour index, the model835

inherently does not take into account the electric field variations on timescales less than836

3 hours, which may not be sufficient time to account for changes in the plasmasphere837

dynamics on shorter timescales (Goldstein et al., 2005). Using a realistic electric field838

from global magnetospheric models or different parameterization accounting for shorter839

timescales, such as the parameterization of Goldstein et al. (2005) based on solar wind840

and IMF parameters, can potentially improve the model and needs to be investigated841

further. It is also worth noting that our tests showed that using a smaller shielding pa-842

rameter γ = 1.8 instead of standard γ = 2 with the Maynard and Chen (1975) pa-843

rameterization provides better agreement with both the IMAGE plasmapause and in-844

situ density observations from RBSP-A. Changes in this parameter significantly influ-845

ence the extent of the erosion of the plasmasphere on the nightside.846

It can also be seen from the results that, in some cases, the plasmasphere produced847

by the VERB-CS is more extended than was observed, in particular during geomagnet-848

ically quiet times (e.g., first row of Figure 3). This could be attributed to the refilling849

rates used. We have used median refilling rates from Denton et al. (2012) (without ac-850

counting for solar-cycle dependence). The model assumes that there is no significant de-851

pendence of the refilling rate on MLT. The same refilling rates are assumed for all ge-852
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omagnetic conditions. At the moment, there still remain unsolved problems in the pro-853

cesses of plasmasphere ion refilling from the ionosphere (D. L. Gallagher & Comfort, 2016).854

Therefore, this topic should be explored further in regard to the physics-based model-855

ing of the plasmasphere, and other approaches to parameterizing the refilling should be856

tested. For example, De Pascuale et al. (2018) used the approach of Rasmussen et al.857

(1993) to model the refilling using the Cold PLasma physics-based model CPL (V. K. Jor-858

danova & Miyoshi, 2005; V. Jordanova, Zaharia, & Welling, 2010; V. Jordanova, Thorne,859

et al., 2010; V. K. Jordanova et al., 2014), where the approach of equatorial plasma den-860

sities toward equilibrium depends on the variation from the saturation level and a timescale.861

The timescale of refilling depends on the local time in addition to L, and was calculated862

from the differences in outgoing ion flux into the plasmasphere at hemispheric bound-863

aries using empirical atmosphere models, including the MSIS-86 thermosphere model (Hedin,864

1987), and IRI ionosphere model (Bilitza, 1986), in their study.865

From long-term simulations (Figure 6), it can be seen that density inside the plas-866

masphere (on low L-shells) is slightly smaller on average than that of RBSP-A. This dif-867

ference can be explained by the fact that the saturation model (Carpenter & Anderson,868

1992) incorporated into the VERB-CS model provides lower saturation density on av-869

erage than observed, using density measurements from the Van Allen Probes. Further870

investigation of other saturation density models or constructing a new saturation model871

that includes density measurements from the Van Allen Probes is required to improve872

the VERB-CS model performance.873

The results obtained in this study illustrate that the assimilative methodology can874

be applied to combine both the qualitative and quantitative advantages of the VERB-875

CS and PINE models. It is clear that further improvement of the mentioned models or876

use of more sophisticated models in the physics-based VERB-CS code will improve the877

performance of the assimilative model. The methodology developed in this study will878

be especially useful for modeling the plasmasphere dynamics during geomagnetic storms879

and extreme events, such as the Halloween storms, while also providing realistic density880

values during quiet and moderate geomagnetic conditions. The combined data assim-881

ilative model is not computationally expensive and can be used as a part of global mod-882

els of the magnetosphere or coupled with ring current and radiation belt codes.883
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6 Summary and Conclusions884

In this study, we demonstrate for the first time how a neural network and physics-885

based models of the plasmasphere electron density can be combined in an optimal way886

by using data assimilation. We use the Kalman filter technique to optimally blend the887

neural network PINE model developed by I. Zhelavskaya et al. (2017) and the physics-888

based VERB-CS code (Aseev & Shprits, 2019) adjusted to model the plasmasphere dy-889

namics.890

We conduct three tests to evaluate the performance of the PINE, VERB-CS, and891

the assimilative model developed in this study. In the first two tests, we compare the model-892

predicted global evolution of plasma density to the global images of the He+ distribu-893

tion from IMAGE EUV; namely, we compare the modelled shape of the plasmasphere894

to the observed one using the plasmapause locations derived from the IMAGE EUV for895

the 2003 Halloween storm and for five events during March-June 2001. In the third test,896

we conduct a long-term reconstruction of electron density using all three models for an897

out-of-sample interval from 30 June 2016 to 01 January 2018. We compare the output898

of the models to the in-situ density obtained from RBSP-A and compute performance899

metrics.900

The tests conducted in this study show that the neural network model PINE has901

a good quantitative performance on average and reproduces the general dynamics of the902

plasmasphere well, such as erosion on the nightside and plume formation. Its performance903

is limited, however, for Kp > 7 due to the lack of training data. The physics-based VERB-904

CS code also reproduces the dynamics of the plasmasphere well, and is especially effec-905

tive during high geomagnetic activity and extreme geomagnetic events. However, its quan-906

titative performance is lower than PINE’s. Using the Kalman filter technique of data as-907

similation, we were able to combine the advantageous features of both models. The as-908

similative model is capable of reproducing the dynamics of the plasmasphere well dur-909

ing both quiet and disturbed geomagnetic activity, including extreme geomagnetic events.910

Its quantitative performance is better than that of VERB-CS and is comparable to PINE’s911

for the dayside local time sector.912

Future work includes considering different and more realistic electric field, refill-913

ing, and saturation density models. More work should be done regarding the selection914

of model and observation error in the Kalman filter setup. The assimilative model can915
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be extended by assimilating in-situ density measurements in the model, as well (e.g., from916

Van Allen Probes, IMAGE RPI, or other sources, depending on the time period), in ad-917

dition to the output of the neural network model PINE.918

Appendix A The updated version of the PINE model919

As discussed in section 3.1, I. Zhelavskaya et al. (2017) used K-fold cross valida-920

tion with random splitting of data into training and validation folds to validate the mod-921

els. They also used this procedure to select optimal input variables to the model. They922

considered several different combinations of solar wind parameters and geomagnetic in-923

dices as potential inputs to the neural network. In particular, they considered models924

based solely on geomagnetic indices (Kp, AE, Sym-H, and also F10.7), solely on solar925

wind data (solar wind speed, dynamic pressure, proton density, and the interplanetary926

magnetic field (IMF) Bz), and on a combination of both. As the time history of previ-927

ous conditions is important for the plasmasphere dynamics, they also considered differ-928

ent durations of time history of these parameters as inputs, starting with simple mod-929

els based only on instantaneous values of activity parameters and subsequently adding930

more time history of the corresponding parameters to the networks, up to 120 h of time931

history. The time history was represented as averages of the time histories of activity932

parameters integrated from hour 0 (e.g., 0-3, 0-6, 0-12 h, etc.). Every neural network also933

included a location input, as given by L and MLT.934

In this study, we extend this analysis using the K-fold cross validation procedure935

described in section 3.1. We consider the same combinations of input parameters to the936

neural networks. The neural networks are trained on the density measurements from both937

RBSP-A and RBSP-b during 01 October 2012 – 01 July 2016. We use cross validation938

to obtain validation and training errors, and the standard deviations of errors. As de-939

scribed in section 3.1, all available data for this time interval are split into 35-day blocks.940

At first, 10% of the data are left aside as a testing dataset. Then the remaining 35-day941

blocks are randomly assigned to the training or validation sets. This type of data split942

allows the sequentiality of data to be preserved, and also introduces randomness and rep-943

resentation of different geomagnetic conditions in both validation and training sets. The944

rest of the methodology is identical to that of I. Zhelavskaya et al. (2017).945
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Figure A1. Root-mean-square error (RMSE) on the y-axis versus the hours of time history

included in the models. The yellow color shows the errors of models based on solar wind, the blue

color is for the models based on geomagnetic indices, and red is for the models based on both

of them combined. Solid lines show validation errors and dashed lines show training errors. The

error bars show the standard deviation of error on the validation set obtained during the CV

procedure.
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Figure A1 shows the root-mean-square error (RMSE) plotted against the number946

of hours of time history included into the model. The yellow color indicates the errors947

of models based on solar wind, the blue color is for the models based on geomagnetic in-948

dices, and red is for the models based on both of them combined. Solid lines show the949

validation errors and dashed lines the training errors. The error bars show the standard950

deviation of error obtained during the CV procedure. The validation error represents how951

well a model performs on the unseen data and is the error we aim to minimize. The dif-952

ference between the training and validation errors indicates if a model overfits the data953

or not. When the difference is too large, this means that a model “learned” the train-954

ing data too well – it memorized it essentially, and due to that performs poorly on the955

unseen data. As a consequence, it does not have good generalization capabilities.956

It can be seen that the models based only on solar wind have the largest errors.957

The errors of the models based only on geomagnetic indices are significantly lower. The958

validation errors of all models are large when no time history is included into them and959

decrease as more time history is included. After a certain point (around 48-hour time960

history), however, the validation errors start to slightly increase again. At the same time,961

the training errors always decrease as more time history is included. The moment when962

the validation error starts increasing indicates that a model starts to overfit. That is not963

desirable in the models and needs to be avoided. In this case, the overfitting starts ap-964

proximately after a 48-hour time history (for all models). The inclusion of longer time965

history does not bring additional improvement. The models based on the combination966

of solar wind and geomagnetic indices have similar errors to the models based only on967

indices, but overfit much more. This implies that the model based only on geomagnetic968

indices contains a sufficient amount of information to model the plasmasphere dynam-969

ics accurately. In this case, the optimal model is based on the 48-hour time history of970

geomagnetic indices, since the validation error is the smallest for that particular com-971

bination, and the model does not overfit significantly. The inputs to the model are L,972

MLT, and averages of Kp, AE, Sym-H, and F10.7 over previous 3, 6, 12, 24, 36, and 48973

hours.974

Appendix B The model and observation error of the Kalman filter975

The model and observation errors αm and αobs were obtained as outlined below.976

We use the results of the long-term density reconstruction obtained in section 4.3. There,977
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PINE and VERB-CS were run for the period of 30 June 2016 – 01 January 2018, and978

their output was compared to the in-situ density measurements from RBSP-A during979

that period. The performance of both models was analysed using the RMSE performance980

metric. Here, we have also computed the RMSE of both models for locations inside and981

outside the plasmapause of the respective model separately for the period of 02 July 2016982

– 01 January 2018. The plasmapause was calculated using the density threshold of 40 cm−3,983

as described in section 2. Figure B1 (panels a-d) shows the histograms of error distri-984

butions during this period for both models at different locations. The RMSEs are labeled985

inside the respective panels. We have employed the RMSE values obtained in this anal-986

ysis as model and observation errors αm and αobs inside and outside the plasmapause987

of each model.988

The same analysis was performed for the output of the assimilative model. Its RM-989

SEs inside and outside the plasmapause are shown in panels (e-f) of Figure B1. It can990

be seen that the RMSEs of the assimilative model are equal to approximately an aver-991

age of those of PINE and VERB-CS RMSEs (and also MEs). After conducting a series992

of experiments with different values of m and obs including just constant values, i.e., with-993

out dependence on the plasmapause location (not shown), we found that these values994

provide the best agreement between the assimilative model and in-situ density observa-995

tions.996
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Figure B1. Distribution of errors of PINE, VERB-CS, and the assimilative model inside

and outside the plasmapause during the out-of-sample period of 02 July 2016 – 01 January 2018

(compared to density measurements from RBSP-A). The respective RMSE and ME are given

inside each panel.
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